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Two di�erent types of tests for the cointegrating rank of VAR processes with a deterministic
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1 Introduction

Many economic time series include structural shifts of their levels caused by exogenous events

that have occurred at a known time point during the observation period. The German

uni�cation is an example of such an event. It has caused shifts in macroeconomic time

series such as Gross National Product (GNP) or measures of the money stock. Di�erent

tests have been proposed that can be used to test for the cointegrating rank of a system of

variables in the presence of level shifts. In particular, Johansen & Nielsen (1993) (henceforth

abbreviated as J&N) have proposed likelihood ratio (LR) tests for the cointegrating rank

of a Gaussian vector autoregressive (VAR) process with a deterministic shift in the level

and possibly other deterministic terms in the data generating process (DGP) such as mean

terms, linear time trends and/or seasonal dummy variables. Alternative tests that allow

for deterministic shifts in the levels and other deterministic terms have been considered by

Saikkonen & L�utkepohl (2000a) (henceforth abbreviated as S&L). These authors suggest to

estimate the deterministic terms in a �rst step, subtract them from the original series and

then perform an LR type test on the adjusted series.

The purpose of this paper is to compare these two proposals for testing for the coin-

tegrating rank of a VAR process with level shifts. The two alternative test statistics have

quite di�erent properties under the null hypothesis, as shown in the aforementioned articles.

Whereas the null distribution of the Johansen-Nielsen statistics depend on the timing of the

shift, the same is not true for the Saikkonen-L�utkepohl proposal. Given the di�erences in

the properties of the tests, it is of interest to investigate their relative power. We will do so

on the basis of local power derivations and small sample simulations.

A number of other studies deal with cointegration in the presence of structural shifts

(e.g., Hansen (1992), Gregory & Hansen (1996), Campos, Ericsson & Hendry (1996), Quintos

(1998), Seo (1998) and Inoue (1999)). All these studies di�er from the present investigation

in that alternative models are used and/or other aspects of a cointegration analysis are

considered. As mentioned earlier, in the present study we focus on tests for the cointegrating

rank of a VAR system with a deterministic shift in the level.

The structure of the paper is as follows. In the next section the DGP is speci�ed, the

assumptions underlying our analysis are laid out and the alternative cointegration tests are

presented. Local power results are discussed in Section 3 and a simulation study exploring
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the small sample properties of the tests is presented in Section 4. Conclusions are drawn in

Section 5. The proofs of the local power results are provided in the Appendix.

The following general notation is used. The di�erencing operator is denoted by �, that is,

for a time series or stochastic process yt we de�ne �yt = yt� yt�1. The symbol I(d) denotes
an integrated process of order d, that is, the stochastic part of the process is stationary

or asymptotically stationary after di�erencing d times while it is still nonstationary after

di�erencing just d � 1 times. Convergence in distribution or weak convergence is signi�ed

by
d! and iid stands for independently, identically distributed. Op(�) and op(�) are the usual

symbols for convergence in probability. Moreover, k�k denotes the Euclidean norm. The trace
and the rank of the matrix A are denoted by tr(A) and rk(A), respectively. If A is an (n�m)
matrix of full column rank (n > m), we denote an orthogonal complement by A? so that

A? is an (n� (n�m)) matrix of full column rank and such that A0A? = 0. The orthogonal

complement of a nonsingular square matrix is zero and the orthogonal complement of a zero

matrix is an identity matrix of suitable dimension. An (n�n) identity matrix is denoted by

In. For matrices A1; : : : ; As, diag(A1 : � � � : As) is the block-diagonal matrix with A1; : : : ; As

on the diagonal. LS, GLS and RR are used to abbreviate least squares, generalized least

squares and reduced rank, respectively. LR is short for likelihood ratio, DGP stands for data

generation process and VAR and ECM abbreviate vector autoregressive and error correction

model, respectively. If the lower bound of the summation index of a sum exceeds the upper

bound, the sum is de�ned to be zero.

2 The Model

Suppose an observed n-dimensional time series yt = (y1t; : : : ; ynt)
0 (t = 1; : : : ; T ) is generated

by the following mechanism:

yt = �0 + �1t+ Ædt + xt; t = 1; 2; : : : ; (2:1)

where �i (i = 0; 1) and Æ are unknown (n � 1) parameter vectors and dt is a step dummy

variable de�ned as

dt =

8<: 0; t < T1

1; t � T1
: (2:2)

This variable allows to take into account a sudden change in the mean of the process as it

occurs, for instance, in German macroeconomic time series at the time of the reuni�cation.
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We assume that T1 is known a priori and that T1 � T . It is also convenient and not restrictive

from a practical point of view to assume that T1 > p and, furthermore, that

lim
T!1

T1
T

= a1 with 0 < a1 < 1: (2:3)

In other words, the break point T1 may be thought of as occurring at a �xed proportion of

the full sample size if an asymptotic analysis is performed where T !1. S&L also permit

a1 = 1 and, hence, the break may be viewed as having occurred a �xed number of periods

before the end of the sample period in their framework. We do not consider this possibility

here to simplify a comparison with the J&N tests.

Note that our assumption of a single break point and, hence, a single step dummy is also

made to facilitate the theoretical analysis in the following. Generalizations to more than

one step dummy and impulse dummies in addition are possible but will not be considered

here for simplicity. A similar comment applies for seasonal dummies. It is also possible to

exclude the trend term from the model, that is, �1 = 0 may be assumed a priori. This case

will be discussed later on.

The term xt in (2.1) is an unobservable stochastic error which is assumed to be a VAR(p)

process with ECM representation

�xt = �xt�1 +

p�1X
j=1

�j�xt�j + "t; t = 1; 2; : : : ; (2:4)

where � and �j (j = 1; : : : ; p� 1) are (n�n) matrices and "t is zero mean Gaussian white

noise so that "t � N(0;
). Although less restrictive assumptions are possible for "t, assuming

normality is convenient for the comparison of tests we intend to perform. The initial values

x�p+1; : : : ; x0 are assumed to be from some �xed probability distribution which does not

depend on the sample size.

We assume that xt is at most I(1) and it is cointegrated with cointegrating rank r. This

assumption implies in particular that the matrix � can be written as

� = �� 0; (2:5)

where � and � are (n�r) matrices of full column rank. It is well-known that � 0xt and

�xt are then zero mean (asymptotically) stationary processes. Moreover, de�ning � =

In � �1 � � � � � �p�1 and C = �?(�
0

?
��?)

�1�0
?
, we have

xt = C
tX

j=1

"j + �t; t = 1; 2; : : : ; (2:6)
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where �t is a zero mean I(0) process (see Johansen (1995, Chapter 4)).

