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Abstract

Markets involve the exchange of information and products between buyers and sellers in
marketplaces that are created by market organizers. This paper develops a theory to explain the
differences in the size (number of participants) and diversity (range of products displayed) across
these marketplaces. We assume that successful transactions require information transmission
between parties calling for investment in time and effort. Two key factors affect this process of
information interchange: diminishing marginal returns to effort, which encourages diversification
and congestion cost resulting from participant overload. We study a sequential model of
interaction between buyers, sellers and marketplace organizers. Organizers choose the number
and nature of marketplaces to organize and set entry fees, while buyers and sellers make
participation and effort allocation decisions. We show that participants’ breadth of product
interest, their buying and selling intensities (i.e. how frequently they are likely to engage in
future product transactions) as well as the technological innovativeness of the industry have
important influences on the size and range of product diversity in the marketplace. We apply this
model to the industrial trade show arena to explain differences in trade show types (horizontal
with broad product focus vs. vertical with narrow product focus) across industries. Empirical
tests of several propositions derived from our model provide an encouraging degree of support
for our theory. Our analysis identifies several industries that appear to be underserved by one
type of show or the other, suggesting possible future opportunities for organizers.

Keywords:  Marketplaces, Trade Shows, Product Diversity, Game Theory
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1. Introduction

Buyers, sellers and purchase influencers exchange products and information in a wide

variety of forums, including shopping centers, supermarkets, professional meetings, exhibitions

and trade shows as well as, increasingly in electronic, on-line marketplaces. While the act of

actual exchange of products is often the ultimate interaction goal, the information exchange that

precedes the actual exchange receives much less careful study. Our goal in this paper is to show

that the process of effort and time allocation towards receiving and distributing information has

major implications for the number of marketplace participants and the diversity of product

offerings in those marketplaces.

As an example of one forum where a large proportion of the participants’ time is spent on

information exchange, consider exhibitions and trade shows. In a typical trade show attendees

spend considerable time researching the costs/benefits of current and future solutions to their

needs and exhibitors invest comparable time disseminating the costs/benefits of their proposed

solutions to prospective customers. These shows constitute an important communication and

exchange medium in the business marketplace, accounting for nearly 20% of the

communications mix dollar (Business Marketing, 1999).  According to one estimate (Kotler,

1999), companies annually spend more than $15 billion on trade shows in the United States

alone; moreover, these shows generate more than $70 billion in sales annually there. Trade

shows are no less important on the global scene; for instance, in 1989 there were 169

international shows held in Germany with 124,000 exhibitors and over ten million attendees.

During the same year, 220 international shows were organized in the UK with 61,000 exhibitors

and 4.6 million attendees (Hansen, 1999).

But trade shows don’t just happen. Someone must organize them and position them in the

market, setting prices (entry fees) and communication programs to encourage exhibitors and

attendees to participate. Optimal fees should maximize the organizer’s profit by drawing the

optimal number of participants while giving the right incentives for participants: i.e., no actual

participant should make more (net) profit by staying out, and no uninterested potential

participant should make more (net) profit by participating (at those fees). But, what determines

these optimal numbers? We can develop some insights into this issue by taking a closer look at

the act of information exchange.
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Gathering of information and its dissemination, like many other economic activities, are

likely to experience diminishing marginal returns to investment in time: after some interchange

neither a buyer nor a seller is likely to get much more out of additional interaction. Since

diminishing marginal returns encourages spreading of resources across alternatives, it would

seem that marketplaces should be filled with as many buyers and sellers as possible. However,

with more participants comes congestion, a dissipation of participants’ effort that could have

been spent in information exchange. This observation suggests that a market should be divided

up among a number of marketplaces, the size of each of which should be governed by the

tradeoff between participants’ desire for diversity and the cost of congestion.

Thus, even with only (multiple varieties of) a single product one might expect multiple

marketplaces to exist; however, additional considerations emerge when we consider a market

with multiple products.  In this case, a marketplace organizer has the choice between organizing

marketplaces where all products are displayed, or he may organize trading platforms where only

a few are traded. Given this choice, what kind of product coverage should the organizer opt for?

The heterogeneity of product interests across buyers and sellers clearly is a determining factor

here, but in this paper we raise a more limited question: assuming that both buyers and sellers are

homogenous, what other factors would drive us toward narrow versus broad trading platforms?

Can we define operational variables that provide guidance for the organizers about which

marketplaces might currently be ‘too narrow’ or ‘too broad’?

To our knowledge, these issues are raised here for the first time. In the Economics of

Industrial Organization literature, product diversity (or differentiation) in markets has seen

considerable attention, following the seminal models of Hotelling (1929) in the context of

oligopoly and Dixit-Stiglitz (1977) in the context of monopolistic competition (see Beath and

Katsoulacos (1991) for an overview). However, we emphasize that the notion of product

differentiation in markets is unrelated to the notion of product diversity in marketplaces. A

market or an industry may have great product diversity and yet, each marketplace may feature a

very narrow set of products. Similarly, congestion in the product markets is a well-studied

phenomenon but usually in the context of externalities that a customer experiences in the

presence of other customers (e.g. see Reitman, 1991, and the references cited there). However, in

our framework, congestion acts through its negative impact on information transmission (and

hence matching of needs), thus affecting producers in equal measure.
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We proceed as follows. While we have couched our discussion broadly, we focus on the

specifics of the industrial exhibition or trade show here both for concreteness and to provide an

opportunity for empirical testing. Thus, Section 2 discusses trade shows and provides some

interesting observations that we seek to understand. In Section 3 we set up our model in terms of

the interaction that takes place among three types of agents: attendees, exhibitors and show

organizers. We then specify a production function and a congestion cost function.  In Section 4,

we first deal with a one-product (vertical) show, identify a plausible equilibrium and calculate

the total surplus the show generates.  We then do the same for a multi-product (horizontal) show

and develop a key proposition comparing the profits from a vertical show with those from a

horizontal show.  In Section 5 we develop the theory that determines the size of shows as well as

the numbers of horizontal and vertical shows that one can expect to see in an industry (and, thus,

their relative proportions). Section 6 uses this theory to study the influence of various industry

characteristics on the proportion of horizontal shows, resulting in several testable hypotheses. In

Section 7 we conduct an empirical investigation of these hypotheses, providing support for our

theory. Our analysis also develops some useful managerial guidelines by pointing out which

industries, according to our theory, are currently over or underserved by horizontal (versus

vertical) shows. Section 8 discusses the implications of our findings, model limitations and

directions for further research. A glossary lists all notations used in the text while proofs of the

propositions are available in Dasgupta, Lilien and Wu (2000) or on line at

www.smeal.psu.edu/isbm.

2. Trade Show Facts and Puzzles

One type of marketplace where the issues raised above are clearly relevant involves trade

shows or (equivalently here) industrial exhibitions.  Trade shows serve as excellent conduits of

information exchange as well as selling platforms for new and upcoming products. Trade shows

have been traditionally categorized as vertical or horizontal based on market coverage

(Gopalakrishna and Lilien, 1994). Typically, a vertical show involves a narrow range of products

and attracts visitors specifically interested in those products. In contrast, a horizontal show

usually involves a much broader range of products and a more diverse audience.  For example,

attendees at the Association of Operating Room Nurses show, a vertical show, are almost all

operating room nurses, and exhibitors display products that are used almost exclusively in the

http://www.smeal.psu.edu/isbm
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operating room. The National Design Engineering Show is a horizontal show in which firms

demonstrate products ranging from mechanical components, electrical and electronic

components, plastics, elastomers, to CAD/CAM systems (Gopalakrishna and Williams, 1992).

Exhibit 1, prepared by Exhibit Surveys Inc., details the number of vertical shows,

horizontal shows and the proportion of horizontal shows for a number of different industries

during the period from 1985 to 1991.  There appears to be no simple pattern here: why are 319 of

the 322 shows in the Communications industry vertical, 61 of the 64 shows in the Food

Processing and Distribution industry horizontal while the Chemical industry splits almost evenly

with 20 vertical and 23 horizontal shows?

Even the status of existing shows evolve, with some merging and becoming more

horizontal and others splitting into more narrow shows.  For instance, Conexpo-Con/Agg '96, the

largest US trade show in the construction industry, resulted from a merger of Conexpo (owned

by Construction Industry Manufacturers Association), the largest construction show, and

Con/Agg (owned by the National Aggregates Association and the National Ready Mixed

Concrete Association), one of the premier vertical shows specializing in concrete and aggregates

in the United States. The new, horizontal show attracted more than 1250 exhibitors and 100,000

attendees, and covered 1.25 million square feet of exhibiting area, making it bigger than the last

Conexpo and Con/Agg combined1. On the other hand, Comdex, the largest (horizontal) computer

show in the US, has seen threats by key exhibitors to split and form more narrowly focused

shows2.

This diversity and structural evolution of show type has seen little academic attention.

Most trade show studies emphasize lead (or sales) generation as the key goal, providing little

motivation for the existence of horizontal shows (Gopalakrishna and William 1992,

Gopalakrishna and Lilien 1993, Gopalakrishna and Lilien 1994, Dekimpe et al. 1996).  These

studies measure the performance of the show by how efficiently the show generates leads or

sales and generally assume homogeneous objectives on the parts of both exhibitors and

attendees.  The studies all indicate that vertical shows outperform horizontal shows in terms of

selling efficiency, calling into question the economic rationale for horizontal shows.  So, why do

                                                
1 Show Daily of Conexpo and Con/Agg, '96, page 18.
2 Jim Carlton, “Comdex Complaint As Big Computer Show Opens, Key Exhibitors Grumble About Costs”, Wall
Street Journal, 11/14/1994, Page A1.
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both types of shows exist and why does the proportion of show types vary so widely across

industries?

One way to address this question is to recognize that most measures of lead generation,

being rooted to benefits taking place in the present or near future, do not capture the full

economic gains that may result from information interchange and be realized in the more distant

future. This is not a new idea; the literature has recognized the existence of these dual motives of

participants in a show. For instance, Kerin & Cron (1987) have looked at the functions of trade

shows from the exhibitors' point of view and showed that there are two categories of roles that

trade shows play: selling functions and non-selling functions. Some exhibitors have objectives

that are primarily sales oriented, such as generating leads, while others have non-sales oriented

objectives such as gathering competitive intelligence and enhancing company image. Following

Kerin and Cron’s approach, Hansen (1999) reconsidered the multidimensionality of trade show

performances. He proposed a two-dimensional framework of trade show performance: an

outcome-based dimension, which includes the sales-related activities, and a behavior-based

dimension which includes nonsales-related activities, such as information-gathering activities,

image-building activities, motivation activities, and relationship-building activities. Both papers

focus solely on exhibitors, but Hansen (1999) recognizes that this dichotomy of focus may be

relevant for attendees as well.

The above discussion seems to suggest that the alleged inefficiency of horizontal shows

is solely a result of researchers’ inability to quantify the long-run economic output of non-selling

and information-gathering activities. However, this explanation holds only if horizontal shows

experience more non-selling/information gathering activity than do their vertical counterparts.

But are there a priori reasons why a wider diversity of product in a marketplace should

necessarily be correlated with a longer time horizon for transaction of the participants? One of

the goals of this paper is to show that indeed, there are such reasons. Thus, we provide an

explanation for the observation made by several authors on the superiority of vertical shows in

terms of lead generation.

One might wonder why horizontal shows, with more products and typically larger

number of participants, will not always dominate vertical shows in terms of total surplus

generation. One reason for the absence of such a clear dominance is the differences in

organizational costs: vertical shows, appealing to a narrower audience, should cost less to

organize than a horizontal show.  However, there is another factor at work: exhibitors and
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attendees may have different interests in different product categories either because of firm or

job-responsibility differences (purchasing agents vs. R&D engineers; smaller firms vs. large

firms) or because of industry differences (Williams et al, 1994). For example, in the computer

industry, a hardware manufacturer such as Intel may focus its attention on hardware; however,

Dell, another manufacturer, in its role as an attendee, may not only be concerned about hardware

but also about the software it is considering bundling with its computers. Now, returns to effort

in a potential exchange must account for efforts expended by both parties: if attendees and

exhibitors are interested in different kinds of products, or if the range of product interests is

narrow for one group and broad for the other, a mismatch arises. The allocation of effort across

different products then becomes a strategic consideration and, in equilibrium, the total gross

surplus generated in a horizontal show may not always dominate that of a vertical show or vice

versa. Thus we posit that the proportion of horizontal shows in an industry is the result of a

complex interaction between: a) the degree of diminishing marginal returns associated with the

information interchange process, b) the extent of future transaction interests of both parties, c)

the breadth of product interests of both parties and their compatibility and d) the fixed costs

associated with organizing shows.

3. The Model Setup: Benefits and Costs of Participation

In this section we specify the sequence of events in our model, and two of its key

constructs — the function relating the time/effort investment by participants into benefits (the

production function) and a deterrent factor for markets of unmanageable size, the congestion

cost. Although our model applies beyond the trade show arena, for concreteness we will refer to

the marketplace as a ‘show’ and the two categories of participants in the marketplace as

‘attendees’ and ‘exhibitors’.

A. Timing: Our model is based on the interaction between three types of agents in the

marketplace: attendees, exhibitors (assumed homogeneous within category) and (potential)

marketplace organizer(s). We will also assume there is either one product category (X) or two

product categories (X plus Y) under consideration. The sequence of events in the model is as

follows:

1. Each (potential) organizer decides how many shows of each type to set up (X and/or Y,

vertical shows or X&Y, the horizontal show). They then invest in the fixed factors, like
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show space, publicity and so forth that do not vary with the number of participants, for

the shows they have decided to set up. We assume that the prices of these factors will

rise as the demand for them increases.

