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Abstract

In this paper we present a new approach to the specification of dynamic factor
models. Our model has three advantages over existing work. Firstly, it is based
on a minimal-dimension state-space representation giving some gain in
computational efficiency over existing methods. Secondly, it easily
accommodates hypothesis tests about the order of the factor-filter. Thirdly, by
allowing the factor-filter to have a common polynomial factor, ARMA-factor
models may be estimated with little extra computational expense over the AR-
factor case. We illustrate the use of our model with an application to business
cycleanalysis.
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I ntroduction

Since the work of Joreskog and Lawley and Maxwell in the late 1960s, factor
analysis has enjoyed popularity in a wide range of empirical disciplines. In
economics however, its use has been infrequent to the extent that it is rarely
seen in the literature and is not featured in many econometrics software
packages. Given the prevalence of latent variables in economic theory
(aggregate demand, willingness-to-pay, expected inflation, etc.) and the fact
that most work in economics is multivariate, this may seem peculiar, but it is
undoubtedly due to the inapplicability of classical factor analysis techniques to
models of serially correlated time series data. Some work has been done to
remedy this. Geweke (1977) exploits the asymptotic independence of
periodogram ordinates at harmonic frequencies to fit factor models to
frequency bands of labor force data using standard techniques modified for
complex variables. This work is expanded in Geweke and Singleton (1981).
However, the factors in this model are not constrained to be causal to the
measured variables. Watson and Engle (1983) specify a model in which a
vector of industry wages is the sum of an AR(2) factor and an AR(1) vector of
industry-specific errors. They estimate the model using both scoring and the
EM algorithm. More recently, Stock and Watson (1998) have extended the
work of Connor and Korajczyk (1986) to estimate factor models with large
cross-sections using an approach based on principle components. There also
exists some work on identifiability by Heij, Scherrer and Deistler (1997), but
this issue is far from being resolved.

In this paper, we propose an approach to dynamic factor analysis that
represents an improvement over existing work for three reasons. Firstly, it
utilizes a minimum-dimension state-space form, resulting in improved
computational efficiency over the matrix-stacking approaches commonly used
for autoregressive factor models. Secondly, hypothesis tests of the order of the
factor-filter are easily constructed. Thirdly, by imposing a common factor
restriction on the factor filter matrix, ARMA-factor models may be estimated
with little increase in computational complexity over AR-factor models.

A Dynamic Factor Model

An observed px1 vector of variabless/said to have a factor structtiie

y, =B(L)f, +¢,,

fiis a kx1 vector of unobserved factors with kg px1 vector of mutually
orthogonal errors, and B(L) a vector of lag polynomials of order g. If g=0 and
& and f are not serially correlated, then the model is the classical static factor
model of Jéreskog (1967) and Lawley and Maxwell (1971). In what follows we

! Chamberlain and Rothchild (1983) and Stock and Watson (1998) would refer to this as an exact factor
structure.



initially treat the case in which k=1 and €, is white noise. Thus, the dynamic
structure of y; is determined by the dynamic structure and filtering of asingle
unobserved factor. We then discuss the case in which the factor is a k-
dimensional block-identifiable vector autoregression. A more general k-
dimensional factor model is under development. The extension to colored €; is
straightforward.

We begin by considering the case of a scalar autoregressive factor

.
(9]

where @(L) isalag polynomial of order m. Asyet little is known about
identification in dynamic factor models, but we note that if p=m=g=1then y; is
an ARMA(1,1) process plus white noise which is not identified. Accordingly, it
seems reasonable to impose the restriction that g<m.

The minimum-dimension state-space representation of the factor is
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called companion matrix (Kailath, 1980) and e, is an mx1 vector with 1 in the
first element and zeros elsewhere.

Now note that with g<m, B(L)f; = BZ; where B:( o - By O - 0) isa
pxm matrix. Thus, the dynamic AR-factor model may be written as follows:

yt = BZt +8t
Zt = AZt—l + rltel

A number of comments may be made at this point. Firstly, asis donein the
existing literature on AR-factor models, this model may easily be estimated
using the EM algorithm. Secondly, the state vector is of dimension m. Thisis
less than the state dimension of pm attained by the matrix stacking procedure
used in Stock and Watson (1998) offering some gain in computational
efficiency. Thirdly, likelihood ratio tests of the order of the lag polynomia m
can easily be constructed. Fourthly, if we model the factor as a k-dimensional



block-identifiable vector autoregression then the compact state-space
representation just described extends easily with A becoming a block matrix
with @ as kxk matrices and the 1sin A replaced by kxk identity matrices. A
more general theory is under development.

We now consider the extension to the ARMA-factor case. Write the factor-
filter vector as

RAGIE
B(LY=0O : O
b, (L)
and assume that the b,(L) have a common lag-polynomial factor b(L) so that

b, (L) =b"(L)b(L)

The model may then be written as

y, =B (L)f, +¢,
b(L) R : :

where f, :mntand B" (L) isavector of lag polynomials. It is natural to call
f; the factor rather than % The dynamic ARMA-factor model may then be
written as

yt = BZI +£t

Zt = Azt—l + rltel

B=pb

where 3 isalower triangular Toeplitz matrix with entries made up from the
coefficientsin b’; (L) and b is avector whose entries are the coefficientsin b.
This model is easily estimated using the EM algorithm. In the M-step, cyclic
ascent may be used to estimate 3 and b.

An ARMA-Factor Model of the Business Cycle

The preceding ideas will beillustrated with an application of the ARMA-factor
model to an analysis of business cycles.
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