We are interested in testing whether the assumption made for the rank of the matrix �

is correct. In other words, for some prespeci�ed rank r0, we wish to test the null hypothesis

H0(r0) : rk(�) = r0 vs: H1(r0) : rk(�) > r0: (2:7)

In order to present the tests to be compared in the following, it is useful to rewrite the

model (2.1)/(2.4) as

�yt = � + �(� 0yt�1 � �(t� 1)� �dt�1) +
p�1P
j=1

�j�yt�j +
p�1P
j=0

j�dt�j + "t

= � +��y�t�1 +
p�1P
j=1

�j�yt�j +
p�1P
j=0

j�dt�j + "t;

t = p+ 1; p+ 2; : : : ;

(2:8)

where � = ���0+��1, � = � 0�1, � = � 0Æ, �� = �[� 0 : � : �] and y�
0

t�1 = [y0t�1;�(t�1);�dt�1].
Notice that here �dt�j is an impulse dummy which has the value one at t = T1 + j and is

zero elsewhere. Moreover,

j =

8<: Æ; j = 0

��jÆ; j = 1; : : : ; p� 1
: (2:9)

Equation (2:8) speci�es an ECM for the observed series yt. J&N start from this model with

any number of impulse dummies and no restrictions for the associated parameters. They

derive the following LR statistic for our testing problem. For a sample y1; : : : ; yT , de�ne

z0t�1 = (1;�y0t�1; : : : ;�y
0

t�p+1;�dt; : : : ;�dt�p+1) and

MT = (T � p)�1

24 TX
t=p+1

y�t�1y
�0

t�1 �
TX

t=p+1

y�t�1z
0

t�1

 
TX

t=p+1

zt�1z
0

t�1

!�1 TX
t=p+1

zt�1y
�0

t�1

35 :
Moreover, let �̂� be the LS estimator of the matrix �� in the model (2.8), denote the

corresponding LS residuals by "̂t and de�ne


̂ = (T � p)�1
TX

t=p+1

"̂t"̂
0

t: (2:10)

Denoting by �̂1 � � � � � �̂n the ordered generalized eigenvalues obtained as solutions of

det(�̂�MT �̂
�
0 � �
̂) = 0; (2:11)
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the LR statistic for testing the pair of hypotheses (2.7) is given by

LRJ&N(r0) = (T � p)
nX

j=r0+1

log(1 + �̂j): (2:12)

Note that this is the LR statistic under Gaussian assumptions if no restrictions are available

for the parameters of the impulse dummies. Thus, it is not precisely the one corresponding

to the model (2.1), because, if that model is the point of departure, the parameters of the

impulse dummies are known to satisfy (2.9).

A similar statistic is obtained if there is no linear trend term in the model and, thus,

�1 = 0 is imposed a priori. In that case the model corresponding to (2.8) is

�yt = �0y0t�1 +

p�1X
j=1

�j�yt�j +

p�1X
j=0

j�dt�j + "t; t = p+ 1; p+ 2; : : : ; (2:13)

where �0 = �[� 0 : � : �] with � = �� 0�0 and y0t�1 = [y0t�1; 1;�dt�1]0. The resulting test

statistic will be denoted by LR0
J&N(r0).

S&L use the model in (2.8) to obtain �rst stage estimators for the parameters of the

error process xt, that is, for �, �, �j (j = 1; : : : ; p� 1) and 
. In this case, a conventional

RR regression cannot be used to obtain the ML estimators corresponding to the model

(2.1)/(2.4) because there are nonlinear restrictions for the parameters in (2:8). To obtain

the above mentioned �rst stage estimators these restrictions are ignored. Having obtained

the �rst stage estimators, S&L present a GLS estimation procedure for the parameters of

the deterministic part, e�i (i = 0; 1) and eÆ. When these estimators are available one can form

a sample analog of the series xt as ext = yt � e�0 � e�1t � eÆdt and use it to derive LM or LR

type test statistics for the hypothesis H0(r0) in the same way as in S&L. The LR type test

statistic may be obtained as the usual LR test statistic from the feasible counterpart of the

ECM (2:4), that is, it is determined from

�ext = �ext�1 + p�1X
j=1

�j�ext�j + et; t = p+ 1; : : : ; T; (2:14)

where et is an error term. The following general formulation discusses LR type test statistics

because S&L found that LM type test statistics have inferior small sample properties.

The LR type statistic based on (2.14) is obtained in the usual way by solving the gener-

alized eigenvalue problem det(e�fMT
e�0��e
) = 0, where e� is the LS estimator of � obtained
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from (2.14), e
 is the corresponding residual covariance matrix and

fMT = (T�p)�1
24 TX
t=p+1

ext�1ex0t�1 � TX
t=p+1

ext�1� eX 0

t�1

 
TX

t=p+1

� eXt�1� eX 0

t�1

!�1 TX
t=p+1

� eXt�1ex0t�1
35

with � eXt�1 = [�ex0t�1 : � � � : �ex0t�p+1]0. Denoting the resulting eigenvalues by ~�1 � � � � � ~�n,

the LR type statistic becomes

LRS&L(r0) = (T � p)
nX

j=r0+1

log(1 + ~�j): (2:15)

The corresponding test statistic obtained by assuming �1 = 0 a priori will be denoted by

LR0
S&L(r0). In the next section we consider the local power properties of the tests based on

LRJ&N (r0), LRS&L(r0), LR
0
J&N(r0) and LR

0
S&L(r0).

3 Local Power Analysis

In this section we will give the limiting distributions of the tests presented in the previous

section under local alternatives and we compare the resulting local power. We consider local

alternatives of the form

HT (r0) : � = �T = �� 0 + T�1�1�
0

1; (3:1)

where � and � are �xed (n� r0) matrices of rank r0 and �1 and �1 are �xed (n� (r � r0))

matrices of rank r� r0 and such that the matrices [� : �1] and [� : �1] have full column rank

r. In the following we use the assumptions from Johansen (1995) and Rahbek (1994) that

the VAR order is p = 1 and the eigenvalues of the matrices Ir0 +�
0� and Ir+[� : �1]

0[� : �1]

are less than 1 in modulus. The next theorem gives the asymptotic distribution of the four

test statistics considered in the foregoing under these assumptions. A proof is given in the

Appendix.

Theorem 1

Let W(u) denote a Brownian motion with covariance matrix 
 and K(t) the Ornstein-

Uhlenbeck process de�ned by the integral equation

K(u) = �0
?
W(u) + �0

?
�1�

0

1�?(�
0

?
�?)

�1

Z u

0

K(s)ds (0 � u � 1): (3:2)
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Furthermore, de�ne N(s) = (�0
?