2. Next, the organizers decide on (and announce) the fees they plan to charge attendees

and exhibitors that participate in any show they organize.

3. Then, each individual from a large pool of identical potential attendees decides which

show to attend (if at all) and each individual from a large pool of identical exhibitors

(simultaneously) decides whether to participate in that show. The organizer of a show

realizes the total of the entry fees minus his variable costs.

4. Upon arriving at a show, each attendee decides how to allocate his available effort or

time among the exhibitors present. For a horizontal show, he further decides how to

allocate effort toward particular exhibitors within different product categories.

Exhibitors make similar effort allocation decisions.

Participants see benefits in interaction through a production function and see disincentives to

interaction through a congestion cost function.  We specify these functions next.

B. Production Function: A simple way to model how efforts by an attendee-exhibitor pair get

translated into the benefits they seek is to develop a production function where efforts appear as

inputs and the (expected) benefit appears as the output. Such a function should have the

following properties:

a. If effort expended by either party is zero, then no matter how much effort the other party

expends, the output (or benefit) is zero.

b. The marginal return to effort of any party is increasing in the effort expended by the other

party and

c. There are diminishing marginal returns to effort for both parties, thus giving rise to

‘variety seeking’ behavior.

A commonly used specification with these properties is the Cobb-Douglas production function:

(3.1) αλ )(1 pqvrkU −=

where U is the expected benefit to a party, k is a positive constant, r is the (common) rate of

interest used by both parties, λ is the ‘future transaction intensity factor’ of the pair, v is the net

value generated to the party per unit transaction in the exhibitor’s product, p is the effort invested

by the exhibitor, q is the effort invested by the attendee and α  is a parameter that captures how
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fast marginal returns (to joint effort) diminish. We further motivate the formulation and explain

the terms in (3.1) next.

Within a product category (X or Y), we consider each exhibitor as a producer of a

specific “brand, ” where each brand has a slightly different formulation that the attendees

unaware of are a priori. Each attendee has slightly different needs, characterized by an

idiosyncratic taste parameter that governs whether a specific exhibitor’s brand fulfils those

needs. The purpose of information exchange is for the attendee to explain his needs to the to the

exhibitor and for the exhibitor to explore how well the features of his brand meet that attendee’s

needs. The joint investment of effort raises the likelihood of a match of needs with features. To

see the importance of this process, consider for example, the way DuPont communicates to its

potential customers for engineering polymers, stressing the need for deep and continued

interaction prior to developing a purchase commitment:

Today you need more from your suppliers than just materials. You need a resource that is
willing and able to join in at the earliest stages of the product development process. One
that can carry a project from concept through design, component analysis, material
selection, prototyping, testing, quality control, and even commercialization. You need a
fully fledged partner.

Source: http://www.dupont.com/enggpolymers/

Specifically, we assume that if the attendee expends effort level p and the exhibitor

expends effort q in the interchange, then k(pq)α reflects the ex-ante likelihood of a match. More

effort permits the attendee to reveal more about his needs and the exhibitor to explore more ways

to satisfy those needs, making a match more likely. The constant of proportionality k can be

product specific.

If a match is made, we assume that it will lead to a sequence of purchase transactions in

the future occurring at random points of time following (roughly) a Poisson process with

intensity λ. Thus, the expected time until the first transaction from the time of the show (and the

expected length of time between any two subsequent transactions) is λ-1. We assume that λ

depends on both the ‘buying intensity’ of the attendee and the ‘selling intensity’ of the exhibitor.

“Buying intensity’ is an attendee characteristic that roughly captures the frequency of occurrence

of the need that the exhibitor’s product satisfies. ‘Selling intensity’ is an exhibitor characteristic

that summarizes several aspects of the seller’s situation (capacity utilization, need for inventory

clearance, financial situation etc.) that influence how heavily the exhibitor pressures attendees to
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convert their needs into more immediate orders and also how quickly the exhibitor can deliver on

such orders. We expect both buying intensity and selling intensity to make actual product

transactions more frequent on average, increasing λ.

Each time an attendee actually engages in a unit transaction of a brand, he receives a

certain gross benefit – or ‘unit value’. Delivering each unit of that transaction costs an exhibitor a

certain amount – or ‘unit cost’ (irrespective of the brand). The difference between the unit value

and the unit cost is the surplus generated per unit transaction (specific to that product class). We

assume that all brands charge the same ‘unit price’. Then the attendee’s net value per transaction

in the product is va = unit value – unit price, and the exhibitor’s net profit per transaction is ve =

unit price – unit cost. We can now interpret equation (3.1): if the (continuous) rate of interest

used by all parties is r, then the expected net present value of the (random) payoff stream for an

attendee is λva / r conditional on a match having taken place. Ex-ante, then, that exhibitor’s

expected benefit is given by kr-1λ va(pq)α. Similarly, the exhibitor’s expected benefit is given by

kr-1λ ve(pq)α . Henceforth, we will call the expression kr-1λ ve the exhibitor’s product valuation

parameter (which is product class specific) and use the symbol β to refer to it. Similarly we will

use the symbol γ  to stand for kr-1λ va, the attendee’s product valuation parameter. We investigate

the roles that the various components of β and γ  play in Section 6.

Note that in (3.1) we do not use separate exponents for p and q as that would complicate

the analysis without adding much insight. Also, α must be less than 1.0 to guarantee diminishing

marginal returns; we will require it to be less than 0.5 to ensure that if both the attendee and the

exhibitor double their efforts, benefits increase by less than 100%. Finally, note that for markets

dealing with new and technologically innovative products α is likely to be small, as the first few

units of time-investment are likely to have a high learning content and yield much more benefit

than will later investments.

C. Congestion Costs: While both attendees and exhibitors must allocate time and effort to

each other, not all such available time is potentially used; some of it is lost as a consequence of

congestion costs. We use the term congestion cost to refer to any unproductive usage of

participants’ time. For attendees, a major component of attendees’ costs stems from other

attendees queuing up at booths, a quantity increasing in the number of attendees, na. Another

unproductive use of time is associated with moving from booth to booth, suggesting that the cost

should also be increasing in ne, the number of exhibitors (but less than linearly, as booths are
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usually spread out in an exhibition hall and not arranged in a row). There are also switching costs

associated with changing the frame of reference/conversation when moving from one exhibitor

to another. Finally, note that the total congestion cost must stay bounded by total time available.

Thus, if the total available time is normalized to 1, it is perhaps not unreasonable to model it by

means of a function such as:

(3.2) Congestion Cost (for Attendees) = 1 – Exp (- ϕa (na , ne)),

where ϕa  is increasing in both arguments. Similarly, exhibitors are also likely to suffer from

congestion costs, particularly because of the mind-frame switching effect, though conceivably

they may suffer less than the attendees do. Letting the total available time for an exhibitor be also

normalized by 1, we postulate that

(3.3) Congestion Cost (for exhibitors) = 1 – Exp (- ϕe  (na , ne)),

where ϕe is another function (weakly) increasing in both arguments.

Let the symbols Ta and Te denote available productive time (i.e. time net of congestion

cost) for attendees and exhibitors respectively. As Sections 4 and 5 will show, what matters for

our analysis is the product TaTe, which can be seen from (3.2) and (3.3) to be of the form:

 Exp {– (ϕa (na , ne) + ϕe  (na , ne) )}. For simplicity, we will assume a linear, first order

approximation to the argument of the exponential function, i.e. we will assume:

(3.4) TaTe = Exp {– (ka ne + ke na )},

where ka and ke are positive parameters.

We reiterate that the individual expressions for Ta and Te are unimportant as long as their

product is expressible in the above form (thus it is possible to allow one of them to be unaffected

or, in the extreme, be decreasing in either na or ne).  Also, note that for the purpose of our theory,

we need formulation (3.4) to hold only in the vicinity of equilibrium values of na and ne. Indeed,

one can easily conceive of extreme instances where the product of the productive times for the

two parties will actually go up with an influx of more attendees. For instance, consider the

situation where there are ten attendees and a thousand exhibitors, resulting in most exhibitors

being idle most of the times. It is reasonable to assume that the introduction of another ten

attendees will not adversely affect the other attendees’ productive time(s) much, but will raise

the exhibitors’ productive time(s) quite a bit. However, such scenarios never occur in practice

and therefore, are unlikely to be relevant for equilibrium analysis.
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4. Equilibria for Vertical and Horizontal Shows

Now that we have developed the conditions for our model setup, we next investigate how

those assumptions and functions determine the structure (p’s, q’s and resulting economic returns)

associated with different show types.   We thus consider the nature of equilibria within a trade

show marketplace, focusing on the effort allocation decisions by attendees and exhibitors. We

investigate these equilibria for a vertical show first and then for a horizontal show, assuming that

exhibitors and attendees have paid their entry fees and that ne exhibitors and na attendees have

already gathered there.

A. Vertical Shows:  Assume exhibitor i allocates effort pij toward attendee j and let

attendee j allocate effort qji toward exhibitor i in a vertical show. The allocations of efforts

(calculated net of congestion costs incurred) that the attendee and the exhibitor make are the

critical, strategic decisions. Since each attendee j divides up his available time Ta among various

exhibitor i’s and each exhibitor i divides up his available time Te among various attendee j’s, we

must have:

(4.1) ee
nj

ij niTp
a

,...,1
,..1

==
=

, and

(4.2) aa
ni

ji njTq
e

,...,1
,...,1

==
=

.

Assume that the expenditure of a unit of effort by each party results in a net benefit of β for an

exhibitor, and γ for an attendee. Then exhibitor i makes β(pij qji)α and attendee j makes γ (pij qji)α

through their joint meeting. We now have used our model to define a game between na + ne

agents and we seek the (Nash) equilibrium efforts and the equilibrium payoffs.

A natural and intuitively appealing equilibrium for this game is the symmetric

equilibrium where each attendee allocates (available) effort equally among all exhibitors, and

vice versa, each exhibitor allocates effort equally among all attendees. However, this is not

necessarily the unique symmetric equilibrium: consider a show where there are two exhibitors

E1 and E2 and two attendees A1 and A2. Then, an equilibrium is  p11 = Te, p12  = 0, p21  = 0, p22

= Te, q11 = Ta, q12  = 0, q21 = 0, q22 = Ta. In other words, in this equilibrium E1 and A1 work

with each other as do E2 and A2. A1 does not spend any effort toward E2 justified by the fact

that E2 does not spend any effort towards A1, and E2 is justified in his not spending effort

towards A1 since E2 sees none coming from A1. The same story works for A2 and E1 as well.
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Extending the spirit of this example, one can construct numerous equilibria when there are a

large number of exhibitors and attendees.

We will, nevertheless, focus on the ‘equal division’ equilibrium; we justify this choice

using a selection criterion that is in the spirit of Selten’s (1975) trembling-hand perfection

criterion (for related definitions and their equivalence see Fudenberg and Tirole (1993) or van

Damme (1987)). Intuitively, for a Nash Equilibrium to be trembling hand perfect, not only

should a player’s strategy choice be best response to the strategy profile chosen by the others, but

in addition it should continue to be a near-best response when the others’ strategies are perturbed

a little. This additional constraint imparts stability to the equilibrium, ruling out certain dubious

equilibria such as ones where weakly dominant strategies are employed. Formally, in a finite-

player game where each player has a finite number of strategies, a perfect equilibrium is defined

as the limit of ε - constrained equilibria as ε goes to zero. An ε - constrained equilibrium is, on

the other hand, a mixed strategy profile where each player i puts at least ε (si) weight on each of

his pure strategy options si with 0 < ε (si ) ≤ ε, and which, (subject to this minimum weight

restriction) is a best response to itself. There is no established definition of trembling hand

perfection where players’ strategy spaces are not finite; however in a similar spirit we define a

‘perfect-like’ equilibrium here as follows:

Definition: A (pure strategy) Nash equilibrium profile (pij, qij) is perfect-like if there

exists strictly positive sequences n
ji

n
ij

n
ji

n
ij qp εε ,,, such that

(4.3) 1) ji
nn

jiij
nn

ij qqpp →→ ,

2) 0,0 →→ nn
ji

nn
ij εε

3) n
ji

n
ji

n
ij

n
ij qp εε ≥≥ ,

and 4) subject to the restriction in 3), ),( n
ji

n
ij qp is a best reaction to itself.

As we will show, this criterion rules out equilibria where one of the effort levels is zero.

Although perfect-likeness might sound complex, it does capture the observation that when

attendees go to a show, they generally at least scan all the exhibits.  Technically, the positivity of

all efforts enables us to use first order conditions for an interior optimum for each player’s

problem, resulting in the intutively appealing ‘equal division’ equilibrium. We thus have the

following proposition.



15

Proposition 1. In the vertical show game, there is a unique (pure strategy) perfect-like

equilibrium where for all i, pij = eT /na , j = 1, …, na and for all j, qji = aT /ne, i = 1, …, ne.

We note that in this equilibrium each exhibitor makes

(4.4) αααβ )(1
eaea TTnn −−

while each attendee makes

(4.5) αααγ )(1
eaae TTnn −− .

Thus the total surplus generated from the show is

(4.6) ααγβ )())(( )1(
eaea TTnn −+ .

B. Horizontal Shows. Now consider a horizontal show with two product categories X and

Y. As before, let na and ne be the number of attendees and exhibitors. Let the net benefit for an

exhibitor when each party invests unit effort toward the X product be given by βx and that for the

Y product be given by βy. Similarly, let γx and γy represent each attendee’s product valuation

parameters for a unit expenditure of (joint) effort in X and Y respectively. Each attendee will

now have to decide not only how to allocate efforts among exhibitors but also how to split the

effort he allocates to each exhibitor into effort directed towards X and that directed towards Y. A

similar decision problem will have to be solved by exhibitors.

