
Introduction
The present paper attempts to study the dynamic properties of residential and commercial

property prices. A dynamic general equilibrium model is built and certain testable hypotheses
concerning the second moment of property prices are derived. To test these hypotheses, a
multi-city panel dataset is used. It is demonstrated that, by and large, the theoretical predictions
are consistent with the empirical findings.

The existing studies of the housing market fall into several strands. The first strand treats
aggregate output and income as exogenous, and studies how housing demand and supply, and the
equilibrium price react to different types of shock. The models in most of these studies are
essentially static. In some, even the price, or the rent, is taken as given in order to focus on tenure
decision. footnote Therefore, these studies cannot address the evolution and interdependent
dynamics of the prices of different property type.

The second strand focuses on the option aspect of properties. footnote This is an
increasingly important area as the market for mortgage-based securities in the US, among others,
becomes more and more developed. Studies here take the dynamic aspect of housing price
seriously and some of the analyses are exceedingly technical. They contribute significantly to our
understanding of mortgage-financing under the possibility of default and early termination of
contract. The drawback is that they mainly focus on individual property buyer’s problem and are
silent to the macro aspects of the housing market.

The present paper follows yet another approach, one which studies the housing market using
the dynamic general equilibrium approach – as adopted in, for instance, Greenwood and
Hercowitz (1991), Baxter (1996), and Gort, Greenwood and Rupert (1998). This approach
enables us to endogenize and study the interdependent dynamics of property prices. Several
casual observations provide justification for this approach. In reality, a construction company
that builds commercial property typically could build residential property as well. There is
substitutability between the two types of output. Also, an expanding construction industry
inevitably absorbs resources from the rest of the economy and thereby increases the marginal
cost of other sectors. Therefore, it is natural to conjecture that the prices of commercial and
residential properties are simultaneously determined. This paper takes a preliminary step along
this direction. In our model, the price of both commercial and residential property is
endogenously determined. Moreover, our model can generate closed form solutions from which
several testable hypotheses concerning the short-run commercial and residential property prices
are obtained. In particular, we show that under certain conditions: (1) the volatility of
commercial property is higher than that of residential property, (2) each of lagged, contemporary,
and forward commercial property prices is positively correlated with the residential property
price, and (3) the contemporaneous covariance between the two property prices is larger than the
lagged covariance.

Intuitively, property prices should also be positively correlated with real output growth and
other aggregate variables. Consider the situation where business capital and commercial property
are complements in producing final goods in the economy. A temporary increase in general
productivity will increase the demand for both business capital and commercial property. This
might lead to an increase in commercial property price. Furthermore, if it is foreseen that there
will be an increase in the amount of business capital stock in the following period, which means
that the marginal product of commercial property will increase, there will be a further increase in
the demand for commercial property. The interaction does not stop here. At the equilibrium,
there is a trade-off between (nondurable) consumption, and the accumulation of business capital,
commercial property, and residential property. An unexpected increase in productivity will drive



up the demand for both consumption goods and residential capital at the given price. To clear the
markets, the property prices would need to adjust. These interactions should be reflected in the
correlation between real output growth and property prices. In this paper, we address formally
this output growth vs. property price correlation by allowing endogenous accumulation of
factors. Some testable hypothesis will be derived, which are then tested against real data.

We are not pioneers in the study of output growth and property prices correlation. For
instance, Greenwood and Hercowitz (1991) attempt to explain the cyclicity of residential
investment and business investment. However, their model assumes perfect irreversibility
between residential capital and consumption goods, hence the relative price of residential capital
is always unity. While this formulation is a clever abstraction for studies of business cycles, it
precludes an investigation of property price dynamics in a general equilibrium context. They do
not have commercial property in their model either. In a recent study, Gort, Greenwood and
Rupert (1998) study technological progress embedded in “structures” (such as roads). However,
they restrict their attention to the balanced growth path and they do not incorporate residential
property into their model. A distinguishing feature of our present paper is that it puts economy
output, commercial and residential property prices together in a unifying framework. footnote 

This paper may also contribute to the multi-sector general equilibrium literature, which is
typically very involved computationally but not very insightful analytically. While the current
model is very simple, it nevertheless provides some closed form solutions and serves as a useful
starting point for future investigations. This is somewhat important as there is a recent tendency
in the business cycles literature to disaggregate the one good paradigm into a paradigm with
several sectors. A natural outcome of this paradigm is the emergence of relative price dynamics.
This paper demonstrates that under some assumptions, it is feasible to obtain closed form
analytical solution for relative prices (as a function of shocks) even in a dynamic general
equilibrium context. It would complement more general models which only deliver numerical
results.

The organization of this paper is as follows. The theoretical model is presented in
Section  ref: model . Section  ref: empirical tests describes our dataset and presents the empirical
results. Section  ref: conc concludes. Technical derivations are relegated to the appendix.

