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Abstract

A transformed metric entropy measure of dependence is studied
which satisfies several desirable properties and is capable of impressive
performance in identifying nonlinear dependence in time series. The
measure is applicable for both continuous and discrete variables. A
nonparametric kernel density implementation is considered here for
ten models including MA, AR, integrated series and chaotic dynamics.
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1 Introduction

The most widely used measures of dependence are geared towards linear
relations and continuous variables. Correlation-based indices are common
and are defined over the realizations of the random variables. Entropy-based
indices are defined over the actual distributions which are the bases of inde-
pendence/dependence concepts, and more fully represent their underlying
variables, both continuous and discrete. For example, the relative entropy
measure based on Shannon’s entropy function has been increasingly uti-
lized in the literature (see Joe (1989), Robinson (1991), Skaug & Tjgstheim
(1996), and Granger & Lin (1994)). But relative entropy, and almost all
other entropies, fail to be “metric” as they violate the triangularity rule.
We wish to consider a metric entropy measure which also satisfies several
other desirable properties stated in Granger & Lin (1994).

A measure of functional dependence for a pair of random variables X

and Y may be required to satisfy the following six “ideal” properties:

1. Tt is well defined for both continuous and discrete variables.

2. It is normalized to zero if X and Y are independent, and lies between
-1 and +1.

3. The modulus of the measure should equal unity if there is an exact

(nonlinear) relationship, X = ¢g(Y') say, between the variables.

4. Tt is equal to or has a simple relationship with the (linear) correlation
coefficient in the case of a bivariate normal distribution.

5. It is metric, that is, it is a true measure of “distance” and not just of

divergence.

6. The measure is invariant under continuous and strictly increasing
transformations A(.). This is useful since X and Y are independent if
and only if A(X) and A(Y') are independent.



Granger & Maasoumi (1993) considered a normalization of the Matusida-

Bhattacharya-Hellinger measure of dependence given by
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where f = f(a,b) is the joint density and f; = f(a) and fo = f(b) are the
marginal densities of the random variables A and B, and where 0 < p* <
JJ(fxFf fg)% dadb < 1. The measure is one half of the Hellinger (last
equality) and the Matusida M (.) measures which are non-negative.

S, satisfies properties 1-3. Property 5 is established in the literature (see
Maasoumi (1993)), and property 6 was established by Skaug & Tjgstheim
(1996) for the Hellinger measure. As for property 4, we note that when
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We consider using S, to measure the degree of dependence present in
time-series data. To this end we employ a Nadaraya-Watson (Nadaraya
(1965), Watson (1964)) kernel estimator of f(y,y—;), f(y), and f(y—;),
j =1,2,..., K. We investigate the performance of this kernel-based im-
plementation, and we use the many non-linear models and simulations of
Granger & Lin (1994) as our benchmark. The traditional, correlation-based

measures fail, sometimes very badly indeed, whereas our measure is very



successful in detecting dependence, and often, revealing the dynamic struc-

ture.

2 Kernel Estimators of Densities

The kernel estimator of the bivariate density of the random variables A and
B evaluated at the point (a, b) based upon a sample of observations of size

n is given by

p 1 = a—a; b—b;

=1
while that for the marginal densities evaluated at the points a and b are
given by

n
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where K () is a pth order univariate kernel function and where h, and hy are
bandwidths.

2.1 Kernel Choice

Choice of the kernel imparts properties such as continuity and bias on
the resultant estimator. Common choices are bounded kernels such as the
Epanechnikov kernel and unbounded kernels such as the Gaussian kernel.
We employ the widely used second-order Gaussian kernel, and the product

Gaussian kernel is employed for the bivariate estimator.

2.2 Bandwidth Selection

In applied settings the bandwidth is typically chosen via data-driven ap-
proaches such as plug-in or cross-validatory methods. The bandwidth choice
drives the behavior of the resultant estimator far more than the kernel choice.

For univariate and bivariate density estimators based upon a second



order kernel, the optimal bandwidths! are given by h; = cjo;n~/5 and
h; = c;oin~ /% i =a.b, respectively. The constants ¢; are unknown and are
functions of the density being estimated, and data-driven methods can be
employed to determine their likely values. For what follows, these constants
are obtained via likelihood cross-validation (Silverman (1986, page 52)).
Given that the same vector of data is used to construct our marginal and
joint densities, common values of both ¢ and ¢ are appropriate throughout
and are used to obtain the bandwidths for both the marginal and joint
densities when suitably normalized. The common values employed are those
for the density of the entire sample of data, {y1,...,yn}, and o is replaced

with its sample analog.

