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Introduction

Binary outcomes with panels: the current practice

Suppose we seek to identify the effect of a variable Xj; on a binary outcome
Y: with panel data.

Usual parameters of interest:
1. AME=effect on Y7 of a universal, exogenous, infinitesimal change in Xjr.

2. ATE=effect on Y7 of a universal, exogenous change in X1 from 0 to 1.

Following Angrist (2001) and Angrist & Pischke (2008), applied economists
most often use fixed effects (FE) linear models to estimate AME and ATE.

Idea behind: even if wrong, such models deliver the best linear approximation
of the true model.
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Introduction

Binary outcomes with panels: the current practice

Yet, the results can be misleading for at least two reasons.

1st issue: FE linear models only use “movers” (on X); yet “stayers” may be
very different from movers (and also more numerous).

2nd issue: nonlinearities can matter. The best linear approximation may still
be bad, and identify the opposite sign of the true AME/ATE.
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Introduction

An alternative: the fixed effect logit model

Logit model with fixed effects (FE):

Ye = 1{X{Bo +a+e: >0}
et| X, a ~ logistic, i.i.d over t < T.
“FE" approach: the distribution of a|X (with X := (X{,..., X})) is left
unrestricted.

Advantages:

The model allows for heterogeneous marginal /treatment effects;
The model accounts for E(Y:|X,«) € (0,1).

Efficient estimation of 3y already considered by Rasch (1961); see also
Andersen (1970) and Chamberlain (1980).

But to date, no specific study of the AME and ATE in this model.
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Introduction

Our contribution

We first study the identification of AME and ATE in this model:
reformulate the problem as an extremal moment problem;
derive simple, optimization-free, sharp bounds.

Based on this analysis, we suggest two paths for inference:

Estimate the sharp bounds.
Requires nonparam. estimation and, for inference, some regularity on Fx.

Estimate very simple outer bounds of the AME/ATE.
Avoids nonparam. est. and seems to work very well in practice.

Our analysis extends to other parameters (e.g., average structural functions)
and the ordered FE logit model.
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Introduction

Selected Literature Review

Marginal Effects in nonlinear FE parametric panel models

Honoré & Tamer (2006), Aguirregabiria and Carro (2020), Liu, Poirier and
Shu (2021) ...

Moment problem

Theory: Karlin & Shapley (1953), Krein & Nudelman (1977), Schmiidgen
(2017)... and old results from Chebyshev and Markov!

Application to stats & econometrics Dette & Studden (1997), D'Haultfceuille
& Rathelot (2017), Dobronyi, Gu and Kim (2021)...
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Identification

The problem

We focus on the AME at period T (say) for variable Xir, defined by:

OP(Yr = 1|X, )
OXit

A =E

= BokE [N(X760 + )],

with A(x) = 1/(1 + exp(—x)), Xe = (X17, s Xpr)' and X = (XL, ..., XY,

Analysis similar for the ATE if X, r is binary, and the average structural
function.

Bo is identified by maximizing the conditional log-likelihood if
T
E{ Z (Xs — X:)(Xs — X¢)'| is nonsingular. (2)
s,t=1

But unclear how to get E [N (X6 + «)].
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Identification

Intuition

Since no constraints b/w F, x—x and Fy|x—x/, we can focus on
A(x) := BokE [N (XBo + a)| X = x].
= A known moment of the unobserved variable «.
Constraints on F,|x—x, given by the data and the model.
By sufficiency of S = Z;l Y;, all these constraints are, for k =0,..., T:

P(S = k| X = x) = Ci(x, ()
( | ) «(x, Bo) Hthl[l + exp(x{ By + a)]

-
where Ci(x, 3) = Z(dl,..i,dr)e{o,l}T:Zthl dy—k &P (Zt:1 dtx,_{ﬂ).

dFa|X:x(a)
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Identification

Intuition (c'ed)

= For known m, gy, ..., g7, possible values of the moment [ m(x, a)dFy x—x(a),
given other moments [ gi(x, a)dF, x=x(a) (k =0,...,T)?
A so-called moment problem.

We first transform this moment problem into the “standard” Markov moment
problem:
By an appropriate transformation of the constraints;

By an appropriate change of variables.

We then use results on the Markov moment problem to solve ours.
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Identification

The Markov moment problem

Let D be the set of positive measures on [0, 1] and:

My = {(mo7 womp) RT3 e D /utdu(u) =m, t=0,..., T} ,
D(m) = {u €D: /utdu(u) =m, t=0,.., T} for me Mr.
Then define:

1
m) = inf u rdu(u),
ap(m)i= ot [ uTd(w)

1
arlm) = sup [ uTVdu(a).
neD(m) JO

qT(m) and §+(m) can be obtained simply by solving univ. linear egs
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Identification

Some definitions

For t =0,..., T, define:

At(x, B) := coeff of degree t of the polynomial
u— u(l—u) Tl:f (T+u(exp((xt — x7)'B) — 1)),
Z, - (T - t) exp(S;;Bo)
S—t) Cs(X;B) ’

m(x) := (mo(x), ..., mr(x))".

