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1. Introduction

In many circumstances, the likelihood function does not have a simple tractable
expression. Examples, that will be developed later, are the convolution and the
mixture of distributions. In such instances, estimation using the characteristic
function o�ers a nice alternative to maximum likelihood method. It has been
shown by Feuerverger and McDunnough (1981) that the empirical characteristic
function yields an e�cient estimator when used with a speci�c weighting function.
However, this weighting function depends on the likelihood which is of course un-
known. This poses the problem of the implementation of this method. Here we
show that the empirical characteristic function yields a continuum of moment
conditions that can be handled by the method developed by Carrasco and Flo-
rens (1999). We simply estimate the parameters of the model by GMM based
on this continuum of moment conditions. We show that this method delivers as-
ymptotically e�cient estimators while being relatively easy to implement. A close
investigation shows that Carrasco-Florens' results gives a rationale to Feuerverger
and McDunnough's approach and is much more general since it applies to any
continuum of moments. Using our continuous GMM method avoids the explicit
derivation of the optimal weighting function as in Feuerverger and McDunnough.
We give a general method to estimate it from the data.

Next, we discuss the e�cient estimation based on the conditional characteristic
function. As long as identi�ability holds, our estimators reach the Cramer Rao
e�ciency bound for any choice of instruments. The issue on optimal instruments



can be completely ignored here. The way we choose the weight in our GMM
objective function guarantees e�ciency.

In Section 2, we give the principal de�nitions and two examples. Section 3
reviews the results of Carrasco-Florens (1999). Section 4 explains how to obtain
e�cient estimators using the (unconditional) characteristic function. In Section 5,
we turn our attention to the use of the conditional characteristic function. Section
6 discusses the implementation. Section 7 develops an example on duration of stay
in a state. Finally, Section 8 concludes.

2. De�nitions and examples

2.1. De�nitions

Suppose X1; :::; Xn are iid realizations of the same random variableX with density
f� (x) and c.d.f. F� (x) : � 2 Rk is the parameter of interest. �0 is the true value of
�: Let  � (t) denote the characteristic function of X

 � (t) �
Z
eitxdF� (x) = E�

�
eitX

�
and  n (t) denote the empirical characteristic function

 n (t) =
1

n

nX
j=1

eitXj :

We construct moment conditions of the form

h (t; Xj; �) = eitXj �  � (t) :

Obviously h satis�es

E� [h (t; Xj; �)] = 0 for all t in R:

Our aim is to use this continuum of moment conditions to obtain an e�cient
estimator of �:

Let �be a probability on R and L2 (�) be the Hilbert space of complex valued
functions such that

L2 (�) =
�
f : R! Cj

Z
f (t)2 � (dt) <1

�
:

Note that while  � (t) is not integrable on R,  � (t)belongs to L
2 (�) for any prob-

ability �because  � (t) �  � (0) = 1: Candidates for � include the density of the
standard normal distribution and � (t) = I f�K � t � Kgwhere I is the indicator
function. These di�erent choices will be investigated by simulation later.
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2.2. Examples

In the following, we give two motivating examples.
Example 1: Finite mixture of distributions

Finite mixture models are commonly used to model data from a population
composed of a �nite number of homogeneous subpopulations. An example of
application is the estimation of a cost function in presence of multiple technologies
of production (see Beard, Caudill, and Gropper, 1991). Morduch and Stern (1997)
recently used a mixture model to detect sex bias in health outcomes in Bangladesh.
Ignoring heterogeneity may lead to seriously misleading results.

Consider the case where a population is supposed to be formed of two homo-
geneous subpopulations. Let X1; :::; Xn be an iid sample. Let � be the unknown
proportion of individuals of type 1. Individuals of type 1 have a density f (x; �1)
and those of type 2 have a density f (x; �2) : The econometrician does not observe
the type of the individuals, so that the likelihood for one observation is

�f (x; �1) + (1� �) f (x; �2) :

Such models can be estimated using the EM algorithm or the method of moments,
see Heckman, Robb, and Walker (1990) among others. An alternative way is the
use of the characteristic function which is equal to

� �1 (t) + (1� �) �2 (t)

where  �j (t) =
R
eitxdF�j (x)with j = 1; 2:

