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Abstract

This paper presents a business-cycle model with heterogeneous agents that have access to
complete markets but face endogenous borrowing and savings constraints. These constraints
are motivated by the agents' limited commitment technology. In this environment, aggregate

uctuations are close to the ones generated by Pareto Optimal (full commitment) risk-sharing
arrangements. However, endogenous borrowing and savings constraints force agents to under-
invest in capital and increase the volatilities of both the stochastic discount factor and the price
of equity. The mechanism explains simultaneously both high average returns on equity and low
average returns on bonds. This is accomplished in the economy with relatively small exogenous
shocks and a high degree of patience, and a low degree of risk-aversion on the part of the agents.
Previous work on limited commitment has concentrated on endowment economies and has em-
phasized borrowing constraints. Numerical results in this paper suggest that when capital is
added to such models, savings constraints play even more central role.
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1 Introduction

Modern models of the business cycle do poorly at explaining the behavior of asset prices.1 As
the literature points out, it is particularly di�cult to explain observed equity premiums (Mehra
and Prescott, 1985), holding-period yields (Grossman, Melino, and Shiller, 1987), and average risk
premiums in forward prices (Backus, Gregory, and Zin, 1989).

This is an important shortcoming of business-cycle models. As Cochrane and Hansen (1992)
emphasize, these models center on intertemporal decisions, and asset prices provide information
about intertemporal margins (marginal rates of substitution and transformation). Therefore, asset-
pricing implications should be valuable in determining the relative success of di�erent models.

The objective of my research is to re�ne general-equilibrium models of the business cycle, so
their implications for asset prices are more in line with empirical observations. I share this goal with
Boldrin, Christiano, and Fisher (1995, 1999), Christiano and Fisher (1998), Jermann (1998), and
Tallarini (1999), but their approaches are di�erent. Boldrin, Christiano, and Fisher, Christiano and
Fisher, and Jermann use habit-formation preferences, whereas Tallarini has non-expected utility
preferences, and I use limited-commitment constraints.

Alvarez and Jermann (1999ab) use limited commitment to explain the behavior of asset prices
in endowment economies. Limited-commitment models assume that agents in the economy can
default on their contracts if it is in their interests to do so. Therefore, the allocations in the
economy are constrained in such a way that no agent has an incentive to default.

Alvarez and Jermann show how to decentralize an endowment economy without commitment
by using endogenous solvency constraints. They have considerable success when they study the
model's implications regarding the risk-free rate and equity prices. Sepp�al�a (1999) applies the
same model to the term structure of interest rates, and succeeds in matching both the sign and the
magnitude of average risk premiums in forward prices.

These solvency constraints are important for three reasons. First, they introduce a wedge be-
tween marginal rates of substitution and asset prices. This wedge is the key factor in explaining
asset-pricing anomalies in endowment economies. Second, they bring an endogenous justi�cation
for debt, solvency, short-selling, and other exogenous constraints that are commonly used in the lit-
erature on incomplete markets. Finally, they help explain why observed risk-sharing arrangements
do not completely smooth consumption over time, space, and the states of the world.

A common approach to explaining limited risk-sharing is to assume that markets are exogenously
incomplete.2 The limited-commitment approach has three advantages over such an assumption.
First, under limited commitment, allocations do not depend on a particular arbitrary set of assets
that are considered to be available. Second, the markets are complete, so any security can be
priced. Finally, the incompleteness of markets can be endogenenized through the above-mentioned
solvency constraints.

Models with non-standard preferences and complete markets, e.g., Boldrin, Christiano, and
Fisher (1995, 1999), Christiano and Fisher (1998), Jermann (1998), or Tallarini (1999), do not have
anything to say about borrowing, savings, and solvency constraints. Since my second objective is
to study these constraints, I decided not to follow their example.

1For a review of the modern business-cycle theory and its asset-pricing implications, see Cooley (1995).
2For a review of the literature on incomplete markets, see Magill and Quinzii (1996).
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In endowment economies solvency constraints form a sequence of state-dependent borrowing
constraints that may bind for at most one agent in any state. In contrast, when capital is introduced
into the model, the agents can self-insure by accumulating enough capital. This has interesting
implications on both solvency constraints and asset prices.

First, with capital there is a sequence of savings constraints that bind for both agents all the

time. Rogerson (1985) obtains a somewhat similar result in very di�erent context. He studies a
repeated moral-hazard problem with a risk-neutral principal and a risk-averse agent and shows that
for every outcome of every period the agent would choose to save some of his wage if he could.

In the limited commitment production economy, aggregate 
uctuations are close to the ones
generated by Pareto Optimal (full commitment) risk-sharing arrangements. However, the always
binding savings constraints force agents to underinvest in capital and increase the volatility of in-
vestment. Together with borrowing constraints, savings contraints also increase the volatilities of
both the stochastic discount factor and the price of equity. This in turn increases the equity pre-
mium considerably without increasing the volatility of either interest rates or returns on equity too
much. In fact, with the standard real business cycle parameters, the model is signi�cantly closer in
matching the second moments of risk-free rates and returns on equity than habit-formation models
of Boldrin, Christiano, and Fisher (1995, 1999), Christiano and Fisher (1998), and Jermann (1998).

Moreover, the large equity premium is obtained without unrealistically low discount factors as
in Alvarez and Jermann (1999ab) or high risk aversion parameter values as in Tallarini (1999). This
result is illustrated in Figure 1 that summarizes the results in Alvarez and Jermann and relates
them with the results in this paper. Alvarez and Jermann show that depending on parameter
values in a limited-commitment endowment economy one can observe either full risk-sharing (as
in a full commitment economy), no risk-sharing (autarky), or some risk-sharing. The third case is
interesting for the purpose of asset pricing. Risk-sharing depends on parameter values as follows.
When one either (i) increases risk-aversion (� "), (ii) increases patience (� "), (iii) increases the
depreciation rate of capital (� "), (iv) increases the variance of exogenous shocks (var(�t) "), or (v)
decreases the persistence of exogenous shocks (�(�t) #), the agents want more risk-sharing.

In order to increase the equity premium one has to reduce risk-sharing. In an endowment
economy, an incentive to participate in risk-sharing is very high so that only by lowering the
discount factor can autarky become tempting. In a production economy, even patient agents can
consider autarky as capital allows for considerable self-insurance.

This paper also builds on earlier results by Kehoe and Levine (1993), Luttmer (1996), Kocher-
lakota (1996), Kehoe and Perri (1998), Hayashi (1996), and Ligon, Thomas, and Worrall (1998).
To my knowledge, Kehoe and Levine is the �rst general-equilibrium model with endogenous sol-
vency constraints. Like Alvarez and Jermann, Kehoe and Levine (1993) study an endowment
economy. The main di�erence between these two papers is that Kehoe and Levine restrict agents'
consumption possibility sets, whereas Alvarez and Jermann restrict agents' asset holdings.

To my knowledge, Luttmer's paper is the �rst to emphasize the quantitative importance of
solvency constraints in explaining the behavior of asset prices. Kocherlakota studies an environment
that is similar to that in Alvarez and Jermann. However, Kocherlakota considers only i.i.d. shocks
in the planner's problem. Alvarez and Jermann decentralize the economy with serially correlated
income shocks.

The planning problem in my paper is largely the same as that in Kehoe and Perri. The
di�erences are as follows. First, they model an international economy. Second, they do not address
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Figure 1: Parameter Values and Risk-Sharing in Production and Endowment Economies
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asset prices and solvency constraints. Finally, their decentralization and solution algorithm is very
di�erent from mine.

The planning problem in this paper (in the current version) was inspired by Hayashi who
only considers an endowment economy. Ligon, Thomas, and Worrall have a model of limited
commitment economy with storage, but do not decentralize the economy. Some of the analytical
results in this paper are similar to their results.

Cole and Kocherlakota (1997) is a related paper in the sense that they want provide microfoun-
dations for incomplete security markets. They show that an environment with hidden income and
hidden storage can be decentralized through the asset market that allows agents to trade risk-free
bonds. One of the objectives of my paper is to demonstrate that the limited-commitment mecha-
nism allows analysis of much richer environments than a mechanism that relies on adverse selection
or moral hazard.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 explains
how the prices and allocations can be solved numerically. Section 4 presents the parameter values
used in the paper. Section 5 presents the numerical results, and Section 6 concludes. All proofs
can be found in Appendix A.