Let pijx and pijy represent efforts allocated by exhibitor i toward attendee j in discussing X

and Y respectively. Similarly, let qjix and qjiy represent the effort allocated by attendee j toward

exhibitor i concerning products X and Y respectively. The following identities must hold:

(4.7) ee
nj

ijy
nj

ijx niTpp
aa

,...,1
,...,1,...1

=∀=+
==

and

(4.8) aa
ni

jiy
ni

jix njTqq
ee

,...,1
,...,1,...1

=∀=+
==

In his meeting with attendee j exhibitor i makes

(4.9) αα ββ )()( ijyijyyjixijxx qpqp +

while attendee j makes

(4.10) αα γγ )()( ijyijyyjixijxx qpqp + .

As in the vertical trade show case, we can identify a perfect-like equilibrium, where each

exhibitor allocates effort equally among all attendees, and each attendee allocates effort equally

among all exhibitors; moreover each exhibitor allocates effort px towards X per attendee and an
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effort py towards Y per attendee. Similarly attendees, vis-à-vis each exhibitor, spend efforts qx

and qy for products X and Y respectively. The following proposition gives their equilibrium

values:

Proposition 2. The unique perfect-like equilibrium in a horizontal show is then:

(4.11) pijx = px = 
α

α
α
α

α
α

α
α

α
α

α
α

γβγβ

γβ

2121
1

2121
1

2121
1

−−
−

−−
−

−−
−

+ yyxx

xx  ( Te / na )

(4.12) pijy =  py = 
α

α
α
α

α
α

α
α

α
α

α
α

γβγβ

γβ
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1
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1
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1

−−
−

−−
−

−−
−

+ yyxx

yy  ( Te / na )

(4.13) qjix = qx = 
α
α

α
α

α
α

α
α

α
α

α
α

γβγβ

γβ

21
1
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1

21

21
1

21

−
−

−−
−

−

−
−

−

+ yyxx

xx  ( Ta / ne )

(4.14) qjiy = qy = 
α

α
α
α

α
α

α
α

α
α

α
α

γβγβ

γβ

2121
1

2121
1

2121
1

−−
−

−−
−

−−
−

+ yyxx

yy  ( Ta / ne )

for all i and j.

Equations (4.11)-(4.14) give us a glimpse into how in a perfect-like equilibrium, effort

levels are chosen to resolve possibly conflicting product interests between exhibitors and

attendees. To see this consider the ratios βy / βx and γy / γx. In industries where these ratios are

similar, there is a parity of  product interest between attendees and exhibitors. In the event these

ratios are exactly equal, the above formulas show that both attendees and exhibitors will divide

their efforts between products in the same ratio. On the other hand, in industries where these

ratios are dissimilar, there is a disparity of interest between the parties. This may happen for

instance, when exhibitors are more interested in ‘pushing’ product X as opposed to product Y

(perhaps because it is cheap to produce) while attendees get more value from product Y rather

than X. Allocated efforts in such (mismatched) cases respect both one’s own preferences as well

as the preferences of the other party, but one’s own preferences are given more weight than those

of the other party. To see this from the exhibitor’s point of view, we can use (4.11) and (4.12) to

note that the ratio py / px is given by the product of (βy / βx )(1-α)/(1-2α) and (γy / γx)α / (1-2α). Since (1-

α) > α, the point follows. These ratios are important constructs in our model. Later in section 6,

we will also see how they affect the preponderance of horizontal shows over vertical shows.
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We will work with the equilibrium values given in (4.11) – (4.14) in calculating all profit

and surplus expressions. Note that each exhibitor, in a horizontal show, makes

(4.15) α

α
α

α
α
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α
αα

α
α
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while each attendee makes

(4.16) α
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Hence the total surplus generated in the show (ne times (4.15) plus na times (4.16)) is

(4.17) α
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 αα )()( 1
eaea TTnn −

The expressions in (4.6) and (4.17) will be important in subsequent analysis as they will

determine the relative incentives for show organizers to hold vertical versus horizontal show.

C. Results with a Stackelberg Setup: An alternate way of justifying this allocation of

efforts is to consider a slightly different game. In this alternative version attendees first select

their effort levels. The exhibitors, upon observing the actions of the attendees, then allocate their

efforts among the attendees (a reasonable representation of the actual sequence of actions at a

show). The difference between this set up and the previous one is similar to the difference

between Cournot and Stackelberg game set-ups in the oligopoly literature, and one might

question whether these different setups lead to radically different equilibria. For a vertical show,

we can show that in the sequential game, given the reaction of the exhibitors, the marginal

returns for each attendee with each exhibitor goes to infinity when effort levels go to zero,

ensuring positivity of all effort levels. The rest follows easily. We thus have:

Proposition 3. The unique equilibrium of the sequential game (where attendees allocate

efforts first and then exhibitors allocate efforts (having observed attendees’ decisions) is the

symmetric equal division equilibrium.



18

However, the sequential horizontal trade show version of the game, where attendees

move first and then the exhibitors move, does not produce exactly the same outcome as the

simultaneous version. Unlike for the simultaneous version, for at least some parameters, the

sequential version can result in equilibria where no party spends any efforts for a particular

product, although for large enough na this cannot happen. While the equilibrium outcomes are

different, they do tend toward each other asymptotically as na increases:

Proposition 4. Suppose that in the sequential horizontal game there exists a symmetric

equilibrium where for all i and j, pijx = px > 0,  pijy = py > 0,  qjix = qx > 0, and qjiy = qy > 0.

Then, while the equilibrium values of px, py, qx, qy are different from those corresponding to the

(perfect-like) equilibrium values of the simultaneous version, the two sets of values converge as

na becomes large.

5. Size, Diversity and Number of Trade Shows—the Industry Perspective

Now that we have investigated the effort level (and profit) that arises for a show in

equilibrium, we turn our attention to two key questions: (a) how many exhibitors and attendees

should we expect at a show?  and (b) how many horizontal and vertical shows are most

appropriate for an industry?  To address these questions, we focus on the role of the middleman

in bringing buyers and sellers together, or in creating marketing distribution channels, a field of

study that has had a long history in the fields of Marketing and Management Science (see for

instance Balderston (1958) or the seminal book by Baligh and Richartz (1967)). A fundamental

insight of this literature is that middlemen perform a useful role by reducing ‘contact costs’- thus

if there are m buyers and n sellers, normally there will be mn contacts between them, but if they

all go through a middleman there need be only  m+n contacts. Trade show organizers clearly

perform this role in bringing attendees and exhibitors to one venue so that they do not have to

travel to each others’ locations to display or learn about products. However, what this analysis

does not address is the endogeneity of the number of buyers and sellers to be brought in one

venue. In Section 1 and Section 3, we noted the benefits and costs of large numbers of

participants in a show (or in the context of distribution, channels). In the first subsection of this

section we will argue that by internalizing the net benefits of the participants in a show, the

organizers will levy the ‘correct’ congestion tolls to resolve the tradeoffs between costs and

benefits optimally. This analysis involves a particular show; so we must also determine how
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many shows there should be in an industry and what proportion of them should be horizontal.

That is addressed in the second subsection.

A. Targeting the Right Number of Participants by Setting Entry Fees.  Assume an

infinite population of potential attendees and exhibitors who are potential visitors to (at most one

of) the shows about to take place (Our infinite population assumption is for analytic convenience

only and the results hold with “very large” populations).  Throughout this section, for simplicity,

we treat the numbers of these participants as continuous variables. The organizer of each show

decides to charge certain entry fees to each attendee and to each exhibitor, which he announces

upfront. After knowing these fees, each potential exhibitor or attendee decides to attend (enter)

or not. The gross benefits the exhibitor and the participant realize are the show-generated values

in (4.4), (4.5), (4.15) and (4.16); if they anticipate these benefits to be less than the entry fees,

they do not enter. The net profit that the organizer receives is the sum of all the entry fees minus

variable costs. We will assume, for simplicity, that variable costs are linear in na and ne; i.e. each

attendee costs the organizer an amount ca and each exhibitor costs the organizer ce.

Since attendees who enter a show can’t make (strictly) more than zero profit (otherwise

those who do not enter would see profit from entering and are, hence, acting sub-optimally), the

organizer realizes the entire surplus generated by a show. Thus each show’s net profit function is

given by total surplus generated minus variable costs, which, using (3.4), (4.6) and (4.17) is

(5.1) π  ≡ R (nane)(1-α) Exp(-α (ka ne + ke na )) – ca na  - ce ne ,

where R is the  surplus generated by an attendee-exhibitor pair if they each had one unit of time

to invest towards the other. The unit surplus, R, depends on the format of the show. For a vertical

show,

(5.2) R =β + γ := Rv

and for a horizontal show,

(5.3) R =
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:= Rh .

Now notice that the show organizer’s problem of choosing entry fees can be reduced to

the problem of choosing na and ne to maximize π. Given the optimal values of na and ne, he can

determine the entry fees by setting these fees equal to the attendee and exhibitor surpluses

generated at these na and ne values.
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This optimization problem has a solution yielding positive profits, provided the unit

surplus, R, is larger than a certain critical value. The relevant first order conditions are:

(5.4) ( ) 01)()( )1( =−
�

��
�

�
−−+−−

ae
a

aeeaea ck
n

nknkExpnnR αααα  

(5.5) ( ) 01)()( )1( =−
�

��
�

�
−−+−−

ea
e

aeeaea ck
n

nknkExpnnR αααα

Using (5.4) and (5.5) and the second order conditions, we can perform comparative statics

exercises which yield the next observation.

Observation 1. Optimal values of na and ne increase with a rise in the unit surplus R, and

decrease with the rise of any of the four parameters ke , ka , ca or ce .

Observation 1, together with equations (5.4) and (5.5) provides us with an important

insight. It tells us that no matter how high the return from interaction (i.e., the unit surplus R) is,

or no matter how low the variable cost parameters (ca and ce) are, the optimized solutions na
* and

ne
* must, respectively, be less than an̂ and en̂ , where 

e
a k

n
α
α )1(ˆ −=  and 

a
e k

n
α
α )1(ˆ −=  (these are the

limiting solutions to (5.4) and (5.5) as R goes to infinity and/or ca and ce go to zero). Thus,

congestion cost will eventually neutralize the benefit of a bigger marketplace as the larger

number of marketplace participants eventually provide a physical limit to marketplace size. For

market organizers, the implication is that when considering raising marketplace size to cover

fixed costs, congestion will eventually become an economic as well as a physical limit. One

reason many electronic marketplaces are so successful in attracting volume is that in these

marketplaces participants rarely feel the congestion cost associated with the presence of other

participants, if the bandwidth of these sites is not a constraint.

Different unit surpluses for horizontal and vertical shows (Rv and Rh) produce different

incentives for organizing horizontal versus vertical shows because they give different

(optimized) profits realized from those shows. Hence it is important to know how R influences

π*, the optimized value of the net profit. Although  π* will increase with R, we must understand

the elasticity properties of π* (R) to make a meaningful statement about how changes in

buying/selling interests for all products will affect the organizer’s incentive to organize a vertical

versus a horizontal show. The next proposition gives a critical result that we will use to derive

such a statement later:
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Proposition 5.

a) π* is zero up to a critical value of R, after which it is strictly increasing in R.

b) π* is convex, asymptoting to a straight line with a positive slope and negative intercept.

 c) The elasticity of the π* curve is decreasing in R.

Thus, the π* curve as a function of R, for fixed α, ka, ke, ca and ce, looks like as

represented in Exhibit 2, with the dashed line its asymptote. The intercept of the asymptote is

given by (the negative of) the variable cost at the critical values an̂ and en̂ , and its slope is given

by ( an̂ en̂ )(1-α) Exp (- α (ke an̂ + ka en̂ )).

Let *
hπ  and *

vπ  represent the optimal profits from a horizontal and a vertical show

respectively (net of variable but gross of fixed costs). A corollary to Proposition 5 that gives us a

useful result is:

Corollary 1. Suppose α, ka, ke, ca and ce are fixed. If in addition, vR  is fixed (and hence

*
vπ  fixed), ** / vh ππ  is an increasing function of hR .

Hence, given fixed vertical show unit surplus Rv , we only need to investigate how market factors

affect hR in order to understand incentives to organize horizontal versus vertical shows.

B. Determination of the Number and Mix of Vertical and Horizontal Shows: So far we

know what determines the relative profits of a horizontal and a vertical show. One can produce

several arguments why the ratio of these (optimized) profits should directly influence the

proportion of horizontal shows in an industry. We present one such argument here, while noting

that there are other plausible setups leading to the same conclusion3.

Let Nv and Nh represent the number of vertical and horizontal shows in an industry. In our

framework, in equilibrium these numbers depend on the fixed costs as well as the market

structure of the organizing industry. Fixed costs arise from rental of show space, pre-show

promotion and advertising, commitments to entertainment events, staff commitments and the

                                                
3 For instance, assume a fixed number of organizers in an industry each of whom can organize just one show and
each of whom has a logarithmic utility function U(.) for money.   Also assume that the actual utilities that a
particular organizer will obtain from a show (horizontal or vertical) will be U(.) of the corresponding show’s profit
( *

hπ  or *
vπ  ) plus a random disturbance term (e.g. Actual Utility (Horizontal) = ln *

hπ + ξ ). If the random
disturbance term (ξ ) follows IID extreme value distribution, then following standard random utility based choice
model arguments (see e.g., McFadden (1974)) one can show that the proportion of horizontal shows in the industry
will be given by the ratio *

hπ / ( *
hπ + *

vπ ).  While this setup gives an explanation for the proportions of show types,
we prefer our setup as it provides insight into the number of shows of each type as well.
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like. A simple way to characterize these fixed costs is to assume that a vertical show requires one

unit of a ‘vertical fixed factor’ and a horizontal show requires one unit of a ‘horizontal fixed

factor,’ where a unit factor comprises a unit vector of the fixed cost components. Organizers

purchase these factors and their prices are influenced by the demands of both factors. Letting Pv

and Ph denote the prices of these fixed factors, we postulate simple, linear price-quantity

relationships:

(5.6) hvv NmNmP 21 +=

(5.7) vhh NmNmP 43 +=

We also assume that effect of own demand on price exceeds the effect of cross demand.