3 Kernel-Based Evaluation of §p

Replacing the unknown densities in Sp with kernel estimators yields
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Evaluation of this integral is not straightforward. We consider multivari-
ate numerical quadrature for its evaluation using the tricub() algorithm of
Lau (1995, pg 303) written in the C programming language. For our imple-
mentation, data was first re-scaled to lie in the range [—0.5,0.5]. Employ-
ing Lau’s (1995, pg 303) notation, the vertices used for his tricub() algo-
rithm were (z;,y;) = (2.0,1.5), (z;,y;) = (=2.0,1.5), (zx,yx) = (0.0, -2.5),
and the relative and absolute errors used were both 1.0e-052. Note that

'Those which minimize integrated mean square error of the estimator.
2If fewer than 1,000 evaluations of the integrand were computed, the absolute and
relative errors were reduced by 1.0e-01 and the integral was re-evaluated.



the data for the bivariate density therefore lie in the square with vertices
(=0.5,0.5), (0.5,0.5), (—0.5,—0.5), (—0.5,—0.5) which lies exactly at the
center and strictly in the interior of the triangle defined by the (z,y) ver-
tices listed above. This algorithm was bench-marked by integrating a bi-
variate kernel estimator which integrated to 1.000 (that is, we obtained
[ [ f(a,b)dadb = 1 for arbitrary data).

4 Simulation

Granger & Lin (1994) considered the following data generating processes
(DGPs) with ¢ ~ i.i.d., N(0,1).

Model 1 y; = ¢ + 0.86%_1
Model 2 y; = ¢ + 0.86?_2
Model 3 y; = €; + 0.8¢7_4
Model 4 y; = €; + 0.8¢2_; + 0.8¢2 5 + 0.8¢2 4
Model 5 y; = |ys—1|"® + €
Model 6 y; = sign(y:—1) + €
Model 7 y = 0.8y;_1 + €
Model 8 y =y1—1 + €&
Model 9 y; = 0.6€;_1ys_2 + €
Model 10 yy =4y, 1(1 —y—1) fort>1,0<y; <1

Models 1-4 are nonlinear MA processes of order 1, 2, 3, and 3 respec-
tively. We expect a good measure to exhibit the theoretical properties of
these MA processes which require zero “dependence” at lags beyond their
nominal orders. Models 5-7 are AR(1) autoregressions with various decay-
ing memory properties. Model 8 is a simple I(1) process with persistent
memory, and model 9 is bilinear with white noise characteristics. Model 10
is the logistic function generating chaotic dynamics. Granger & Lin (1994)
found the usual correlation function measures to be inadequate in recog-

nizing nonlinear relationships. They found that the relative entropy did



very well, and Kendall’s 7 did well for MA processes. A portmanteau ver-
sion of the Hellinger measure over a number of lags was shown by Skaug &
Tjgstheim (1996) to do very well indeed for ARCH (1), GARCH (1), nonlin-
ear MA, an Extended nonlinear MA, and Threshold Autoregressive of order
1 (TAR(1)). They showed that the correlation function measures can be
very misleading.

The AR(1) model 6 has been further studied in Granger & Terasvirta
(1999). The process is Markovian and stationary. Its theoretical autocorre-
lations should decline exponentially, as would also be expected by a linear
stationary AR(1) process. Granger & Terasvirta (1999) observed that the
usual autocorrelation measures can point to a fractionally integrated pro-
cess, indicating long memory where a short memory process is appropriate.
The important nonlinear/switching regime behavior of this process is lost
to linear measures.

In addition, we add Model 0, y; = €, a simple white noise Gaussian
process, as a benchmark. We use these models to evaluate the performance
of our dependence metric in finite samples. We consider sample sizes ranging
from n = 50 through n = 500. A minimum of 1,000 Monte Carlo replications
from each model are computed, and K = 10 lags are considered. Code
was written in the C programming language. Random number generation
employed the portable random number routines ranl() and gasdev() which
use three linear congruential generators and the Box-Muller method found
in Press, Flanery, Teukolsky & Vetterling (1990, pages 210, 216).

Simulation results are summarized in appendices B through F. In these
appendices we graph the average value of the S, statistic for each lag for
a given model, with the average computed over the total number of Monte
Carlo replications. This is therefore analogous to a sample autocorrelation
function for linear time-series models. Following Granger & Lin (1994) we
tabulate the mean and standard deviation for each lag and model. In addi-
tion, the distribution of the statistic is skewed and bounded below by zero,
therefore the median and interquartile ranges are also tabulated. We also
consider the empirical distribution of the statistic for a white noise process

which will be useful for determining significant deviations of S, from zero,



the theoretical value of S, for a white noise process. For this last process we
tabulate the 90th, 95th, and 99th percentiles from the empirical distribution
of S, based upon the Monte Carlo replications.

5 Hypothesis Testing

We consider using S, for testing serial independence of a time series against
alternatives of dependence which can be of a general and nonlinear nature.
We require the distribution of this statistic under the null in order to proceed
with inference, and consider three common approaches towards obtaining

critical values for our test statistic under this null.