�?)

�1=2K(s), �N(s) = N(s)� R 1
0
N(u)du,

N0(s) =

26664
N(s)

1

1[a1;1](s)

37775 ; N�(s) =

26664
�N(s)

s� 1
2

1[a1;1](s)� (1� a1)

37775 ;
N�(s) = N(s) � sN(1) and dN�(s) = dN(s) � dsN(1). With this notation, if �T =

�� + T�1�1�
0

1,

LR0
J&N(r0)

d! tr

(�Z 1

0

N0(s)dN(s)0
�0�Z 1

0

N0(s)N0(s)0ds

��1�Z 1

0

N0(s)dN(s)0
�)

; (3:3)

LRJ&N(r0)
d! tr

(�Z 1

0

N�(s)dN(s)0
�0�Z 1

0

N�(s)N�(s)0ds

��1�Z 1

0

N�(s)dN(s)0
�)

; (3:4)

LR0
S&L(r0)

d! tr

(�Z 1

0

N(s)dN(s)0
�0�Z 1

0

N(s)N(s)0ds

��1�Z 1

0

N(s)dN(s)0
�)

; (3:5)

LRS&L(r0)
d! tr

(�Z 1

0

N�(s)dN�(s)
0

�0�Z 1

0

N�(s)N�(s)
0ds

��1�Z 1

0

N�(s)dN�(s)
0

�)
; (3:6)

where
R 1
0
N�(s)dN�(s)

0 is an abbreviation forZ 1

0

N(s)dN(s)0 �
Z 1

0

N(s)dsN(1)0 �N(1)

Z 1

0

sdN(s)0 +
1

2
N(1)N(1)0:

�

Interestingly, the limiting distributions for LR0
S&L(r0) and LRS&L(r0) in the present

situation are the same as for the corresponding test statistics for the case without a shift

(see Saikkonen & L�utkepohl (2000b) and L�utkepohl & Saikkonen (2000)). In particular,

LR0
S&L(r0) has the same limiting distribution as in the case without any deterministic terms

(e.g., Saikkonen & L�utkepohl (1999)). For all the statistics the null distributions are obtained

by replacing the Ornstein-Uhlenbeck processes N(s) by standard Brownian motions B(s)

with identity covariance matrix.

The theorem shows that the local power depends on the di�erence n� r0 and not on the
dimension n and r0 separately. Moreover, it does not depend on the actual values of the

mean, trend and shift parameters �0, �1 and Æ. Furthermore, it is straightforward to check

that

N(s) = B(s) + ab0
Z s

0

N(u)du; (3:7)
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where B(s) is again an (n� r0)-dimensional standard Brownian motion and the quantities a
and b are given by a = (�0

?

�?)

�1=2�0
?
�1 and b = (�0

?

�?)

1=2(� 0
?
�?)

�1� 0
?
�1 (cf. Johansen

(1995, pp. 207-208)). Hence, the limiting distributions depend on �, �, 
, �1 and �1 only

through a and b. This implies, for instance, for the case r� r0 = 1, where �1 and �1 are just

vectors, that the limiting distribution only depends on the two parameters l2 = a0ab0b and

d2 = (b0a)2=(a0ab0b) (see Johansen (1995, Corollary 14.5)). The parameter l2 = 0 if and only

if H0(r0) is true. Hence, l =
p
l2 may be viewed a the distance of the local alternative from

the null hypothesis. The second parameter, d2, falls in the interval (0; 1]. The case d2 = 0

corresponds to I(2) processes which are not permitted by our assumptions. Still, it is useful

to know that local alternatives with d values close to zero correspond to processes close to

being I(2).

We have simulated the local power resulting from the asymptotic distributions in the

theorem. For this purpose, we consider the case where �1 and �1 are (n � 1) vectors and

simulate the discrete time counterpart of the (n�r0)-dimensional Ornstein-Uhlenbeck process
N(s) as �Nt =

1
T
ab0Nt�1 + �t (t = 1; : : : ; T = 1000) with �t � iid N(0; In�r0), N0 = 0,

b0 =

8>>><>>>:
1 for n� r0 = 1

(1; 0) for n� r0 = 2

(1; 0; 0) for n� r0 = 3

and

a0 =

8>>><>>>:
�
p
l2 for n� r0 = 1�

�
p
l2d2;

p
l2(1� d2)

�
for n� r0 = 2�

�
p
l2d2;

p
l2(1� d2); 0

�
for n� r0 = 3

:

From the generated Nt we compute

AT =
1

T 2

TX
t=1

FtF
0

t and BT =
1

T

TX
t=1

Ft�N
0

t;

with

Ft =

26664
Nt�1

1

dt�1

37775 for LR0
J&N(r0);
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Ft =

26664
Nt�1 � T�1

PT
t=1Nt�1

t� 1� 1
2
(T � 1)

dt�1 � (T � T1 � 1)=T

37775 for LRJ&N (r0)

and Ft = Nt�1 for LR0
S&L(r0). The limiting distributions of the three statistics are then

simulated as tr(B0TA
�1
T BT ). Furthermore, using

AT =
1

T 2

TX
t=1

"
t�1X
k=1

(�Nk ��N)

#"
t�1X
k=1

(�Nk ��N)

#0
and

BT =
1

T

TX
t=1

"
t�1X
k=1

(�Nk ��N)

#
(�Nt ��N)0;

with �N = T�1
PT

t=1�Nt and considering again tr(B0TA
�1
T BT ) gives the limiting distribu-

tion of LRS&L(r0). The resulting rejection frequencies for the cases n � r0 = 1, n � r0 = 2

and n� r0 = 3 for di�erent values of d and l are plotted in Figures 1 - 3. In the �gures the

local power of the tests which allow for a structural shift is also compared to tests which do

not allow for a shift in the deterministic term. The tests denoted as LRJoh and LR0
Joh are

the appropriate LR tests presented by Johansen (1995) for processes without a shift. The

limiting distributions of LRJoh and LR0
Joh are given in Saikkonen & L�utkepohl (1999). To

simulate these distributions, Ft is adjusted accordingly by deleting the component associated

to the shift dummy.

LR0
S&L clearly outperforms the corresponding Johansen type tests assuming no linear

trend (LR0
J&N and LR0

Joh), especially in case of n � r0 = 1 (see Figure 1, Panel A). For a

range of values of l, the rejection probabilities of LR0
S&L are more than twice as large as

those of LR0
J&N and LR0

Joh. It is also obvious that for the Johansen type tests including a

shift term results in a loss in local power. This loss tends to be slightly larger for greater

values of d, that is, for processes well away from being I(2). It is remarkable, however, that

the LR0
S&L tests which include a shift term have uniformly better local power in Figures 1 -

3, Panels A than LR0
Joh which does not allow for such a term.