Example 2: Convolution of distributions

Assume one observes the sum of two random variablesX = Y +Z, where Y and
Z are independent and individually non-observed. In most cases, the likelihood
will have an intractable form whereas the characteristic function of X is easily
obtained from

 X =  Y �  Z

where  Y and  Z are the characteristic functions of Y and Z respectively.
In a microeconometric model, Y might be a person-speci�c heterogeneity term

while Z is an error term. Our results below will allow for the presence of covariates
in the model. Both notions of mixture and convolution are closely related, see
Mundlack and Yahav (1981).
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3. Brief review of GMM when a continuum of moment is

available

Let H be the Hilbert space of reference. Here H = L2 (�) : In the following k:kwill
denote the norm in L2 (�) :Let B be a bounded linear operator de�ned on H or a
subspace of H and Bn a sequence of random bounded linear operators converging
to B. Let

�hn (t; �) =
1

n

nX
j=1

h (t; Xj; �) :

The GMM estimator is such that

�̂n = argmin
�




Bn
�hn (:; �)




 :
Under a set of conditions listed in Carrasco and Florens (1999), this estimator is
consistent and asymptotically normal. In the class of all weighting operatorB, one
yields to an estimator with minimal variance. This optimal B is shown to be equal
to K�1=2 where K is the covariance operator associated with h (t; X; �) :That is

K : f 2 H ! g 2 H
f (t) ! g (s) =

Z
k (s; t) f (t)� (dt)

where
k (s; t) = E�0 [h (s;X; �0) h (t; X; �0)]

K�1=2g does not exist on the whole space H but on a subset of it which corre-
sponds to the so-called reproducing kernel Hilbert space (RKHS) associated with
K denoted H (K) : We use the notation


K�1=2g




 = kgkK
where k:kK denotes the norm in H (K) : Since the inverse of K is not bounded,
we use a penalization term �n to guarantee the existence of the inverse. The
estimation of K and the choice of �n will be discussed in Section (6). Let K�

n

denote a consistent estimator of K. The optimal GMM estimator of � is obtained
by:

�̂n = argmin
�




(K�
n )
�1=2 �hn (:; �)




 :
Under the assumptions A1 to A11 listed in Appendix, we have the following
results:
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�̂n ! �0 in probability,

as n and n�3=2
n go to in�nity and �n goes to zero and

p
n(�̂n � �0)

n!1�! N
0
B@0;

0
@





E�0

 
@h

@�0

!





2

K

1
A
�11CA (3.1)

as n and n�3
n go to in�nity and �n goes to zero.

4. Estimation using the characteristic function

4.1. A useful result of Parzen

Parzen (1970, page 25) gives a simple formula for the norm of a function g in the
RKHS associated with a covariance kernel k on R2: Assume that k takes the form

k (s; t) =
Z
u (s; x) u (t; x)P (dx) (4.1)

where P is a measure and fu (t; :) ; t 2 Rg is a family of functions in L2 (P ) : If
(4.1) holds, the RKHS norm of g is given by

kgk2K = kGk2L2(P ) (4.2)

where G is solution of the equation

g (t) =
Z
G (x) u (t; x)P (dx) : (4.3)

This result will be useful in the following to calculate the inverse of the variance
of our GMM estimator �̂n, namely:






E�0

 
@h

@�0

!





2

K

:
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4.2. E�ciency

In this section, we check Assumptions A1 to A11 and show that the GMM method
described above applies. Next, we determine the asymptotic variance of �̂n and
show that it coincides with the Cramer Rao e�ciency bound. We have the fol-
lowing relation

�hn (t; �) =
1

n

nX
j=1

�
eitXj �  � (t)

�

=  n (t)�  � (t) :

Feuerverger and Mureika (1977) showed that
p
n�hn (t; �0) converges weakly to a

Gaussian process with mean zero and covariance

E�0
h
�hn (s; �0) �hn (t; �0)

i
= E�0

h�
eisX �  �0 (s)

� �
eitX �  �0 (t)

�i
=  �0 (t+ s)�  �0 (t) (s) :

It follows that Assumption 8 is satis�ed with

k (s; t) =  �0 (t + s)�  �0 (t) �0 (s) :