2 The Model

2.1 The Environment

The economy contains two sectors, i = 1; 2, each associated with a large number of in�nitely-
lived consumer-�rm pairs with an identical production technology. Sectors can be thought as two
households, villages, regions, or countries. One interpretation is that each consumer has a �rm in
his or her backyard, and the shock a�ecting the productivity of the �rm is the same within each
sector. That is, in each period, one sector can use only of its input resources, and the output is
a�ected by a sector-speci�c technology shock.

In each period, an event st is realized out of a set of �nitely many possible events St. Let
st = (s0; : : : ; st) denote the history of s up to period t. The matrix � determines the conditional
probabilities for all histories �(stjs0).

The output in both sectors is produced using a technology that exhibits constant returns to
scale:

yi(st) = zi(st)f(ki(st�1); ni(st)); (1)

where the superscripts denote the sector, y is the output, z is a technology shock, f(�; �) is a
production function, and k and n denote the capital and labor input, respectively. For simplicity,
I will suppress the superscripts unless needed; I will use xt in place of xi(st). I use the notation
that the variables dated `t' are measurable with respect to the information available at time t.

The consumers in both sectors maximize their expected lifetime utility, de�ned over the con-
sumption of output c and leisure ` = 1� n:

maxU(ct; `t) =

1X
j=0

X
st+j2St+j

�ju(ct+j ; `t+j)�(s
t+j jst); (2)
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where � 2 (0; 1) denotes the discount factor. The period utility u(�; �) is strictly increasing, strictly
concave, and C1 in both arguments, and u1(0; x) = u2(x; 0) = +1 for all 0 � x <1.

The feasibility constraint for the economy is that the combined output of both sectors can be
either consumed or invested in the capital stock of the next period:X

i=1;2

cit + kit =
X
i=1;2

yit + (1� �)kit�1; (3)

where � 2 [0; 1] denotes the depreciation rate of capital.
In addition, the agents face a participation constraint. That is, the allocations are constrained

so that they make the agents better o� than autarky under every possible history:

1X
j=0

X
st+j2St+j

�ju(ct+j ; `t+j)�(s
t+j jst) � V a(kt�1; s

t) 8t � 0; st 2 St; (4)

where V a(kt�1; s
t) is the value function associated with the autarky problem:

V a(kt�1; s
t) = max

1X
j=0

X
st+j2St+j

�ju(ct+j ; `t+j)�(s
t+j jst) (5)

subject to

ct + kt = ztf(kt�1; nt) + (1� �)kt�1 8t � 0: (6)

2.2 The Planning Problem

As in Kocherlakota (1996) and Alvarez and Jermann (1999ab), I set up the planning problem for
determining optimal allocations as a problem of maximizing the expected lifetime utility of agent 1
subject to feasibility and participation constraints and given some expected lifetime utility for
agent 2.

The recursive formulation of the problem is given by the following functional equation:

TV (!; k1; k2; s) = max u(c1; `1) + �
X
s02S

V (!s0 ; k
0
1; k

0
2; s

0)�(s0js) (7)

subject to

c1 + c2 + k01 + k02 � z1(s)f1(k1; 1� `1) + z2(s)f2(k2; 1� `2) + (1� �)k1 + (1� �)k2 (8)

u(c2; `2) + �
X
s02S

!s0�(s
0js) � ! (9)

V (!s0 ; k
0
1; k

0
2; s

0) � V a
1 (k

0
1; s

0) 8s0 2 S (10)

!s0 � V a
2 (k

0
2; s

0) 8s0 2 S; (11)

where primes denote next-period values, V (!s0 ; k
0
1; k

0
2; s

0) is the value function of agent 1, and ! is
the utility promised to agent 2. Speci�cally, !s0 is the promised utility of agent 2 for the next
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period when the state is s0. Equation (8) is the feasibility constraint, (9) is the promise-keeping
constraint, and (10) and (11) are participation constraints.

Both Kocherlakota and Alvarez and Jermann present similar functional equations. As Kocher-
lakota considers only the i.i.d. case, his only state variable is !. Alvarez and Jermann relax this
assumption, so they have keep track of the current state s as well. When capital is introduced to
the model, there are two additional state variables: k1 and k2.

As in Alvarez and Jermann, the problem (7){(11) has a non-trivial domain. For each s the
domain of TV (!; k1; k2; s) is the set (!; k1; k2) such that

TV (!; k1; k2; s) � V a
1 (k1; s) and ! � V a

2 (k2; s):

The problem with the domain makes it di�cult to obtain analytical expressions for V and consid-
erably complicates numerical analysis. In words, if there is not much capital in the economy, the
social planner cannot promise too much utility to agent 2. Since the numerical solution method
used in this paper requires speci�cation of the set (!; k1; k2; s) in advance, �nding the solution is not
an easy matter. For this reason, in Section 3, I reformulate the problem following Hayashi (1996)
in terms of promised planning weights instead of promised utilities.

One additional problem relative to Kocherlakota and Alvarez and Jermann in analyzing the
planner's problem is that the constraints need not be convex, due to constraints (10) and (11).
Nevertheless, it is possible to show the following:

Proposition 1. If autarky is not the only allocation satisfying the participation constraints then

the participation constraint of at most one agent is binding in each period.

Non-convexity of constraints means that it is not trivial to show that the value function is con-
cave or that the decision rules are single valued. Therefore, I make the following two assumptions:

Assumption 1. The value function is once di�erentiable.

Assumption 2. The decision rules are single valued.

I hope to be able to show that these assumptions hold and hence the following proposition and
its corollary hold more generally.3

Proposition 2. Under Assumptions 1 and 2, if both agents are unconstrained for s0, then their

marginal rates of substitution are equalized. If one agent is constrained then his marginal rate of

substitution will be strictly smaller than that of the other agent.

In Section 3, I reformulate the problem in terms of promised planning weights instead of
promised utilities. When one replicates the analysis in the proof of Proposition 2 in this new
environment, the following corollary is immeadiate.

Corollary 1. Under Assumptions 1 and 2, if both agents are unconstrained for s0, then their plan-

ning weights stay constant. If one agent is constrained then his planning weight will be increased.

3In the numerical example considered in Sections 4 and 5, the proposition held.
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Notice that binding participation constraint implies higher planning weight for the constrained
agent. The planner has to make sure that the agent who would like to default wants to stay
in the risk-sharing arrangement. This can obtained two ways: either by increasing the current
utility by increasing current consumption and leisure or by increasing the promised about future
utilities. However, since the agents are risk-averse they will prefer the latter scheme as the �rst
would increase the volatility of allocations too much. Increasing the promised utilities or planning
weights allows the planner to smooth increase over several time periods.

In order to analyze asset prices, this economy has to be decentralized. The above propositions
are useful in tightening the link between the solution to the planning problem and its decentraliza-
tion.

2.3 Competitive Equilibrium and Asset Pricing

The decentralization I have in mind is the following. There are two sectors both having separate
labor and capital markets. In each period in both sectors the �rms rent capital and labor services
from the households in their respective sector. Households can consume and save the income
from these rental services and also (partially) hedge against the shocks by trading state-contingent
securities with each other. However, the fact that the households cannot commit to their contracts
rules out large negative positions in the state-contingent securities. The households with large
debt payments would like to default instead of continuing the risk-sharing arrangement. Also, the
households that have accumulated enough wealth (capital) have no need to participate in risk-
sharing. In the decentralization both these possibilities are ruled out by endogenously generated
solvency constraints|borrowing and savings constraints|that restrict how much the households
can borrow from each other and how much they can save in terms of capital.

The environment di�ers from the usual Arrow-Debreu world only through the above-mentioned
solvency constraints. I assume that in addition to the households and �rms the economy contains
�nancial intermediaries that take care of risk-sharing arrangements. Financial intermediaries oper-
ate in a competitive manner and are the only agents in the economy with an access to commitment
technology.

Firms

Firms solve a static pro�t maximization problem

max ztf(kt�1; nt)� wtnt � rtkt�1;

where w and r denote the wage rate and the rental rate of capital, respectively.