Comparing the tests which make allowance for a linear trend it can be seen that the

LRS&L tests again have a local power advantage for most of the combinations of l and d.

In particular, the power advantage tends to increase with d. In other words, it is larger for

processes away from the I(2) region than for processes with parameters close to the I(2)
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region. For large values of l, that is, for local alternatives far away from the null hypothesis,

the local power of LRJoh is about the same as and in some cases even slightly larger than the

one of LRS&L. Note, however, that a similar result for LRJ&N is only obtained with even

higher values of l, because accommodating a shift in the presence of a linear trend reduces

the local power of the Johansen type tests, as in the case without a linear trend term.

There are also a couple of other observations worth noting in Figures 1 - 3. First, the

local power of the tests assuming �1 = 0 is generally better than the local power of the

tests allowing for a linear trend and sometimes the di�erence is quite substantial. Thus, it is

worth excluding the trend term if it is not needed in the DGP. Another important issue is the

dependence of the power on n� r0, the number of stochastic trends under H0(r0). Figures 1

- 3 show that increasing n�r0 results in a loss of power for all tests. For instance, this means
that a single cointegration relation is more diÆcult to detect in a three-dimensional than in

a bivariate process. A similar result was also obtained by Johansen (1995) and Saikkonen &

L�utkepohl (1999) for processes without a level shift.

Summarizing the results, it can be concluded that in the case without a trend the S&L

tests are clearly superior. In general their power advantage is quite dramatic. In the presence

of a linear trend they are still superior in large parts of the parameter space but there are

also cases where the J&N tests have more local power. Of course, local power properties are

asymptotic properties and, hence, they are informative about the performance of the tests in

large samples when alternatives close to the null hypothesis are of interest. In small samples

the situation may be di�erent. This issue is investigated in the following section.

4 Small Sample Comparison of Tests

We have compared the properties of the tests in a small Monte Carlo experiment. The

simulations are based on the following process xt from Toda (1994, 1995) which was also

used by some other authors:

xt =

24 	 0

0 In�r

35 xt�1 + "t; "t � iid N

0@24 0

0

35 ;
24 Ir �

�0 In�r

351A ; (4:1)

where 	 = diag( 1; : : : ;  r) is an (r� r) diagonal matrix and � is (r� (n� r)). Speci�cally,
we will consider bivariate and four-dimensional processes. For instance, in the bivariate

case, if r = 0, 	 and � vanish and the process consists of two nonstationary components.
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If the cointegrating rank is 1, 	 =  1 with j 1j < 1. In that case � = � is a scalar which

represents the instantaneous correlation between the two components. Since the test results

are invariant to the parameter values of the deterministic component we use �i = 0 (i = 0; 1)

and Æ = 0 throughout. In other words, the deterministic part is actually zero. Thereby we

can compare the performance of our tests with other tests which do not allow for shifts.

Samples of sizes 100 and 200 plus 50 presample values starting with initial values of zero

were generated. The number of replications is 10,000. The rejection frequencies given in

Tables 1 - 3 and Figures 4 - 8 are based on asymptotic critical values for a test level of 5%.

The rejection frequencies are not corrected for the actual small sample sizes because such

corrections will not be available in practice.

For a given set of parameter values and a given sample size, the results for the test

statistics are based on the same generated time series. Hence, the entries in the tables and

the �gures are not independent but can be compared directly. Still, for judging the results, it

may be worth taking into account that the standard error of an estimator of a true rejection

probability P based on 10,000 replications of the experiment is sP =
p
P (1� P )=10; 000.

Hence, for example, s0:05 = 0:0022. Thus, the two-standard-error con�dence interval for

P = 0:05 is [0.0456, 0.0544]. It is also important to note that in the simulations the tests

were not performed sequentially. Thus, the results for testing H0(1) : rk(�) = 1 are not

conditioned on the outcome of the test of H0(0) : rk(�) = 0 etc..

In Table 1 and Figure 4 the performance of the tests LRJoh, LR
0
Joh, LRta and LR

0
ta which

do not allow for a shift is also presented. The latter two tests were proposed by Saikkonen &

L�utkepohl (2000b) for processes without a shift. They have the same asymptotic distribution

as LR0
S&L and LRS&L, respectively. Of course, the small sample properties may still be

di�erent. Therefore, they are included in the comparison. In Table 1 the true cointegrating

rank is zero so that "t � iid N(0; I2) and, hence, the components of "t are independent. Here

the results for testing H0(0) : rk(�) = 0 give an indication of the actual sizes of the tests for

a nominal size of 5%.

It is seen that the location of the break point (T1) does not matter much for the size of

the tests in the present situation. In most cases the di�erences in the sizes for di�erent values

of T1 are smaller than twice the standard error s0:05. This result was also obtained for other

processes with di�erent cointegrating ranks and instantaneous residual correlation for which
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Table 1. Relative Rejection Frequencies of Tests for Bivariate DGPs with Cointegrating
Rank r = 0, VAR Order p = 1, Sample Size T = 100, Nominal Signi�cance Level 0.05.

Assumed Test Rank under H0 Test Rank under H0

Break Point Statistic r0 = 0 r0 = 1 Statistic r0 = 0 r0 = 1

none LRJoh 0.061 0.003 LR0
Joh 0.058 0.005

LRta 0.047 0.004 LR0
ta 0.054 0.015

T1 = 25 LRJ&N 0.070 0.005 LR0
J&N 0.063 0.004

LRS&L 0.046 0.007 LR0
S&L 0.056 0.019

T1 = 50 LRJ&N 0.068 0.004 LR0
J&N 0.064 0.006

LRS&L 0.046 0.006 LR0
S&L 0.053 0.016

T1 = 75 LRJ&N 0.064 0.003 LR0
J&N 0.063 0.005

LRS&L 0.048 0.006 LR0
S&L 0.051 0.016

the results are not reported here. Moreover, a similar observation was made for the power

of the tests. Therefore, the subsequent comparison focuses on a break point T1=T = 0:75.

Obviously, whether or not a shift is accommodated does not matter much for the sizes

of the tests. The same holds for the power of the S&L tests displayed in Figure 4, Panels

A and C. A somewhat di�erent result is obtained for the tests proposed by Johansen &

Nielsen. The graphs in Panels B and D of Figure 4 show that their power can be more than

10 percentage points lower than the power of the corresponding tests not allowing for shifts

in the levels.