The next step it to calculate the variance of �̂n:We now apply results (4.2),
(4.3) in our setting. We have

k (s; t) =
Z �

eisx �  �0 (s)
� �
eitx �  �0 (t)

�
dF�0 (x)

so that
u (t; x) = eitx �  �0 (t)

and

g (t) = E�0

 
@h

@�0

!
= �@ �

@�

�����
�=�0

:

We are looking for the solution of

@ �
@�

�����
�=�0

=
Z
G (x)

�
eitx �  �0 (t)

�
dF�0 (x)

=
Z
G (x) eitxdF�0 (x)�  �0 (t)E

�0 (G) (4.4)

6



Let

G (x) =
@ ln f�
@�0

�����
�=�0

(4.5)

then, we obtain Z
G (x) eitxdF�0 (x) =

Z @f� (x)

@�0
eitxdx

=
@

@
 � (t)

�����
�=�0

and

E�0 (G) = E�0

 
@ ln f�
@�0

!
= 0:

This shows that G de�ned in (4.5) is solution to (4.4). Hence, we obtain






E�0

 
@h

@�0

!





2

K

= E�0

2
4
 
@ ln f�
@�0

�����
�=�0

!2
3
5 � I�

where I� corresponds to the Fisher information matrix. Therefore �̂n is as e�cient
as the maximum likelihood estimator.

4.3. Comparison with Feuerverger and McDunnough

Feuerverger and McDunnough (1981) (to be referred to as FM) show that a way
to reach the e�ciency bound is to estimate � (assumed for simplicity to be scalar)
by minimizing Z +1

�1
w (t) ( n (t)�  � (t)) dt = 0 (4.6)

with

w (t) =
1

2�

Z +1

�1

@ ln f�
@�

�����
�=�0

e�itxdx:

They obtain this optimal weighting function w by solving (see FM, page 25):

Kw (t) =
Z
k (s; t)w (s) ds =

@ �
@�

�����
�=�0

:

In other words,

w (t) = K�1 @ �
@�

�����
�=�0

;
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assuming that @ �

@�
belongs to the range of K: (4.6) coincides with our �rst order

condition, indeed our objective function is given by

Qn =
�
K�1=2�hn (:; �) ; K

�1=2�hn (:; �)
�
;

here we use K instead of its estimator for comparison with FM. The FOC condi-
tion is  

K�1=2 @
@�

�hn (:; �) ; K
�1=2�hn (:; �)

!
= 0: (4.7)

Assuming that @ �
@�

(= @
@�
�hn (:; �)) belongs to the range of K, (4.7) can be rewritten

as  
K�1@ �

@�
; �hn (:; �)

!
= 0;

(w;  n (t)�  � (t)) = 0

which coincides with (4.6). FM are aware that @ �

@�
is not integrable and propose

as solution to take

wm (t) =
1

2�

Z +1

�1

@ ln f�
@�

�����
�=�0

I f�m � x � mg e�itxdx:

A major problem is that w depends on the likelihood which is, of course, unknown.
FM suggests to discretize an interval of R and to apply the usual GMM on the
resulting set of moment conditions. However, discretization means a loss of e�-
ciency. They argue that letting the interval between observations, �t , go to zero,
the GMM estimator will reach the e�ciency bound. From Carrasco and Florens,
it is clear that the passage at the limit requires a lot of care and that, when �t
goes to zero, the dimension of the covariance matrix increases and its inverse is
not bounded.

5. Conditional characteristic function

In practice, models frequently include explanatory variables so that estimation
has to rely on the conditional characteristic function (CCF). In this section, we
explain how to construct moment conditions without loss of e�ciency.

Assume that an iid sample Xi = (Yi; Zi) is available. Denote the characteristic
function of Y conditional on Z by

 � (tjZ) � E�
�
eitY jZ

�
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For now, Zmay be exogenous with respect to � or not. We want to exploit the
knowledge of the CCF to estimate �:Let m (:) be a function of Z (independent of
�), we know that

E
h�
eitY �  � (tjZ)

�
m (Z)

i
= 0:

Inference can be based on the continuum of moments

h (t; Xj; �) =
�
eitYj �  � (tjZj)

�
m (Zj) : (5.1)

