A guide to cluster robust inference using boottest and summclust in Stata

James G. MacKinnon ¹ Morten Ørregaard Nielsen ²

Matthew D. Webb ³

¹Queen's University

²Aarhus University and CREATES

³Carleton University and Ottawa-Carleton Graduate School of Economics

November 18, 2021

2021 Stata Economics Virtual Symposium

Introduction

- This talk is very loosely based on MacKinnon, Nielsen and Webb (2021a).
- Brief overview of the cluster robust variance estimator and the wild cluster bootstrap.
- Simulation results for difficult cases.
- Overview of some diagnostic tools, especially summclust command.
- Quick summary of the boottest command.
- We focus on what Abadie, Athey, Imbens and Wooldridge (2017) calls the "model-based" approach, according to which every sample can be thought of as a random outcome, or drawing, from some meta-population.

Background on Cluster Robust Inference

Consider the following model:

$$\mathbf{y}_g = \mathbf{X}_g \boldsymbol{\beta} + \mathbf{u}_g, \quad g = 1, \dots, G.$$
 (1)

If we assume that the data are generated by (1) with $m{eta}=m{eta}_0$, then the OLS estimator of $m{eta}$ is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{\beta}_0 + (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{u}.$$

it follows that:

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \sum_{g=1}^{G} \boldsymbol{X}_g^{\top} \boldsymbol{u}_g = \left(\sum_{g=1}^{G} \boldsymbol{X}_g^{\top} \boldsymbol{X}_g\right)^{-1} \sum_{g=1}^{G} \boldsymbol{s}_g, \qquad (2)$$

where $\pmb{s}_g = \pmb{X}_g^{ op} \pmb{u}_g$ denotes the k imes 1 score vector corresponding to the $g^{ ext{th}}$ cluster.

Variance Estimator

Dividing the sample into clusters only becomes meaningful if we further assume that

$$\mathrm{E}(\pmb{s}_{\!g}\pmb{s}_{\!g}^{\top}) = \pmb{\Sigma}_{\!g} \quad \text{and} \quad \mathrm{E}(\pmb{s}_{\!g}\pmb{s}_{\!g'}^{\top}) = \pmb{0}, \quad g, g' = 1, \dots, G, \quad g' \neq g. \quad (3)$$

An estimator of the variance of $\hat{m{\beta}}$ should be based on the usual sandwich formula,

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} \Big(\sum_{g=1}^{G} \Sigma_{g} \Big) (\mathbf{X}^{\top}\mathbf{X})^{-1}.$$
 (4)

The natural way to estimate (4) is to replace the Σ_g matrices by their empirical counterparts, which yields the cluster-robust variance estimator, or CRVE,

$$\mathsf{CV}_1: \qquad \frac{G(N-1)}{(G-1)(N-k)} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big(\sum_{g=1}^{G} \hat{\boldsymbol{s}}_g \hat{\boldsymbol{s}}_g^{\top} \Big) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}. \tag{5}$$

What Can Go Wrong

- The CRVE can work well, but the asymptotics depend on G, the number of clusters.
- The CRVE can work poorly when there are few clusters.
- The CRVE also runs into problems when the clusters are heterogeneous:
 - differing size clusters.
 - Unequal distribution of X; cluster specific treatment is an extreme example.
- The wild cluster bootstrap (Cameron, Gelbach and Miller, 2008; Djogbenou, MacKinnon and Nielsen, 2019) often, but not always, works better than the CRVE.

The Wild Cluster Bootstrap

The restricted version of the wild cluster bootstrap (WCR) works as follows:

• Suppose that $\tilde{\beta}$ denotes the OLS estimate of β subject to the restriction $\boldsymbol{a}^{\top}\beta = \boldsymbol{a}^{\top}\beta_0$. Then $\tilde{\boldsymbol{u}}_g = \boldsymbol{y}_g - \boldsymbol{X}_g\tilde{\beta}$ denotes the vector of restricted residuals for the g^{th} cluster. The Bootstrap DGP is

$$\mathbf{y}_{g}^{*b} = \mathbf{X}_{g}\tilde{\beta} + \mathbf{u}_{g}^{*b}, \quad \mathbf{u}_{g}^{*b} = \mathbf{v}_{g}^{*b}\tilde{\mathbf{u}}_{g}, \quad g = 1, \dots, G,$$
 (6)

where the v_g^{*b} are independent realizations of an auxiliary random variable v^*

- Typically, the best choice for v^* is the Rademacher distribution, in which case v^* equals 1 or -1 with equal probabilities Davidson and Flachaire (2008), Djogbenou et al. (2019).
- Then B bootstrap samples are generated, the full model is estimated with the bootstrap samples and either a bootstrap P value or C.I. is calculated.

