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Introduction

This talk is very loosely based on MacKinnon, Nielsen and Webb
(2021a).

Brief overview of the cluster robust variance estimator and the wild
cluster bootstrap.

Simulation results for difficult cases.
Overview of some diagnostic tools, especially summclust command.
Quick summary of the boottest command.

We focus on what Abadie, Athey, Imbens and Wooldridge (2017) calls
the “model-based” approach, according to which every sample can be
thought of as a random outcome, or drawing, from some
meta-population.



Background on Cluster Robust Inference

Consider the following model:

Ye=XB+u;, g=1,...,G. (1)

If we assume that the data are generated by (1) with 3 = By, then the
OLS estimator of 3 is

B=(X"X)"'XTy=8+X"X)'X"u.
it follows that:
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where s, = XgTug denotes the k x 1 score vector corresponding to the g™
cluster.



Variance Estimator

Dividing the sample into clusters only becomes meaningful if we further
assume that

E(sgs;) =g and E(sgs))=0, g.g'=1,....G, g #g (3)

An estimator of the variance of 3 should be based on the usual sandwich
formula,

(XTX)~ (Zz J(XTX) (4)

The natural way to estimate (4) is to replace the X, matrices by their
empirical counterparts, which yields the cluster-robust variance estimator,

or CRVE,

| G(N—1) :
Vi e R (XTX)~ (Z:: )(xTx (5)



What Can Go Wrong

@ The CRVE can work well, but the asymptotics depend on G, the
number of clusters.

@ The CRVE can work poorly when there are few clusters.

@ The CRVE also runs into problems when the clusters are
heterogeneous:
o differing size clusters.
e Unequal distribution of X; cluster specific treatment is an extreme
example.
@ The wild cluster bootstrap (Cameron, Gelbach and Miller, 2008;
Djogbenou, MacKinnon and Nielsen, 2019) often, but not always,
works better than the CRVE.



The Wild Cluster Bootstrap

The restricted version of the wild cluster bootstrap (WCR) works as
follows:

@ Suppose that 3 denotes the OLS estimate of 3 subject to the
restriction a' 3 = a' By. Then ii; = y; — Xg[3 denotes the vector of
restricted residuals for the gt cluster. The Bootstrap DGP is

yg gﬁ—i-u, u;b—v;bug, g=1,...,G, (6)

where the vg are independent realizations of an auxiliary random

variable v*

o Typically, the best choice for v* is the Rademacher distribution, in
which case v* equals 1 or —1 with equal probabilities Davidson and
Flachaire (2008), Djogbenou et al. (2019).

@ Then B bootstrap samples are generated, the full model is estimated
with the bootstrap samples and either a bootstrap P value or C.I. is
calculated.



Figure: Rejection frequencies as G changes, v =3, p = 0.10
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Figure from previous working paper version of Djogbenou, MacKinnon and
Nielsen (2019)



Figure: Rejection frequencies for continuous regressor, G = 20, N = 4000,

p=0.10

Rej. rate
0.18

Rej. rate
0.18

H{ ——t(19)

0.16-
0.14
0.12
0.10
0.08-
0.06

0.04 4
0.02 4

T T T T T T T T T T T
0.0 01 02 03 04 05 06 07 08 09 1.0
a)y=0

Pz

T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0
b) v =3

T Pa

Figure from previous working paper version of Djogbenou, MacKinnon and

Nielsen (2019)



Figure: Rejection frequencies for treatment dummy, G = 20, N = 4000, p = 0.10
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When Will CRVEs be Unreliable?

@ There are a few diagnostics one can examine to check whether CV; is
likely to be reliable.

o Carter, Schnepel and Steigerwald (2017) propose the effective number
of clusters, G*.

@ This can be calculated using the Stata package clusteff described in
Lee and Steigerwald (2018).

@ The forthcoming summclust package calculates G* more efficiently.

e When G* differs significantly from G then inference based on
t ~ t(G —1) is likely to be unreliable.

@ In those situations you can alternatively use WCR or t ~ t(G* — 1);
see MacKinnon and Webb (2017) for details.

@ The following directly will host summclust on github shortly.


https://github.com/mattdwebb/summclust

Cluster Level Leverage

MacKinnon, Nielsen and Webb (2021b) proposes a cluster level measure of
leverage.

If we drop the g'!" cluster when we estimate 3, the g'! residual vector
changes from dy to (I — Hg)~lig,, where

He = Xg(X'X)7' X/ (7)

is the Ng x Ng diagonal block of the hat matrix that corresponds to
cluster g.
As a measure of leverage, we can instead use a matrix norm of the Hj.