Households

The households maximize (2) subject to their budget constraint:

ct + kt +
X

st+12St+1

q(st+1; st)a(st+1) � rtkt�1 + wtnt + (1� �)kt�1 + at (12)
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and the borrowing constraints:

a(st+1) � B(st+1) 8st+1 2 St+1;

and the savings constraint:

kt � Ct;

where q(st+1; st) determines the price of a security a(st+1) that pays one unit of consumption good
at the beginning of the next period when the next period's state is st+1 and the current period's
state is st. B(st+1) is the minimum asset position the agent can take in an asset that pays when
the state is st+1, and Ct is the maximum capital stock position the agent is allowed to hold. From
now on, I will call B(st+1) a borrowing constraint and Ct a savings constraint.4

Notice that only when the horizon is in�nite the autarky is not the only equilibrium for this
economy. If there exists the �nal period T , the households with aT < 0 would default. Since
everybody knows that, nobody would participate in the risk-sharing arrangement in the period T�1.
Therefore, the households with aT�1 < 0 would default. Repeating the argument, we obtain that
nobody will participate in the risk-sharing arrangement in any period unless the horizon is in�nite.

Financial Intermediaries

There is a large number of �nancial intermediaries that arrange the risk-sharing arrangement be-
tween the sectors. Financial intermediaries operate in a competitive manner and are the only
agents in the economy with an access to commitment technology. Each household is matched with
a �nancial intermediary who observes the household's wealth (capital stock and state-contingent
debt) and makes the household an o�er. The household is allowed to save in capital only up to the
amount Ct and issue state-contingent debt up to the amount B(st+1). The household has three
options. First, the household can accept the o�er and issue new state-contingent debt. Second, the
household can go to see other �nancial intermediary. Third, the household can revert to autarky.
In the equilibrium, the household will always accept the o�er. Finally, the �nancial intermediaries
sell the state-contingent debt in competitive markets.

Hence, the agents are kept within the risk-sharing arrangement by setting the savings and
borrowing constraints in the right way. The introduction of the savings constraint may seem
counter-intuitive. The following example from Obstfeld and Rogo� (1996) may help to understand
why they are needed. Suppose that the world is deterministic and both sectors have the production
function y = f(k). Let R? be the inverse of Arrow pricing function q in the steady state. When
the sector reaches the steady state capital stock k? at which f 0(k?) = R? the sector has no need
for �nancial markets. The purpose of the savings constraint is to prevent this from happening.

Some kind of savings constraint is always needed in models with commitment problems and
capital. The reason is that with full commitment the capital is chosen using a marginal condition

4Notice that since the production technology exhibits constant returns to scale, one could decentralize the economy
without �rms. Households in both sectors would have a backyard production technology:

ct + kt +
X

st+12St+1

q(st+1; st)a(st+1) � ztf(kt�1; nt) + (1 � �)kt�1 + at:
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that equates expected marginal rates of substitution and transformation. As participation con-
straints will bind either agent with small probability, they bring a wedge between marginal rates of
substitution and transformation. Savings constraints are needed in order to account for this wedge.
Kehoe and Perri (1998) take care of this wedge by introducing a government that taxes the capital
exactly the right amount.5

In my setup, in order to stay within risk-sharing arrangement, the sector has to precommit to
its investment strategy. The �nancial intermediary is not only interested in how much each sector
wants to borrow. He also wants to know what the sector is going to do with its resources. Since
this is a world of perfect information, it is not possible to overinvest and participate in the �nancial
markets at the same time. The punishment from overinvestment would be the exclusion from the
�nancial markets forever. One way to think that about this is to observe that in this economy
capital is an illiquid asset. Financial intermediaries do not want agents to accumulate assets that
cannot be con�scated.

Competitive Equilibrium

De�nition 1. The equilibrium given the solvency constraints fBi
t ; C

i
tg is a set of prices fwi

t; r
i
t; qtg

and allocations fcit; `it; kit; ait+1g such that

1. Taking prices as given the allocations solve both the �rms' and the households' optimization

problems.

2. Markets clear:

a1(st+1) + a2(st+1) = 0 8t � 0;8st+1 2 St+1:

3. Feasibility is satis�ed: X
i=1;2

cit + kit =
X
i=1;2

yit + (1� �)kit�1: (13)

The optimality conditions for the �rms are:

rt = ztf1(kt�1; 1� `t) and (14)

wt = ztf2(kt�1; 1� `t): (15)

5Kehoe and Perri consider an international economy with two countries. The government of each country can
tax payments made to foreignors and capital income and then rebate the proceeds in a lump sum fashion to private
agents. The governments in the two countries sequentially choose policy in an optimal fashion to maximize the
welfare of their residents. The household's budget constraint in their economy is

ct + kt +
X

st+12St+1

q(st+1; st)a(st+1) � (1� �
k
t )(1 + rt � �)kt�1 + (1� �

a
t )at +wtnt + Tt;

where �kt and �at and tax rates on capital and asset holdings, respectively, and Tt are lump sump transfers of the
government. These are chosen in such a way that the participation constraints for both countries are satis�ed.
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Households have �rst-order conditions:

u2(ct; `t) = wtu1(ct; `t) (16)

u1(ct; `t)

(
= �Et[u1(ct+1; `t+1)(1 + rt+1 � �)] if kt < Ct);

� �Et[u1(ct+1; `t+1)(1 + rt+1 � �)] if kt = Ct:
(17)

q(st+1; st)u1(ct; `t)

(
� ��(st+1jst)u1(ct+1; `t+1) if a(st+1) = B(st+1);

= ��(st+1jst)u1(ct+1; `t+1) if a(st+1) > B(st+1):
(18)

and transversality conditions:

lim
t!1

E0�
tu1(ct; `t)[at �Bt] = 0

lim
t!1

E0�
tu1(ct; `t)[Ct � kt] = 0:

Asset Pricing

As in Luttmer (1996), Cochrane and Hansen (1992), and Alvarez and Jermann (1999ab), the prices
of Arrow securities are given by the maximum of the marginal rates of substitution of agent 1 and 2.
That is,

q(st+1; st) = max
i=1;2

�
u1(c

i
t+1; `

i
t+1)

u1(c
i
t; `

i
t)

�(st+1jst): (22)

The economic intuition is that the unconstrained agent in the economy does the pricing. As
B(st+1) gives the minimum amount of an asset one can buy, the constrained agent would like sell
that asset and hence his marginal valuation of the asset is lower. To make the same point in other
words, the constrained agent has an internal interest rate that is higher than the market rate.
Therefore, he would like to borrow more than is feasible to keep the autarky constraints satis�ed.

These q(st+1; st) determine the pricing kernel or the stochastic discount factor mt+1 as follows:

mt+1 � max
i=1;2

�
u1(c

i
t+1; `

i
t+1)

u1(cit; `
i
t)

:

The price of a one-period bond pbt is equal to the price of a portfolio containing equal weights
of one-period Arrow securities, each priced according to (22):

pbt =
X

st+12St+1

max
i=1;2

�
u1(c

i
t+1; `

i
t+1)

u1(cit; `
i
t)

�(st+1jst) = Et[mt+1]:

As in Bulow and Rogo� (1989), I de�ne the equity to be a claim to an in�nite stream of future
net income. Hence, the price of equity pet is as follows:

pet =

1X
j=1

X
st+j2St+j

q(st+j jst)
X
i=1;2

yit+j � (kit+j � (1� �)kit+j�1) (23)

= Et

"
1X
j=1

mt+j

X
i=1;2

yit+j � (kit+j � (1� �)kit+j�1)

#
; (24)
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where q(st+jjst) is the price of an Arrow security from the state st to the state s
t+j, which is given

by

q(st+jjst) =
t+j�1Y
k=t

q(sk+1; sk); (25)

where q(sk+1; sk) is given by (22).

Existence of Equilibrium

Let J(a; k; s) denote the value function in the household's problem:

J(a; k; s) = maxu(c; `) + �
X
s02S

J(a(s0); k0; s0)�(s0js)

subject to

c+ k0 +
X
s02S0

q(s0; s)a(s0) � rk + wn+ (1� �)k + a

a(s0) � B(s0) 8s0 2 S0;
k0 � C;

Let Ja(k; s) denote the household's value function in autarchy and ka optimal amount of capital
the household would choose in autarky.

De�nition 2. Borrowing constraints are not too tight if they satisfy

J(B(s0); C; s0) = Ja(ka; s0) 8s0 2 S0:

This condition guarantees that given the limit in capital accumulation the borrowing constraints
prevent default by not letting the agents accumulate more debt than they are willing to pay back.