That is m1 and m3 are assumed to be larger than m2 and m4; more precisely, Min(m1 , m3) >

Max(m2 , m4). Our assumptions imply that the factors for the two types of shows are not identical

(in which case m1 would equal m2 and m3 would equal m4), but there is a certain amount of

substitutability between them. For example, vertical and horizontal shows might compete for the

same convention center, but might use different media to reach prospective participants and

attempt to hire different types of entertainers.

 We now analyze how Nv and Nh arise under different market structures. Assume first that

the organizing industry is a monopoly. Then the sole show organizer solves an optimizing

problem of the following sort:

(5.8) Maximize *
vπ Nv + *

hπ Nh – ( hv NmNm 21 + ) Nv – )( 43 vh NmNm + Nh.

The first order conditions for this optimization problem enable us to solve for the optimal

numbers of each type of show. The ratio of the optimized profits plays a critical role in

determining the proportion of horizontal shows (ph), as the following key proposition shows:

Proposition 6. Under the condition of  a monopolistic organization industry,

a) ph is 0 (i.e. Nh is 0) if ** / vh ππ  is less than or equal to (m2 +  m4) / 2m1 .

b) ph increases with a rise in ** / vh ππ   as long as the latter is within

( (m2 +  m4) / 2m1 , 2m3 / (m2 + m4) ).

c) ph
 is 1 (i.e. Nv is 0) if  ** / vh ππ  equals or exceeds 2m3 / (m2 + m4).

Consider next a competitive market structure. Under perfect competition, entry of new shows

will occur as long as the average revenue from a show, π* , stays above its average cost, which in

our case is the price of the corresponding fixed factor. This ‘zero profit condition’ allows us to
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determine the dependence of ph on the ratio of the optimized profits from the two types of the

shows which we describe in the next proposition.

Proposition 7. Under the condition of a competitive organization industry,

a) ph is 0 (i.e. Nh is 0) if ** / vh ππ  is less than  or equal to  m4 / m1 .

b) ph increases with a rise in ** / vh ππ   as long as the latter is within (  m4 / m1 , m3 / m2 ).

c) ph
 is 1 (i.e. Nv is 0) if  ** / vh ππ  equals or exceeds m3 / m2.

Thus, we observe that under both types of market structure, ph responds positively to the ratio
** / vh ππ . In the next section we investigate what factors influence this profit ratio, leading directly

to six testable hypotheses that we investigate in the section that follows.

6. Key Drivers of Horizontal vs. Vertical Shows

Our model setup permits two types of vertical shows: X and Y. Equation (4.6) shows that

a vertical X show dominates a vertical Y show if yyxx γβγβ +>+  and vice versa. Without loss of

generality, we assume that X is the more popular product, so the competition is between a

vertical X and a horizontal show. To keep our analysis tractable we also assume that for both

attendees and exhibitors X is the more valuable product, i.e. βx > βy and γx > γy. This is a

reasonable assumption; after all, it is the sellers’ job to match interests with those of buyers. We

formally justify this assumption later.

One important construct that we will make use of here is the level of the breadth of

product interests across the two products, both for attendees and exhibitors.  In our framework, if

an exhibitor’s βx value is 10, his breadth of product breadth interest is higher when his βy is 9

than when it is 1. Hence we will use b = βy / βx as a measure of breadth of product interest for an

exhibitor. Similarly, c = γy / γx captures breadth of product breadth interest for attendees. In

industries where b and c are very different, there is disparity of breadth of product interest

between attendees and exhibitors.

From both theoretical and empirical viewpoints we now argue, that b and c are unlikely

to be very different. The theoretical argument follows from the following expressions

(6.1)
yyyayyyyey

xxxaxxxxex

kSkS
kSkS

λθγλθβ
λθγλθβ
)()(

)()(
==
==
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where Sx, Sy are the total surplus (attendee’s valuation minus exhibitor’s cost) for a unit

transaction in X and Y respectively; θe and θa are the shares of this surplus for the exhibitor and

the attendee respectively (θe + θa =1), λx and λy are the transaction intensity factors for the

exhibitor-attendee pair for the two products and kx, ky are technology parameters for the

production function (see equation 3.1). Then simple division confirms that both b and c are given

by Sykyλx / Sxkxλy  and hence are equal.

For an empirical counterpart of this closeness argument, consider Exhibit 4, where we

describe data compiled on breadth of exhibitor and attendee interests across industries, and the

hypothesis that this difference  (averaging 0.238 on a 1-7 Likert scale) is not different from zero

cannot be rejected. From (6.1) we also see that if θe is close to θa then βx is likely to be close to γx

as well (and βy should be close to γy). Indeed, if the bargaining abilities of the two parties

(captured by their shares of the surplus) are not very different, then these shares of surplus are

likely to be close. Hence, if the attendees prefer X to Y so will the exhibitors and vice versa.

With the aid of Propositions 5, 6 and 7 we now investigate the factors that influence ph,

the proportion of horizontal shows in an industry. The parameters of our model will affect this

ratio in a number of subtle ways, but all will work through their influence on the movement of Rh

relative to Rv and/or the movement of the π* curve itself (and hence the movement of ** / vh ππ ).

We will present theoretical propositions and related proofs, and will also provide numerical

simulations showing that our results hold even for many plausible values of the model

parameters outside the conditions identified in the propositions.

To provide background for our next four propositions, consider Exhibit 3 which provides

Rh / Rv ratios for various values of our model parameters. Holding γx at a (normalized) value of 1,

we present the numerical values of Rh / Rv for various b’s and c’s ranging from 0.2 to 1 (in steps

of .2). The other parameter values we chose were all possible combinations of βx = 1, 3, 5 and α

= .05, .25, .45. It is unlikely that the benefit that attendees (exhibitors) get out of a transaction is

likely to be more than a small multiple of the benefit the attendees (exhibitors) get; so we limited

our simulations to βx less than 5.

Although, it is difficult to draw firm conclusions from Exhibit 3 data alone, it seems that

Rh is typically at least as large as Rv. The only cases where this condition is violated involve very

large values of c compared to b and very high values of α, conditions which we have previously
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argued, are unlikely. Further, if either b is close to c or if βx is close to γx, Rh will always be

larger than Rv. The following observation covers both cases.

Observation 2. Rh strictly exceeds Rv in an open neighborhood of parameters satisfying

(6.2) 0))(( ≥−− cbxx γβ .

Note that this is only a sufficient condition. Also note that if one assumes that βx

(slightly) exceeds γx (i.e. exhibitors see more benefit than attendees per meeting for the X good),

this condition is likely to be satisfied, as our data show that exhibitors have (slightly) higher

breadth of product interest than do attendees.

We now develop propositions on drivers of the ratio of horizontal to vertical shows. For

the first two propositions, the change in the relevant parameter will not affect Rv (i.e. xx γβ + ), so

by Corollary 1 we only need to examine the effect of the relevant parameter on Rh. For the third,

both Rv and Rh change. Finally for the fourth, Rv remains fixed while Rh changes, but in addition,

the π* curve itself shifts.

A. The Impact of Breadth of Product Interest of Exhibitors and Attendees. Horizontal

shows address a broader set of products than do vertical shows, and one might expect to see that

as the breadth of interest in products increases (as reflected in increases in the b and c

parameters), we would see more of such shows. Specifically, we investigate what happens to Rh,

if keeping βx, γx and α fixed, we change b and c. Exhibit 3 suggests that a rise in b or c generally

raises Rh (Rv remains fixed), although some slight exceptions can be found. For instance when α

= .45, βx = 3, γx = 1, and c = 1, raising b from .2 to .4 actually lowers Rh. These occurrences seem

surprising as it means that if we hold the attendees’ product valuations fixed, and do not change

the valuation of the preferred product for an exhibitor, an increase in the exhibitors’ less

preferred product’s valuation can hurt the revenues and hence profits for a horizontal show.  This

result can be understood by noting that such a change may end up producing new effort

allocation schemes by participants in accordance to the equilibrium results of Section 4. The

change in effort allocations may, in turn, decrease total (equilibrium) surplus and hence, total

revenues. However this situation should be the exception rather than the rule as the table and the

following proposition suggest.

Proposition 8. In an open neighborhood of the set of parameters that satisfy condition

(6.2), Rh (and, hence ** / vh ππ  because vR  is fixed) is strictly increasing in b or c. Therefore,

breadth of product interest has a positive impact on the proportion of horizontal shows, ph.
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B.  The Impact of Difference of Breadth of Product Interest Between Exhibitors and

Attendees. Next we ask how the difference in the breadth of product interest between attendees

and exhibitors affects the proportion of horizontal shows. If these interests are too disparate, we

might expect a “coordination problem” that is harmful for surplus generation. More formally we

ask whether, keeping the sum of b and c fixed, it helps the horizontal show proportion if b and c

are closer to each other. The answer is clear when βx is close to γx or when b is close to c:

Proposition 9. Suppose βx and γx are sufficiently close. Then

a) If b > c, the following holds:

(6.3) 0// <∂∂−∂∂ cRbR hh .

Vice versa, if c > b, the inequality above is reversed. 

b) If b = c, irrespective of βx and γx, the following holds:

(6.4) 0// =∂∂−∂∂ cRbR hh .

c) If b > c, and b is close to c, the following holds:

(6.5) 0// <∂∂−∂∂ cRbR hh .

Vice versa, if c > b, and they are close, the inequality above is reversed.

Thus, when βx is close to γx or when b is close to c, an increase in | b-c|, keeping the sum b+ c

fixed, decreases Rh (hence decreases ** / vh ππ because vR  is fixed). Therefore, the absolute

difference in range of product breadth between exhibitors and attendees has a negative impact

on the proportion of horizontal shows, ph.

C.  The Impact of Selling/Buying Intensity of Exhibitors and Attendees.  Next we ask

what happens if all four of the product valuation parameters (βx, βy, γx, γy) decrease

proportionally, (signaling, in effect, a rise in non-selling or information gathering propensity or

λ)? In the proof of the next proposition we show that the answer relates to the elasticity of the

π*(R) curve: higher R values result in lower elasticity.  Hence, a rise in both non-selling and non-

buying interests lowers *
vπ relatively more than *

hπ , thus benefiting the proportion of horizontal

shows.

Proposition 10. Suppose Rh is larger than Rv. Then, a percentage decrease in all the beta

and gamma values (βx, βy, γx, γy) increases ** / vh ππ . Therefore, increase in non-selling interest for

exhibitors and non-buying interest for attendees has a positive effect on the proportion of

horizontal shows, ph.
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Proposition 10 helps explain why in industries with relatively more horizontal than

vertical shows, we are also likely to see participants who have more non-selling and non-buying

interests and thus, a smaller transaction intensity factor λ. In a related manner, one can see why

on average, vertical shows will be more closely associated with lead generation, given that the

latter measure is more likely to track immediate rather than distant (product) transactions.

D. The Impact of Technological Innovativeness in an Industry.  Shows in fast moving,

innovative industries have more technical issues to communicate, and typically display many

state-of-the-art products which are completely new and unfamiliar to the majority of attendees.

When one starts from ground zero there is a lot to learn, which implies that the rate of

information transmission for the first few units of joint effort will be high relative to the same

rate for the last few units of available effort. Thus α (a measure of diminishing marginal returns

and hence, gains to diversification), will be lower for such industries.

How will α affect ph?   There are two different diversification effects to consider here.

First, there is the ‘product diversification effect’. Sharper diminishing marginal returns are likely

to provide more benefit when there are more products to allocate efforts to. Analytically, this

relates to how α will change Rh (without affecting Rv ). We see from Exhibit 3 that generally, a

lower α raises Rh , which is conducive to horizontal shows.

Lemma 1. Fixing the betas and gammas, a lowering of α raises Rh (hence raises
** / vh ππ because vR  is fixed) in an open neighborhood of parameter values satisfying (6.2).

The second effect to consider is the ‘participant diversification effect’. Intuitively, with

more participants among whom to spread efforts, the gains to diversification due to changes in

marginal returns will have a greater impact. Analytically, this effect refers to the movement of

the π* curve itself as α changes. Under certain simplifying and plausible approximations one can

show that this effect is also conducive to horizontal shows.

Lemma 2. Suppose R1 and R2 are large fixed values such that the asymptote to the π*

curve approximates the curve itself closely at these values. Also, suppose R1 > R2 and ka and ke

are small (it suffices to assume ka ke < e-2). Then, π*(R1) / π*(R2) increases as α decreases.

Combining lemmas 1 and 2, we have:

Proposition 11. Under the assumptions made in Lemmas 1 and 2, a lowering of α raises
** / vh ππ . Therefore, the technological innovativeness of an industry has a positive impact on the

proportion of horizontal shows, ph.
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We reiterate that we derive propositions 8-11 (like Observation 2) using certain sufficient

conditions. We have argued that these sufficient conditions are likely to hold, the conclusions are

nevertheless true for a much larger set of parameters (which we have not been able to

characterize in closed, interpretable form).  We now turn our attention to an empirical assessment

of these propositions.