To assess the e�ciency of this method, we follow the same approach as in Section
4.2. The kernel of the covariance is given by:

k (s; t) = E�0 [h (t; Xj; �)h
0 (t; Xj; �)]

= E�0
h
m (Zj)m (Zj)

0 ( � (s+ tjZj)�  � (sjZj) � (tjZj))
i
:

The asymptotic variance of the estimator �̂n given in (3.1) involves the norm in
the RKHS associated with k of

E�0

 
@h

@�0

!
= E�0

"
�@ �
@�0

m (Z)

�����
�=�0

#

To simplify the notation, we assume m; z; and � are scalar. We again apply results
(4.2), (4.3) with

g (t) = E�0

"
�@ �
@�0

m (Z)

�����
�=�0

#
:

We have
kgkK = kGk2L2(P )

where G is solution of

g (t) =
Z
G (y; z)

�
eity �  �0 (tjz)

�
m (z) dF�0 (x) : (5.2)

Let

G (y; z) = �@ ln f�
@�0

(yjz)
�����
�=�0

and replace in (5.2). In the following, we drop �0. The �rst term in the right-hand
side of (5.2) equals

�
Z
m (z) f� (z)

"Z @f�
@�

(yjz) eitydy
#
dz = �

Z
m (z) f� (z)

@ �
@�

(tjz) dz

= E�

"
�@ �
@�0

m (Z)

#
:
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The second term on the right hand side of (5.2) equals

Z
m (z)G (y; z) � (tjz) f� (yjz) f� (z) dydz =

Z
m (z)

@f�
@�

(yjz) � (tjz) f� (z) dydz

=
Z
m (z) � (tjz) f� (z)

"Z @f�
@�

(yjz) dy
#
dz

= 0:

Hence the inverse of the variance of �̂n is given by

kGk2L2(P ) = E�0

2
4 @ ln f� (yjz)

@�0

�����
�=�0

!2
3
5 :

If moreover, Z is exogenous with respect to �; that is its distribution does not
depend on �, we have

kGk2L2(P ) = E�0

2
4 @ ln f� (y; z)

@�0

�����
�=�0

!2
3
5 = I�:

It shows that if the distribution of Z depends on � then there is a loss of e�ciency of
using the conditional characteristic function. But if Z is exogenous, the estimator
is e�cient whatever the choice of the instruments m: This is a very important
result. It means that the choice of m is dictated by identi�cation only. E�ciency
is guaranteed by the fact that we use an in�nity of moments.

Proposition 5.1. Assume Z is exogenous for �:Let m be such that � is identi�ed
from a single moment (5.1) indexed by t then the GMM estimator �̂n based on the
continuum of moment (5.1) with t 2 R is e�cient:

6. Implementation

6.1. Estimation of the covariance operator

A �rst step estimator of � denoted �̂1 is obtained by minimizing



h (�)




(L2)q
(this

corresponds to ~� for B = I): The covariance operator K can be estimated by
replacing its kernel by the sample covariance using the �rst step estimator �̂1.

KT : f !
Z 1

0

1

T

TX
t=1

ht
�
�1; �̂1

�
ht
�
�2; �̂1

�0
f (�2) d�2
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The operatorKT is degenerate and therefore has a �nite number of eigenfunctions.
The k � 1�eigenfunctions � are solutions of

1

T

TX
t=1

ht
�
�1; �̂1

� Z 1

0
ht
�
�2; �̂1

�0
� (�2) d�2 = �� (�1)

� (�) is necessarily of the form
PT
t=1 �tht

�
�; �̂1

�
: Replacing � by its expression,

one gets

1

T

TX
t=1

ht
�
�1; �̂1

� " TX
s=1

�s

Z 1

0
ht (�2)

0 hs (�2) d�2

#
= �

TX
s=1

�shs (�1)

Therefore, the f�tg satisfy

1

T

TX
s=1

�s

Z 1

0
ht (�2)

0 hs (�2) d�2 = ��t; for t = 1; :::; T

Let C be the matrix with cells cst =
1
T

R 1
0 hs (�)

0 ht (�) d�: Let �j =
h
�j1; :::; �

j
T

i
be the orthonormal eigenvectors and �j the eigenvalues of C. Hence, the jth
eigenfunction of KT is given by