De�nition 3. The prices of Arrow securities are not too high if the in�nite sums of the form

1X
j=1

X
st+j2St+j

q(st+jjst)xt+j

are �nite for all equilibrium objects xt+j.

Given that the borrowing constraints are not too tight and that the prices of Arrow securities are
not too high, the transversality conditions are satis�ed and the household's problem has a concave
objective and convex constraints. By standard arguments the equilibrium exists. In addition, the
equilibrium is uniquely determined by the �rst-order conditions and the transversality conditions.
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2.4 Second Welfare Theorem

Proposition 3. Given an allocation fcit; `it; kitg that satis�es

1. the feasibility condition (13) at any period and state,

2. the participation constraints (4) at any period and state,

3. intratemporal optimality condition

u2(ct; `t) = ztf2(kt�1; 1 � `t)u1(ct; `t)

at any period,

4. that the implied prices of Arrow securities are not too high, and

5. that the marginal utility of consumption stays �nite:

lim
t!1

E0�
tu1(ct; `t) <1;

then there exist processes fait; Bi
t ; C

i
t ; r

i
t; w

i
t; qtg such that a sequence fcit; `it; kit; ait+1g is a competitive

equilibrium given the solvency constraints fBi
t ; C

i
tg and the prices fwi

t; r
i
t; qtg. In addition, the

borrowing constraints are not too tight.

The link between participation constraints in the planner's problem and the solvency constraints
in the household's problem is the following. When a participation constraint in the planner's
problem binds, the corresponding solvency constraint in that state will bind for one agent. However,
since the constraints on capital are for the expectation over tomorrow's states, the bounds on capital
holdings (savings) may bind for both agents in every period.

2.5 Solvency Constraints and Risk-Sharing

To characterize the e�ects of solvency constraints, I apply the Recursive Saddle Point (RSP) for-
mulation developed in Marcet and Marimon (1992, 1998). Unlike in the planner's problem, RSP
analysis is valid in the household's problem, since it has a concave objective and convex constraints.

Let Rt � 1+rt�� and xt � ct+kt�Rtkt�1�wtnt. Solving the household's budget constraint (12)
forward gives

at �
1X
j=0

X
st+j2St+j

q(st+j jst)xt+j = Et

"
1X
j=0

mt;t+jxt+j

#
; (26)

where mt;t+j�(s
t+j jst) � q(st+jjst) and q(stjst) = mt;t = 1. In addition, at t = 0 the household

must honor its initial state-contingent claim a0 inherited from the past:

a0 �
1X
t=0

X
st2St

q(stjs0)xt = E0

"
1X
t=0

m0;txt

#
: (27)
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Using (26) and (27) at equality, the household's problem is associated with the Lagrangian

L = E0

1X
t=0

�t

(
u(ct; `t) + �t

�
Et

1X
j=0

mt;t+jxt+j �Bt

�

+�

�
a0 �E0

1X
j=0

m0;jxj

�

+ �t(Ct � kt)

)
:

Using the law of iterated expectations, noticing that mt;t+2 = mt;t+1mt+1;t+2, and applying sum-
mation by parts, the Lagrangian can rewritten as

L = E0

1X
t=0

�t
�
u(ct; `t) + �txt � �tBt + �t(Ct � kt)

	
+�a0;

or

L = E0

1X
t=0

�t
�
u(ct; 1� nt) + �t(ct + kt �Rtkt�1 � wtnt)� �tBt + �t(Ct � kt)

	
+�a0;

where
�t = ��1mt�1;t�t�1 + �t;

with initial condition �0 = �0 ��. First-order conditions with respect to ct, nt, kt are as follows:

u1(ct; `t) + �t = 0

u2(ct; `t) + �twt = 0

�t � �t = Et[�Rt+1�t+1]:

Two special cases are worth considering. First, if the solvency constraint never binds then
�t = �t = 0 8t � 0. In this case, the �rst-order conditions for both agents satisfy the familiar full
risk-sharing condition:

u1(c
1
t ; `

1
t )

u1(c2t ; `
2
t )

=
�1

�2
:

Second, suppose that there is some t? such that, 8t < t?, �t = �t = 0, but �1t? > 0 and �2t? = 0.
In addition, suppose that �t?+1 = 0. In this case:

u1(c
1
t?�1; `

1
t?�1)

u1(c
2
t?�1; `

2
t?�1)

=
�1

�2

u1(c
1
t? ; `

1
t?)

u1(c
2
t? ; `

2
t?)

=
�1 � ��1

t?

m0;t?

�2

u1(c
1
t?+1; `

1
t?+1)

u1(c2t?+1; `
2
t?+1)

=
�1 � ��1

t?

m0;t?

�2
=
u1(c

1
t? ; `

1
t?)

u1(c2t? ; `
2
t?)
:
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That is, the one-period impulse from the solvency constraint makes the solution in those subsequent
periods in which the constraint is not binding equivalent to a version of the full risk-sharing problem
with higher weight assigned to agent 1. Recall Corollary 1 from Section 2.2: If one agent is con-
strained then his planning weight will be increased. The analysis in this section shows that binding
participation constraint in the planner's problem corresponds to a binding solvency constraint in
the household's problem.

In this section I only analyzed the e�ects of a one-period shock on the borrowing constraint
for one agent. The analysis of the e�ects of savings constraints is more complicated because they
may bind for both agents at the same time. For this reason and to better understand the e�ects of
solvency constraints at the aggregate level, I now resort to numerical simulations.

3 Algorithm

3.1 New Formulation

I mentioned in Section 2.2 that the problem with the domain makes it di�cult to obtain analytical
expressions for V and considerably complicates numerical analysis. That is, if there is not much
capital in the economy, the social planner cannot promise too much utility to agent 2. Since
the numerical solution method used in this paper requires speci�cation of the set (!; k1; k2; s) in
advance, �nding the solution is not an easy matter. I was not able �nd the solution using the
original formulation for realistic values of the depreciation rate (� < 0:8), and hence reformulated
the problem following Hayashi (1996) in terms of promised planning weights instead of promised
utilities. The advantage of using planning weights instead of promised utilities is that the sampling
region for the former does not change with the preference and technology parameters.

The planning problem is now

TW (�; k1; k2; s) = max�
n
u(c1; `1) + �

X
s02S

V1(�s0 ; k
0
1; k

0
2; s

0)�(s0js)
o
+ (28)

(1� �)
n
u(c2; `2) + �

X
s02S

V2(1� �s0 ; k
0
2; k

0
1; s

0)�(s0js)
o

subject to

c1 + c2 + k01 + k02 � z1(s)f1(k1; 1� `1) + z2(s)f2(k2; 1� `2) + (1� �)k1 + (1� �)k2 (29)

V1(�s0 ; k
0
1; k

0
2; s

0) � V a
1 (k

0
1; s

0) 8s0 2 S (30)

V2(1� �s0 ; k
0
2; k

0
1; s

0) � V a
2 (k

0
2; s

0) 8s0 2 S; (31)

where � denotes the planning weight, (�; k1; k2; s) is the social welfare function, V1(�s0 ; k
0
1; k

0
2; s

0)
is the value function of agent 1, and V2(1 � �s0 ; k

0
2; k

0
1; s

0) is the value function of agent 2. Notice
that W depends on both V1 and V2. For three unknown functions, one has to specify a system of
functional equations. The obvious additional functional equations are

TV1(�; k1; k2; s) = u(c1; `1) + �
X
s02S

V1(�s0 ; k
0
1; k

0
2; s

0)�(s0js)

TV2(1� �; k2; k1; s) = u(c2; `2) + �
X
s02S

V2(1� �s0 ; k
0
2; k

0
1; s

0)�(s0js);
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where the variables on right-hand side come from the planning problem above. A �xed point of
operator T gives the value to the problem of maximizing a weighted sum of utilities. The Pareto
Optimum (full commitment) problem can be solved from the same system equations, but without
imposing (30) and (31). Implication of Corollary 1 is that if the participations constraints do not
bind then �'s stay constant. Hence, in the full commitment problem, �t+1 = �t = : : : = �0 8t.