To remember here: all these are identified and easy to estimate, except m(x)
that involves conditional expectations.
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Identification

Key result
Theorem 1

Suppose that (1)-(2) hold. Then, there exists a collection of probability
measures (fix)xesupp(x), With pix € D(m(x)), such that

1
A= 50kE[Z ZeAe(x; Bo) + ZoAT1(X 750)/ UTHdMX(“)} (3)
0
Moreover, the sharp identified set of A is [A, A], with

A=E sz (x: Bo) + BokZoAT+1(X, o) (g, (m(X))
1 {50k)\T+1(X Bo) = 0} + Gr(m(X) 1 {BoxAT11(X, Bo) < 0})],

A=E er x; Bo) + PorZoAT+1(X, o) (ar(m(X))

1 {50k)\T+1(X750) > 0} + g, (m(X))L {BokAT+1(X, Bo) < 0} )] .
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Identification

Simple outer bounds: idea

Drawback of the sharp bounds: use m(x), which requires nonparam. estim.

Actually, Eq. (3) also useful for obtaining simple outer bounds.

A is not identified solely because of fol uTHdux(u).

Imagine that instead of u”*1, we had P(u) = ZkT:O bru

Then, using fol ukdux(u) = E(Zk|X)/E(Zy|X), we would get for A:

T

BokE | Y (Ae(X, Bo) + beAr41(X, Bo)) Ze

t=0

Very simple expectation!
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Identification

Simple outer bounds: idea (c'ed)

Now, if sup,cfo.q) ‘UTH - bkuk‘ < K for some K > 0, we obtain the

outer bounds for A:

lﬁOkE <Z (Ae(X, Bo) + beAT41(X, Bo)) Zr) + KE(Z |50k>\T+1(X7/30)|)] :

t=0
We can optimize these bounds, by choosing appropriately (by, ..., bt).

Specifically, we consider the best sup-norm approximation of u — u’*! by a
polynomial of degree T:

(4)

b* = argmin sup
beRT+! u€l0,1]

T
uT+1 _ E bk uk
k=0
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Identification

Simple outer bounds

b* very simple to compute, using Chebyshev polynomials.

Figures below plot u — u7* and P%(u) = 3"/ _, biut.

T=2 T=3 T=4
1 1 1
LT uT+ u™t

08} e P, 0.8 rerree P, 08} e P,
0.6 ¥ 0.6 0.6
0.4 43' 0.4 0.4
0.2 / 0.2 0.2

0 0 0

0 0.5 1 0 0.5 1 0 0.5 1

P; approximates already very well u + u3, curves indistinguishable for T = 4.

With b = b*, we have K = 1/(2 x 47).
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Identification

Are the bounds informative?

Proposition 1 (Some properties of the bounds on A)

Suppose that (1)-(2) hold. Then:
1. The outer bounds may coincide with the sharp bounds.
2. Z—é S E[ZO|>\T+1(X750)|] /4T. If also |(Xt — XT)/ﬁ0| S |n(2) a.s.,
— 1
A-—A< TRk

3. A is point identified if and only if Box = 0 or

P (min (X — XY o = 0U SupplalX)] < T/2) =1.
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Estimation and inference

Estimation of the sharp bounds

Recall that

.
> Zede(x: Bo) + BokZoAT41(X, Bo) (@r(m(X))

L{BoxAT41(X, Bo) = 0} + g (m(X))L {BoxAT+41(X, Bo) < O} )} ;

 E(ZX = x)
T E(ZoX =x)’

A=E

m(X) = (mg(X),...,m7 (X)), m(x):
7 - T — t\ exp(SX55o)
NS —t) GCs(XiBo)
All terms can be estimated easily, except m;(X).

We first estimate by local polynomial regression E(Z;|X = x) and obtain a
plug-in estimator of m(X).

We modify this initial estimator to ensure that m(X) is a true moment vector
(e.g., the corresponding variance is positive).
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Asymptotic distribution of (A, A)

Theorem 2

Suppose we have i.i.d. data and (1)-(2) and Assumption 1 hold . Then,
there exist (yi,wi);zly,,?n i.i.d. such that:

If Box > 0, then

a(578) -5 ()

\l>>

If Box < O, same but with ). and 1), switched.
If Box = 0, then

ﬁ( h ) [ e (BT

A-A
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Estimation and inference

Construction of confidence intervals (ClI)

The estimated bounds are not asymptotically normal when Sy, = 0.

The Cl of Imbens and Manski (2004) works when Sox # 0, but possibly not
when o = 0.