Figure: Rejection frequencies as G changes, $\gamma = 3$, $\rho = 0.10$

Figure from previous working paper version of Djogbenou, MacKinnon and Nielsen (2019)

Figure: Rejection frequencies for continuous regressor, G=20, N=4000, $\rho=0.10$

Figure from previous working paper version of Djogbenou, MacKinnon and Nielsen (2019)

Figure: Rejection frequencies for treatment dummy, G=20, N=4000, $\rho=0.10$

Figure from previous working paper version of Djogbenou, MacKinnon and Nielsen (2019)

When Will CRVEs be Unreliable?

- ullet There are a few diagnostics one can examine to check whether CV_1 is likely to be reliable.
- Carter, Schnepel and Steigerwald (2017) propose the effective number of clusters, G^* .
- This can be calculated using the Stata package clusteff described in Lee and Steigerwald (2018).
- ullet The forthcoming summclust package calculates G^* more efficiently.
- When G^* differs significantly from G then inference based on $t \sim t(G-1)$ is likely to be unreliable.
- In those situations you can alternatively use WCR or $t \sim t(G^* 1)$; see MacKinnon and Webb (2017) for details.
- The following directly will host summclust on github shortly.

Cluster Level Leverage

MacKinnon, Nielsen and Webb (2021b) proposes a cluster level measure of leverage.

If we drop the $g^{\rm th}$ cluster when we estimate β , the $g^{\rm th}$ residual vector changes from $\hat{\pmb{u}}_g$ to $(\mathbf{I} - \pmb{H}_g)^{-1}\hat{\pmb{u}}_g$, where

$$\mathbf{H}_{g} = \mathbf{X}_{g}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}_{g}^{\top} \tag{7}$$

is the $N_{g} \times N_{g}$ diagonal block of the hat matrix that corresponds to cluster g.

As a measure of leverage, we can instead use a matrix norm of the $m{H}_{\!g}$.

$$L_g = \operatorname{Tr}(\boldsymbol{H}_g) = \operatorname{Tr}(\boldsymbol{X}_g^{\top} \boldsymbol{X}_g(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}). \tag{8}$$

Partial Leverage

The partial leverage of observation i is simply the i^{th} diagonal element of the matrix $\acute{\mathbf{x}}_j(\acute{\mathbf{x}}_j^{\top} \acute{\mathbf{x}}_j)^{-1} \acute{\mathbf{x}}_j^{\top}$, which is just $\acute{\mathbf{x}}_{ji}^2/(\acute{\mathbf{x}}_j^{\top} \acute{\mathbf{x}}_j)$. The analogous measure of partial leverage for cluster g is

$$L_{gj} = \frac{\dot{\mathbf{x}}_{gj}^{\top} \dot{\mathbf{x}}_{gj}}{\dot{\mathbf{x}}_{j}^{\top} \dot{\mathbf{x}}_{j}}, \tag{9}$$

where \acute{x}_{gj} is the subvector of \acute{x}_{j} corresponding to the $g^{\rm th}$ cluster. The average of the L_{gj} is evidently 1/G, so that if cluster h has $L_{hj} >> 1/G$, it has high partial leverage for the $j^{\rm th}$ coefficient.

Cluster Level Influence

MacKinnon et al. (2021b) also proposes a cluster level measure of influence. As an example, consider using a regression to estimate a sample mean. We can rewrite the expression for $\hat{\beta}$ as

$$\hat{\beta} = \sum_{g=1}^{G} \frac{N_g}{N} \bar{y}_g = \sum_{g=1}^{G} L_g \hat{\beta}_g,$$
 (10)

so that $\hat{\beta}$ is seen to be a weighted average of the G estimates $\hat{\beta}_g = \bar{y}_g$, with the weight for each cluster equal to its leverage. Similarly, we find that

$$\hat{\beta}^{(g)} = \frac{N}{N - N_g} \sum_{h \neq g} L_h \hat{\beta}_h, \tag{11}$$

Subtracting (10) from (11), we conclude that

$$\hat{\beta}^{(g)} - \hat{\beta} = L_g(\hat{\beta}^{(g)} - \hat{\beta}_g) = \frac{N_g}{N} (\hat{\beta}^{(g)} - \hat{\beta}_g). \tag{12}$$

Therefore, cluster g will be influential whenever omitting it yields an estimate $\hat{\beta}^{(g)}$ that differs substantially from the estimate $\hat{\beta}_g$ for cluster g itself, especially when cluster g also has high leverage.