�j (�) =
TX
t=1

�jtht
�
�; �̂1

�

and is associated to the eigenvalues �j:

Remark 1. Note that even if the �j are orthonormal, the �j are not necessarily
orthonormal, so they need to be orthonormalized using Gram-Schmidt process
(see for instance Hochstadt p. 47). From now on,

n
�j
o
j
denote the orthonormal

eigenfunctions of KT :

Remark 2. The dimension of the matrix to diagonalize, C, is T � T . So it
increases with the sample size, thus the computational time increases very fast.
On the other hand, the dimension of C is T � T whatever the number of moment
conditions is, so adding moment conditions does not complicate the calculation
of the eigenvalues and eigenfunctions.
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6.2. Estimation of the inverse of K

The calculation of the objective function involves the calculation of K�1=2 where
K�1=2 can be seen as (K�1)1=2. We �rst study the properties of K�1. K�1f is
solution of

Kg = f

This integral equation is called a Fredholm equation of the �rst kind. This problem
is typically ill-posed. The solution does not exist necessarily, when it exists, it is
not unique in general, and the solution does not depend continuously on the input
f . To guarantee the uniqueness of the solution, we restrict our attention to least-
squares solutions of minimum norm. g is solution of inffk Ku� f k: u 2 (L2)kg.
The least-squares solution will exist if f lie in R(K) +N(K) where R(K) is the
range of K and N(K) is the null space of K. The instability of the solution
plagues the estimation method especially when f is observed with an error, which
happens in our case since f is estimated. One way to address this problem is
to replace the ill-posed problem for a well-posed problem. This can be done by
including a regularization parameter �. The problem

(K2 + �I)g� = Kf

approximates the initial Fredholm equation. The solution g� is called Tikhonov
approximation to K�1f . This method is described in some details by Groetsch
(1993, p.84). Tikhonov's method has a nice variational interpretation. Indeed,
the solution of

min
g
kKg � fk2 + � kgk2

is (K2 + �I)
�1
Kf . So that the presence of � penalizes large values of kgk2. Let

f = (f1; f2; :::; fq)
0 and � =

�
�1; �2; :::; �q

�0
. The square root of the generalized

inverse of K is

�
K�
T

��1=2
f =

TX
j=1

p
�jq

�2j + �

�
f; �j

�
�j =

TX
j=1

p
�jq

�2j + �

(
kX
i=1

�
fi; �ji

�
�ji

)

for f in the reproducing kernel Hilbert space associated to K: Clearly, the so-
lution g� should converge to K�1f when � goes to zero, but for � close to zero,
the solution becomes instable. There is a trade-o� between the accuracy of the
solution and its stability. Therefore, the right choice of � is crucial.
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6.3. Choice of the regularization parameter �

The choice of the regularization parameter � is delicate. From the simulations,
it appears that �̂ is not very sensitive to the choice of �. However, � plays
a determinant role in the estimation of the variance that enters in the Wald

test. � must converge to zero to guarantee the convergence of
�
K�
T

��1=2
f to

K�1=2f , but it should not converge to zero too fast to guarantee the stability
of the solution. The theoretical result requires T�3 ! 1 as T goes to in�nity.
But this is not very informative on how to choose �: A satisfying choice of �
should be based on the data. Several approaches are present in the literature, see
Groetsch (1993, p.84). We will describe one of these methods: the discrepancy
principle which basically a method of cross-validation. This method has been
developed to improve the estimation of the solution of a Fredholm equation of
the �rst kind and was not meant to be used in testing. The strategy is the
following. Assume that one wants to solve the following equation: K�1=2g�T = fT
where kfT � fk = O( 1p

T
): First assume K known. The idea of the discrepancy

principle is to choose the regularization parameter so that the size of the residual
d(�) =




K1=2
�
K��1=2fT

�
� fT




 is the same as the error level 1p
T
: In our case, K

is not known but estimated by KT . Therefore, the problem is

K
�1=2
T g�T = fT :

Assume that k fT�f k� ap
T
, where a is some scalar and that k K1=2

T g�K1=2g k2�k
g k2 hT where hT is some constant, c, times T , and k g k2� D. Then, the
discrepancy method consists in choosing � such that

k K1=2
T g�T � fT k2= �2

where �2 = (cD + a) =T . In consequence, the approximation error is chosen to

be equal to the error level in the data. Indeed k K1=2
T g�T � fT k2 is decreasing in

