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Common factors in panel data models

e Consider the following (dynamic) panel data model:
Yit = ayj-1+ B'Xit + uj

@ A popular approach to account for omitted variables,
unobserved heterogeneity, and cross-sectional dependence is
to assume a common-factor structure for the regression errors:

/
uip =y, iyt +cit

o Factors f, ; are a compact way of summarizing the unobserved
variation over time that is common for all units (countries,
firms, individuals, .. .).

o The corresponding factor loadings -, ; allow for heterogeneous
effects on the units' outcome.

e Unit-fixed effects and time-fixed effects are special cases.
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Common factors in panel data models

@ A common approach to estimating common-factor models is
the Pesaran (2006) common correlated effects (CCE)
estimator:

e Unobserved common factors are projected out by observed
cross-sectional averages.
e Stata implementation: xtdcce2 (Ditzen, 2018).
@ An alternative is the iterative principal components (IPC)
approach of Bai (2009):

e Principal components are factored out from the error term
using nonlinear optimization techniques.
e Stata implementation: regife (Gomez, 2015).

@ These approaches suffer from potential shortcomings such as
incidental-parameters bias (and size distortions due to
ineffective bias correction), the necessity of additional
assumptions, computational complexity, and limited flexibility.
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Common factors in panel data models

@ The unobserved factors are typically allowed to be correlated
with the observed explanatory variables, which may
themselves be driven by common factors:

/
xip = [ ifr +vie

e Norkute, Sarafidis, Yamagata, and Cui (2021) and Cui,
Norkute, Sarafidis, and Yamagata (2021) developed a new
two-stage instrumental variables (1V) approach.

o In the first stage, principal components analysis (PCA) is used
to project out common factors from exogenous covariates (and
their lags). The defactored covariates are valid instruments.

o In the second stage, PCA is applied to extract factors from the
first-stage residuals and to defactor the entire model. The
same instruments as in the first stage remain valid.
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Common factors in panel data models

@ This IV approach is implemented in our new xtivdfreg
package. It offers a lot of flexibility and is computationally
simple due to a linear objective function.

e External instruments can be incorporated.

e The covariates and the error term can be driven by different
factors.

e A model with heterogeneous slopes can be estimated using a
mean-group estimator.

o (High-dimensional) fixed effects can be partialled out prior to
the estimation; xtivdfreg utilizes reghdfe (Correia, 2016).

e Unbalanced panel data set are supported.
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Determinants of banks' capital adequacy ratios

. xtivdfreg L(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity, lags(2)) factmax(3)

Defactored instrumental variables estimation

Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 9 Obs per group min = 54
Number of factors in X = 1 avg = 54
Number of factors in u = 1 max = 54

Second-stage estimator (model with homogeneous slope coefficients)

| Robust

CAR | Coefficient std. err. z P>|z| [95% conf. intervall

CAR |
Li. | .3732316 .0315035 11.85 0.000 .3114859 .4349773

|
size | -2.025311 .1770844 -11.44  0.000 -2.37239 -1.678232
ROA | .1999087 .0295306 6.77 0.000 .1420297 .2577877
liquidity | 1.998128 .4538704 4.40 0.000 1.108559 2.887698
_cons | 29.99368 4.12824 7.27 0.000 21.90248 38.08488

sigma_f | 2.0800886 (std. dev. of factor error component)

sigma_e | 1.115956 (std. dev. of idiosyncratic error component)
rho | .77650224  (fraction of variance due to factors)
Hansen test of the overidentifying restrictions chi2(5) = 7.3151
HO: overidentifying restrictions are valid Prob > chi2 = 0.1982
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Determinants of banks' capital adequacy ratios

. xtivdfreg L(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity, lags(2)) factmax(0)
(output partially omitted)

Number of instruments = 9 Obs per group min = 54
Number of factors in X = 0 avg = 54
Number of factors in u = 0 max = 54

Second-stage estimator (model with homogeneous slope coefficients)

| Robust
CAR | Coefficient std. err. z P>|z| [95% conf. intervall
CAR |
L1. | .291951  .1070032 2.73 0.006 0822287 .5016734
|
size | -.388992  .0839478 -4.63  0.000 -.5535267  -.2244572
ROA | .2213907  .0687908 3.22  0.001 .0865632 .3562183
liquidity | -.1206136 .376421 -0.32 0.749 -.8583851 .617158
_cons | 12.55552  3.501715 3.569  0.000 5.692282 19.41875
sigma_f | 0 (std. dev. of factor error component)
sigma_e | 2.0686632 (std. dev. of idiosyncratic error component)
rho | 0 (fraction of variance due to factors)
Hansen test of the overidentifying restrictions chi2(5) = 19.1115
HO: overidentifying restrictions are valid Prob > chi2 = 0.0018

ivreghdfe CAR size ROA liquidity (L.CAR = L(0/2).(size ROA liquidity)), gmm2s absorb(id t) cluster(id)
(output omitted)
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Determinants of banks' capital adequacy ratios

. xtivdfreg 1(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity, lags(2)) factmax(3) mg

Defactored instrumental variables estimation

Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 9 Obs per group min = 54
Number of factors in X = 1 avg = 54

max = 54

Mean-group estimator (model with heterogeneous slope coefficients)

| Robust

CAR | Coefficient std. err. z P>|z| [95% conf. intervall

CAR |
L1. | .3751735 .0172599 21.74 0.000 .3413447 .4090022

|
size | -2.178075 .1683235 -12.94 0.000 -2.507983 -1.848167
ROA | .2142237 .0375084 5.71 0.000 .1407086 .2877388
liquidity | 1.456521 .2479702 5.87 0.000 .9705085 1.942534
_cons | 31.90236 2.083698 15.31 0.000 27.81838 35.98633

stian Kripfganz and Vasilis Sarafidis (2021) xtivdfreg


sk516
Highlight

sk516
Highlight


Example
ocooe

Determinants of banks' capital adequacy ratios

. xtivdfreg 1(0/1) .CAR size ROA liquidity, absorb(id t) iv(size ROA, lags(2) factmax(3))
> iv(liquidity, lags(0) factmax(0) nodoubledefact) mg

Defactored instrumental variables estimation

Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 7 Obs per group min = 54
Number of factors in X = * avg = 54

max = 54

Mean-group estimator (model with heterogeneous slope coefficients)

| Robust

CAR | Coef.  Std. Err. z P>|z| [95% Conf. Intervall

CAR |
L1. | .3768387 .0215774 17.46 0.000 .3345478 .4191297

|
size | -2.199214 .1688277 -13.03 0.000 -2.530111 -1.868318
ROA | .2229961 .0394674 5.65 0.000 .1456415 .3003508
liquidity | 1.473673 .2578282 5.72 0.000 .9683387 1.979007
_cons | 32.13583 2.098844 15.31 0.000 28.02217 36.24949

* Number of factors in stage 1:
1 -> size ROA
0 -> liquidity
1 -> size ROA (doubledefact)
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Summary

@ The new xtivdfreg command enables flexible IV estimation
of large-N, large-T panel data models with a multifactor error
structure. It can accomodate

static and dynamic models,

homogeneous and heterogeneous slopes,

high-dimensional fixed effects,

unbalanced panel data,

external instruments,

and flexible assumptions about the factor structure of the

exogenous covariates.

@ For further technical details and examples, see the help file
and our article in the Stata Journal 21 (3).
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