7. Empirical Analysis

A.  Data Collection and Hypothesis Generation. To link our theoretical results to the

Exhibit 1 patterns that motivated our key questions, we needed data on industry characteristics

that related to our key model constructs, especially those highlighted in Propositions 9-12:

breadth of product interest, selling/buying intensities of participants’, and technological

innovativeness. The Exhibit 1 database, representing 1152 trade shows in 21 industries provided

our sample frame. In order to capture the other data, we needed evaluations that would be

comparable across industries. For selling/buying intensities and breadth of interest, we needed

experts who had trade show specific, cross industry knowledge. We selected two experts who

were executives at a major trade show research firm and asked them individually to complete a

questionnaire with the following 4 questions

On a 1-7 Likert scale (1=lowest, 7=highest):

1) For an average attendee in each of the following industries, please rate his/her buying

intensity at a typical show;

2) For an average attendee in each of the following industries, please rate his/her breadth

of product interests at a typical show

3) For an average exhibitor in each of the following industry, please rate his/her selling

intensity at a typical show

4) For an average exhibitor in each of the following industry, please rate his/her degree of

interest in contacting attendees with different product interests

When the two experts’ answers differed significantly, we recycled their answers to them

and asked them to resolve those differences. After two rounds their answers essentially

converged and we averaged any (small) remaining differences.
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To assess technological innovativeness, trade show knowledge was not an issue in

selecting experts. We contacted 17 well-known experts in new product development and

technological innovation and asked each to rate the 21 industries (again on a Likert 1-7 scale) on

degree of innovativeness, defined as “the relative amount of new product development and new

technical information that occurs per year within the industry”. Here, the experts generally

agreed after the second round:  the median was quite close to the mean and all our results were

robust to the use of either value.

Exhibit 4 summarizes the mean values of the experts’ rankings of the different variables.

A review of that Exhibit shows that the numbers in columns 4 vs. 5 tend to stay close together.

Indeed, the mean difference between (4) and (5) is 0.28 with standard deviation of 1.01.  We

cannot reject the hypothesis that within-industry attendee/exhibitor differences in breadth of

product interests are the same at the p = 0.001 level for either pair of variables. Hence, this

preliminary look at the data confirms that the sufficient conditions we used to prove

Observations 2,3 and Propositions 8-11 do hold (b is empirically very close to c).  Hence, our

data appear appropriate to justify their use to test the following hypotheses generated from the

propositions in the last section:

A larger proportion of horizontal trade shows in an industry, ph will be associated with:

H1. A larger breadth of product interests for attendees (ATPROD); (column 4, Exhibit 4).

Source:  Proposition 8.

H2. A larger breadth of product interests for exhibitors (EXPROD); (column 5, Exhibit 4).

Source: Proposition 8.

H3. A smaller difference in breadth of product interests (DIFFPROD); (Absolute difference

between columns 4 and 5, Exhibit 4).  Source: Proposition 9.

H4. A smaller buying intensity of the attendees (ATBUY);  (column 2, Exhibit 4) Source:

Proposition 10.

H5. A smaller selling intensity of the exhibitors (EXBUY);  (column 3, Exhibit 4) Source:

Proposition 10.

H6. A higher level of industry technological innovativeness (TECH); (column 1, Exhibit 4).

Source: Proposition 11.

B.  Analysis/Results. We ran several regression models to test these hypotheses.  In all

cases, we weighted the observations by the total number of shows in the industry. The models
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run were: a) standard OLS, b) an OLS model with the dependent variable being a logistic

transformation of doubly truncated p; i.e. Max {a, Min {p, b}} where a and b are the lower and

upper truncation limits (we tried a=.01, b= .99; a=.05, b=.95 and a=.1, b=.9 as different sets of

truncation limits) c) probit and d) logit. While all models generally gave consistent results, the

standard logit model dominated the others in terms of fit. Henceforth, we use the term ‘better fit’

in the sense of lower AIC; the Akaike Information criterion (Akaike (1973), (1974)), where that

AIC for a model is  –2*Log Likelihood  + 2*(number of parameters in the model).

Exhibit 5 presents our results. The first four columns in that Exhibit present the result of

running the four models mentioned above (the truncation limits used for the version of the

second model reported here are .01 and .99). As can be seen, the logit model gives the best fit.

All models strongly reject the hypothesis that the explanatory variables are jointly insignificant;

and all variables are individually highly significant with the hypothesized signs except TECH in

the OLS model. Apart from this one exception all variables are significant at 5% or beyond and

most are significant at the1% level and beyond. We also tested if disaggregating attendee and

exhibitor characteristics provides a more powerful explanation of the data than in the aggregated

case, a concern as these pairs of characteristics, do not differ by much. To check on the effect of

disaggregation, we ran the logit model dropping ATBUY, EXBUY, ATPROD and EXPROD,

but introducing TOTBUY (ATBUY+EXBUY) and TOTPROD (ATPROD+EXPROD), reported

in the fifth column of Exhibit 5. The results favor the disaggregated version. Finally, we ran one

set of regressions using SDIFPROD instead of DIFFPROD (a scaled version of DIFFPROD;

defined as DIFFPROD divided by TOTPROD), and found the fit to be slightly better with

DIFFPROD.

To summarize the results of this section, our empirical analysis confirms all 6

hypotheses, H1 through H6, at significance levels 5% or better.

C.  Predictive Validation and Discussion.  In order to test the predictive validity of our

model, we used a jackknife approach:  for each industry we used the data from the other twenty

industries as the calibration sample and predicted the proportion of horizontal shows for this hold

out industry. The residual is the difference between the empirical proportion of that industry’s

shows that are horizontal and the predicted proportion, based on the coefficients of the logistic

analysis from the calibration sample. Exhibit 6 gives the results (along with full sample fitted

values and residuals).
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From Exhibit 6 we note that, from a predictive validity perspective, our model does quite

well.  More than half our sample comes from the first two categories; yet our prediction error for

Computers is only 8.4% while it is 0.4% for Communications. These compare to an average

Mean Absolute Deviation (MAD) of 6.6 % for the sample as a whole (on an unweighted basis).

Indeed, one of the industries—Packaging—appears to be an outlier. If we drop Packaging, we

get a MAD of 2.5% for fitted values and 4.8% for predicted values.

One can look at the jackknife results from a different perspective.   If our model

characterizes the behavior of efficient industries well, then it appears that the Packaging and the

Building and Construction industries may be overserved by horizontal shows (large positive

residuals) while the Chemicals and Manufacturing industries appear to be underserved (large

negative residuals). The two industries with the largest numbers of shows, namely

Computers/Computer Applications and Communications appear to have about the right mix

according to our model.

Recall that we have used expert judgment data to construct our predictor variables here.

With such data it is always possible that if the experts believe in the theory (even if it is false)

they will provide confirming evidence. Although we cannot dismiss this possibility out of hand,

our hypotheses and models are sufficiently subtle to suggest that this is highly unlikely.  For

example, if one tries to infer just by looking at our data table in what direction an independent

variable influences the dependent variable, one might be misled.  Consider TECH. Since the

samples are weighted by the number of shows in the industries, one might suppose that the two

top industries by this category, namely Computers & Computer Applications and

Communications will influence the results heavily since together they account for 61% of the

shows in the sample. They also have the two highest scores in terms of TECH (6.58 and 6.32

respectively). Now, given that the proportions of horizontal shows in these two industries are

small (17% and 1% respectively), one might conclude that TECH influences the dependent

variable negatively. Yet, our analysis shows that after controlling for other variables, we find

TECH has a positive influence on ph. This instance suggests that our model has subtle

contingencies that experts would have found difficult to (mentally) control for in giving their

responses.

However, these empirical results are preliminary and depend on the judgment of a limited

number of expert evaluators. Clearly more work is needed to evaluate these results more

soundly, but this preliminary investigation at least supports our theoretical results in a rewarding
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manner. The results also suggest how such findings can be both of theoretical and managerial

value.

8. Conclusions

We have argued that given certain key characteristics of potential participants, each

marketplace has an optimal size and structure. While motivated to a degree from observations

from the trade show marketplace and corroborated to a rewarding extent from an empirical

analysis in that arena, we have used little institutional structure specific to that arena in

developing our main results. Any market characterized by time-consuming search processes for

information leading to ‘matches’ between brands and needs can be subject to this type of

analysis. We have been unable to locate other studies involving the three sets of market

participants we study here and the costs and benefits of their interaction as the factors that lead to

marketplace structure and formation. Hence our results are best treated as exploratory. Below,

we discuss the restrictiveness of some of our modeling choices and how these invite further

research, while pointing out why most of our results are likely to hold under more general

frameworks.

Our model depends on specific functional forms of production functions and congestion

costs. While the functions we chose were quite specific, our main results derive from the

(ultimately) decreasing returns to additional interaction balanced against an increasingly costly

congestion effect. Admittedly, the fact that for Cobb-Douglas functions marginal returns to effort

is infinity at zero effort levels is what gives us the ‘equal-division’ results in Section 4; however,

as long as the marginal returns to effort at zero high enough (and the cost parameters are non-

negligible) we should obtain similar results. Also note that the congestion cost function for a

participant could be generalized to include as its arguments both total number of participants as

well as the number of participants actually visited. These features will complicate the analysis

substantially, but in all likelihood, will not alter the general conclusion that marketplaces will

have limited sizes determined by product valuation parameters, extent of diminishing marginal

returns (positive impact), and cost coefficients (negative impact).

We looked at two products in a marketplace and framed a horizontal show as one that had

both of those products. In a two-product world, breadth of product interest is easy to define as

the ratio of the two product valuation parameters. In a multiple product world there is no such
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obvious summary statistic; and hence we are unsure about the formats Propositions 8 and 9 are

likely to assume in such a case. But the fundamental insight here is that if the two sides of a

market are interested in different things, it may not pay the organizer to allow them to pursue

their own interests – which is why a vertical show, by forcing all participants to concentrate on a

narrow range of products may avoid this harmful conflict of interest.

An assumption that is critical to our model is that of both attendee and exhibitor

homogeneity in terms of product valuations, although we have incorporated heterogeneity of

brand preferences.  As the segmentation literature shows (Wedel and Kamakura, 1998), one can

provide an explanation for almost any market structure by appealing to heterogeneity arguments.

While that is certainly true, the insight that our results provide is that these different market

structures can be derived even under the conditions of homogeneity. While adding heterogeneity

to the model would clearly enrich the structure, we have not been able to develop results with

heterogeneous populations that provided any clear insights.

Our results were also driven by the specific cost functions that we specified. The reader

may question why variable costs are linear in their arguments while fixed costs are not. We

conjecture that if marginal variable costs were increasing, the propositions relating to limiting

size and the shape of the π* function will remain unchanged. Also, future empirical work should

consider industry specific factors that affect these costs, and hence the mix between horizontal

and vertical shows.

Finally, while we are encouraged by our empirical results, we have noted that the data

that support these results are based on judgmental data from experts. It would be desirable to

validate these findings using data gathered from actual as well potential show participants. Such

data should also be able to pick up the effects of heterogeneity in the participant pool on

variables of interest.

As with any theoretical model, at the cost of a certain amount of abstraction we have

been able to gain considerable insight. It may well be that other richer model structures can

extend these findings or lead to others in this or in related marketplaces.  Indeed, the booming

electronic analogy of our development here is the portals marketplace, with Chemdex.com

(1999) and Plastics.net examples of vertical portals, Vertical.net an example of a portal organizer

that helps set up vertical portals,  and Industry.net an example of a horizontal portal..  We hope

that an extension of our model framework will permit a better understanding of such

developments, extending our findings from the marketplace to marketspace.
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LIST OF NOTATION USED IN THE TEXT
(in order of appearance)

Notation Definition
X, Y Different product categories
U Benefit accrued to a party due to effort investment (by both parties)
k A constant in the production function
r (Common) rate of interest used by attendees and exhibitors
λ Transaction intensity factor
v (Net) value to a party per unit transaction in the exhibitor’s product
p Effort expended by exhibitor in the interaction
q Effort expended by attendee in the interaction
α A parameter in the production function that captures the extent of diminishing marginal returns
β Product valuation parameter for exhibitor (product of v, ρ, k)
γ Product valuation parameter for attendee (product of v, ρ, k)
na Number of attendees in a show
ne Number of exhibitors in a show
φa A function appearing in attendees’ congestion cost function
φe A function appearing in exhibitors’ congestion cost function
Ta Total time available to attendees (net of congestion cost) for investment in information gathering
Te Total time available to exhibitors (net of congestion cost) for investment in information dissemination
ka Parameter determining how ne affects TaTe
ke Parameter determining how ne affects TaTe
pij Effort expended by exhibitor i toward attendee j (in a vertical show)
qji Effort expended by attendee j toward exhibitor i (in a vertical show)
βx, βy Product valuation parameter for exhibitors specific to products X and Y respectively
γx, γy Product valuation parameters for attendees specific to products X and Y respectively
pijx , pijy Effort expended by exhibitor i toward attendee j in disseminating information about products X and Y respectively

(in a horizontal show)
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qjix , qjiy Effort expended by exhibitor i toward attendee j in disseminating information about products X and Y respectively
(in a horizontal show)

ca Variable cost for each extra attendee
ce Variable cost for each extra exhibitor
π Organizer’s profit function net of variable but gross of fixed costs (depends on na, ne, R, α, ka, ke , ca , ce)
R Surplus generated by an attendee-exhibitor pair if they each had one unit of time to devote to the other
Rv R for a vertical show
Rh R for a horizontal show
na

* Optimal number of exhibitors in a show
ne

* Optimal number of attendees in a show
an̂ An endogenously determined limit on the optimal number of attendees

en̂ An endogenously determined limit on the optimal number of exhibitors
π* A function that takes R as an argument and generates optimized profits for that R by choosing the best na and ne