Model
Our model is similar to that of Lucas (1978), and Greenwood and Hercowitz (1991) and so

the present description will be brief. In our model, time is discrete and the horizon is infinite.
The population is constant and is normalized to unity. There are four goods: a non-storable
consumption good, residential property, commercial property, and business capital; with the
latter three goods being durable. footnote It is commonly recognized that the depreciation rate of
business capital (e.g. machinery) is higher than that of property (e.g. structures). To highlight this
difference, it is assumed that business capital completely depreciates after (goods) production,
while residential property and commercial property only partially depreciate. footnote 

Our analysis will focus on the representative agent of the economy. At time t, t = 0,1,2, ...,

the agent maximizes life-time utility

∑
s=t

∞

βsuCs,Hs + Hs
r

which is a discounted sum of the periodic utility uCs,Hs + Hs
r,  footnote where β, 0 < β < 1,

is the discount factor, Cs is the amount of consumption in period s, and Hs is the stock of
residential property owned by the representative agent in period s,Hs

r is the stock of residential
property rented from the market by the representative agent in period s, s = t, t + 1, t + 2, ...
Essentially, it is assumed that rented and owned residential properties are perfect substitutes in



terms of service rendered. We follow the baseline model of Greenwood and Hercowitz (1991) in
assuming that the preference is log-separable, uCs,Hs = ln Cs + ω lnHs + Hs

r, Hs + Hs
r > 0,

where ω > 0 is a preference parameter governing the substitution between consumption and
residential property. This is admittedly a strong assumption, yet it enables us to obtain closed
form solutions and sharp predictions, as is made clear in the following. footnote 

Goods production technology is such that the total amount of production Y t in period t
depends on the stock of commercial property owned by the representative agent F t, the stock of
commercial property rented from the market F t

r, and the stock of business capital owned by the
representative agent Kt. For simplicity, it is assumed that the business capital owned by the agent
and that rented from the market are perfect substitutes. And the same applies to commercial
property,

Y t = A tKt1−αF t + F t
rα,   #   

0 < α < 1, t = 1, 2, ... As emphasized in Gort, Greenwood and Rupert (1998), commercial
property (F t here) plays an important role in goods production. To incorporate this idea, the
aggregate production function is assumed to exhibit constant returns to scale in business capital
and commercial property. footnote The amount of output, however, depends not on the amount
of business capital and commercial property, but also on productivity A t, which fluctuates over
time. In this paper, we assume that the fluctuation of productivity is the only exogenous
(random) shock on the economy. For simplicity, the series of “productivity” A tt=0

∞ is assumed
to be bounded and positive, 0 < A t < M < ∞, some constant M, ∀t, and is identically and
independently distributed (i.i.d.). Both the mean and the variance of this random productivity are
bounded, footnote 

0 < EA t, VarA t < ∞, ∀t.

To close the model, it is necessary to describe the evolution of the different kinds of capital
stock. Recall that business capital completely depreciates after one period. In the case of
commercial and residential property, depreciation is partial and the accumulation of each is
deterministic,

F t+1 = BFIt
F1−F t + F t

s,   #   

and

Ht+1 = BHIt
H1−θHt + Ht

sθ,   #   

and BH, BF are constants, 0 < BH,BF < ∞. Equations( ref: pd f prod ) says that the existing stock
of commercial property, whether it is already owned by the agent, i.e. F t, or purchased from the
market, i.e. F t

s, are complement to investment It
F in the formation process of the new stock of

commercial property F t+1. Similar reasoning applies to Equations( ref: pd h prod ) for residential
property. Notice that the rental market is a spot market, and hence the amount of residential or
commercial property rented from the market, Ht

r and F t
r, do not enter the equations

( ref: pd f prod ) and ( ref: pd h prod ). The specific form of the laws of motion for commercial
buildings and residential property is adapted from Hercowitz and Sampson (1991). In this
formulation, 1 − , where 0 <  < 1, can be interpreted as the “depreciation rate” of existing
commercial buildings, and 1 − θ, where 0 < θ < 1, can be interpreted as the “depreciation rate”
of existing residential property. Besides building the properties, the representative agent can
buy/sell commercial property F t

s and residential property Ht
s at unit prices PF,t and PH,t

respectively. They can also rent commercial property F t
r and residential Ht

r from the market at
rental rate RF,t and RH,t respectively. (Notice that business capital Kt depreciates completely after
one period and hence the rental market of business capital can be assumed away without loss of
generality). We assume that they first produce output and make payments for commercial



property and residential property afterwards.
As in Greenwood and Hercowitz (1991), the dynamic optimization problem is summarized in

a Bellman equation as

WHt,F t,Kt = max
C t,K t+1,Ht+1,Ft+1,It

H,It
F,Ht

s,Ft
s,Ft

r,Ht
r

ln Ct + ω lnHs + Hs
r + βE tWHt+1,F t+1,Kt+1

s.t.

Ct + Kt+1 + It
H + It

F + RF,tF t
r + RH,tHt

r

≤ A tKt1−αF t + F t
rα − PF,tF t

s − PH,tHt
s,   #   

and also ( ref: pd f prod ) and ( ref: pd h prod ). Let λ1,t, λ2,t and λ3,t represent the multipliers of
the constraints ( ref: pd s budget ), ( ref: pd f prod ) and ( ref: pd h prod ) respectively. It is easy
to show that the first order conditions of our dynamic programming problem are