L = Tr(Hg) = Te(X, Xg(XTX) 7). (8)



Partial Leverage

The partial leverage of observation i is simply the i*! diagonal element of
the matrix )?j()?JT)éj)_l)éJT, which is just xfl (XJ-T)?J-). .
The analogous measure of partial leverage for cluster g is

To .
L= &
g = T

XjXJ

: (9)

where Xg; is the subvector of x; corresponding to the g™ cluster.
The average of the Lg;j is evidently 1/G, so that if cluster h has
Lyj >>1/G, it has high partial leverage for the j*" coefficient.



Cluster Level Influence

MacKinnon et al. (2021b) also proposes a cluster level measure of influence.
As an example, consider using a regression to estimate a sample mean. We
can rewrite the expression for B as

G
Z N Vg = Z Lgﬂl\ga (10)
=1

so that 3 is seen to be a weighted average of the G estimates Bg = Vg,
with the weight for each cluster equal to its leverage. Similarly, we find that

e = Ly, (11)
N — Ng %
Subtracting (10) from (11), we conclude that
A A A A N,  ~ A
Be — 3= Lg(,B(g) —Bg) = Wg(g(g) — Bg). (12)

Therefore, cluster g will be influential whenever omitting it yields an
estimate 3(8) that differs substantially from the estimate Bg for cluster g
itself especially when cluster g also has high leverage.



Alternatives to bootstrapping

@ While the wild cluster bootstrap works well it can sometimes fail.

@ Alternative CRVEs are sometimes reliable but computationally
infeasible with large clusters :

CVa:  (XTX)™ (ng )xTx (13)

In the middle factor here,

S0 = X] Mg a,, where M, =1ly, — X, (X X)7'X] . (14)

e In Stata, see the reg_sandwich package.
o Tyszler, M., Pustejovsky, J. E., & Tipton, E. 2017.

@ See also Randomization Inference and other forms of randomization
MacKinnon and Webb (2020), Cai, Canay, Kim and Shaikh (2021),
Canay, Romano and Shaikh (2017) and references therein.

o In Stata, see the RITEST package, by Simon Hess.



Multi-way Clustering

@ Clustering can occur in more than one dimension.

e Cameron et al. (2011) proposed a variance estimator of 3

Var(B) = (X" X)71S(x T x)

G H G H
£ =D %8+ 88 =D > Sonden
g=1 h=1 g=1h=1

@ MacKinnon, Nielsen and Webb (2021c) proposes a multi-way cluster
bootstrap.

e Multi-way theory is still under active development (Chiang, Kato and
Sasaki, 2020; Chiang, Kato, Ma and Sasaki, 2021; Davezies,
D'Haultfeeuille and Guyonvarch, 2021; Menzel, 2021).



Figure from MacKinnon et al. (2021c¢)

Figure: Rejection frequencies for two-way t-tests
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Figure from MacKinnon et al. (2021c¢)

Figure: Rejection frequencies for wild cluster bootstrap tests
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boottest

@ In Stata, the program boottest handles many of these routines.

@ Roodman et al. (2019) describes the features of the program and how
it achieves computational efficiency.

@ boottest itself is for estimating bootstrap P values and confidence
intervals.

e waldtest is contained within boottest and can be used for asymptotic
P values and confidence intervals.



waldtest

yi = a+ Bx; +yw; + €

@ Imagine you are interested in estimating the above model.

@ You want to test the null hypothesis Hy : B9 = 0 under different
assumptions about the level of clustering: city, state, etc .

@ It can also handle multi-way clustering, such as state and year.

Example

reg y x w, robust

waldtest x, cluster(city)
waldtest x, cluster(state)
waldtest x, cluster(state year)




boottest

yi = a+ Bx; +yw; + €

o Consider the same set up as before, but now you wish to use a
bootstrap procedure to test the null hypothesis Hp : g = 0.

@ The following example shows how to do so for: the wild cluster
bootstrap WCR (clustering by state); the wild bootstrap WR
clustering by state (MacKinnon and Webb, 2018); and multi-way
clustered by state and year.

Example

reg y x w, robust

boottest x, cluster(state)

boottest x, cluster(state) bootcluster(obsid)
boottest x, cluster(state year) bootcluster(year)




@ For each plausible level of clustering examine the distribution of
cluster sizes.

@ Settle on a level of clustering, perhaps by testing .

@ For key regressions report measures of cluster level influence, leverage,
and the effective number of clusters, shortly available with summclust.

@ Employ the wild cluster bootstrap by default, easily done with
boottest.

o Consider alternative means of inference with few treated clusters.
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