(parametrized on α, ka, ke, ca and ce )
*
hπ Optimized profits (gross of fixed but net of variable costs) for a horizontal show ( π* (Rh) )
*
vπ Optimized profits (gross of fixed but net of variable costs) for a vertical show ( π*(Rv) )

Nv Number of vertical shows in an industry
Nh Number of horizontal shows in an industry
Pv Price of ‘vertical fixed cost factor’
Ph Price of ‘horizontal fixed cost factor’
m1 , m2 Demand function parameters for the ‘vertical fixed factor’
m3 , m4 Demand function parameters for the ‘horizontal fixed factor’
ph Proportion of horizontal shows in an industry
b Product breadth interest parameter for exhibitors
c Product breadth interest for attendees
Sx, Sy Surplus generated in 1 unit of product exchange for the X and Y goods respectively
θe,θa Exhibitor and attendee shares of this surplus
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Group Industry Number of
Vertical
Shows

Number of
Horizontal

Shows

Total
Number
of Shows

Proportion
of Horizontal

Shows
Over 100 Shows Computers & Computer Applications 379 78 457 17%

Communications 319 3 322 1%

50-100 Shows Engineering 3 93 96 97%
Medical & Health Care 90 4 94 4%
Housing 80 0 80 0%
Food Processing & Distribution 3 61 64 95%
Electrical & Electronics 52 7 59 12%

15-50 Shows Paint 49 0 49 0%
Nursing 48 0 48 0%
Automotive & Trucking 3 44 47 94%
Chemical 20 23 43 53%
Plastics 0 33 33 100%
Radio, TV & Cable 32 1 33 3%
Energy 0 30 30 100%
Building & Construction 15 10 25 40%
Restaurants & Food Service 0 24 24 100%
Manufacturing 6 15 21 71%
Photographic 21 0 21 0%
Welding 17 0 17 0%
Packaging 0 15 15 100%
Education 15 0 15 0%

Total 1152 441 1593 28%

Exhibit 1.  A Selection of Industries and the Associated Number and Distribution of Trade Show Types (1985-1991),
Showing the Wide Diversity in the Proportion of Horizontal Shows

Source: Exhibit Surveys Inc.  Note: industries with fewer than 15 trade shows have been omitted from this chart due the instability of the proportions when the
total number of shows in the industry is that low.



39

   Exhibit 2:  How Show Organizer’s Profits Increase with R, the Unit Surplus of an Attendee-Exhibitor Pair

R

Profits
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αααα=.05 αααα=.25 αααα=.45
b\c 0.200 0.400 0.600 0.800 1.000 0.200 0.400 0.600 0.800 1.000 0.200 0.400 0.600 0.800 1.000

ββββX=1
0.200 1.149 1.232 1.316 1.401 1.487 1.019 1.042 1.068 1.098 1.132 1.000 1.000 1.000 1.000 1.000
0.400 1.232 1.319 1.408 1.496 1.585 1.042 1.077 1.116 1.159 1.206 1.000 1.000 1.000 1.000 1.001
0.600 1.316 1.408 1.498 1.589 1.679 1.068 1.116 1.166 1.219 1.276 1.000 1.000 1.001 1.003 1.008
0.800 1.401 1.496 1.589 1.681 1.773 1.098 1.159 1.219 1.281 1.344 1.000 1.000 1.003 1.010 1.029
1.000 1.487 1.585 1.679 1.773 1.866 1.132 1.206 1.276 1.344 1.414 1.000 1.001 1.008 1.029 1.072

ββββX=3
0.200 1.149 1.189 1.230 1.270 1.311 1.020 1.028 1.036 1.043 1.052 1.000 1.000 1.000 1.000 1.000
0.400 1.275 1.320 1.363 1.406 1.449 1.055 1.077 1.094 1.110 1.127 1.000 1.000 1.000 1.000 0.999
0.600 1.402 1.452 1.498 1.543 1.587 1.101 1.138 1.166 1.191 1.215 1.000 1.000 1.001 1.001 0.999
0.800 1.532 1.586 1.634 1.681 1.726 1.153 1.208 1.248 1.281 1.311 1.000 1.001 1.004 1.010 1.015
1.000 1.662 1.721 1.771 1.819 1.866 1.212 1.286 1.337 1.378 1.414 1.000 1.004 1.017 1.043 1.072

ββββX=5
0.200 1.149 1.176 1.201 1.227 1.253 1.020 1.024 1.025 1.025 1.025 1.000 1.000 1.000 1.000 1.000
0.400 1.289 1.320 1.348 1.376 1.404 1.060 1.077 1.087 1.094 1.101 1.000 1.000 1.000 1.000 0.998
0.600 1.431 1.467 1.498 1.528 1.557 1.111 1.145 1.166 1.181 1.194 1.000 1.000 1.001 1.000 0.995
0.800 1.575 1.616 1.649 1.681 1.711 1.171 1.225 1.257 1.281 1.300 1.000 1.001 1.005 1.010 1.010
1.000 1.721 1.766 1.802 1.835 1.866 1.238 1.312 1.357 1.389 1.414 1.000 1.004 1.020 1.048 1.072

Exhibit 3. Values of the Rh / Rv  ratio when varying αααα,  ββββX,  b and c,
showing how unlikely it is that that ratio is less than 1.0
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Industry (1)
Technological
Innovativeness

(2)
Buying
Interest

(Attendee)

(3)
Selling
Interest

(Exhibitor)

(4)
Breadth of

Product
Interest

(Attendee)

(5)
Breadth of

Product
Interest

(Exhibitor)
Computers & Computer Applications 6.58 6.00 6.00 3.00 4.00

Communications 6.32 5.00 6.00 2.00 3.00
Engineering 5.00 2.00 3.00 6.00 5.50

Medical and Health Care 5.08 5.00 4.00 2.00 2.00
Housing 2.66 5.00 4.50 2.50 3.50

Food Processing & Distribution 3.11 2.50 4.00 4.50 4.50
Electrical & Electronics 5.58 3.00 5.00 2.00 2.00

Paint 2.26 6.00 3.00 2.00 3.00
Nursing 2.37 3.00 5.00 2.00 4.00

Automotive & Trucking 3.26 2.00 3.00 4.00 4.50
Chemical 3.71 3.50 4.00 3.50 4.00

Plastics 3.82 3.00 4.00 4.50 4.50
Radio TV & Cable 3.53 6.00 4.00 2.00 4.00

Energy 2.61 3.00 3.00 5.00 5.50
Building Construction 2.53 3.00 5.00 5.00 3.00

Restaurants & Food Service 2.45 2.00 2.00 4.50 5.00
Manufacturing 3.79 3.00 5.00 4.00 4.00

Photographic 4.26 6.00 5.00 2.50 2.50
Welding 2.32 5.00 6.00 3.00 3.00

Packaging 3.03 5.00 4.50 4.50 4.00
Education 2.76 6.00 4.00 4.00 2.00

Mean 3.67 4.05 4.29 3.45 3.69
Standard Deviation 1.33 1.51 1.09 1.25 1.07

Exhibit 4.  Mean Expert Evaluations of Various Characteristics
of Both the Trade Shows and the Associated Industries Noted in Exhibit 1.

Note: Column 1 is the mean from 17 expert evaluations while the other columns represent the consensus judgement after 2 rounds from our two trade show
research experts.
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(1)
OLS

(2)
OLS

with truncated
Logistic ph

(3)
Probit

(4)
Logit

(5)
Logit

(6)
Logit

CONSTANT -.0422*

(.0197)
-6.8850**

(.2101)
-3.3790**

(.9249)
-7.1664**

(1.0225)
-6.5413**

(.9249)
-6.7088**

(.9884)
ATBUY -.0599**

(.0025)
-.1732**

(.0268)
-.1828**

(.0664)
-.2831*

(.1427)
-.2979*

(.1456)
EXBUY -.0208**

(.0038)
-.2313**

(.0408)
-.2030*

(.1019)
-.5861*

(.2381)
-.5066*

(.2400)
ATPROD .1268**

(.0041)
1.2559**

(.0439)
.8333**

(.1060)
1.9384**

(.2715)
1.7089**

(.2597)
EXPROD .1284**

(.0046)
1.0867**

(.0485)
.4375**

(.0988)
.6252**

(.2123)
.7156**

(.2101)
DIFFPROD -.1681**

(.0057)
-1.5564**

(.0605)
-.6661**

(.1276)
-1.2558**

(.2768)
-1.0695**

(.2470)
TECH -.0039

(.0024)
.1246**

(.0254)
.1705**

(.0641)
.5625**

(.1745)
.3215**

(.1221)
.4885**

(.1682)
TOTBUY -.8115**

(.1979)
TOTPROD 2.4992**

(.1825)
SDIFPROD -8.9116**

(1.8562)
-Log Likelihood 1558.84 2209.84 395.36 388.29 393.33 387.01

Wald Statistics (df) 22534(6) 12736(6) 482.07(6) 318.61(6) 327.37(4) 318.02(6)

Significance level .0000 .0000 .0000 .0000 .0000 .0000

Exhibit 5: Results of (weighted) OLS , PROBIT and LOGIT Models,
with Dependent Variable ph, the Proportion of Horizontal Show in an Industry.

(Standard errors are in parenthesis. Note that   * denotes significance at 5 %, and ** at 1%). TECH= Exhibit 4, Column 1; ATBUY = Exhibit 4, column 2;
EXBUY= Exhibit 4, column 3; TOTBUY = Exhibit 4, Column 2 + Column 3; ATPROD = Exhibit 4, column 4; EXPROD = Exhibit 4, column 5; TOTPROD

=Exhibit 4, Column 4 +Column 5; DIFFPROD= Exhibit 4, Abs(Column 4-Column5); SDIFFPROD = DIFFPROD/TOTPROD.
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Industry (1)
Actual

Proportion
Horizontal (p)

(2)
Estimated
Proportion

(Full Sample)
(phat1)

(3) = (1) –(2)
Difference

(discr1)

(4)
Predicted

Proportion
(Jackknife:

phat2)

(5)=(1)-(4)
Difference

(discr2)

Computers and Computer Applications 17.00% 18.13% -1.13% 8.60% 8.40%
Communications 1.00% 0.57% 0.43% 1.40% -0.40%

Engineering 97.00% 99.99% -2.99% 100.00% -3.00%
Medical and Health Care 4.00% 5.46% -1.46% 8.59% -4.59%

Housing 0.00% 1.04% -1.04% 3.36% -3.36%
Food Processing and Distribution 95.00% 96.35% -1.35% 95.03% -0.03%

Electrical and Electronics 12.00% 3.38% 8.62% 2.22% 9.78%
Paint 0.00% 0.53% -0.53% 0.69% -0.69%

Nursing 0.00% 0.05% -0.05% 0.41% -0.41%
Automotive and Trucking 94.00% 93.57% 0.43% 88.63% 5.37%

Chemicals 53.00% 59.43% -6.43% 59.11% -6.11%
Plastics 100.00% 97.73% 2.27% 95.42% 4.58%

Radio TV and Cable 3.00% 0.27% 2.73% 0.23% 2.77%
Energy 100.00% 99.46% 0.54% 98.44% 1.56%

Building and Construction 40.00% 39.02% 0.98% 30.31% 9.69%
Restaurants & Food Services 100.00% 99.01% 0.99% 97.20% 2.80%

Manufacturing 71.00% 78.20% -7.20% 84.70% -13.70%
Photographic 0.00% 4.74% -4.74% 6.38% -6.38%

Welding 0.00% 2.08% -2.08% 10.93% -10.93%
Packaging 100.00% 84.22% 15.78% 58.15% 41.85%
Education 0.00% 3.76% -3.76% 2.42% -2.42%

Unweighted MAD 3.1% 6.6%

Exhibit 6.  Predictive Validity Analysis of the Exhibit 5 (Last Column) Logit Model

Note: p is the actual proportion of horizontal shows by industry, phat1 and discr1 are the fitted values and residuals for the logit model (using full sample), phat2
and discr2 are the fitted values and residuals (using the jackknife approach).
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Appendix 1 (Proofs of All Results in Section 4)

Proof of Proposition 1:

Step 1  (Positivity of all efforts in any perfect-like equilibrium)

Let (( ijp , jiq )) be a perfect-like equilibrium. Suppose for a particular exhibitor i and attendee j ,

ijji
qp =  = 0 (Note:  If any one of these is 0, the other must be 0). Note also, there must exist i'

and j' such that 0
'
>

ji
p and 

'ij
q  > 0 (i.e. it cannot be that in an equilibrium an exhibitor receives

no attention from any attendee or vice versa). Now since (( ijp , jiq )) is perfect-like, ∃

),...,1,,...,1(,,, ae
n
ji

n
ij

n
ji

n
ij njniqp ==εε such that conditions (4.3) hold. In particular for i this

means (( n
ji

p )) solve the following maximization problem4

Max ( )
j

n
ij

n
ji qp α

st     )0(>≥ n
ji

n
jip ε  anj ,...1=

and =eT
j

n
ji

p

Letting the Lagrangian multipliers on the constraints to be n
jiµ  and ,n

iλ  we have the following

f.o.c. :
1)( −αα n

ji
p  α)( n

ijq + 0=− n
i

n
ji λµ  anj ,...1= (A1.1)

Now note that n
iλ  must go to some 0>iλ  as ∞→n .  To see this, observe that for ,'jj =  for n

large n
jiµ  must be = 0 and given 0,, >→

ji
n
ji

pp , 0
''
>→

ij
n

ij
qq , the assertion must hold.  Now

consider (1) when jj = . On noting that ,0≥n
jiµ , we observe that αα )()( 1 n

ij
n
ji

qp −  is bounded

from above for large enough n, say by 1Μ .  An exactly analogous argument considering sj'
problem tells us that αα )()( 1 n

ji
n
ij

pq −  is bounded from above for large enough n, say by 2Μ .