Alternatives to bootstrapping

- While the wild cluster bootstrap works well it can sometimes fail.
- Alternative CRVEs are sometimes reliable but computationally infeasible with large clusters:

$$CV_2: \qquad (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \Big(\sum_{g=1}^{G} \ddot{\boldsymbol{s}}_{g} \ddot{\boldsymbol{s}}_{g}^{\top} \Big) (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}. \tag{13}$$

In the middle factor here,

$$\ddot{\mathbf{s}}_g = \mathbf{X}_g^{\top} \mathbf{M}_g^{-1/2} \hat{\mathbf{u}}_g, \text{ where } \mathbf{M}_g = \mathbf{I}_{N_g} - \mathbf{X}_g (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}_g^{\top}.$$
 (14)

- In Stata, see the reg_sandwich package.
- Tyszler, M., Pustejovsky, J. E., & Tipton, E. 2017.
- See also Randomization Inference and other forms of randomization MacKinnon and Webb (2020), Cai, Canay, Kim and Shaikh (2021), Canay, Romano and Shaikh (2017) and references therein.
 - In Stata, see the RITEST package, by Simon Hess.

Multi-way Clustering

- Clustering can occur in more than one dimension.
- ullet Cameron et al. (2011) proposed a variance estimator of $\hat{oldsymbol{eta}}$

$$\widehat{\mathsf{Var}}(\hat{oldsymbol{eta}}) = (oldsymbol{X}^{ op} oldsymbol{X})^{-1} \hat{oldsymbol{\Sigma}} (oldsymbol{X}^{ op} oldsymbol{X})^{-1}$$

$$\hat{\boldsymbol{\Sigma}} = \sum_{g=1}^{G} \hat{\boldsymbol{s}}_{g} \hat{\boldsymbol{s}}_{g}^{\top} + \sum_{h=1}^{H} \hat{\boldsymbol{s}}_{h} \hat{\boldsymbol{s}}_{h}^{\top} - \sum_{g=1}^{G} \sum_{h=1}^{H} \hat{\boldsymbol{s}}_{gh} \hat{\boldsymbol{s}}_{gh}^{\top}.$$

- MacKinnon, Nielsen and Webb (2021c) proposes a multi-way cluster bootstrap.
- Multi-way theory is still under active development (Chiang, Kato and Sasaki, 2020; Chiang, Kato, Ma and Sasaki, 2021; Davezies, D'Haultfœuille and Guyonvarch, 2021; Menzel, 2021).

Figure from MacKinnon et al. (2021c)

Figure: Rejection frequencies for two-way t-tests

Notes: There are 400,000 replications, and the sample size N is always 6400. All tests are at the 5% nominal level

Figure from MacKinnon et al. (2021c)

Figure: Rejection frequencies for wild cluster bootstrap tests

Notes: There are 100,000 replications, and N=6400. All bootstrap tests use B=399 and reject whenever $\hat{P}_5^* < 0.05$. In all cases, $\phi_1=\phi_2=0.40$. For each method and each pair of G,H values, the top of the vertical line shows the largest observed rejection frequency across the cases $\rho_1=\rho_2=0.01,0.02,\ldots,0.10$, the bottom of the line shows the smallest one, and the mean over the ten frequencies is shown by a symbol.

boottest

- In Stata, the program boottest handles many of these routines.
- Roodman et al. (2019) describes the features of the program and how it achieves computational efficiency.
- boottest itself is for estimating bootstrap P values and confidence intervals.
- waldtest is contained within boottest and can be used for asymptotic P values and confidence intervals.

waldtest

$$y_i = \alpha + \beta x_i + \gamma w_i + \epsilon_i$$

- Imagine you are interested in estimating the above model.
- You want to test the null hypothesis $H_0: \beta_0 = 0$ under different assumptions about the level of clustering: city, state, etc.
- It can also handle multi-way clustering, such as state and year.