All tests tend to be very conservative if the rank is overstated in the null hypothesis (see

r0 = 1 in Table 1 or r0 = 1 if r = 0 in Table 2). The J&N tests are also quite conservative in

case of processes with a true cointegrating rank r = 1 when there is no innovation correlation

(� = 0). The size is larger, however, if � = 0:8. This outcome has been explained by Toda

(1995). He shows that for a true cointegrating rank r = 1 the tests reject the null hypothesis

of no cointegration more easily for j�j closer to 1.
The performance of the LRS&L test which allows for a deterministic trend also depends

on �, but in the opposite way. LRS&L is conservative for � = 0:8 and has a more accurate size

in case of no instantaneous innovation correlation. The LR0
S&L test which assumes �1 = 0

has roughly a correct size for both types of error correlations. Obviously, this latter test has

12



Table 2. Relative Rejection Frequencies of Tests for Bivariate DGPs with Cointegrating
Rank r = 0 or 1 ( 1 < 1), VAR Order p = 1, Sample Size T = 100, Break Point T1 = 75,
Nominal Signi�cance Level 0.05.

Test r = 0 r = 1

 1 = 0:9  1 = 0:8  1 = 0:7

Statistic r0 = 0� r0 = 1� r0 = 1� r0 = 1� r0 = 1�

� = 0

LRJ&N 0.064 0.003 0.005 0.019 0.036

LRS&L 0.048 0.006 0.025 0.048 0.056

LR0
J&N 0.063 0.005 0.007 0.024 0.038

LR0
S&L 0.051 0.016 0.047 0.055 0.049

� = 0:8

LRJ&N 0.064 0.003 0.032 0.059 0.064

LRS&L 0.048 0.006 0.020 0.028 0.035

LR0
J&N 0.063 0.005 0.044 0.062 0.061

LR0
S&L 0.051 0.016 0.052 0.048 0.049

� rank speci�ed in the null hypothesis.

the most favorable size properties. Almost all size values lie inside the two-standard-error

con�dence interval mentioned above. In contrast, the size of LR0
J&N strongly depends on

the value of  1. Hence, in terms of size, LR0
S&L is preferable. We mention, however, that

in this respect the performance of the tests generally improves for sample size T = 200, as

expected. The actual results are not shown to economize on space.

The power of the tests in the presently considered bivariate case with T = 100 is compared

in Figure 5, where the true cointegrating rank is 1 (except for  1 = 1). It can be seen

that corresponding tests have similar power. None of the tests is uniformly superior. Not

surprisingly, the tests assuming no linear trend have a higher power than the corresponding

ones allowing for a trend. So it is worth applying the former group of tests if it is known

that there is no linear trend in the data. The power of the tests for samples with T = 200

is presented in Figure 6. Although the power increases with the sample size, even T = 200

does not ensure a high power for all the values of � and  1 considered in the simulations.

The general results found for the case T = 100 remain unchanged for T = 200.
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Table 3. Relative Rejection Frequencies of Tests for Four-dimensional DGPs with Cointe-
grating Rank r = 0 or 1 ( 1 < 1), VAR Order p = 2, Sample Size T = 100, Break Point
T1 = 75, Nominal Signi�cance Level 0.05.

Test r = 0 r = 1

 1 = 0:9  1 = 0:8  1 = 0:7

Statistic r0 = 0� r0 = 1� r0 = 1� r0 = 1� r0 = 1�

� = (0; 0; 0)

LRJ&N 0.147 0.014 0.015 0.024 0.036

LRS&L 0.083 0.010 0.014 0.023 0.034

LR0
J&N 0.136 0.015 0.016 0.028 0.043

LR0
S&L 0.098 0.022 0.028 0.039 0.052

� = (0:4; 0:4; 0:8)

LRJ&N 0.147 0.014 0.187 0.157 0.142

LRS&L 0.083 0.010 0.065 0.060 0.061

LR0
J&N 0.136 0.015 0.174 0.147 0.131

LR0
S&L 0.098 0.022 0.126 0.096 0.086

� rank speci�ed in the null hypothesis.

We have also simulated four-dimensional systems to investigate the impact of the number

of variables on the performance of the tests. Some results for processes with cointegrating

ranks 0 and 1 are given in Table 3 and Figure 7. The results are obtained by estimating a

VAR model of order p = 2 although the actual DGP in (4.1) has order one only. Thus, the

estimated processes involve many more parameters than the bivariate processes. Thereby

we intend to check the reaction of the tests to increased estimation uncertainty. In the

absence of innovation correlation (� = 0) all tests have a tendency to be conservative when

testing r0 = 1. In case of high innovation correlation the J&N tests display an excessive

size distortion and reject far too often. This kind of size distortion is a typical problem of

the Johansen type tests that emerges in large systems even if no shift term is considered as

Gonzalo & Pitarakis (1999) have pointed out. The S&L tests also show size distortions and

reject too often, although to a lesser extent than the J&N tests. Overall both S&L tests

have more favorable size properties than the corresponding J&N tests.

In Figure 7 the power of the tests is depicted. Taking into account the excessive overre-
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jection of the J&N tests, it turns out that the J&N and S&L tests, perform fairly similarly

because the power curves of corresponding tests are almost parallel. Again, the tests assum-

ing no deterministic trend have a slightly larger power than the test versions allowing for a

trend, as expected.

In Figure 8, power results for four-dimensional processes with cointegrating rank r = 2

are presented using again a VAR order of p = 2. Obviously, under the present scenario, the

power of all the tests is quite low. To demonstrate that this result is not a consequence of

allowing for a deterministic shift, we also present power curves for the corresponding tests

based on the assumption that there is no structural break. Clearly, these results indicate

that in some situations �nding cointegration ranks greater than one is not very likely. Again

the J&N and S&L tests perform similarly in this respect.

Summarizing the results, it can be seen that the tests perform rather similarly with

respect to power although each of the test proposals has relative advantages in speci�c

situations. Generally, the S&L tests have more favorable size properties, however. Therefore,

we recommend to use them in applied work.

5 Conclusions

In this study we have compared two types of tests for the cointegrating rank of a VAR process

with a deterministic shift in the level at some known point in time. The �rst class of tests

was derived by J&N using the LR principle under Gaussian assumptions. The second group

of tests proceeds by estimating and subtracting all deterministic terms in a �rst step and

then applying LR techniques to the adjusted series. These tests were proposed by S&L. Both

classes of tests are based on very similar models and can be applied in the same situations.

Therefore the question arises which of them should be used in practice.