λ1t = 1/Ct,   #   

PH,tλ1t = λ3tBHθIt
H/Ht + Ht

s1−θ,   #   

PF,tλ1t = λ2tBFIt
F/F t + F t

s1−,   #   

RF,t = A tαKt/F t + F t
r1−α,   #   

RH,t = 1/λ1tω/Ht + Ht
r,   #   

λ1t = λ3tBH1 − θHt + Ht
s/It

Hθ,   #   

λ1t = λ2tBF1 − F t + F t
s/It

F,   #   

and

λ1t = 1 − αβE tλ1,t+1A t+1Kt+1−αF t+1 + F t+1
r α 

= 1 − αβE t λ1,t+1
Y t+1

Kt+1
,   #   

λ2t = βE tλ1,t+1αA t+1Kt+11−αF t+1 + F t+1
r α−1

+λ2,t+1BFIt+1
F /F t+1 + F t+1

s 1−

= βE t λ1,t+1α
Y t+1

F t+1 + F t+1
r + λ2,t+1

F t+2

F t+1 + F t+1
s ,   #   

λ3t = βE t
ω

Ht+1
+ λ3,t+1θBH

It+1
H

Ht+1 + Ht+1
s

1−

= βE t
ω

Ht+1
+ λ3,t+1θ

Ht+2

Ht+1 + Ht+1
s .   #   

To complete the model, it is necessary to impose equilibrium conditions. Note that this
model differs from the standard real business cycle models in two ways. First, there is no explicit



treatment of the firm’s problem in this model. Second, closed form solutions can be obtained.
We therefore skip the detailed characterization of the equilibrium and go directly to finding the
solution.

Since the economy is populated by a large number of identical agents, in equilibrium, the net
sale of different types of properties among agents must be zero,

Ht
s = F t

s = 0, ∀t.   #   

Similarly, the net trade in the rental market should also be zero,

Ht
r = F t

r = 0, ∀t.   #   

Given the above, we can now define the stationary equilibrium of this model.

Definition For a given sequence of productivity shocks A tt=0
∞ , a stationary equilibrium is a

sequence of quantity variables Ct,Kt+1,Ht+1,F t+1, It
H, It

Ft=0
∞ , and a sequence of price variables

RF,t,RH,t,PF,t,PH,tt=0
∞ , such that the representative agent maximizes his expected life-time

utility, subject to the constraints ( ref: pd s budget ), ( ref: pd f prod ) and ( ref: pd h prod ), and
market clearing conditions ( ref: mkt clear ) and ( ref: mkt clear 2 ).

We now solve the equilibrium explicitly. The equilibrium quantities are solved first,
followed by prices. In the appendix, it is shown that the equilibrium quantities can be
characterized by the following equations,

Proposition If the following conditions are satisfied,

βα +  − α < 1,   #   

ΦH ∗ Φ2 < 1,   #   

some constant ΦH, Φ2, then the evolution of the equilibrium quantities can be summarized by
the following equations,

Ct = ΦY t,

Kt+1 = ΓKY t,

It
H = ΓHY t,

It
F = ΓFY t,

for some positive constant Φ, Γi, such that 0 < Φ, Γi < 1, i = K,H,F, and ( ref: pd f prod ),
( ref: pd h prod ), and ( ref: prod fn ), for any given initial conditions, A0, K0, F0, H0.

The conditions ( ref: useless cond 1 ) and ( ref: useless cond 2 ) are technical. Intuitively,
they serve to ensure that the return of investing in any of the three types of capital (business
capital Kt, residential property Ht and commercial property F t) would not be too low or too high
at the equilibrium, and hence guarantee a positive fraction (not exceeding one) of output to be
devoted to each type of capital. To solve the equilibrium quantities in each period as functions of
exogenous variables, it would be convenient to rewrite in log form, i.e., we write φ = lnΦ,
γk = lnΓK, c t = ln Ct, it

f = ln It
F, y t = ln Y t, etc. The economy is hence represented by the

following linear equations:

y t = at + 1 − αk t + αft,   #   

ft+1 = bf + 1 − it
f + ft,   #   

ht+1 = bh + 1 − θit
h + θht,   #   



c t = φ + y t,   #   

k t+1 = γk + y t,   #   

it
f = γf + y t,   #   

it
h = γh + y t,   #   

given the initial conditions a0, k0, f0, h0.
It is easy to see that (log) non-durable consumption c t and (log) residential housing ht are

determined by (log) output y t and (log) commercial housing ft, given the initial conditions. This
is clearly a recursive system, with the subsystems ( ref: linear prod ), ( ref: linear f' ),
( ref: linear k' ) and ( ref: linear if ) determining the outcome of the large system. In fact,
( ref: linear prod ), ( ref: linear f' ), ( ref: linear k' ) and ( ref: linear if ) can be combined and
further simplified as

y t+1 − αft+1 = 1 − αγk + 1 − αy t + at+1,   #   

ft+1 = bf
′ + 1 − y t + ft,   #   

where bf
′ = bf + 1 − γf. Following Sargent (1979) and Lütkepohl (1993), footnote it is shown

in the appendix that the equation system ( ref: y-alpha f ) and ( ref: f' f ) can be solved, giving rise
to the simple representation:

△y t+1 = b△ + 1 − L1 − αL−1at+1,   #   

and

△ft+1 = b△ + 1 − L1 − αL−1at+1,   #   

where

b△ = 1 − α−11 − α1 − γk + αbf
′,

△X t ≡ X t − X t−1, for any variable X t. L is the lagged operator, LnX t = X t−n, n = 1,2,3, ..., and
Lc = c, for any constant c.