�, therefore if kfTk � ap
T
, the problem above has always a solution. Moreover, it

can be shown that the resulting g
�(T )
T converges to K�1=2f as T goes to in�nity, in

(L2)k-norm. The proof is similar to that proposed by Groetsch (1993, p.90). For
a detailed discussion of the choice of � in the case of inexact data, read Morozov
(1984, p.53). To implement the test WGMM ; �rst we need to choose a function fT
and a constant c and then select � so that d(�) = �2. fT can not be chosen equal
to h because h belongs to the kernel of K:A better choice is @�h

@�
but this is a matrix

as soon as the dimension of � is greater than 1. One could choose a component

13



@�h
@�j
:Finally, it is worth to notice that the rate of � obtained by setting d(�) = �2

may di�er from the rate stated in Section 3. This last rate is a su�cient condition
and not a necessary and su�cient condition.

7. Application to mixture of distributions

7.1. The model

Assume one observes i.i.d realizations of durations T and exogenous variables Z:
Let T0 be a latent duration and " an unmeasured person-speci�c heterogeneity
such that for an individual i, one observes

Ti = exp (� 0Zi + "i)T0i (7.1)

where "i and T0i are assumed to be independent. Lancaster's book (1990) gives
many examples of (7.1). Timay be for instance the unemployment spell. Taking
the logarithm, we have the regression

lnTi = �0Zi + "i + lnT0i: (7.2)

Models of this type have been more often speci�ed in terms of hazard than in terms
of regression (Lancaster, p.219). While (7.2) gives rise to a convolution problem,
speci�cation in terms of hazard gives rise to a mixture problem. Estimation
by maximum likelihood where the mixing distribution is integrated out can be
performed using the EM algorithm (Lancaster, Chapter 8).

Assume that " � iidN (0; �) and T0 � Gamma (�) : Denote � = lnT0 and
� = (� 0; �; �)0 : Since " and � are independent, we have

 X =  " �  �:

Moreover, we have

 " = e��
2t2=2

=  R" + i I"

and
 � =  R� + i I�:

Let X = "+ �:The characteristic function of X is given by:

Re ( X) �  RX =  R" R� �  I" I�
Im ( X) �  IX =  I" R� +  R" I�:
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The conditional characteristic function of lnTi given Zi has for real and imaginary
parts

Re ( lnT ) = cos (t�0Z) RX � sin (t� 0Z) IX ;

Im ( lnT ) = cos (t�0Z) IX + sin (t� 0Z) RX :

7.2. The method

We pick as instrument a function m (Z) which choice is dictated by identi�ability
consideration. We could choose m (Z) = Z; for instance. The moment conditions
are given by h = (h1; h2)

0 with

h1 (t; Xj; �) = [cos (tXj)� Re ( lnT (t; �))]m (Z) ;

h2 (t; Xj; �) = [sin (tXj)� Im ( lnT (t; �))]m (Z) :

In the following, we will assume Z and � scalar.
First step estimator:
The �rst step estimator is given by

�̂
1

n = argmin
�
khkL2(�) = argmin

�

Z �
�h1 (t; �)

�2
� (dt) +

Z �
�h2 (t; �)

�2
� (dt) :

where �hi (t; �) =
1
n

Pn
j=1 hi (t; Xj; �), i = 1; 2:

Estimation of the covariance:
The kernel can be estimated by

k̂(�1; �2) =

 
1
T

PT
t=1

~h1 (�1) ~h1 (�2)
1
T

PT
t=1

~h1 (�1) ~h2 (�2)
1
T

PT
t=1

~h2 (�1) ~h1 (�2)
1
T

PT
t=1

~h2 (�1) ~h2 (�2)

!

where ~h = h � �h. We chose to center h because this reduces importantly the
sensitivity of the test to the serial correlation. It does not change anything from a
theoretical point of view. By the method described in Section 4, one can get esti-

mators of the eigenfunctions � =

 
�1
�2

!
and the eigenvalues. The eigenfunctions

are 2-dimensional vectors of functions. In the following, we shall denote

kf1k2K1
=
X
j

�j
�2j + �

�
f1; �1j

�2

for any f1 in L
2 [0; 1] such that the sum above converges. Symmetrically, we de�ne
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kf2k2K2
=
X
j