A conceptual advantage of the S&L tests is that their asymptotic properties do not

depend on where the shift actually occurs. Therefore, the same critical values can be used

independent of the break date. The same is not true for the J&N tests whose limiting null

distribution depends on the break date. Thus, if for instance new data become available,

new critical values have to be determined. Usually the critical values have to be simulated

for each speci�c situation whereas a single table with critical values is suÆcient for the S&L

tests.
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Moreover, a detailed analysis of the local power properties of the two alternative classes

of tests reveals that the S&L tests are generally superior in this respect as well. In particular,

if no trend term is necessary in the DGP, the local power advantage of the S&L tests can be

quite substantial. On the other hand, if a trend term is included in the DGP, there are also

situations where both types of tests have quite similar local power or where the J&N tests

are slightly superior.

We have also compared the two types of tests in small samples using a simulation study. It

turns out that the size properties of the J&N tests are in some situations quite unsatisfactory.

In some cases they are conservative and reject far too rarely whereas for other processes they

overreject considerably. Although there are also cases where the size properties of the S&L

tests are not quite satisfactory, they are generally much better in this respect than the J&N

tests. On the other hand, the two classes of tests are quite similar in terms of small sample

power when the di�erences in the sizes are accounted for. Therefore, overall the S&L tests

are recommended for applied work.

Appendix A. Proof of Theorem 1

In proving Theorem 1, we draw on results and derivations given in Saikkonen & L�utkepohl

(1999) and L�utkepohl & Saikkonen (2000). For simplicity we abbreviate these references

as SL and L&S, respectively. In particular in the latter article only sketches of proofs are

given. More details may be found in the discussion paper version which is available upon

request. We will also repeatedly refer to Saikkonen & L�utkepohl (2000a) which we continue

to abbreviate as S&L.

We shall �rst prove (3.3). The test statistic LR0
J&N(r0) is obtained from the model

�yt = �0y0t�1 + Æ�dt + e0t ; t = 2; : : : ; T;

where y0t�1 =
�
y0t�1; 1;�dt�1

�0
; �0 = � [� 0 : � : �]0 = ��00; and e0t = "t + T�1�1�

00
1 y

0
t�1 with

�01 = [� 01 : �1 : �1]
0. Furthermore, � = �� 0�0; � = � 0Æ; �1 = �� 01�0 and �1 = � 01Æ. Using a

linear reparameterization we can write this model as

�yt = ��00x0t�1 + Æ�dt + e0t ; t = 2; : : : ; T;

where x0t�1 =
�
x0t�1; T

1=2;�T 1=2dt�1
�0
and �0 =

�
� 0 : � : �

�0
with � = T�1=2 (� 0�0 + �) and

� = T�1=2 (� � � 0Æ). Moreover, by similar arguments we can write e0t = "t + T�1�1�
00

1
x0t�1,
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where �0
1
=
h
� 01 : �1 : �1

i0
with �

1
= T�1=2 (� 01�0 + �1) and �1 = T�1=2 (�1 � � 01Æ) : Note that

the true values of the parameters �; �; �
1
and �1 are zero.

Let R0
0t; R

0
1t and E

0
t be the LS residuals from a regression of �yt; x

0
t�1 and e

0
t on �dt,

respectively, so that R0
0t = �yt � �yt�dt and similarly for R0

1t and E
0
t . Then consider the

auxiliary RR regression model

R0
0t = ��00R0

1t + E0
t : (A:1)

From the above derivation it is apparent that, instead of the original model, the test statistic

LR0
J&N (r0) can also be obtained from this infeasible model which can therefore be used for

theoretical purposes. In particular, we can use this model and a general result in SL to

derive the limiting distribution of the test statistic LR0
J&N (r0). To this end, we need to show

that model (A:1) satis�es Assumption 1 of SL. The counterparts of Xt; "t; B; B1 and �""

in that assumption are R0
1t; "t � "t�dt; �

0; �0
1
and 
; respectively, and, since the true value

of �0 is [� 0 : 0 : 0]0 ; we can choose �0
?
= diag[�? : 1 : 1]. For convenience, we de�ne R0

"t =

"t � "t�dt.

It is easy to see that, as far as the veri�cation of Assumption 1 of SL is concerned, R0
1t

and R0
"t can be replaced by x0t�1 and "t; respectively. Thus, since x

0
t�1 equals x

�

t�1 in (A:19)

of SL augmented by �T 1=2dt�1 and since �00x0t�1 = � 0xt�1; we can proceed in the same way

as on page 73 of that paper and show that T�1
PT

t=1 �
00R0

1tR
00
1t�

0 converges in probability to

a positive de�nite constant matrix. Observing that

�00
?
R0
1t =

26664
� 0
?
xt�1 � � 0

?
xt�1�dt

T 1=2 � T 1=2�dt

�T 1=2dt�1 + T 1=2dt�1�dt

37775 ;
we can similarly show that T�1

PT
t=1 �

00

?
R0
1tR

00
1t�

0 = Op(1). Thus, we have veri�ed Assump-

tions 1(i) and (ii) of SL.

Next note that, by Theorem 14.1 of Johansen (1995), T�1=2(� 0
?
x[Ts]�1�� 0?x[Ts]�1�d[Ts]) d!

K(s). Thus, since d[Ts]�1 ! 1[a1;1](s), the preceding expression of �00
?
R0
1t and a straightfor-

ward application of the continuous mapping theorem yield

T�2
TX
t=1

�00
?
R0
1tR

00
1t�

0

?

d!
Z 1

0

K0(s)K0(s)0ds; (A:2)

where K0(s) =
�
K(s)0; 1; 1[a1;1](s)

�0
. Because the r.h.s. of (A:2) corresponds to B0

?
GB? in

Assumption 1(iii) of SL and since we have veri�ed Assumptions 1(i) and (ii) of that paper

17



we can conclude that Assumption 1(iii) holds. To verify Assumption 1(iv) we need to show

that T�1=2
PT

t=1R
0
"tR

00
1t�

0 = Op(1). This result can again be obtained in the same way as in

SL (p. 73).

To prove Assumption 1(v) notice that

�0
?
T�1

TX
t=1

R0
"tR

00
1t�

0

?
= �0

?
T�1

TX
t=1

"tx
00
t�1�

0

?
+ op (1)

d!
Z 1

0

dW(s)K0(s)0; (A:3)

where the last relation can be justi�ed in the same way as in (A.21) of SL. Thus, Assump-

tion 1(v) of that paper follows. Finally, since the present counterpart of "t in SL is R0
"t,

Assumption 1(vi) is obvious, that is, T�1
PT

t=1R
0
"tR

00
"t = 
 +Op(T

�1=2).