3.2 Solution Strategy

The algorithm I use for solving the model numerically is based on ideas presented in Judd (1998),
den Haan (1996, 1997), and Christiano and Fisher (1997). The idea is to parameterize the unknown
value functions, Vi(�; k1; k2; s) and V

a
i (k; s), i = 1; 2, using Chebyshev approximation. The details

are presented in Appendix B.
Kehoe and Perri (1998) solve a similar problem using the Recursive Saddle Point formula-

tion, but that approach will not work here because this problem need not be convex, due to con-
straints (10) and (11), so a solution strategy that uses Euler equations may not �nd the correct so-
lution. Below, I present the solution scheme for V1(�; k1; k2; s).

6 The algorithm for �nding V a
1 (k; s)

is similar, but simpler.
Recall, M is the number of elements in S. Let M = 4; �x bijk(s); and use (33) to approximate

the value function. I use Chebyshev polynomials of degree N = 5, and I set K = 7 as the number
of grid points for each endogenous state variable. For each grid point the maximization problem
has a nonlinear objective function over 10 control variables (c1; c2; k

0
1; k

0
2; `1; `2; �1; �2; �3; �4). The

maximization is subject to nine nonlinear inequality constraints. In addition, some of the inequality
constraints need not be convex.

This is a very di�cult nonlinear programming problem. For example, neither NAG nor IMSL,
two popular Fortran libraries for solving mathematical problems, contains a routine that could �nd
a solution to this problem even when the problem is initialized using the correct bijk(s)'s. I solve it
using a method of sequential quadratic programming developed by Schittkowski (1985).

Solving the maximization problem for each grid point leads to the following linear system:

Xb = Y;

6Notice that one has to solve for only V1 as due to symmetricity of preferences and shocks, V1(�; k1; k2; s) =
V2(�; k1; k2; ŝ), where

ŝ =

8
>>><
>>>:

1 if s = 1;

3 if s = 2;

2 if s = 3;

4 if s = 4:
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where

X
343�35

= [Pi('�(�))Pj('k1(k1))Pk('k2(k2)]

b
35�4

= [bijk(s)]

Y
343�4

= [TV (�; k1; k2; s)]:

Solving the system by OLS gives a new solution:

S(b) = (X0X)�1X0Y

and the coe�cients can be updated by using a relaxation parameter, 0 � � � 1:

bi+1 = �S(bi) + (1� �)bi:

From the discrete orthogonality property of Chebyshev polynomials it follows that (X0X)�1 is a
diagonal matrix. I iterate the procedure until k S(bi)� bi k1 is less than 10�9.

3.3 Asset Prices and Holdings

After �nding the value function and decision rules, I solve for the price of equity and asset holdings.
Using (22), (24), and (25) notice that

pet = Et

"
mt+1

�
pet+1 +

X
i=1;2

yit+1 � (kit+1 � (1� �)kit)

�#

or

pet = Et

"
mt+1

�
pet+1 +

X
i=1;2

dit)

�#
;

where dit = yit+1 � (kit+1 � (1� �)kit), i = 1; 2, is the dividend from equity. Notice that
P

i=1;2 d
i
t =P

i=1;2 c
i
t. That is, equity is a claim to aggregate consumption.

The problem is solving for the price of equity is a �xed-point equation in an unknown function
pe(�; k1; k2; s). Asset holdings are determined by a functional equation (26)

at = Et[mt+1(ct + kt �Rtkt�1 � wtnt + at+1)]:

Again, I apply Chebyshev approximation to the unknown functions. The di�erence is that the
above equations are linear in the unknown coe�cients so that they can solved exactly in one step.
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Table 1: Parameter values

Discount factor � = 0.96
Curvature parameter � = 1.0
Consumption share 
 = 0.34
Capital share � = 0.36
Depreciation rate � = 0.1

4 Numerical Examples

In order to relate the results of this paper to existing literature, I followed functional forms and
parameter values for an annual model given in Prescott (1986). I considered two di�erent cases to
illustrate how the variance of exogenous shocks a�ects the equity premium.

In both cases, the agents' one-period utility function was

u(c; `) =

(
(c
`1�
)1��

1�� if � 6= 1;


 log(c) + (1� 
) log(`) if � = 1;

and the production function was Cobb-Douglas: f(k; n) = k�n1��. Table 1 presents the parameter
values I used.

Let the technology shock take two di�erent values in both sectors. Therefore, the total number
of exogenous states is four. In the �rst case, di�erent states are as follows:

z1 =

2
664
1:1
1:1
0:9
0:9

3
775 ; and z2 =

2
664
1:1
0:9
1:1
0:9

3
775 ;

and in the second case:

z1 =

2
664
1:2
1:2
0:8
0:8

3
775 ; and z2 =

2
664
1:2
0:8
1:2
0:8

3
775 ;

In both cases,

� =

2
664

0:9 0:025 0:025 0:05
0:025 0:5 0:45 0:025
0:025 0:45 0:5 0:025
0:05 0:05 0:05 0:9

3
775 ;
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which has a lot of switching between states 2 and 3. The result is that the agent who does the
pricing in the economy is changed more often which produces more volatility in the stochastic
discount factor.

The implied AR(1) dynamics for both shocks depend on lagged values of both shocks. Namely,
in the �rst case:

zit = 0:16 + 0:44zit�1 + 0:4zjt�1 + �it

�it � IID(0; 0:0066)

for i = 1; 2 and j 6= i, and in the second case:

zit = 0:16 + 0:44zit�1 + 0:4zjt�1 + �it

�it � IID(0; 0:0263)

for i = 1; 2 and j 6= i.

5 Numerical Results

This section brie
y describes obtained numerical results for the parameter values from Section 4.
I calculated moments as averages over 10,000 simulated observations. Di�erent initial conditions
did not seem to a�ect the long-run behavior of the models.

I solved three di�erent models. The �rst was \Autarky", in which there were no security markets
between the two sectors. The second was \Pareto Optimum", in which security markets existed
and there were no constraints on asset holdings. (Notice, that this does not correspond to Pareto
optimality in the one-sector model. One and two sector formulations would be equivalent if both
agents could work in both sectors and if capital could be freely allocated between sectors once the
shock was realized.) The second model I solved corresponds to maximizing (28) subject to (29),
but not (30) and (31). The �nal model was \Limited Commitment", in which (30) and (31) were
also enforced.

5.1 Case I: Small Shocks

Table 2 presents selected business cycle and asset pricing moments under Autarky, Table 3 selected
business cycle and asset pricing moments under Pareto Optimum, and Table 4 selected business
cycle and asset pricing moments under Limited Commitment.

The lack of insurance in Autarky lead to overinvesment in capital which produces both higher
means and standard deviations than Pareto Optimum. On the other hand, in Limited Commitment
economy the savings constraints forced the agents to underinvest which lead to lower means.

Table 5 summarizes the asset pricing statistics in Autarky, Pareto Optimum, under Limited
Commitment, and in data. The results in data taken from Cecchetti, Lam, and Mark (1993), and are
based on annual US data for the period 1892{1987. While Sharpe ratio in data is 0.2564, it is 0.01875
in Autarky and 0.02778 in Pareto Optimum. This single number summarizes the di�culties that
modern business cycle models have in explaining the basic features of asset prices. Under Limited
Commitment, one obtains a Sharpe Ratio of 0.1719 which is substantial improvement. 7

7Christiano and Fisher (1998) do worse job with respect to second moments. They obtain a standard deviation
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Table 2: Business cycle and asset pricing moments in Autarky (Case I). Sharpe Ratio = 0.01875.

Variable Mean Standard Deviation Correlation with Output

Output 1.0432 0.1323 1.0000
Consumption 0.7758 0.0740 0.8999
Labor 0.6115 0.0250 0.7007
Investment 0.2674 0.0732 0.8975
Return on Equity 4.2451 3.6085 0.2495
Risk-Free Rate 4.1774 1.3393 �0.5716
Return on Capital 4.2033 2.1237 0.0736
Wage Rate 1.0838 0.1295 0.8324

Table 3: Business cycle and asset pricing moments in Pareto Optimum (Case I). Sharpe Ratio =
0.02778.

Variable Mean Standard Deviation Correlation with Output

Output 0.8305 0.0566 1.0000
Consumption 0.6731 0.0526 0.9942
Labor 0.5766 0.0058 �0.6992
Investment 0.1574 0.0071 0.6027
Return on Equity 4.2218 4.3654 0.2901
Risk-Free Rate 4.1006 1.0356 �0.8827
Return on Capital 8.9407 2.7461 0.4085
Wage Rate 0.9183 0.0775 0.8888

Table 4: Business cycle and asset pricing moments under Limited Commitment (Case I). Sharpe
Ratio = 0.1719.