With ( ref: change of y ) and ( ref: change of f ) in place, the evolution of residential capital
stock can be easily traced. By ( ref: linear h' ) and ( ref: linear ih ), it is clear that

ht+1 = 1 − θ−1bh
′ + 1 − θ1 − θL−1y t,   #   

or

△ht+1 = 1 − θ1 − θL−1△y t,

where

bh
′ = 1 − θ−1bh.

which, when combined with ( ref: change of y ), can be re-written as

△ht+1 = b△ + 1 − θ1 − θL−11 − L1 − αL−1at.   #   



Equipped with ( ref: change of y ), ( ref: change of f ) and ( ref: change of h ), we can
compute the relative prices of the two types of property. In fact, we need to solve both prices and
rents of both types of property. The following result, which relates rents and prices, is useful:

Lemma Each property rent is proportional to the corresponding property price.

RF,t = BFPF,t,   #   

RH,t = BHPH,t,   #   

for some constants BF, BH.

This result is consistent with the empirical finding that housing prices and rents exhibit the
same trend. footnote By taking log of ( ref: rent price f ) and ( ref: rent price h ), we get

rft = bf + pft, rht = bh + pht,

for some constant bf, bh. Since constants have no impact on variance and covariance terms, all
the conditions and results for property prices apply directly to property rents. Therefore, without
loss of generality, we can focus on the cross-relationships of prices. First, notice that
( ref: pd foc h0 ) and ( ref: pd foc ih ) can be combined to yield

PHt = θ
1 − θ

It
H

Ht
= θΓHΦ

1 − θ
Y t

Ht
.   #   

Similarly, ( ref: pd foc f0 ) and ( ref: pd foc if ) can be combined to yield

PFt = 
1 − 

It
F

F t
= ΓFΦ

1 − 
Y t

F t
.   #   

As for the quantity variables, we take the log of all price variables, for example, we write
pht = ln PHt. ( ref: pd ph eqn ) and ( ref: pd pf eqn ) can then be written as

pht = dh + y t − ht,   #   

and

pft = df + y t − ft,   #   

where dh, df are constants,

dh ≡ ln θΓHΦ
1 − θ

, df ≡ ln ΓFΦ
1 − 

.

It is clear that whether pht and pft have finite variance depends on the terms y t − ht,
y t − ft. The following lemmas provide useful characterization of these terms. Proofs can be
found in the appendix.

Lemma y t − ht can be written as a discounted sum of past productivity shocks,

y t − ht = ∑
i=0

∞

ηiat−i + (constant terms),   #   

where

α =  ∗ 1 − α,

ηi = ∑
j=0

i

θ jα i−j − ∑
j=0

i−1

θ jα i−j ,

with η0 ≡ 1.



Lemma y t − ft can be written as a discounted sum of past productivity shocks,

y t − ft = ∑
i=0

∞

α iat−i .   #   

It is clear that y t − ft is stationary. footnote We assume that y t − ht is too. footnote As
will be made clear, the magnitude of ηi plays a key role in the results over relative volatility. It is
perhaps instructive to explicitly compute the variance of (log) property prices. To do this,
assumptions on at need to be made. For expositional purposes, it is assumed that at is an
i.i.d. process. In the appendix, the case of at being an AR(1) process is analyzed. For the
present section, since at is i.i.d. with finite first and second moments, mean and variance of pht

exist. In particular, by ( ref: ph log ) and ( ref: y h lemma ),

varpht = var ∑
i=0

∞

ηiat−i = σa
2 ∑

i=0

∞

ηi2,   #   

where σa
2 = varat. footnote The existence of varpft can be shown in the same manner. By

( ref: y f lemma ),

varpft = var ∑
i=0

∞

α iat−i = σa
2 1

1 − α2 .   #   

Combining ( ref: var ph ) and ( ref: var pf ) yields the first principal result of this paper, which
concerns the relative volatility of the prices of commercial versus residential properties.

Proposition Commercial property price is more volatile than residential housing price if the
following condition is satisfied,

varpft/varpht > 1  1
1 − α2 > ∑

i=0

∞

ηi2.

The message of the proposition can be made more transparent by considering two limiting
cases. First, consider the case where  is equal to unity. footnote In this case, commercial
property does not depreciate at all. It follows that ηi = θ i. Hence, ∑i=0

∞ ηi2 = 1 − θ2 −1
.

On the other hand,  = 1 means that α = 1 − α. The proposition states that if the contribution of
business capital in goods production, 1 − α, is larger than the contribution of existing
residential property in the formation of future (i.e. next period’s) residential property, θ, then
commercial property price will exhibit higher volatility than residential property price. The
intuition is clear. Where  = 1, that the stock of commercial property is fixed. By ( ref: pf log ),
varpft = vary t. The variance of (log) output clearly depends on the variance of (log) business
capital, which itself is part of output. This is why the contribution of business capital in goods
production matters – because it determines the extent that current output is “affected” by
previous output. On the other hand, the variance of (log) residential price will depend on the
variance of (log) output relative to the stock of residential property, vary t − ht by ( ref: ph log ).
Since both business capital investment Kt, and residential property investment It−1

H are fixed
fractions of output Y t−1, they are perfectly correlated. Hence vary t − ht would ultimately
depend on the contribution of commercial property F t to current output Y t (captured by α),
relative to the contribution of previous period’s residential property Ht−1 to the formation of
current residential property Ht (captured by θ. However, the stock of commercial property is
fixed in this case. Therefore, the only parameter that matters is θ.