�j
�2j + �

�
f2; �2j

�2

for any f2 in L
2 [0; 1] such that the sum above converges. Let

(f1; f2)K12
=
X
j

�j
�2j + �

�
f1; �1j

� �
f2; �2j

�

These notations may lead to think of K1 as an operator with eigenfunctions
�1j and eigenvalues �j and similarly for K2: Note however that while

n
�j
o
j
=( 

�1j
�2j

!)
j

have been constructed to be orthonormal, the sequences
n
�1j
o
j
and

n
�2j
o
j
will not be orthonormal. Let f =

 
f1
f2

!
: The inner product in our space

will be de�ned by �
f; �j

�
=
�
f1; �1j

�
+
�
f2; �2j

�

kfkK =
P
j

�j
�2j+�

n�
f1; �1j

�
+
�
f2; �2j

�o2
= kf1k2K1

+ kf2k2K2
+ 2 (f1; f2)K12

Second step estimator:

�̂ minimizes



�h


2

K
=






 h1h2






2

K

: This minimization does not a closed-form solu-

tion, an optimization procedure needs to be used.

7.3. Monte Carlo experiment

Next we want to perform simulations to assess the small sample performance of
our estimators. To be completed.

8. Conclusion

We showed how to apply GMM to construct e�cient estimation based on the
characteristic function. We illustrated our method on a model of duration of stay
in a state. This type of models is frequently encountered in microeconometrics.
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However, the use of the characteristic function is not restricted to a cross-section
setting and has received recently an increasing interest in �nance. While the
likelihood of a asset pricing model is not easily tractable, its CCF has a closed-form
solution and o�ers a way to estimate the parameters (Singleton, 1999). Moreover,
a subordinated or stochastic volatility model can be interpreted as a mixture
(Mandelbrot, 1973). We will consider the estimation of stochastic volatility models
using GMM in another paper (Carrasco, Chernov, Florens, and Ghysels 2000).
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9. Appendix

Let X be a random element (r.e.) de�ned on a complete probability space
(
;F ; P0) that takes its values in (S;S). Let H be an Hilbert space with the
inner product (.,.) that de�nes a norm k : k.

Assumption 1: The observed data fx1; :::; xng are independent realizations
of the stochastic process X.

Assumption 2: Let h be a function on S�� that takes its values in H where
� is a compact subset of IRq: h is a continuous function of �.

Assumption 3: h is integrable with respect to F�0 for any � and the equation

E�0(h(X; �)) = 0

has a unique solution �0 which is an interior point of �.
Assumption 4: E�0 (h(X; �)) 2 H(K) +H(K)? for any � 2 �.
Assumption 5: Let N(K�1=2) denote the null space of K�1=2; N(K�1=2) =n

f 2 HjK�1=2f = 0
o
. We assume that E�0(h(X; �)) 2 N(K�1=2) impliesE�0(h(X; �)) =

0.

Assumption 6: h(x; �) is di�erentiable with respect to � = (�1; :::; �q) and

E�0
�
@h(X;�)
@�j

�
= @

@�j
E�0 (h (X; �)) 2 D(K�1) for any � 2 �.

Moreover the matrix
�
K�1=2E�0

h
@h
@�0 (X; �)

i
; K�1=2E�0

h
@h
@�0 (X; �)

i�
is positive

de�nite and symmetric.

Assumption 7: The inner product satis�es the following di�erentiation rule

@

@�0
(u(�); v(�)) =

 
@

@�0
u(�); v(�)

!
+

 
u(�);

@

@�0
v(�)

!

Assumption 8:
p
nhn(�0) converges in law to Y as n goes to in�nity, where

Y � N (0; K) in L2 (�).

Assumption 9: The covariance kernel k(t; s) is an L2 kernel.

Assumption 10: E khk4 <1:

Assumption 11:



�hn (�)� E�0h (�)




 = Op

�
1p
n

�
uniformly in � on �:


@�hn

@�
(�)� E�0 @h

@�
(�)



 = Op

�
1p
n

�
uniformly in � on �.
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