Variable Mean Standard Deviation Correlation with Output

Output 0.8235 0.0534 1.0000
Consumption 0.6674 0.0515 0.9905
Labor 0.5764 0.0066 �0.8146
Investment 0.1561 0.0075 0.3140
Return on Equity 5.0853 9.2147 0.2102
Risk-Free Rate 3.5011 1.2503 �0.9156
Return on Capital 7.0026 2.3254 0.5221
Wage Rate 0.9754 0.0852 �0.9118
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Table 5: Asset pricing statistics (Case I). Data from Cecchetti, Lam, and Mark (1993).

Statistic Data Autarky Pareto Optimum Limited Commitment

E[re] 7.37 4.2451 4.2218 5.0853
E[rf ] 2.36 4.1774 4.1006 3.5011
std[re] 19.5 3.6085 4.3654 9.2147
std[rf ] 5.25 1.3393 1.0356 1.2503
Equity Premium 5.00 0.06766 0.1213 1.584
Sharpe Ratio 0.2564 0.01875 0.02778 0.1719

Figures 2, 3, and 4 present nonlinear impulse-response functions for all variables. Comparison of
Autarky with Pareto Optimum shows that one-period positive shock has much longer lived response
in Autarky. On the other hand, the responses in Pareto Optimum and under Limited Commitment
are almost identical.

Figures 5, 6, and 7 present the impulse response from a positive shock in both sectors to return
on equity, risk-free rate, return on capital, and wage rate in Autarky.

Impulse response exercise shows that quantitively Pareto Optimal and Limited Commitment
look very similar. In order to see the quantitative di�erences, I calculated the decision rules of
agent 1. Since both economies have four state variables, I only chose slices of the state space in
Appendix C.

For most of the variables, the decision rules were identical in Pareto Optimum and under Limited
Commitment. However, the important exceptions were the behavior of investment and �'s as a
function of � presented in Figures 30{35. I show the decision rules as functions of one variable
when other variables take their means values in the Limited Commitment economy.

The Figures 32{35 show that the planning weight tends to deviate from its initial value, 0.5. On
the other hand, investment as a function of � under Limited Commitment is the same as in Pareto
Optimum only in a small region around 0.5. Recall that binding participation constraint calls for
an increase expected utility. In the region around 0.5 the increase only through an increase in �.
Once investment deviates from this region, it behaves in opposite ways under Limited Commitment
than in Pareto Optimum. In Pareto Optimum increase in � is associated with decreased investment
as the agent with higher planning can consume more. Under Limited Commitment the increase
the expected utility is obtained by increasing both capital stock and planning weight.

So while the e�ect of the participation constraints is not pronounced in the quantities, it is
re
ected in the asset prices. This happens through two channels. Recall, e.g., from Campbell, Lo,
and MacKinlay (1997) equation (8.1.6) page 294, that the equity premium is determined by the
equity's covariance with the stochastic discount factor. The smaller the covariance, the greater is
the equity's expected excess return. This covariance, obviously, can be decomposed into correlation
times standard deviations of the stochastic discount factor and the return on equity.

of 37.42 for return on equity and 14.48 for risk-free rate. Their Sharpe Ratio is 0.13. Jermann (1998) has a standard
deviation of 11.46 for risk-free rate. Of course, their results for business cycles are much better than mine.
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Figure 2: Impulse Response in Autarky. Solid line = output, dots = consumption, dash-dotted
line = labor, and dashed line = investment

The �rst channel is through the switching between states 2 and 3. The result is that the agent
who does the pricing in the economy is changed more often which produces more volatility in the
stochastic discount factor. The second channel is through the planning weight. The planner has
to make sure that the agent who would like to default wants to stay in the risk-sharing arrange-
ment. This can obtained two ways: either by increasing the current utility by increasing current
consumption and leisure or by increasing the promised about future utilities. Since the agents
are risk-averse they will prefer the latter scheme as the �rst would increase the volatility of al-
locations too much. Increasing the promised utilities or planning weights allows the planner to
smooth increase over several time periods. However, since the planning weight is a state variable
re
ecting expectations about the future distributions of wealth, its movements are re
ected in the
asset prices. Hence, while the quantities do not 
uctuate enough to justify the movements in stock
prices, the movements in this auxiliary state variable increase the volatility of the price of equity.

Numerical results also provide intuition on how solvency constraints di�er between endowment
and production economies. The asset-pricing mechanism is presented in Figure 8, and Figure 9
presents underlying shocks. The pricing in each period was done by the agent who had lower
consumption growth (and hence a higher marginal rate of substitution). The promise of this
mechanism in accounting for the behavior of asset prices is that relatively small variations in the
underlying shocks generate more variability in the pricing kernel. The volatility of the pricing
kernel is one necessary condition for explaining the behavior of asset prices.

The e�ect can be seen more clearly by comparing Figures 8 and 9 with Figures 10 and 11.
Figure 10 presents solvency constraints for agent 1. Notice the asset-pricing mechanism at work
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Figure 3: Impulse Response in Pareto Optimum. Solid line = output, dots = consumption, dash-
dotted line = labor, and dashed line = investment
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Figure 4: Impulse Response under Limited Commitment. Solid line = output, dots = consumption,
dash-dotted line = labor, and dashed line = investment
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Figure 5: Impulse Response in Autarky. Solid line = return on equity, dots = risk-free rate,
dash-dotted line = return on capital, dashed line = wage rate.

here: when sector 1 became more productive relative to sector 2, the consumption growth of agent
1 was higher than that of agent 2. This means that agent 1 wanted to borrow, but his borrowing
constraint was binding. The unconstrained agent did the pricing. When sector 2 became more
productive relative to sector 1, the e�ect was reversed.

Hence, borrowing constraints bring a wedge between marginal rates of substitution and asset
prices. This wedge has been the key factor in explaining asset pricing anomalies in endowment
economies. Results in this paper indicate that the same e�ect has promising results also in pro-
duction economies.

Figure 10 also reveals how a production economy di�ers from an endowment economy. In en-
dowment economies solvency constraints form a sequence of state-dependent borrowing constraints
that may bind for at most one agent in any state. In contrast, when capital is introduced into the
model, there is a sequence of savings constraints that will bind for both agents all the time. The
mechanism is as follows. A participation constraint on the planner's problem will bind every time
there is a change in exogenous state. When this is the case the corresponding solvency constraint in
that state will bind for one agent. However, since the constraints on capital are for the expectation
over tomorrow's states the upper bound on capital holdings (savings) will bind for both agents in
every period.

The economic intuition is that the planner must prevent the agents from gaining too much
wealth. Otherwise, autarky would not be too bad an outcome. Rogerson (1985) obtains a somewhat
similar result in a very di�erent context. He studies a repeated moral-hazard problem with a risk-
neutral principal and a risk-averse agent and shows that for every outcome of every period the agent
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Figure 6: Impulse Response in Pareto Optimum. Solid line = return on equity, dots = risk-free
rate, dash-dotted line = return on capital, dashed line = wage rate.
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Figure 7: Impulse Response under Limited Commitment. Solid line = return on equity, dots =
risk-free rate, dash-dotted line = return on capital, dashed line = wage rate.
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Figure 8: Consumption growth for both agents. Solid line = agent 1.

9850 9900 9950 10000
0.9

0.95

1

1.05

1.1

1.15

time

Technology shocks

Figure 9: Technology shock in both sectors. Solid line = sector 1.

26



9850 9900 9950 10000
−2

−1.5

−1

−0.5

0

0.5

1

time

Solvency Constraints for Agent 1

Figure 10: Solvency constraints for agent 1. Solid line = B1
t , dashed line = C1

t .

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

Impulse Response for Agent 1

Figure 11: Impulse response on solvency constraints for agent 1. Solid line = B1
t , dashed line =

C1
t .

27



Table 6: Business cycle and asset pricing moments in Autarky (Case II). Sharpe Ratio = 0.03868.

Variable Mean Standard Deviation Correlation with Output

Output 1.0649 0.2672 1.0000
Consumption 0.7854 0.1479 0.8988
Labor 0.6067 0.0505 0.7068
Investment 0.2795 0.1491 0.9005
Return on Equity 4.4204 7.3195 0.2397
Risk-Free Rate 4.1373 2.6571 �0.5622
Return on Capital 4.2602 4.2728 0.0697
Wage Rate 1.0970 0.2597 0.8317

Table 7: Business cycle and asset pricing moments in Pareto Optimum (Case II). Sharpe Ratio =
0.06838.