Next, we consider the limiting case where θ is equal to zero. It corresponds to the case where
residential property completely depreciates after one period and the stock of residential property
adjusts very quickly to changes in market condition. In this case, ηi = α i1 − . Hence,



∑i=0
∞ ηi2 = 1 −  1 − α2 −1

. By the stated proposition, commercial property price has to
be more volatile than its residential counterpart, varpft > varpht. The intuition is also clear.
Suppose the economy experiences a negative shock and the demand for both commercial and
residential property decreases. For residential property, the existing stock would vanish in the
next period. However, this is not the case for commercial property. Thus, the relative price of
commercial property must adjust downward to clear the market. Similar reasoning would apply
if the economy experiences a positive shock. We therefore arrive at the conclusion that the price
of commercial property is more volatile. In general, both  and θ lie strictly between zero and
unity so that which property price is more volatile is not certain a priori. The discussion of the
two limiting cases does illustrate the forces at work and suggest some insight in the stated
proposition.

The simplicity of our model not only allows us to calculate the variance terms of property
prices, it also allows us to calculate the covariances as well. The algebra is straightforward and
only the crucial steps are shown.

covpht, pft = cov ∑i=0
∞ ηiat−i,∑i=0

∞ α iat−i

= σa
2 ∑i=0

∞ α iηi.
  #   

Similarly,

covpht, pf,t+1 = σa
2 ∑

i=0

∞

α i+1ηi,   #   

covpht, pf,t−1 = σa
2 ∑

i=1

∞

α i−1ηi.   #   

Note that 0 < α < 1. Thus, it is relatively easy to ensure the positivity of covariances:

Proposition Under some mild conditions, the prices of commercial and residential property
move together, i.e.

If ∑
i=0

∞

α iηi > 0, then covpht, pft > 0.

If ∑
i=0

∞

α i+1ηi > 0, then covpht, pf,t+1 > 0.

If ∑
i=0

∞

α i−1ηi > 0, then covpht, pf,t−1 > 0.

Assuming that all the covariance terms are positive, we can compare ( ref: cov t t ) and
( ref: cov t t+1 ) and arrive at the following proposition,

Proposition The covariance between pht and pft is larger than that between pht and pf,t+1, i.e.

covpht,pft > covpht,pf,t+1.

Corollary The correlation between pht and pft is larger than that between pht and pf,t+1,

corrpht,pft > corrpht,pf,t+1.



 [Proof] The proof is trivial.

corrpht,pfs = covpht,pfs
varpht varpfs

,

s = t, t + 1. However, the variance of commercial property price is constant over time,
varpft = varpf,t+1, and the corollary follows.

A comparison of the relative magnitudes of covpht,pft and covpht,pf,t−1 is however
non-trivial. The following proposition however provides the necessary and sufficient condition.

Proposition

covpht,pft > covpht,pf,t−1

 1 > ∑i=1
∞ 1 − α α i−1ηi.

The proof follows directly from combining ( ref: cov t t ) and ( ref: cov t t-1 ) and is therefore
skipped. By the constancy of the variance of the prices, the following corollary can be easily
derived,

Corollary

corrpht,pft > corrpht,pf,t+1

 1 > ∑i=1
∞ 1 − α α i−1ηi.

Our results here provide us with a set of hypotheses which we can test using empirical data.
The next section describes the econometric procedure and the city-level dataset that we employ
for exactly this purpose. However, before we move on, we should mention that the present model
also generates testable implications on the covariance between the growth rate of output △y t and
the property prices ph,t,pf,t . These yield interesting hypotheses as well.

Proposition If η0 + α − ∑i=0
∞ α iηi+1 > 0, then

cov△y t,ph,t > 0.   #   

Proposition If η0 + α − ∑i=1
∞ α2i−1 > 0, then

cov△y t,pf,t > 0.   #   

Empirical Tests
In this section the propositions concerning the second moments of ph, pf and Δy are tested.

The tests are based on housing price data extracted from the National Real Estate Index
published by CB Richard Ellis National Real Estate Index. From the fourth quarter of 1985
through the first quarter of 1998, the database provides quarterly data for 56 major U.S. cities’
apartment and office rents. footnote The National Real Estate Index are supplemented by the
annual data of metropolitan level per capita income from the Bureau of Economic Analysis of
the US Department of Commerce. Since the data frequency of the National Real Estate Index
data is different that of the Bureau of Economic Analysis data, we match only the fourth quarter
National Real Estate Index data with the Bureau of Economic Analysis data. This leaves us with
496 observations. The data are deflated using the CPI (all urban consumers) from the Bureau of
Labor Statistics.

The National Real Estate Index database contains data on housing price and rent. However,
the high proportion of missing observations in the price series prevents us from using price data
for empirical analysis. Instead, we use the rent series. The descriptive statistics of the sample are
presented in Table  ref: sample .
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The examination of the validity of Propositions 4–6 and 12–13 could be accomplished by

testing the hypotheses listed in Table  ref: teststat . The 95% confidence intervals of the test
statistics are computed and reported in Table  ref: teststat . The confidence intervals are
computed using the bootstrap methodology (see Efron and Tibshirani, 1993). The following
briefly describes the construction of the confidence intervals. We first draw 1000 random
samples (of the same size as the original sample with replacement) from the original sample.
From each of the 1000 artificial samples we estimate a statistic q, yielding qb ≡ q1, ...,q1000 ,
which constitute an empirical distribution of q. A confidence interval of α significance level,
denoted by c lα ,cuα, is constructed with c lα being the 1000 × αth element of q̃b, and cuα the
1000 × 1 − αth element, where q̃b is equivalent to qb sorted in ascending order. Bootstrapping
is a computer-intensive (i.e., time-consuming) numerical method. We use this method in order to
avoid imposing distributional assumptions on the test statistics. All computations are coded in
GAUSS.