Hence we have

1
1 )()( Μ≤− αα n

ij
n
ji

qp (A1.2)

2
1 )()( Μ≤− αα n

ji
n
ij

pq (A1.3)

Taking logs,
)1( −α  ln α+n

ji
p  ln 1lnΜ≤n

ijq  (A1.4)

                                                
4 We have omitted consideration of the valuation parameters β and γ  here as their exclusion makes no
difference to the analysis.



45

)1( −α  ln α+n
ij

q  ln 2lnΜ≤n
ji

p  (A1.5)

From (A1.4), we have
n
ji

n
ij

pq ln)1(lnln 1 αα −+Μ≤ (A1.6)

But from (A1.5), we obtain
n
ija

n
ji

qp lnlnln)1( )1(
2

)1( α
α
αα −− +Μ≤− (A1.7)

Adding (A1.6) and (A1.7) we get

α
αα 22 )1( −−  ln 2

)1(
1 lnln Μ+Μ≤ −

α
αn

ij
q (A1.8)

But  � αα −<1 , and ln )0(( =→−∞→
ij

n
ij

n
ij

qqq � ) this is an impossibility.

Hence, 0>jiq  and 0>ijp  ji,∀ .

Step 2 (Uniqueness of the equal-division equilibrium)

Given that all equilibrium effort values are strictly positive, the f.o.c. for an interior optimum
holds for each exhibitor i whose problem is

Max αα
ji

j
ij qp

st e
j

ijp Τ= (A1.9)

It may be easily verified that this implies

α
α

α
α

−

−

=
1
'

1

'
ij

ji

ij

ij

q

q
p
p

              (A1.10)

which implies
θ
jiiij qp Ε=                (A1.11)

where α
αθ −= 1  and iΕ  is an exhibitor i specific constant. Similarly, by considering the attendee's

problems we can derive
θ
ijjji pq Α=                 (A1.12)

where jΑ  is an attendee j specific constant.
Now from (A1.11) and (A1.12) we have

2θθ
ijjiij pp ΑΕ=                  (A1.13)

or  θθ
jiijp ΑΕ=− 21              (A1.14)

or,    22 11
1

θ
θ

θ −−= jiij AEp              (A1.15)

(Note: )01 2 ≠−θ . Hence summing over j we have:

−− ΑΕ=
j

ji
j

ijp 2121
1

θ
θ

θ              (A1.16)

But since the LHS of (A1.16) is also eT=  which is independent of i, iΕ must be equal to .i∀Ε
Similarly one can show that jj ∀Α=Α . This implies 'ijij pp =  ',, jji∀ . A similar analysis for
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attendees show 'jiji qq =  ',, jji∀ . Hence etc…           

Proof of Proposition 2:

This proof follows along the lines of the proof of Proposition 1 and hence we only sketch the
major points in the argument.

Step 1  (Positivity)
Suppose ))(( ,,, jiyjixijyijx qqpp  is a perfect-like equilibrium.  We wish to prove that all its

components are strictly positive. Suppose not. Wlog, let 0== xijxji qp . Now ∃  sequences

)),,,,,,,(( n
jiy

n
jix

n
ijy

n
ijx

n
jiy

n
jix

n
ijy

n
ijx qqpp ∈∈∈∈ , satisfying conditions like those in (4.3).  In

particular, )),(( n
jyi

n
jxi pp solve

Max αα
γ

αα ββ )()()()( ++
j

n
yij

j

n
jyi

n
xij

n
jxix qpqp            (A1.17)

st )0(>≥∈ n
jxi

n
jxip             (A1.18)

)0(>≥∈ n
jyi

n
jyip                        (A1.19)

e
j

n
jyi

j

n
jxi Tpp =+             (A1.20)

This gives 2 sets of f.o.c.
jqp n

i
n
jxi

n
xij

n
jxix ∀=−+− 0)()( 1 λµαβ αα            (A1.21)

jqp n
i

n
jyi

n
yij

n
jyi

∀=−+− 0)()( 1 λµαβ αα
γ            (A1.22)

Now, as before we argue that in equilibrium, it must be case that either 0,0 >>
jxijxi

qp for

some j or 0,0 >>
jyijyi

qp for some j 5. Wlog let 0,0 '' >> yjiyji qp 6

Hence, eventually (i.e. for large n) 0=jyiµ  and n
iλ  must tend to a positive constant say i

∧
λ .

Now consider (A1.21) for jj = . Because 0≥xjiµ , it is clear that for large n

1
1 )()( Mqp n

xij
n

xji ≤− αα            (A1.23)

where M1 is some positive constant. Similarly, by considering j 's problem one can verify that for
another positive constant M2, the following holds:

2
1 )()( Mpq n

xji
n

xij ≤− αα            (A1.24)

                                                
5 i  must receive positive effort toward some product by some one.
6 This is without loss of generality because if 0' >xjip  and 0' >xijq  we may infer that 0>→

∧
λλn

i
which is all that we need.
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Now, (A1.23) & (A1.24) together with the conditions 0→xjip  0→xijq  lead to a contradiction

as can be shown following the argument outlined in the last few lines of Step 1 in the Proof of
Proposition 1.

Step 2 (Uniqueness)
an

jijyijx pp 1)),(( =�  is a best reaction by i against others' strategic choices they

Max ( ) ( ) ( ) ( )αααα ββ + jiyijyy
j

jixijxx qpqp (A1.25)

st  e
j

ijy
j

ijx Tpp =+ (A1.26)

This implies
( ) ( ) ( ) ( ) ijiyijyyjixijxx qpqp λαβαβ αααα == −− 11 (A1.27)

Where iλ is the Lagrangian multiplier on the constraint.
This implies

( )θαβ jixxiijx qEp −= 1
1

,  (A1.28)

( )θαβ jiyyiijy qEp −= 1
1

(A1.29)

where iE&1 α
αθ −=  is an exhibitor i specific constant.

Similarly, considering attendee j's problem we get
( ) ( )θαγ ijxxjjix pAq −= 1

1

, (A1.30)

( ) ( )θαγ ijyyjjiy pAq −= 1
1

(A1.31)

where jA  is an attendee j specific constant.
Equations (A1.28) & (A1.30) give

( ) 2
11

1 θθ α
θ

α γβ ijxejxiijx pAEp −−= (A1.32)

or  [ ] [ ] 21
1

11
1

21
1

θα
θ

αθ γβθ −−−−= xxjiijx AEp (A1.33)
Similarly, one can show using (A1.29) and (A1.31)

[ ] [ ] 21
1

11
1

21
1

θα
θ

αθ γβθ −−−−= xyjiijy AEp (A1.34)

Note that 12 ≠θ�  these transformations are permissible.

Let  [ ] Cxxxx == −−
−

−−− α
α

α
α

θα
θ

α γβγβ 2121
121

1

11
1

(A1.35)

and [ ] Dyyyy == −−
−

−−− α
α

α
α

θα
θ

α γβγβ 2121
121

1

11
1

(A1.36)

Then  ( ) 2121
1

θ
θ

θ −−+=+ jiijyijx AEDCpp (A1.37)

But since ( ) iAEDCTpp
j

jieijy
j

ijx ∀+==+ −−
2121

1

)( θ
θ

θ (A1.38)

it follows that EEi =  i∀
A similar argument from attendees’ perspectives show jAAj ∀= .
It follows that
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Analogous arguments show
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and  
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(A1.42)

         

Proof of Proposition 3:

Consider the subgame where attendees have already allocated efforts ( )( jiq ). At this point
exhibitor i solves the problem
Max ααβ )()( jiij qp (A1.43)

st e
j

ij Tp = (A1.44)

Straightforward analysis reveals7 that optimal sp ji '  are given by

α
α

α
α

−

−

= 1

1

)(
)(

ji

k
ik

e
ij q

q

Tp (A1.45)

and hence payoff to attendee j (from interacting with exhibitor i only) is

α
α

α

α
αγ −

−

�

�
�
�
�

�

�

= 1

1

)(
)(

ji

k
ik

e
ji q

q

T
u (A1.46)

Hence, we can think of the 'sequential' game as a game played among an attendees with attendee

j's strategy variables being en
ijiq 1))(( =  and his (derived) payoff function being 

=

en

i
jiu

1

.

Straightforward differentiation reveals that jiu is concave and increasing in jiq ; moreover,

∞=
=∂

∂

0ji
ji

ji

qq
u

 (irrespective of the values of qki, k ≠ j). Hence we know that we will obtain only

interior equilibria where f.o.c.'s for interior optima will apply in calculating best reaction
functions.

                                                
7 See equation  (A1. 10) in the proof of Proposition 1.
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Now consider any 2 attendees j and j'.  Since j maximizes 
i

jiu subject to a
i

ji Tq = ,

the following hold:
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where =
−

=
k

kii qX θ

α
αθ ,

1
.

A similar analysis done on the part of attendee j' shows:

',11
'

''1
'''

'1
' iiX

q
qXX

q
qX

i

ij
iji

i

ij
iji ∀

�

�
�
�

�
−=

�
�
�

�
�
�

�
− −−−−

θ
θα

θ
θα (A1.49)

Dividing (6) by (7) we have
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(A1.50)

Now note that 0>θ  and ( )2/11 << αθ � .
Hence (A1.50) � '''' ijjiijji qqqq >↔> (A1.51)

But � this holds for all i, i' and a
i

ij
i

ji Tqq == ' , this means

iqq ijji ∀= ' . (A1.52)

Thus we know that for any exhibitor i, there is no difference in effort received across attendees.
What remains to prove is that each exhibitor gets equal effort from each attendee. We will show
that if this is not the case, the marginal utility of effort of a particular attendee will not be constant
across exhibitors - a precondition for equilibrium.

Let 
≠

− ==
jk

ikjijiji xXxq andθ .    (A1.53)

Now α)( jiji

ji
ji xX

x
Au

+
=

−

(A1.54)

where A is a constant.

and [ ]( )( ) α
α

α
ααα α −

−

−
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(A1.55)
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and hence
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Thus,  sgn ( ) ( )[ ]jijiji
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−

α1sgn  =  sgn ( )jiji Xx −−α     (A1.57)

Now consider 2 exhibitors i and i'. Suppose all attendees spend (equal) low effort with i, say οq ,
and (equal) high effort with i', say hiq . The diagram below portrays uji and uji’ curves, as functions
of j’s own effort levels. The lower curve represents uji’ while the upper curve represents uji. This
should make sense since j gets more for his efforts when others are investing less.

           

    

Now,  

loqloq jiq
jiu

jiq
jiu

'

'
∂

∂
>

∂

∂
. (A1.58)

Algebraically this follows because  ( )xnq ao 1−<α  ( )hio qqx ,∈∀  and (A1.57).
Geometrically, this means that the slope of the upper curve is larger than the slope of the lower
curve at qlo.

Further,   

hiqloq jiq
jiu

qji
jiu

'

'
∂

∂
>

∂

∂
(A1.59)

because of the concavity of 'jiu  (the lower curve).
This  implies

  j’s effort

X –ji’ =(na –1) qhi

uji , uji’

X –ji =(na –1) qhi

uji

uji’

qlo qhi
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  which is impossible since the marginal returns j earns at both i and i’ must

be the same if it was to play best reaction to others’ effort choices. Hence…                          

Proof of Proposition 4

Recall from the Proof of Proposition 2 that an exhibitor i, encountering a vector of efforts

anjjiyjix qq ,...1)),(( =  from the attendees chooses his own efforts 
anjijyijx qp ,...1)),(( =  so as to satisfy

the f.o.c.

( ) ( ) ( ) ( ) λαβαβ αααα == −−
jiyijyyjixijxx qpqp 11 (A1.60)

where  λ  is the multiplier on his total effort constraint (assuming positive valued decision
variables). From this the following are easily deduced.
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Hence,
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Hence, attendee j’s overall payoff is
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His problem is to maximize e

a

ni
jknkkiykix qq ,...1

;,...1)),(( =
≠=   given the efforts of other attendees.

At this stage, we will invoke the symmetry assumption.  If a symmetric equilibrium is to exist
where equilibrium values of ikqq xkix ,∀=  and ,,ikqq ykiy ∀=  that implies the solution to the
problem

Max  
( ) ( )

( )( ) ( ){ }+++−

+

i jiiyyjixxyyxxa
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αθθθθ
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i

jix Tqq =+ (A1.67)

is:  xjix qq =  ,i∀  ,iqq yjiy ∀=  where α
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1

1
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α
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.

If we write out the f.o.c. for the problem given in (A1.66) and (A1.67) and substitute iqq xjix ∀=
and iqq yjiy ∀= , we get (after some manipulation)
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Since θθ ξξ yyxx
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This implies as ∞→an
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These equilibrium effort values coincide with those obtained in the simultaneous version, and
using these expressions, the exhibitor effort values are also seen to coincide with those obtained
in the simultaneous version.        

Appendix 2 (Proofs of All Results in Section 5)

Proof of Observation 1:

Note that the f.o.c. for the organizer’s maximization problem are
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aeeaeaea nknkExpnnRnn +−= − αψ α (A2.3)

Note that since ψ is always positive when na and ne are positive, it follows that e
a

k
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αα >−1
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a
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k
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.