We modify them in a simple way. Let ¢, a test of Sox = 0. Then let:

~ > \1/2 =~ =~ \1/2

B-c () Bra () if po =1,
Clll — n n

min (0,3 ca():nl)l/2>, max (O,AJr ca():n“)l/2>} if po = 0.

where ¢, is defined as in | & M.

Proposition 2

Suppose we have i.i.d. data, (1)-(2) and Al hold and min(X11,X2) > 0. Then
liminf,inf, a 7] P(A € CIf_,) > 1 — a, with equality when foy # 0.
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Estimation and inference

Inference using outer bounds

The outer bounds take the form [A = b], with

A= E[Zzt (X, Bo) + b} 7 AT41(X, Bo)) |,

_ 1
b = WE[ZO|)\T+1(X,6O)H .

We can estimate these simply by plug-in = A and b.

We then consider the confidence interval

= n/2p\ &
Axqa (3 Wiz

where g, (b) = quantile of order 1 — « of a [N (b, 1)| and 7 is an estimator of

2
Cllfa -

the asymptotic variance of A.
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Estimation and inference

Construction of confidence intervals on A

Theorem 3
Suppose (1)-(2) hold, X is bounded and either |A — A| < b or Box = 0. Then:

liminfP (A€ CIZ_ ) >1—a.

n—oo

|A — A| < b or Box =0 holds except if
P (Supp(A(X7 B0 + @)|X) C Rx|Ar41(X, Bo) # 0) = 1, (5)

where R, is the set of maxima (resp. minima) of the polynomial T4 on
[0, 1] if )\T+1(X,ﬁo) >0 (resp. )\T+1(X,ﬁo) < 0)

Eq. (5) unlikely: it implies a very specific location for Supp(«)|X = x), with
discontinuous changes in this support at some x.

But le_a may not have a uniform coverage. See the paper for a slightly
larger Cl, uniform over a large class of DGP.
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Simulations

Designs

We assume Xi, ..., X7 i.i.d., with X; e R ~U[-1/2,1/2] and By = 1.
We let T € {2,3} and n € {250;500; 1,000}.

We then let o = —X%8 + 7, with either:
nX ~ N(0,1);

or 17| X such that A — A = b.
In the 2nd case, the DGP varies with T.
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DGP1: estimators of the bounds

A ~ 0.2067 is partially identified for all T.

Simulations

(A, A) ~ (0.2006,0.2124) if T =2 and (A, A) ~ (0.2059,0.2069) if T = 3.

First method

~

Second method

~

T n |o(A) Bias(d) o(A) Bias(d) | o(A) Bias(A)
2 250 | 0110 0.006 0.114 0.003 | 0.108  0.002
500 | 0.077 0013 0.081 001 |0.074  0.005
1000 | 0.054  0.013  0.057 0.011 | 0.052  0.004
3 250 | 0072 -0.005 0072 -0.005 |0.074 -0.001
500 | 0.049 -0.003 0.040 -0.004 | 0.051 O
1000 | 0.035 -0.004 0.036 -0.005 | 0.037 -0.001

Notes: *: absolute value < 0.0005. Results obtained with 3,000 sims.
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Simulations

DGP1: comparison between the two Cl's

Clg.o5 Cl3 o5
T n coverage av. length | coverage av. length
2 250 0.96 0.453 0.96 0.419
500 0.96 0.305 0.96 0.296
1000 0.95 0.215 0.97 0.211
3 250 0.96 0.288 0.95 0.284
500 0.96 0.201 0.95 0.201
1000 0.95 0.141 0.94 0.142

Notes: results obtained with 3,000 sims.
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Simulations

DGP2: estimators of the bounds

A=A=N~01875if T =2
A ~0.1667 and (A, A) ~ (0.1652,0.1667) if T = 3.

First method Second method

T n |o(d) Bias(d) o(A) Bias(d) | o(A) Bias(R)
2 250 |0.146 0049 0151 0.058 |0.105 -0.003

500 | 0.104 0.032 0.108 0.041 | 0.076 -0.009
1000 | 0.069 0.026  0.072  0.034 | 0.052 -0.01

3 250 | 0.075 0.01 0.075 0.009 | 0.063  0.001
500 | 0.05 0.005 0.05 0.004 | 0.045 -0.001
1000 | 0.034 0.005 0.034 0.004 | 0.031 0*

Notes: *: abs. value < 0.0005. Results obtained with 3,000 sims.

~

The biases of (A,Z) are not that small when n=1,000 and T = 2.

This could be b/c regularity conditions on ~s(.) are actually violated here.
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Simulations

DGP2+: comparison between the two Cl's

Clg.o5 Cl3 5
T n coverage av. length | coverage av. length
2 250 0.92 0.522 0.96 0.420
500 0.91 0.353 0.95 0.295
1000 0.91 0.243 0.95 0.209
3 250 0.96 0.276 0.96 0.249
500 0.95 0.186 0.95 0.175
1000 0.95 0.130 0.95 0.124

Notes: results obtained with 3,000 sims.