We accept the null hypothesis of H0 : q = x if the confidence interval of statistic q does not
cover x, i.e., if cuα < x or c lα > x. The results in Table  ref: teststat suggests that except for
hypothesis 5, all the null hypotheses are rejected. In other words, except for proposition 6, all the
testable propositions are supported by the data. It is likely that the acceptance of hypothesis 5 is
due to the strong autocorrelation for ph,t.

We conclude from the empirical results that the validity of most of the testable hypotheses in
the present paper are confirmed.

 renewcommand 

 Table  

Hypothesis Testing

 renewcommand 

Conclusions
There is growing attention on how different asset markets interact with the aggregate

economy, and how this interaction would affect business cycles. Housing market is one of the
major issue on the agenda since a significant proportion of households have real estate making
up the largest share of their physical wealth. Following Greenwood and Hercowitz (1991),
Baxter (1996), Gort, Greenwood and Rupert (1998), among others, this paper explores some
ignored aspects of the housing market. Unlike previous works, which are mainly numerical, this
paper adopts the formulations of Hercowitz and Sampson (1991) and generates some theoretical
predictions concerning the stochastic features of the property prices, and their relationship with
aggregate output. Thus, this paper complements the literature in the following ways. We
document some stylized facts concerning the cross-dynamics and volatility of different types of
property price. We formulate a dynamic general equilibrium model which generates predictions
consistent with our empirical findings. Along the way, we also demonstrate a possibility of
studying the dynamics of relative price in a dynamic general equilibrium context. We believe
that this work contributes to enriching our understanding of the housing market and its
relationship with the economy. In future, we will extend the model to allow for endogenous
heterogeneity of the agents to enhance our understanding of property market transactions.
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 appendix 

Proofs
Proof of Proposition 1

To compute the equilibrium quantities, different variables will first be written as functions of
non-durable consumption, and by use of goods market equilibrium condition, the non-durable
consumption is computed. The first target relationship is in between the investment in residential
capital and non-durable consumption. By ( ref: mkt clear ), ( ref: pd foc h' ) can be written as

λ3,tHt+1 = βE tω + θλ3,t+1Ht+2

since Ht+1 is a choice variable at time period t. Assuming no bubble conditions, which means that



lim
s→∞ β

t+sE tλ3,t+sHt+s+1 = 0,

lim
s→∞ β

t+sE tλ3,t+sF t+s+1 = 0,

it can be shown that

λ3t =
ωβ
Ht+1

1 + θβ + θβ2 + ...

=
ωβ
Ht+1

1
1 − θβ

.   #   

>From ( ref: pd foc ih ),

λ3t

λ1t
= 1

1 − θFH

It
H

Ht

θ

.

Combined with ( ref: pd foc c ), it gives

ωβ
1 − θβ

Ct

Ht+1
= 1

1 − θFH

It
H

Ht

θ

.   #   

However, ( ref: pd h prod ) can be written as

Ht+1 = BHIt
H Ht

It
H

θ

.

Thus, ( ref: c-h' ratio ) will reduce to

It
H = ΓC

HCt,   #   

where

ΓC
H =

1 − θωβ
1 − θβ

.   #   

It is clear that 0 < ΓC
H. ( ref: ih-c ) says that the investment in building houses is proportional to

the amount of non-durable consumption at any period of time.
It is possible to derive a similar relationship among other variables. By ( ref: pd foc if ), the

left hand side of ( ref: pd foc f' ) becomes

1
1 − BF

It
F

F t


1
Ct

,

and the right hand side becomes

βE t
1

Ct+1

αY t+1

F t+1
+ 

1 − BF

It+1
F

F t+1


F t+2

F t+1
.

However, by ( ref: pd f prod ),

Fs+1 = BFIs
F1−Fs, ∀s.

Hence, ( ref: pd foc f' ) can be simplified as

1
1 − 

It
F

Ct
= βE t

αY t+1

Ct+1
+ 

1 − 
It+1

F

Ct+1
.   #   



Obviously, if the ratio of output relative to non-durable consumption is a constant, so will the
ratio of commercial buildings investment relative to the non-durable consumption.

Conjecture The amount of non-durable consumption is a fixed fraction of output,

Ct = ΦY t,   #   

0 < Φ < 1, and the commercial building investment is also proportional to non-durable
consumption,

It
F = ΓC

FCt,   #   

0 < ΓC
F , ∀t.

By ( ref: conject c-y ) and ( ref: conject if-c ), ( ref: if-c prelim ) is reduced to

ΓC
F =

1 − αβ
1 − β

1
Φ .   #   

Now, by ( ref: ih-c ) and ( ref: conject if-c ), ( ref: pd s budget ) can be re-written as

Y t = Ct + Kt+1 + It
H + It

F

= Kt+1 + ΓC
H + ΓC

F + 1Ct

which implies that

Kt+1 = ΓKY t,   #   

where

ΓK = 1 − ΓC
H + ΓC

F + 1Φ

by ( ref: conject c-y ). Notice that ( ref: pd foc k' ) can be written as

1
Ct

= 1 − αβE t
1

Ct+1

Y t+1

Kt+1
,

or

1
Φ = 1 − αβE t

1
Φ

1
ΓK 

.