Example

```
reg y x w, robust
waldtest x, cluster(city)
waldtest x, cluster(state)
waldtest x, cluster(state year)
```

$$y_i = \alpha + \beta x_i + \gamma w_i + \epsilon_i$$

- Consider the same set up as before, but now you wish to use a bootstrap procedure to test the null hypothesis $H_0: \beta_0 = 0$.
- The following example shows how to do so for: the wild cluster bootstrap WCR (clustering by state); the wild bootstrap WR clustering by state (MacKinnon and Webb, 2018); and multi-way clustered by state and year.

Example

```
reg y x w, robust
boottest x, cluster(state)
boottest x, cluster(state) bootcluster(obsid)
boottest x, cluster(state year) bootcluster(year)
```

Some Guidance

- For each plausible level of clustering examine the distribution of cluster sizes.
- Settle on a level of clustering, perhaps by testing .
- For key regressions report measures of cluster level influence, leverage, and the effective number of clusters, shortly available with summclust.
- Employ the wild cluster bootstrap by default, easily done with boottest.
- Consider alternative means of inference with few treated clusters.

Bibliography I

- Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey Wooldridge (2017) 'When should you adjust standard errors for clustering?' Working Paper 24003, National Bureau of Economic Research
- Cai, Yong, Ivan A. Canay, Deborah Kim, and Azeem M. Shaikh (2021) 'A user's guide to approximate randomization tests with a small number of clusters.' ArXiv e-prints 2102.09058
- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2008) 'Bootstrap-based improvements for inference with clustered errors.' Review of Economics and Statistics 90, 414–427
- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2011) 'Robust inference with multiway clustering.' *Journal of Business & Economic Statistics* 29, 238–249
- Canay, Ivan A., Joseph P. Romano, and Azeem M. Shaikh (2017) 'Randomization tests under an approximate symmetry assumption.' *Econometrica* 85, 1013–1030

Bibliography II

- Carter, Andrew V., Kevin T. Schnepel, and Douglas G. Steigerwald (2017) 'Asymptotic behavior of a t test robust to cluster heterogeneity.' Review of Economics and Statistics 99, 698–709
- Chiang, H. D., K. Kato, and Y. Sasaki (2020) 'Inference for high-dimensional exchangeable arrays.' ArXiv e-prints 2009.05150
- Chiang, H. D., K. Kato, Y. Ma, and Y. Sasaki (2021) 'Multiway cluster robust double/debiased machine learning.' *Journal of Business & Economic Statistics* 39, to appear
- Davezies, L., X. D'Haultfœuille, and Y. Guyonvarch (2021) 'Empirical process results for exchangeable arrays.' *Annals of Statistics* 49, 845–862
- Davidson, Russell, and Emmanuel Flachaire (2008) 'The wild bootstrap, tamed at last.' *Journal of Econometrics* 146, 162–169
- Djogbenou, Antoine A., James G. MacKinnon, and Morten Ø. Nielsen (2019) 'Asymptotic theory and wild bootstrap inference with clustered errors.' *Journal of Econometrics* 212, 393–412

Bibliography III

- Lee, Chang Hyung, and Douglas G. Steigerwald (2018) 'Inference for clustered data.' Stata Journal 18(2), 447–460
- MacKinnon, James G., and Matthew D. Webb (2017) 'Wild bootstrap inference for wildly different cluster sizes.' *Journal of Applied Econometrics* 32, 233–254
- MacKinnon, James G., and Matthew D. Webb (2018) 'The wild bootstrap for few (treated) clusters.' *Econometrics Journal* 21, 114–135
- MacKinnon, James G., and Matthew D. Webb (2020) 'Randomization inference for difference-in-differences with few treated clusters.' *Journal of Econometrics* 218, 435–450
- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2021a) 'Cluster-robust inference: A guide to empirical practice.' QED Working Paper 1456

Bibliography IV

- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2021b) 'The summclust package: Leverage and influence in clustered regression models.' QED Working Paper, Queen's University
- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2021c) 'Wild bootstrap and asymptotic inference with multiway clustering.'

 Journal of Business & Economic Statistics 39, 505–519
- Menzel, Konrad (2021) 'Bootstrap with cluster-dependence in two or more dimensions.' *Econometrica* 89, 2143–2188
- Roodman, David, James G. MacKinnon, Morten Ø. Nielsen, and Matthew D. Webb (2019) 'Fast and wild: Bootstrap inference in Stata using boottest.' *Stata Journal* 19, 4–60