CI]_270¢ has still very good coverage, though A — A = b.

Cl}_ ., undercovers for T = 2, probably b/c of the aforementioned bias.
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The Stata command mfelogit

What it does & does not do yet

Available on SSC (requires estout to be installed).

First estimates 3y, then computes estimated bounds or the “point estimate”
A, and Cl for the AME (if not binary) or the ATE (if binary).

Handles unbalanced panels.

Still in progress:
Does not handle factor variables yet;

Only estimates the sharp bounds & Cl;_, for continuous X;
Does not handle, e.g. age and age?;

Could probably be faster.

32/36



The Stata command mfelogit

Simplified syntax

mfelogit depvar [indepvar] [if} [in} method(string) id(string)
time(string) [, listT(string) listX(string) level(string)]

id and time: individual and time identifiers.
method: outer bounds if "quick” (default), sharp bounds if "sharp”.

1istT: periods on which AME / ATE are computed. By default, last period
for which all individuals are observed. If "all”, computes AME / ATE for all
periods, and their averages.

listX: covariates for which the AME / ATE are computed. By default, all
covariates.

level: level of confidence intervals. "0.95" by default.
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The Stata command mfelogit

(Toy) example: determinants of unionization in the US

Syntax:

use "https://www.stata-press.com/data/rl7/union.dta", clear

tabulate year, generate(y )
drop y 1

mfelogit union south y * black, id("idcode") time("year")

xtset idcode year
xtreg union age y * black south, fe

black automatically omitted as constant for each indiv. over time.

Results on the ATE for south, with the FE logit and FE linear regs.:

FE Logit model FE linear reg.

Point est. -.072 -.071
95% ClI [ -.095, -.048] [-.103,-.040]
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Conclusion

Conclusion

Simple characterization of the identified set for the AME.
Based on this, estimators of the sharp bounds of the AME.

Alternative method based on a “proxy” of the AME and an upper bound on
its asymptotic bias.

Though not optimal as n — oo, very simple and seems to work very well for
usual nand T.

Already a Stata command, mfelogit, available on SSC. Will be improved
soon hopefully!
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Intuition on the Markov moment problem for T = 1.
If T =1, we seek bounds on fol x2dp(x) given fol xdu(x) = my.

Using x2 < x on [0, 1] and Jensen's ineq., we get q,(m) = m?, g;(m) = my.

m
‘Admissible values for the first moment
s
7
/
7/
L /
08 ,
7/
/
/7
06 e
7
7/
Gr(mi) s
e
04l -
Ve
7
Ve
(m) g
ap(m -
0. e
~
~
- Bernoulli distributions
_ - — — Dirac distributions
0 o

—— L L L L L L L
0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1

Figure: Moment space and bounds g_(m),qr(m) when T = 1.
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Solving the moment problem for any T
Such ideas generalize for any T: g, (m) and gr(m) rational functions of m.

Let T > 0 and for any m = (mg,...,ms), s > T, let

Hr(m) = (miyj-2)i<; <7211 @T(m) = (Miyj—1 = Misj)i<; <70 if T even

Hy(m) = (mf+j—1)1§i,j§(T+1)/27 Hr(m) = (miyj—2 — mi+j—1)1§i,j§(T+1)/2 if T odd.

Then let Hy(c) = det (H1(c)) and Hr(c) = det (Hr(c)).

Proposition 3 (Extremal moments & Hankel determinants)
M = closure{m € R™*: H(m) >0 and H,(m) > 0,t =1,..., T}.

If me Mt and Hy(m) x Hr(m) > 0, g_(m) < Gr(m). Also,
q+— Hr 1(m,q) is strictly 1, linear and

Hr1(m,q,.(m)) =0 (and similarly for G+(m)).

See the paper for the point identified case (when Hy(m) x Hy(m) = 0).
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Conditions for asymptotic normality in the 1st method

Let (1) = (%0(.), -, 77(.)) with 7:(x) = P(S = £[X = x).
K be the kernel in the local polynomial (of degree £ > pT /2) estimator of
7:(.) and h, € R be the bandwidth.
Assumption 1
K has a compact support and is Lipschitz on RPT .
nh2™ 5 0 and n[hPT /In n]® — oo.
The pdf of X, fx, is C1 and bounded away from 0 on its bounded support.

Yo is C**2 on Supp(X).
Either |Supp(a|X = x)| > T /2 for all x € Supp(X), or
x — |Supp(a|X = x) is constant.

Point 5 needed b/c g, and g, not differentiable at all m € OM_ if t > 3.
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