Variable Mean Standard Deviation Correlation with Output

Output 0.8323 0.1121 1.0000
Consumption 0.6754 0.1048 0.9958
Labor 0.5710 0.0133 �0.6651
Investment 0.1569 0.0124 0.6309
Return on Equity 4.4696 8.5967 0.3027
Risk-Free Rate 3.8817 2.0731 �0.9209
Return on Capital 8.9762 5.4572 0.4142
Wage Rate 0.9204 0.1540 0.8899

would choose to save some of his wage if he could. In Rogerson's setup it is Pareto improving to
control as many of the agent's decisions as possible in order to gain more leverage on the incentive
problem regarding the agent's e�ort.8

5.2 Case II: Large Shocks

Table 6 presents selected business cycle moments under Autarky, Table 7 selected business cycle
and asset pricing moments under Pareto Optimum, and Table 8 selected business cycle and asset
pricing moments under Limited Commitment.

Table 5 summarizes the asset pricing statistics in Autarky, Pareto Optimum, under Limited
Commitment, and in data. The results in data taken from Cecchetti, Lam, and Mark (1993), and
are based on annual US data for the period 1892{1987. Case II increases the equity premium
considerably without increasing the volatility of either interest rates or returns on equity too much.

8See Braverman and Stiglitz (1982) for a fuller discussion of this idea.
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Table 8: Business cycle and asset pricing moments under Limited Commitment (Case II). Sharpe
Ratio = 0.1666.

Variable Mean Standard Deviation Correlation with Output

Output 0.8280 0.1099 1.0000
Consumption 0.6719 0.1034 0.9942
Labor 0.5715 0.0132 �0.7268
Investment 0.1561 0.0132 0.5354
Return on Equity 5.9650 18.0631 0.0365
Risk-Free Rate 2.9563 2.2254 �0.9224
Return on Capital 11.3333 5.9912 0.4136
Wage Rate 0.8608 0.1426 �0.8356

Table 9: Asset pricing statistics (Case II). Data from Cecchetti, Lam, and Mark (1993).

Statistic Data Autarky Pareto Optimum Limited Commitment

E[re] 7.37 4.4204 4.4696 5.9650
E[rf ] 2.36 4.1373 3.8817 2.9563
std[re] 19.5 7.3195 8.5967 18.0631
std[rf ] 5.25 2.6571 2.0731 2.2254
Equity Premium 5.00 0.2831 0.5879 3.009
Sharpe Ratio 0.2564 0.03868 0.06838 0.1666
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6 Conclusions and Further Research

This paper studies a business cycle model with heterogeneous agents that have access to complete
markets but face endogenous solvency constraints. These constraints are motivated by the agents'
limited commitment technology. The objective is to analyze simultaneously both asset prices and
business cycles.

In the limited commitment production economy, aggregate 
uctuations are close to the ones
generated by Pareto Optimal (full commitment) risk-sharing arrangements. However, the always
binding savings constraints force agents to underinvest in capital and increase the volatility of in-
vestment. Together with borrowing constraints, savings contraints also increase the volatilities of
both the stochastic discount factor and the equity prices. This in turn increases the equity pre-
mium considerably without increasing the volatility of either interest rates or returns on equity too
much. In fact, with the standard real business cycle parameters, the model is signi�cantly closer in
matching the second moments of risk-free rates and returns on equity than habit-formation models
of Boldrin, Christiano, and Fisher (1995, 1999), Christiano and Fisher (1998), and Jermann (1998).

Moreover, the large equity premium is obtained without unrealistically low discount factors as
in Alvarez and Jermann (1999ab) or high risk aversion parameter values as in Tallarini (1999). In
order to increase the equity premium one has to make autarky more desirable. In an endowment
economy, an incentive to participate in risk-sharing is very high so that only by lowering the discount
factor can autarky become tempting. In a production economy, even patient agents can consider
autarky as capital allows for considerable self-insurance.

In endowment economies solvency constraints form a sequence of state-dependent borrowing
constraints that may bind for at most one agent in any state. When capital is introduced into
the model, there is a sequence of savings constraints that will bind for both agents all the time.
The economic intuition is that the planner must prevent the agents from gaining too much wealth.
Otherwise, autarky will not be too bad an outcome. Rogerson (1985) obtains a somewhat similar
result but in a very di�erent context.

While the current version of the paper is quite successful in matching the asset pricing moments,
much work needs to done to improve its business cycle properties and to calibrate exogenous shocks
to data. Since the observed business cycles seem to resemble more autarky than full commitment
environment, the obvious direction for further research is to change the parameter values so that
risk-sharing is reduced. One possibility would be an introduction of adjustment costs in capital.
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A Proofs

Proposition 1. If autarky is not the only allocation satisfying the participation constraints then

at most one agent's participation constraint is binding in each period.

Proof. By contradiction. Suppose that for the current state ! = V a
2 (k2; s), V (V

a
2 (k2; s); k1; k2; s) =

V a
1 (k1; s). Next, set c1 = ca1(k1; s), c2 = ca2(k2; s), `1 = `a1(k1; s), `2 = `a2(k2; s), k

0
1 = ka

0

1 (k1; s),
k02 = ka

0

2 (k2; s), where x
a(k; s) denotes the autarky decision rule when the state is (k; s). In addition,

set !s0 = V a
2 (k

0
2; s

0) for all s0.
Since autarky is not the only allocation satisfying the participation constraints, it must be the

case that for some ŝ V (V a
2 (k

0
2; ŝ); k

0
1; k

0
2; ŝ) > V a

1 (k
0
1; ŝ). Then it must be the case that

TV (!; k1; k2; s) � u(c1; `1)+�
X
s02S

V (!s0 ; k
0
1; k

0
2; s

0)�(s0js) > V a
1 (k1; s) = u(c1; `1)+�

X
s02S

V a
1 (k

0
1; s

0)�(s0js):

Contradiction. �

Assumption 1. Value function is once di�erentiable.

Assumption 2. The decision rules are single-valued.

Proposition 2. Under Assumptions 1 and 2 if both agents are unconstrained for s0 then their

marginal rates of substitution are equalized. If one agent is constrained then his marginal rate of

substitution will be strictly smaller than the one for the other agent.

Proof. By inspection. Let �1 denote the Kuhn-Tucker multiplier associated with the constraint (8),
�2 denote the Kuhn-Tucker multiplier associated with the constraint (9), and  1(s

0) and  2(s
0)

denote the Kuhn-Tucker multipliers associated with the constraints (10) and (11), respectively.
Then the �rst-order conditions with respect to c1, c2, and !s0 will be

u1(c1; `1)� �1 = 0

�2u1(c2; `2)� �1 = 0

�V1(!s0 ; k
0
1; k

0
2; s

0)�(s0js) + ��2�(s
0js) +  1(s

0)V1(!s0 ; k
0
1; k

0
2; s

0) +  2(s
0) = 0

and the envelope condition with respect to ! is

V1(!; k1; k2; s) = ��2:
Therefore,

�2 =
u1(c1; `1)

u1(c2; `2)
:

In addition, if both agents are unconstrained in s0 then

�2 =
u1(c1; `1)

u1(c2; `2)
= �V1(!s0 ; k01; k02; s0) =

u1(c
0
1; `

0
1)

u1(c02; `
0
2)

or
u1(c

0
1; `

0
1)

u1(c1; `1)
=
u1(c

0
2; `

0
2)

u1(c2; `2)
:
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Next, suppose that  1(s
0) > 0. Then

�V1(!s0 ; k01; k02; s0) =
u1(c

0
1; `

0
1)

u1(c02; `
0
2)
< �2 =

u1(c1; `1)

u1(c2; `2)
:

or
u1(c

0
1; `

0
1)

u1(c1; `1)
<
u1(c

0
2; `

0
2)

u1(c2; `2)
:

Suppose that  2(s
0) > 0. Then

�V1(!s0 ; k01; k02; s0) =
u1(c

0
1; `

0
1)

u1(c02; `
0
2)
> �2 =

u1(c1; `1)

u1(c2; `2)
:

or
u1(c

0
1; `

0
1)

u1(c1; `1)
>
u1(c

0
2; `

0
2)

u1(c2; `2)
:

�

De�nition 2. Borrowing constraints are not too tight if they satisfy

J(A(s0); C; s0) = Ja(C; s0) 8s0 2 S0:

De�nition 3. The prices of Arrow securities are not too high if the in�nite sums of the form

1X
j=1

X
st+j2St+j

q(st+jjst)xt+j

are �nite for all equilibrium objects xt+j.