5.1 Asymptotic Approximations

One approach is to approximate the null distribution of our statistic based
upon asymptotic theory. Skaug & Tjgstheim (1996) obtained this distri-
bution using Robinson’s trimming weights (see Robinson (1991)). When
these weights are equal to unity, as in our computations, no asymptotic dis-
tribution has been established. The trimming technique essentially takes
out outliers, however, which is quite sensible in practice. So a normal dis-
tribution theory is essentially available for very large samples. But there
are good reasons to expect that this would be met with limited success.
One quite serious problem with this approach in a kernel context is that
the asymptotic-based null distribution would not depend on the bandwidth,
while the value of the test statistic depends directly on the bandwidth. This
is due in part to the fact that the bandwidth is a quantity which vanishes
asymptotically. This is a serious drawback in practice, since the outcome
of such asymptotic-based tests tends to be quite sensitive to the choice of
bandwidth. This has been noted by a number of authors including Robin-
son (1991) and Rilstone (1991). For his kernel-based statistic, Robinson
(1991) noted that “substantial variability in the [test statistic] across band-
widths was recorded”, which would be quite disturbing in applied situations.
Skaug & Tjgstheim (1993), Skaug & Tjgstheim (1996) have also studied this



issue in the context of testing for serial independence. They note that the
asymptotic variance is very poorly estimated in the case of the Hellinger
and relative entropy measures, which combined with the problem of window
width, renders asymptotic inferences quite unreliable. These same reasons
argue against the use of “pivotal statistics” in resampling alternatives.

5.2 Simulated Critical Values

Another approach would be to simulate critical values based upon a white-
noise data series for a number of sample sizes. Given that the distribution of
our statistic is skewed, one would adopt a percentile approach to obtaining
critical values using, for example, the 95th percentile for a given sample size
as a critical value.

Appendix A lists the 90th, 95th, and 99th percentiles of the empirical
distribution of S, for the process y; = ¢ with ¢ ~ i.i.d.,N(0,1) for a
range of sample sizes®. These values can be used as the basis for tests of
serial independence of a time-series. The alternatives against which this
test has power contain general nonlinear dependent processes. The metric
S, combined with the percentiles tabulated in Appendix A indicate that the
proposed test for serial independence has power against general nonlinear
alternatives and that the power increases quite quickly with the sample size
as can be seen by examining appendices B through F. Another approach

would be to generate the white noise data from a known distribution.

5.3 Resampled Critical Values

Note that, taking the approach of Section 5.2 above, one is testing for seri-
ally independent normally distributed data, that is, the null is compound.
However, if one uses a resampling approach, then we may test the simple
null of serial independence regardless of the underlying distribution. That
is, a resampling approach would be expected to be robust to the underly-
ing distribution given that standard regularity conditions on the underlying

distribution required for consistency of the kernel estimator are met.

3A minimum of 2,000 Monte Carlo replications were computed.



Thus, a third approach would be to resample the test statistic under
the null of serial independence. Omne can generate replications which are
serially independent having marginal distributions identical to the original
data simply by applying a random shuffle to the dataset at hand. Randomly
reordering the data leaves the marginal distributions intact while generating
an independent bivariate distribution. This reshuffle is used to recompute
the statistic using data generated under the null, and this can be repeated a
large number of times to generate the empirical distribution of the statistic
under the null. One could then use the empirical distribution of this resam-
pled statistic to compute finite-sample critical values. The null distribution
will be that for a given bandwidth and will therefore adapt to bandwidth
choice as in Racine (1997).

Extensive simulations of this approach are not undertaken at this time.
However, preliminary results suggest that this approach gives values which
are comparable to that from Section 5.2 above for the experimental setup
contained therein.

5.4 Application - Detecting Dependence for Chaotic Time-
Series

We consider testing for serial independence of a sample drawn from the
DGP given by Model 10, a chaotic time-series generated by the logistic
map. We consider the application of traditional time-series methods versus
the proposed metric.

The following graphs plot the autocorrelation function (ACF) (4) and
the proposed metric (Sg) for an arbitrary sample of size n = 500 drawn from
this DGP along with critical values under the null of white noise for each®.
The critical values are given by the dotted lines in each graph. K = 10 lags
were computed for each.

The logistic map, it turns out, has ACF and partial autocorrelation
(PACF) functions which behave like white noise (Granger & Lin (1994,

“The critical values for the proposed metric are based upon the percentile approach
from Section 5.3. A 5% level of significance was used for both the ACF and the proposed
metric.



page 379)). The ACF incorrectly leads us to conclude that there is no
dependence in the series, while the proposed metric correctly leads us to
conclude strong dependence in the series. The proposed metric has good
power in this direction for all sample sizes considered as can be observed
upon examining appendices B through F.

This simple example is additional evidence which highlights the limita-
tions of traditional, linear time series measures for detecting serial depen-
dence as well as the value added by using the proposed metric for such
purposes.

Our results for the remaining models are in agreement with the findings
of Granger & Lin (1994). They confirm serious failings of the correlation-
based measures, and a patently strong performance of the S, measure in
detecting many types of non-linear dependence. Its good performance for
detecting memory structure/lags is also notable and gives rise to an expec-

tation that it may be a suitable basis for constructive specification tests.

6 Conclusion

We believe that the proposed metric S, shows strong promise as a general
statistic which can be used to detect general nonlinear dependence present
in a time-series. New white-noise tests are proposed, and applications to
nonlinear time-series demonstrate the value added by the proposed approach
relative to standard time-series measures. Further work on the constructive
specification search applications of this measure is in progress, as is its utility
in more general testing for causality and exogeneity.
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