In what follows we will need the s.o.c. as well; hence we’ll need the second derivatives.
Straightforward differentiation and some manipulations show:
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The s.o.c. requires that the Hessian is negative define to which requires the following to hold:
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While the first two requirements are easily seen to be met since ( ) ( ),11 2
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We will use this inequality extensively in the rest of this proof.
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To demonstrate these, we totally differentiate (A2.1) and (A2.2) w.r.t. R to obtain
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Rearranging the above two in the from of 2 equations in the 2 unknowns 
R
na

∂
∂ ∗

 and 
R
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∂
∂ ∗

 we have:
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we observe that the first equation represents a positively sloped line with positive x intercept and
negative y intercept whereas the second equation represents a positively sloped line w/negative X

intercept & positive Y intercept  (where 
R
na

∂
∂ ∗

  is on the abcissa, and 
R
ne

∂
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 is on the ordinate).

Also because of (A2.10) the slope of the former is more than the slope of the latter; hence they
must intersect in the first quadrant implying
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Rearranging, we have
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represents a positively sloped line w/negative  x-intercept and positive y intercept. Contrarily, the
second equation represents a (positively sloped) line with positive x – intercept & negative y
intercept.  The first line’s slope is larger than the second; so the two lines intersect each other in
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From these the negativity of 
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  and  follow similarly the differentiation of the f.o.c. w.r.t. ec .  

Proof of Proposition 5:

(a)  We show that if R is too small π, the profit function in equation (5.1) must be nonpositive for
all nonnegative values of na and ne. At the same time, for any fixed na and ne, since the function
increases without bounds as R increases, it follows from continuity considerations, that there will
be a critical value such that if and only if R was strictly above this value, optimized profits (π*)
will be strictly positive.
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We claim that for such an R, π evaluated at any na and ne is nonpositive. Suppose not. Suppose
there exist some na and ne values for which π is strictly positive. Wlog let na ≤ ne.
Now π ( ) ( )( ) eeaaaeeaea ncncnknkExpnnR −−+−= − αα1              (A2.22)

≤    R ( ) eeeae ncnkExpn −−− αα22              (A2.23)
Hence, we will arrive at a contradiction if the above expression is en∀≤ 0 .

This is equivalent to showing
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To see that π* is strictly increasing in R beyond the above-mentioned critical value we need only
differentiate it  using envelope theorem:
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� . This shows that π* is convex in R.

To see that ∗π  asymptotes to a positively sloped line with negative intercept, notice
that the f.o.c.’s can be written as
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Now as R increases, na and ne increase (Observation 1). At the same time, since the bracketed
quantities in (A2.28) and (A2.29) must always stay positive (as we have argued before),

e
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α−≤ 1*  and 

a
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α−≤ 1* . Also notice that φ  goes to zero only if either na or ne goes to zero

or infinity (this follows from the fact that the function )(1 xkExpx αα −− goes to zero only if either
x goes to zero or to infinity as can be easily checked). Hence as R goes to zero, it must be the case

that the bracketed terms in (A2.28) and (A2.29) must go to zero. Thus, as ** ,, ea nnR ∞→  go to
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This shows that as ,∞→R  π* goes to eeaaaeeaea ncncnknkExpnnR ˆˆ))(()ˆˆ( 1 −−+−− αα . As
a function of R, this is a straight line with positive slope and negative intercept as claimed.
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Now using (A2.28) and (A2.29) to replace ac  and ec  and using (A2.25), (A2.26) and the
definition of π*, we see that we need to prove
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Canceling 2φR  from both sides, this reduces to proving
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We now use equations (A2.13) and (A2.14) from the proof of the previous proposition to derive

expressions for 
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∂
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 and 
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where 
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> 0,  because of s.o.c.

Using (A2.39) and (A2.40) in (A2.38), the task reduces to proving
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which holds if
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which in turn holds if
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which clearly holds.                   

Proof of Proposition 6:

We write down the Kuhn-Tucker conditions for the optimization problem in (5.8) which are
necessary and sufficient because of concavity of the objective and convexity of the domain.
These are:
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Then *
hN  must be 0.  If not, from (A2.49) we have
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and  hence *
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But from (A2.46),
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Combining (A2.50), (A2.52) and (A2.53), we have
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which is impossible given Min(m1 , m3) > Max(m2 , m4). Hence, ph= 0.

Case C) Suppose 
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Then *
vN  must be 0.  If not, from (A2.47) we have

*
423

*
31

*
3 )(242 hvv NmmmNmmm ++=π                                            (A2.56)

But (A2.48) gives
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Combining (A2.55), (A2.56) & (A2.57), we again get a contradiction to the assumption Min(m1 ,
m3) > Max(m2 , m4). Hence, ph = 1.

Case B) In this case, it may be checked that
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satisfy all the K-T conditions.

Furthermore,
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which is clearly increasing in *

*

v

h

π
π

.  Hence ph increases with *
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.         

Proof of Proposition 7:

Case A)   Suppose 
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Then, we claim that *
hN  must be 0. Suppose not. Then, in the horizontal factor market, price of

the factor must equal *
hπ (to prevent further entry), while in the vertical factor market the price

must be greater than or equal to *
vπ  (thus allowing for the possibility that no vertical show is

organized). These considerations yield the following two equations:

*
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*
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vhh NmNm +=π               (A2.63)

*
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*
hvv NmNm +≤π                                                                                                          (A2.64)

Multiplying (A2.63) by m1 and (A2.64) by m4 and using (A2.62) we see that
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But the above contradicts Min(m1 , m3) > Max(m2 , m4). Hence *
hN  must be 0 and so should ph.

Case C)  The proof of this is similar to that of case A. Now, *
vN must be zero; otherwise

equality between factor cost and revenues must hold in the vertical market while factor cost
should be at least as large as revenues in the horizontal market. These, along with the stated

condition 
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will then generate a contradiction to the assumption Min(m1 , m3) > Max(m2 ,

m4).

Case B)  We argue that in this case both  *
vN  and *

hN  must be strictly positive. Clearly, both
cannot be zero, or entry will occur in both horizontal and vertical arena. Under the stated
conditions, it is also impossible to have one of them assume zero value and the other a positive
value. Suppose, for instance, *

vN  is zero, while *
hN  is positive. Then,

We must have:
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From the above two equations we get 
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, which contradicts the stated assumption for this

case. Similarly, we can disprove the possibility that *
hN  is zero while *

vN  is positive. Given the
positivity of both, we can use the equality of revenue and costs in both markets to write:
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These can be solved to obtain
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As the above expression clearly increases with the *

*

v

h

π
π

 ratio, so must ph.

Appendix 3 (Proofs of All Results in Section 6)

First, we state a few useful facts which we will use in the proofs that follow.

Fact 1. Let α
α

α
α

2121
1

1 −−
−

+= cbA   (A3.1)

and α
α

α
α

21
1

211 −
−

−+= cbB   (A3.2)

(Recall:  xyb ββ= , xyc γγ= ).

Then α

α

α

α

γβ
A

B
B
AR xxH

−−

+=
11

Proving this is a simple matter of manipulating the expression for Rh in (5.3).

Fact 2.

∈A (1, 2); ∈B (1, 2).

This follows from ∈b (0, 1) and ∈c (0, 1).

Fact 3.

BAcb ≥↔≥

This follows trivially from the definitions of A and B.

Fact 4.

AcbBcb ≥↔≥

This follows since α
α

α
α

21
1
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1

−
−

−
−

+= cbbbB
& α

α
α
α
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Fact 5.

α
α−<= 1

,, A
BMax

B
AMax

cbcb
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Proof.  Given that α
α

α
α
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1

−−
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> bb , clearly to maximize BA , c should be set at 1.  Now, the f.o.c.

for this maximization problem gives .1 b
B
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α−=  Since, b 1< , the result follows.

Proof of Observation 2:

We separately deal w/ the cases i) xx γβ =  ,  ii) cb =    and  iii) .0))(( >−− cbxx γβ

Case i) In this case xvR β2=  & 
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  (A3.3)

or to show αα BABA 2>+   (A3.4)
But 2
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12 BABA ≥+   (A3.5)
1>A� , 1>B  (Fact 2), 2

1<α , it follows that αα BABA >2
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.  Hence proved.

Case ii) Suppose b = c
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1<α .

Hence proved.

Case iii) We deal with the situation where xx γβ >  and cb >
The argument is symmetric in the case xx γβ <  & cb < .

If xx γβ >  & cb > , it follows that
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(A3.10) follows if we can show
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b) has already been shown to hold in dealing with Case i).
a) also holds BAcb >>�  (Fact 3)  and  1>A  (Fact 2). Hence proved.

Now note that in each case, we have shown that under the stated conditions Rh strictly exceeds Rv.
Hence, appealing to the continuity of the Rh & Rv functions (of their arguments b, c, xβ , xγ  – as
long as they are strictly positive) we see that the inequality continues to hold in a nbd. of the set
of parameters satisfying eqn. (6.2).

Proof of Proposition 8:

We show that 0>
∂
∂

b
Rh  under the stated condition. The positivity of 
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Case i) cb =

If cb = , BA = . Then,
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Case ii) xx γβ =
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or equivalently,
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which, of course is true.

Case iii) 0))(( >−− cbxx γβ
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Suppose cb <  & xx γβ < .  We need to show
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Combining (A3.19), (A3.20), and (A3.21), (A3.18) is seen to follow.
The case of cb >  & xx γβ >  is similar and omitted.

Proof of Proposition 9:

Suppose βx = γx. Then,
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The sign of the above expression on the other hand, is the same as that of
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Clearly this is 0 if cb =  when BA =  and BbAc = .

Now suppose cb > .  Then (A3.23) can be written as

AbBc
AcBbAcBb

AbBc
BcAbAcBb ))(())(()1( +−++−−− αα                                      (A3.24)
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Noting that AcBbBcAb +>+   ( cBAbBA )()( −>−�  ) and αα >− )1( , this is clearly

seen to be negative.  The negativity of 
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R
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R hh
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 when bc >  follows analogously.

To see 0=
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c
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b
R hh  when b  =  c, one simply needs to look at expression (A3.14) where we

have computed 
b

Rh
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.  Noting that 
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can be obtained from this expression by replacing b by c

and A by B and since A = B when b = c, the result follows.

Finally, we show that when b ~ c:
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Since, 0=
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R hh  when b  =  c, this is achieved by showing that the function Rh is concave

in δ for δ small when b is replaced by e + δ and c by e - δ and e is arbitrary.
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Tedious differentiation and some manipulations show that the second derivative of both R1 and R2

evaluated at δ  = 0 is )21(21
1

1
1

2
)1(2 αααα +−−−

+−
+− ee  which is negative. Hence...                       

Proof of Proposition 10:

By looking at expressions (5.2) and (5.3) one can see that if all product evaluation parameters
were to experience a lowering of r % because of a decrease in the transaction intensity factor,
then both Rv and Rh will go down by r %.  We need to prove that this will raise the **

vh ππ  ratio.
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which in turn holds if v
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Or, if the elasticity of the *π  function at Rh is less than the corresponding elasticity at Rv.  But if
vh RR > , this will hold according to part (c) of Proposition 5.

Proof of Lemma 1:
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Now to calculate 
α∂
∂A

, we note that α
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Differentiating both sides w.r.t. α  we get
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Using (A3.36) and (A3.37), (A3.32) can be written as



70

[ ]{ α
α

α
α

α
α

α
α αααα ααβ

αα
21

1
212121

1
11

2 )1(
)21(

lnln
−
−

−−−
−

−−−−− −−
−
+=

∂
∂

cbBAcbABcbR
x

h

[ ] }α
α

α
α

α
α

α
α αααα ααγ 2121

1
21

1
21 11)1( −−

−
−
−

− −−−−− −−+ cbABcbBAx                                      (A3.38)

or �
�

�
�
�

��

�
	


� −−+��
�

	


� −−
−
+=

∂
∂

−−−−

A
Bbc

B
AcbcbABcbR

xx
h ααγααβ

αα
α

α
α

ααα )1()1(
)21(

lnln
2121

2   (A3.39)

Now since 0lnln <+ cb   ( 1<b , 1<c ), it follows that 0<
∂
∂
α

hR
 if the curly bracketed term

above is positive.

To show that this holds under (6.2), we consider the 3 cases i) cb =  ii) xx γβ =
and  iii) 0))(( >−− cbxx γβ  separately.

Case i) When cb = , BA =  & the curly bracketed term reduces to
bb xx )21()21( αγαβ −+− ; which is clearly positive.
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This holds since if cb ≥ , BA ≥  and AcbB ≥   (Facts 3 and 4)  while if cb ≤ ,
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Now suppose cb >  and xx γβ > .  Then the given expression is
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The case cb <  & xx γβ <  follows similarly.                                                                       

Proof of Lemma 2:

We write the linear approximation of π*(R) as m(α) R +c (α), where m is the slope and c is the
intercept – both of which are functions of α (they are functions of other parameters too, but not
explicitly stated as such since we deal with changes in α only in this lemma).
From the discussion in Section 5.A, on replacing the expressions for an̂  and en̂  in the asymptote
to π* we observe that:
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where A is a constant independent of α.
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Now note that

                                                                                                                                                (A3.49)

Since R1 > R2 , we will have proven the desired result if we can show that the intercept is more

elastic to changes in α than the slope is (note that a rise in α lowers both). Or if,
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Taking log of (A3.46) and differentiating w.r.t. α gives us the l.h.s. of (A3.50):

( )αα −
−

1
1                                                                                                                             (A3.51)

Similarly, taking log of (A3.45) and differentiating w.r.t. α gives us the r.h.s. of (A3.50):
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Now, if kake < e-2, then (A3.51) will be smaller than (A3.52) if the following hold:
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>>− . But both inequalities clearly hold since α is less than

½.
       

Proof of Proposition 11:

Suppose αlo < αhi. By Lemma 2,  
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depend on α). Also by Lemma 1, and the increasing-ness of the π* function , we have
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