This implies that

ΓK = 1 − ΓC
H + ΓC

F + 1Φ = 1 − αβ,   #   

which means that

0 < ΓK < 1,

and

Φ =
1 − 1 − αβ
ΓC

H + ΓC
F + 1

.   #   

If ΓC
F > 0, it is clear that 0 < Φ < 1. Substitute ( ref: ata 1 ) into ( ref: if-c ) gives

ΓC
F =

1 − αβ ∗ ΓC
H + 1

1 − β1 − 1 − αβ − 1 − αβ
> 0.   #   

To verify the conjectures ( ref: conject c-y ) and ( ref: conject if-c ), it suffices to show that the



shares of different kinds of investment are in fact positive and smaller than unity, 0 < It
H/Y t,

It
F/Y t < 1. These requirements lead to certain restrictions on the parameters, as it will be made

clear. Note that It
F/Y t = ΦΓC

F = ΓF > 0. By ( ref: if-c ),

ΦΓC
F =

1 − αβ
1 − β

< 1

 βα +  − α < 1.   #   

Thus, this paper imposes ( ref: ib-y cond ) to guarantee It
F/Y t < 1. The case for It

F/Y t is similar.
Note that It

H/Y t = ΦΓC
H = ΓH > 0. However, to know what restriction will lead to ΦΓC

H < 1, it is
necessary to write Φ as a function of parameters first. By ( ref: ata 1 ),

Φ + ΦΓC
H = 1 − 1 − αβ − ΦΓC

F ,

which means that

Φ = 1
1 + ΓC

H Φ2,   #   

where

Φ2 = 1 − 1 − αβ − 1 − αβ
1 − β

Hence, by ( ref: gamma h ),

ΦΓC
H =

ΓC
H

1 + ΓC
H 1 − 1 − αβ − 1 − αβ

1 − β

where

ΓC
H

1 + ΓC
H =

1 − θωβ
1 − θωβ + 1 − β

≡ ΦH.   #   

In other words,

ΦΓC
H < 1  ΦH ∗ Φ2 < 1.   #   

In sum, this section shows how we compute the share of non-durable consumption and
different kinds of investment, Φ, Γi, i = K,H,F, and their formulae are given by
( ref: gamma h ), ( ref: extra 1 ), ( ref: T F ) and ( ref: extra 2 ).

Proof of ( ref: rent price f ) and ( ref: rent price h )
It is very simple. First, note that ( ref: pd foc h0 ) and ( ref: pd foc ih ) can be combined to

yield

PHt = θ
1 − θ

It
H

Ht
= θΓHΦ

1 − θ
Y t

Ht
.   #   

Similarly, ( ref: pd foc f0 ) and ( ref: pd foc if ) can be combined to yield

PFt = 
1 − 

It
F

F t
= ΓFΦ

1 − 
Y t

F t
.   #   

Now, ( ref: rent f ) can be written as



RFt = α Y t

F t
.

Combining it with ( ref: pd pf eqn ) yields

RFt =
α1 − 
ΓFΦ

PFt,

which is ( ref: rent price f ). Similarly, ( ref: rent f ) can be combined with ( ref: pd foc c ) and
( ref: conject c-y ) and yields

RHt = ωΦ Y t

Ht
.

Combining this with ( ref: pd ph eqn ) gives

RHt =
ω1 − θ
θΓH PHt,

which is ( ref: rent price h ).

Proof of ( ref: change of y ) and ( ref: change of f )
Following Sargent (1979), Lütkepohl (1993), the equation system ( ref: y-alpha f ) and

( ref: f' f ) can be expressed in the following matrix form,

M1y t+1 = N1 + M2Ly t+1 + at+1,   #   

where

M1 =
1 −α

0 1
, N1 =

1 − αγk

bf
′

, M2L =
1 − αL 0

1 − L L
,

y t+1 =
y t+1

ft+1

, at+1 =
at+1

0
.

By ( ref: matrix formula ), it is easy to see that the solution takes a very simple form

y t+1 = M1 − M2L−1N1 + M1 − M2L−1at+1,   #   

where

M1 − M2L−1 =
1 − 1 − αL −α

−1 − L 1 − L

−1

=
m11L m12L

m21L m22L
,

such that



m11L m12L

m21L m22L

1 − 1 − αL −α

−1 − L 1 − L
=

1 0

0 1
.

Or,

m11L1 − 1 − αL + m12L−1 − L = 1,

m11L−α + m12L1 − L = 0,

m21L1 − 1 − αL + m22L−1 − L = 0,

m21L−α + m22L1 − L = 1.

It is easy to show that

m11L = 1 − L1 − L−11 − αL−1,

m12L = α1 − L−11 − αL−1,

m21L = 1 − L1 − L−11 − αL−1,

m22L = 1 − 1 − αL1 − L−11 − αL−1.

Hence, ( ref: matrix' ) can be written as

△y t+1 = M3LN1 + M3Lat+1

where

△y t+1 =
△y t+1

△ft+1

≡
1 − Ly t+1

1 − Lft+1

=
y t+1 − y t

ft+1 − ft

,

and

M3L =
1 − L1 − αL−1 α1 − αL−1

1 − L1 − αL−1 1 − 1 − αL1 − αL−1
.