Since Assumption 1 of SL has been veri�ed we can derive the limiting distribution of the

test statistic LR0
J&N (r0) from Theorem 1 of that paper. In the same way as in SL (p. 73)

we have �00
?
�0
?
= diag[� 0

?
�? : 1 : 1] and �00

?
�0
1
= [� 01�? : 0 : 0]0. Since �? is the counterpart

of the matrix A? in SL we can conclude from (A:2) and (A:3) that the counterpart of the

matrix (FB0
?
GB? + A?S)

0 becomesZ 1

0

K0(s)dW(s)0�? +

Z 1

0

K0(s)K(s)0dsH 0 =

Z 1

0

K0(s)dK(s)0;

where H = �0
?
�1�

0

1�? (�
0

?
�?)

�1 and the last equality is due to the de�nition of the process

K(s). Hence, combining this and (A:2) with Theorem 1 of SL gives

LR0
J&N (r0)

d! tr

(
(�0
?

�?)

�1

�Z 1

0

K0(s)dK(s)0
�0�Z 1

0

K0(s)K0(s)0ds

��1�Z 1

0

K0(s)dK(s)0
�)

;

where �0
?

�? is the counterpart of the matrix A0

?
�""A? in the above mentioned theorem.

Since it is straightforward to check that the above limiting distribution agrees with that in

(3.3) we have proven the �rst assertion of Theorem 1.

Next consider the test statistic LRJ&N (r0) which is obtained from the model

�yt = � +��y�t�1 + Æ�dt + e�t ; t = 2; : : : ; T;

where y�t�1 =
�
y0t�1;� (t� 1) ;�dt�1

�0
; �� = � [� 0 : � : �]0 = ���0; and e�t = "t+T

�1�1�
�0

1 y
�

t�1

with ��1 = [� 01 : �1 : �1]
0 : Furthermore, � = � 0�1 and �1 = � 01�1, while � = � 0Æ and �1 = � 01Æ

as before. Using a linear reparameterization we can write this model as

�yt = �1 + ���0x�t�1 + Æ�dt + e�t ; t = 2; : : : ; T;
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where x�t�1 =
�
x0t�1;�T�1=2 (t� 1) ;�T 1=2dt�1

�0
and �� = [� 0 : � : �]0 with � = T 1=2 (� � � 0�1) :

Further, e�t = "t+T
�1�1�

�0

1
x�t�1 with �

�

1
= [� 01 : � 1 : �1]

0 and � 1 = T 1=2 (�1 � � 01�1) : As before,

� = T�1=2 (� � � 0Æ) and �1 = T�1=2 (�1 � � 01Æ) : The true values of these two parameters are

zero and so are those of � and � 1.

Let R�0t; R
�

1t and E
�

t be the LS residuals from a regression of �yt; x
�

t�1 and e
�

t on [1;�dt]
0,

respectively, and consider the auxiliary RR regression model

R�0t = ���0R�1t + E�t : (A:4)

Test statistic LRJ&N(r0) can also be obtained from this infeasible model and its limiting

distribution can again be derived from Theorem 1 of SL. Thus, we have to show that model

(A:4) satis�es Assumption 1 of that paper. Denoting by R�"t the LS residual of "t on [1;�dt]
0,

the counterparts of Xt; "t, B, B1 and �"" in Assumption 1 of LS are R�1t, R
�

"t, �
�, ��

1
and 
,

respectively. Also, since the true values of the parameters �; � 1; � and �1 are zero, we can

choose ��
?
= diag[�? : 1 : 1].

It is again easy to see that the inclusion of the impulse dummy �dt in the model has

no e�ect on asymptotic derivations. Thus, in the same way as in SL (p. 74) we can verify

Assumptions 1(i) and (ii) or that T�1
PT

t=1 �
�0R�1tR

�0

1t�
� converges in probability to a positive

de�nite constant matrix and T�1
PT

t=1 �
�0

?
R�1tR

�0

1t�
� = Op(1). Also, arguments similar to

those used to obtain (A:2) show that

T�2
TX
t=1

��0
?
R�1tR

�0

1t�
�

?

d!
Z 1

0

K�(s)K�(s)0ds; (A:5)

whereK�(s) =
�
K(s)0; s� 1

2
; 1[a1;1](s)� (1� a1)

�0
andK(s) is the demeaned version ofK(s).

In the same way as in the sequel of (A:2) we can thus conclude that Assumption 1(iii) of SL

holds with the matrix B0
?
GB? given by the weak limit in (A:5). Moreover, using de�nitions

it is straightforward to check that T�1=2
PT

t=1R
�

"tR
�0

1t�
� = Op(1). Thus, Assumption 1(iv) of

SL also holds.

Next consider the quantity

T�1
TX
t=1

R�"tR
�0

1t�
�

?
= T�1

TX
t=1

"tR
�0

1t�
�

?

d!
Z 1

0

dW(s)K�(s)0: (A:6)

Here the equality follows from de�nitions while the stated weak convergence is a straight-

forward extension of (A.26) of SL. Thus, we have shown that Assumption 1(v) of SL holds
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whereas Assumption 1(vi) is obvious because, by standard arguments, T�1
PT

t=1R
�

"tR
�0

"t =

T�1
PT

t=1 "t"
0

t + Op(T
�1=2) = 
 + Op(T

�1=2). Hence, we have veri�ed Assumption 1 of SL.

Since ��
?
= �0

?
and ��

1
= �0

1
we can repeat the arguments that follow (A:3) and �nd that

the counterpart of the matrix (FB0
?
GB? + A?S)

0 in Theorem 1 of SL becomesZ 1

0

K�(s)dW(s)0�? +

Z 1

0

K�(s)K(s)0dsH 0 =

Z 1

0

K�(s)dK(s)0: (A:7)

In the same way as in the case of the test statistic LR0
J&N(r0) we can �nally conclude from

(A:5) and (A:7) that the limiting distribution of LRJ&N(r0) is as stated in (3.4).

We shall next prove (3.6) and after that note that (3.5) can be proven along similar lines.

Thus, consider LRS&L(r0) which can be obtained from the auxiliary RR regression model

�ext = �� 0ext�1 + eet; t = 2; : : : ; T;

where

ext = yt � e�0 � e�1t� eÆdt�1
= xt � (e�0 � �0)� (e�1 � �1) t�

�eÆ � Æ
�
dt

and

eet = "t + �� 0 (e�0 � �0) + �� 0 (e�1 � �1) (t� 1) + �� 0
�eÆ � Æ

�
dt�1 � (e�1 � �1)

�
�eÆ � Æ

�
�dt + T�1�1�

0

1 (e�0 � �0) + T�1�1�
0

1 (e�1 � �1) (t� 1)

+T�1�1�
0

1

�eÆ � Æ
�
dt�1 + T�1�1�

0

1ext�1
def
= st + T�1�1�

0

1ext�1:
The counterparts of Xt; "t; B; B1 and �"" in Assumption 1 of SL are now ext�1; st; �; �1 and

; respectively.