Proposition 3. Given an allocation fcit; `it; kitg that satis�es

1. the feasibility condition (13) at any period and state,

2. the participation constraints (4) at any period and state,

3. intratemporal optimality condition

u2(ct; `t) = ztf2(kt�1; 1 � `t)u1(ct; `t)

at any period,

4. that the implied prices of Arrow securities are not too high, and

5. that the marginal utility of consumption stays �nite:

lim
t!1

E0�
tu1(ct; `t) <1;
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then there exist processes fait; Bi
t ; C

i
t ; r

i
t; w

i
t; qtg such that a sequence fcit; `it; kit; ait+1g is a competitive

equilibrium given the solvency constraints fBi
t ; C

i
tg and the prices fwi

t; r
i
t; qtg. In addition, the

borrowing constraints are not too tight.

Proof. By construction. First, construct the equilibrium prices as follows

rt = ztf1(kt�1; 1� `t)

wt = ztf2(kt�1; 1� `t)

q(st+1; st) = max
i=1;2

�
u1(c

i
t+1; `

i
t+1)

u1(c
i
t; `

i
t)

�(st+1jst)

q(st+j jst) =
t+j�1Y
k=t

q(sk+1; sk)

mt;t+j�(s
t+j jst) = q(st+j jst):

Next, construct the asset holdings as follows

a0 = E0

"
1X
t=0

m0;t(ct + kt � (1 + rt � �)kt�1 � wtnt)

#

and

at = Et

"
1X
j=0

mt;t+j(ct+j + kt+j � (1 + rt+j � �)kt+j�1 � wt+jnt+j)

#
:

Under condition 4 these sums are well-de�ned.
Finally, construct the solvency constraints as follows. If

u1(ct; `t) < �Et[u1(ct+1; `t+1)(1 + rt+1 � �)]

then set Ct = kt. Otherwise set Ct = kt + �.
Next, if

q(st+1; st)u1(ct; `t) > ��(st+1jst)u1(ct+1; `t+1)
then set B(st+1) = a(st+1). Otherwise set B(st+1) = �Et[mt+1yt+1]. Using the above de�ned
prices, allocations, and solvency constraints, construct the value functions for the household, J i's.
Finally, using the value functions rede�ne the borrowing constraints so that for the agent i for whom
the marginal rate of substitution is higher (the borrowing constraint does not bind) in period t

J i(B(st+1); Ct; s
t+1) = Ja;i(Ct; s

t+1) 8st+1 2 St+1:

Since J i(�; Ct; s
t+1) is stricly increasing, this has a solution. Allocations are still optimal for the

same prices and solvency constraints as the feasible set is smaller, but the original plan is still
feasible.
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Checking the solvency and �rst-order conditions is trivial. Tranversality conditions

lim
t!1

E0�
tu1(ct; `t)[at �Bt] = 0

lim
t!1

E0�
tu1(ct; `t)[Ct � kt] = 0

are satis�ed assuming that
lim
t!1

E0�
tu1(ct; `t) = 0;

which is satis�ed by condition 5. �

B Chebyshev Approximation

I �rst �x M , the number of exogenous states.9 For each realization of s, V can be approximated
by

V (�; k1; k2; s) �
N�1X
i=0

N�1X
j=0

N�1X
k=0

bijk(s)Pi(�)Pj(k1)Pk(k2); (32)

where Pi(x), i = 0; : : : ; N � 1, is a Chebyshev polynomial

P0(x) = 1

P1(x) = x

P2(x) = 2x2 � 1

...

PN+1(x) = 2xPN (x)� PN�1(x):

Chebyshev polynomials are orthogonal in the interval [�1; 1] over the weight (1� x2)�1=2

Z 1

�1

Pi(x)Pj(x)p
1� x2

dx =

8><
>:
0; i 6= j

�=2; i = j 6= 0

�; i = j = 0:

The zeros of the polynomial are given by

x = cos

�
�(k � 1=2)

N

�
k = 1; 2; : : : ; N;

and the extrema are given by

x = cos

�
�k

N

�
k = 0; 1; : : : ; N:

9The presentation about Chebyshev approximation follows closely Press, Teukolsky, Vetterling, and Flan-
nery (1992, ch. 5.8).
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At all of the maxima Pi(x) = 1 and at all of the minima Pi(x) = �1. Moreover, and for our purposes
most importantly, Chebyshev polynomials satisfy a discrete orthogonality relation as well: If xk
(k = 1; : : : ;K) are the K zeros of PK(x) and if i; j < K, then

KX
k=1

Pi(xk)Pj(xk) =

8><
>:
0; i 6= j

K=2; i = j 6= 0

K; i = j = 0:

Since the domain of Chebyshev polynomials is [�1; 1], the actual realizations of the state vari-
ables are mapped into [�1; 1] by applying the following function to each state variable separately:

'(x) = 2

�
x� x

x� x

�
� 1;

where x and x are predetermined upper and lower bounds on x, respectively.
Equation (32) approximates the value function by using a tensor product basis. To reduce the

number of coe�cients bijk(s) to be estimated, I use a \complete polynomial" basis:

V (�; k1; k2; s) �
N�1X
i=0

N�1�iX
j=0

N�1�i�jX
k=0

bijk(s)Pi('�(�))Pj('k1(k1))Pk('k2(k2)): (33)

That is, instead using all the terms in tensor product, I use only the terms that correspond to
the multivariate Taylor approximation. When N is, say, 5, this reduces the number of estimated
coe�cients per each exogenous state from 125 to 35.

C Decision Rules in Case I
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Figure 12: Consumption of agent 1 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line =
Limited Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 13: Labor of agent 1 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 14: Investment of agent 1 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line =
Limited Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 15: Output of agent 1 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 16: �1 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 17: �2 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 18: �3 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 19: �4 as a function of k1 when k2 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 20: Consumption of agent 1 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line =
Limited Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 21: Labor of agent 1 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 22: Investment of agent 1 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line =
Limited Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 23: Output of agent 1 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 24: �1 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 25: �2 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 26: �3 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 27: �4 as a function of k2 when k1 = 0:78 and � = 0:5. Solid line = Limited Commitment
and dash-dotted line = Pareto Optimum.
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Figure 28: Consumption of agent 1 as a function of � when k1 = k2 = 0:78. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 29: Labor of agent 1 as a function of � when k1 = k2 = 0:78. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.
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Figure 30: Investment of agent 1 as a function of � when k1 = k2 = 0:78. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.

0.4 0.5 0.6
0.38

0.4

0.42

0.44

0.46

lambda

Output, when the state is 1

0.4 0.5 0.6
0.38

0.4

0.42

0.44

0.46

0.48

lambda

Output, when the state is 2

0.4 0.5 0.6
0.28

0.3

0.32

0.34

0.36

lambda

Output, when the state is 3

0.4 0.5 0.6
0.3

0.32

0.34

0.36

0.38

lambda

Output, when the state is 4

Figure 31: Output of agent 1 as a function of � when k1 = k2 = 0:78. Solid line = Limited
Commitment, dash-dotted line = Pareto Optimum, and dashed line = Autarky.

47



0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_1, when the state is 1

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_1, when the state is 2

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_1, when the state is 3

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_1, when the state is 4

Figure 32: �1 as a function of � when k1 = k2 = 0:78. Solid line = Limited Commitment and
dash-dotted line = Pareto Optimum.

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_2, when the state is 1

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_2, when the state is 2

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_2, when the state is 3

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

lambda

Lambda_2, when the state is 4

Figure 33: �2 as a function of � when k1 = k2 = 0:78. Solid line = Limited Commitment and
dash-dotted line = Pareto Optimum.
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Figure 34: �3 as a function of � when k1 = k2 = 0:78. Solid line = Limited Commitment and
dash-dotted line = Pareto Optimum.
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Figure 35: �4 as a function of � when k1 = k2 = 0:78. Solid line = Limited Commitment and
dash-dotted line = Pareto Optimum.
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