Proof of ( ref: y h lemma )
By ( ref: linear h' l ),

y t − ht

= 1 − 1 − θ1 − θL−1Ly t + ...

= 1 − θL−11 − θL − 1 − θLy t + ...

= 1 − θL−11 − Ly t + ...

= 1 − θL−11 − L1 − αL−1at + ... by ( ref: change of y ),

  #   

with constant terms skipped. Note that



1 − θL−11 − L1 − αL−1

= 1 − L ∑
i=0

∞

θL i ∑
i=0

∞

αL i

= 1 − L ∑
i=0

∞

Li ∑
j=0

i

θ jα i−j

= 1 + ∑
i=1

∞

Li ∑
j=0

i

θ jα i−j − ∑
j=0

i−1

θ jα i−j

= ∑
i=0

∞

Liηi

where

ηi = ∑
j=0

i

θ jα i−j − ∑
j=0

i−1

θ jα i−j

with η0 ≡ 1. It is assumed that ηi converges to zero fast enough so that ∑i=0
∞ ηi is finite. footnote 

Thus, ( ref: y-h ) can be written as

y t − ht

= ∑
i=0

∞

Liηi at + ...

= ∑
i=0

∞

ηiat−i + ....

Proof of ( ref: y f lemma )
By ( ref: change of y ) and ( ref: change of f ),

y t+1 − ft+1

= y t − ft + 1 − αL−11 − L − 1 − Lat+1

= y t − ft + 1 − αL−11 − Lat+1

= 1 − αL−11 − Lat+1 + at + at−1 + ...

= 1 − αL−1at+1

= ∑
i=0

∞

α iat+1−i.

Proof of ( ref: cov y ph ) and ( ref: cov y pf )
First, it is necessary to re-write equation ( ref: change of y ) as

△y t = b△ + at + α − ∑
i=0

∞

α iat−1−i.



Hence, the covariance of change of y t and ph,t is

cov△y t,ph,t

= cov at + α − ∑
i=0

∞

α iat−1−i, ∑
i=0

∞

ηiat−i

= σa
2 ∗ η0 + α − ∑

i=0

∞

α iηi+1 .

Similarly, the covariance of change of y t and pf,t is

cov△y t,pf,t

= cov at + α − ∑
i=0

∞

α iat−1−i, ∑
i=0

∞

α iat−i

= σa
2 ∗ η0 + α − ∑

i=1

∞

α2i−1 .

The case when at is an AR(1)
In this section, we consider the case where at is an AR(1), and examine how the results are

affected. Formally,

at = ρat−1 + ut,   #   

where ut is i.i.d., with Eut = 0, varut = σu
2 < ∞, ∀t and covut,us = 0, ∀s ≠ t. By

( ref: at ar1 ), we have

at = ∑
i=0

∞

ρ iut−i.

It means that

varpht

= var ∑
i=0

∞

ηiat−i

= var ∑
i=0

∞

ηi ∑
j=0

∞

ρ jut−i−j

= var ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= ∑
i=0

∞

var ∑
j=0

i

ηjρ i−j ut−i

= σu
2 ∑

i=0

∞

∑
j=0

i

ηjρ i−j

2

,

and



varpft

= var ∑
i=0

∞

α iat−i

= var ∑
i=0

∞

α i ∑
j=0

∞

ρ jut−i−j

= var ∑
i=0

∞

∑
j=0

i

α jρ i−j ut−i

= ∑
i=0

∞

var ∑
j=0

i

α jρ i−j ut−i

= σu
2 ∑

i=0

∞

∑
j=0

i

α jρ i−j

2

.

Obviously,

varpf,t > varph,t

iff ∑
i=0

∞

∑
j=0

i

α jρ i−j

2

> ∑
i=0

∞

∑
j=0

i

ηjρ i−j

2

.

Similarly,

covpf,t,ph,t

= cov ∑
i=0

∞

∑
j=0

i

α jρ i−j ut−i, ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= σu
2 ∗∑

i=0

∞

∑
j=0

i

α jρ i−j ∑
j=0

i

ηjρ i−j .

Clearly, a sufficient but not necessary condition is that ηj > 0, ∀j, then covpft,pht > 0.

covpf,t+1,ph,t

= cov ∑
i=0

∞

∑
j=0

i

α jρ i−j ut+1−i, ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= cov ∑
i=0

∞

∑
j=0

i+1

α jρ i−j ut−i, ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= σu
2 ∗∑

i=0

∞

∑
j=0

i+1

α jρ i−j ∑
j=0

i

ηjρ i−j .

Again, if ηj > 0, ∀j, then covpf,t+1,ph,t > 0.



covpf,t−1,ph,t

= cov ∑
i=0

∞

∑
j=0

i

α jρ i−j ut−1−i, ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= cov ∑
i=0

∞

∑
j=0

i

α jρ i−j ut−1−i, ∑
i=0

∞

∑
j=0

i+1

ηjρ i−j ut−1−i

= cov ∑
i=0

∞

∑
j=0

i−1

α jρ i−j ut−i, ∑
i=0

∞

∑
j=0

i

ηjρ i−j ut−i

= σu
2 ∗∑

i=0

∞

∑
j=0

i−1

α jρ i−j ∑
j=0

i

ηjρ i−j .

Again, if ηj > 0, ∀j, then covpf,t−1,ph,t > 0.