The �rst step in the proof is to demonstrate that the nuisance parameter estimators have

the following properties:

� 0 (e�0 � �0) = Op(T
�1=2) (A:8)

� 0
?
(e�0 � �0) = Op(1) (A:9)

� 0(eÆ � Æ) = Op

�
(T � T1)

�1=2
�

(A:10)

� 0
?
(eÆ � Æ) = Op(1) (A:11)
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� 0 (e�1 � �1) = Op(T
�3=2) (A:12)

T 1=2� 0
?
(e�1 � �1)

d! K(1); (A:13)

where all the quantities converge weakly and jointly upon appropriate standardizations.

Under the null hypothesis these results are proven in S&L. Under local alternatives, (A:8),

(A:9), (A:12) and (A:13) are obtained in L&S in a model without dummy variables for

related estimators. To demonstrate that (A:8) - (A:13) hold we �rst note that the consistency

results given for the RR estimators of the parameters �; � and 
 in Lemma 3.1 of S&L also

hold in the present context. To see this, the error term "t in S&L has to be replaced by

"t + T�1�1�
0

1xt�1 after which the arguments used in the previous proof in the case a1 <

1 can be repeated. Since local alternatives are considered, the limit results in Johansen

(1995, Chapter 14) involving weak convergence to an Ornstein-Uhlenbeck process instead of a

Brownian motion have to be employed. This, however, does not alter any rates of convergence

so that the previous consistency results will be obtained for the RR estimators of �, � and


. Thus, we have e� = � + Op(T
�1=2), e� = � + Op(T

�1) and e
 = 
 + Op(T
�1=2), where

appropriate normalizations, not a�ecting our test statistics, are assumed for the parameters

� and � and their estimators.

To demonstrate that (A:8) - (A:12) hold, we can proceed in the same way as in the proof

of Theorem 3.1 of S&L with the previous error term "t in the expression (A:13) replaced by

"t + T�1�1�
0

1xt�1. Thus, using the consistency results obtained above and the limit results

in Johansen (1995, Chapter 14) we can �rst show that (A:14) and (A:15) of S&L still hold

and that the appropriately standardized moment matrix of the auxiliary regression model

(A:12) of S&L behaves asymptotically in the same way as before. From these facts it follows

that (A:16) of S&L still holds and therefore (A:8) - (A:12) of the present paper are obtained

in the same way as previously. Thus, we have to establish (A:13). In S&L it was concluded

that, under the null hypothesis, the derivation of the limiting distribution of � 0
?
e�1 reduces

to that considered in Saikkonen & L�utkepohl (2000b). It is straightforward to check that

this conclusion also holds in the present context. After this, adjusting the arguments given

in Saikkonen & L�utkepohl (2000b) in conjunction with the limit results in Johansen (1995,

Chapter 14) shows that

T 1=2� 0
?
(e�1 � �1) = � 0

?
CT�1=2

PT
t=1 ("t + T�1�1�

0

1xt�1) + op(1)

= � 0
?
CT�1=2

PT
t=1�xt + op(1);

(A:14)
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where the latter equality is based on the de�nition of the matrix C: Since we can assume

that � 0
?
�? = � 0

?
�? (see SL, p. 72) we have � 0

?
C = �0

?
and (A:13) follows from (A:14) and

Theorem 14.1 of Johansen (1995).

Next we have to verify Assumption 1 of SL. The �rst condition of this assumption states

that the matrix T�1
PT

t=1 �
0ext�1ex0t�1� converges in probability to a positive de�nite matrix.

Using the de�nition of ext and (A:8), (A:10) and (A:12) it can be seen that the inclusion of

the dummy variable dt has no e�ect in this context so that the desired result is obtained

from L&S. Using (A:8) - (A:13) it can similarly be seen that T�1
PT

t=1 �
0ext�1ex0t�1�? = Op(1)

so that Assumption 1(ii) of SL holds. Since it is further straightforward to check that the

dummy variable dt has no e�ect on the asymptotic behavior of the matrix T
�2
PT

t=1 ext�1ex0t�1
the arguments given in L&S show that Assumption 1(iii) of SL holds and also that

T�2
TX
t=1

� 0
?
ext�1ex0t�1�? d!

Z 1

0

K�(s)K�(s)
0ds; (A:15)

where K�(s) = K(s)� sK(1). This is the counterpart of the matrix B0
?
GB? in SL.

Regarding Assumption 1(iv) of SL, we have to show that T�1=2
PT

t=1 stex0t�1� = Op(1). It

is not diÆcult to see that as far as this result is concerned the e�ect of the dummy variable

dt is not di�erent from the e�ect of the intercept term. Therefore, the desired result can be

obtained from the arguments used in L&S. Since the same is true for Assumption 1(v) of SL

we can in particular conclude that

�0
?
T�1

TX
t=1

stex0t�1�? d! �0
?

Z 1

0

dW(s)K�(s)
0 �K(1)

Z 1

0

K�(s)
0ds+HK(1)

Z 1

0

sK�(s)
0ds:

(A:16)

This term is the counterpart of A0
?
S in Assumption 1(v) of SL. Finally, as in L&S, it can

be shown that T�1
PT

t=1 sts
0

t = 
+Op(T
�1=2) so that Assumption 1(vi) of SL holds. Using

this fact, (A:15) and (A:16) it can be seen that the limiting distribution of the test statistic

LRS&L(r0) is the same as in L&S. This proves (3.6). Omitting the trend term from the

model and repeating the above arguments with appropriate modi�cations one can similarly

prove (3.5). This completes the proof of Theorem 1.
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Figure 1. Local power of LR type tests for n� r0 = 1.
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Figure 2. Local power of LR type tests for n� r0 = 2.
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Figure 3. Local power of LR type tests for n� r0 = 3
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Figure 4. Small sample properties of tests for bivariate DGPs with r = 0 or r = 1; r0 = 0; T = 100; � = 0
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Figure 5. Small sample properties of tests for bivariate DGPs with r = 0 or r = 1; r0 = 0; T = 100
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Figure 6. Small sample properties of tests for bivariate DGPs with r = 0 or r = 1; r0 = 0; T = 200
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Figure 7. Small sample properties of tests for four-dimensional DGPs with r = 0 or r = 1; r0 = 0; T = 100
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Panel A: ψ 2 = 0.9, Θ = [(0 0)’ : (0 0)’]
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Figure 8. Small sample properties of tests for four-dimensional DGPs with r = 1 or r = 2; r0 = 1; T = 100
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