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Abstract

We consider the sources of forecast errors and their consequences in an evolving economy sub-
ject to structural breaks,forecasting from mis-specified, data-based models. A model-free taxonomy
of forecast errors highlights that deterministic shifts are a major cause of systematic forecast failure.
Other sources seem to pose fewer problems. The taxonomy embeds several previous model-based
taxonomies for VARs, VECMs, and multi-step estimators, and reveals the stringent requirements
that rationality assumptions impose on economic agents.

1 Introduction

Economies regularly undergo institutional, political, financial, and technological changes. Recent ex-
amples include the abolition of exchange controls, financial liberalization, the European Union, and
privatization. Such changes induce non-stationarities in data processes, and when relatively sudden, can
manifest themselves as structural breaks in econometric models, leading to forecast failure, defined as
a significant deterioration in forecast performance relative to the anticipated outcome. Empirical ex-
amples of serious forecast failure in the UK include missing the stagflation of the 1970s, the consumer
boom of the mid 1980s, and the depth of the recession in the early 1990s.

Econometric forecasting models comprise three main components: deterministic terms (e.g., for
intercepts and trends), with known future values; observed stochastic variables with unknown future
values; and unobserved errors all of whose values (past, present and future) are unknown, though per-
haps estimable in the context of a model. Any of these components, or the relationships between them,
could be inappropriately formulated, inaccurately estimated, or change in unanticipated ways. All nine
types of mistakecould induce poor forecast performance, either from inaccurate (i.e., biased), or im-
precise (i.e., high variance) forecasts. but Clements and Hendry (1998a, 1999a) find that some mistakes
have pernicious effects on forecasts, whereas others are relatively less important. Their theory provides
a basis for interpreting, and potentially circumventing, systematic forecast failure in economics, and
reveals that many of the conclusions established for correctly-specified forecasting models of constant-
parameter processes no longer hold. No forecasting methods fare well when unanticipated breaks occur
after forecasts are announced, and absent pre-cognition, no such methods seem possible. However, real-
time forecasts are eventually made after breaks have occurred, and then some methods are more robust
than others.

Since forecast failure has often occurred, to be relevant for economic forecasting, a theory must
commence from non-stationary data generation processes (DGPs), specifically, mechanisms that are not
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reducible to stationarity after differencing, cointegration, and possibly co-breaking, transforms. While
Clements and Hendry (1998a, 1999a) allow for a non-stationary economy, measured by inaccurate data,
using forecasting models which are mis-specified in unknown ways, and possibly incorrectly selected
and estimated, the bulk of their analysis is in the context of vector autoregressions (VARs) and vec-
tor equilibrium-correction models (VECMs) subject to structural breaks. Here we consider the generic
sources of error that might be detrimental to the forecasting enterprise, in terms of both their sources and
likely impacts, by deriving a general taxonomy of forecast errors. This embeds several previous model-
based taxonomies for VARs, VECMs, and multi-step estimators: simulation results and an empirical
example are provided in Hendry (1999) and Clements and Hendry (1998b) respectively. To make the
analysis more operational, we relate it to taxonomies for a VECM and VARs in first and second differ-
ences (DV and DDV respectively: see Clements and Hendry, 1995), focusing on forecast-error biases
and variances. The last two models are more robust to breaks, but we note some ‘tricks’ that can mimic
much of that benefit in a VECM. We also briefly discuss whether other mistakes in modelling could
account for forecast failure, especially the impact of data-based selection.

In addition, the taxonomy reveals the stringent requirements that rationality assumptions impose on
economic agents seeking to anticipate future outcomes in such a non-stationary environment. Agents
must not only know all the relevant information, but also how every item of information enters the
joint data density at every point in time – including the future – when many of the events involved
are unanticipatable. Indeed, when a model differs from a non-constant generating mechanism, the basic
theorem that forecasting based on causal variables will dominate that using non-causal cannot be proved:
see Clements and Hendry (1998a). As it is unwise to use model-based expectations, when models are
manifestly mis-specified, ‘sensible’ agents might learn that they cannot form expectations any better
than the best ‘robust forecasting rules’.

The structure of the paper is as follows. Section 2 describes the sources of forecast failure, and
presents a model-free taxonomy of forecast errors in section 3. This is fleshed out for a VAR in section
4. Section 5 compares its implications for the forecast-error biases and variances of a VECM, DV and
DDV. As one of the implications of the taxonomy, section 6 reviews the detectability of breaks. Section
7 notes the possible effects of data-based selection, and the use of forecast performance to select models.
Section 8 considers approaches to modelling or removing deterministic shifts. Finally, section 9 draws
some implications for models of expectations formations, and section 10 concludes.

2 Sources of forecast failure

The possible sources of mistakes that can induce multi-step forecast errors from econometric models
of possibly cointegratedI(1) processes can be delineated in a formal taxonomy. This highlights which
sources induce forecast-error biases, and which have variance effects. The framework comprises:

(1) a forecasting model formulated in accordance with some theoretical notions,
(2) selected by some empirical criteria,
(3) but mis-specified (to an unknown extent) for the DGP,
(4) with parameters estimated (possibly inconsistently),
(5) from (probably inaccurate) observations,
(6) which are generated by an integrated-cointegrated process,
(7) subject to intermittent structural breaks.

Such assumptions more closely mimic the empirical setting than those often underlying investigations of
economic forecasting, and we explored this framework in detail in Clements and Hendry (1998a, 1999a).
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The resulting forecast-error taxonomy includes a source for the effects of each of 2.–7., partitioned
(where appropriate) for deterministic and stochastic influences: see 3.

Our analysis utilizes the concepts of a DGP and a model thereof, and attributes the major problems
of forecasting to structural breaks in the model relative to the DGP. Between the actual DGP and the
empirical forecasting model, there lies a ‘local DGP of the variables being modelled’, denoted the
LDGP: see Bontemps and Mizon (1996). Using a VECM as the DGP in a two-tier system (say) entails
that the VECM is the LDGP in the three-tier stratification. Changes in growth rates or equilibrium
means in the VECM could be viewed as resulting from a failure to model the forces operative at the
level of the DGP. The correspondence between the LDGP and DGP is assumed to be close enough
to sustain an analysis of forecasting, checked by what happens in practice (via empirical illustrations,
where the outcomes depend on the actual, but unknown, mapping between the forecasting model and
the economy). We first formalize the DGP and the forecasting models, then record the taxonomy of
forecast errors, before focusing on the biases and variances of the various models.

3 A general forecast-error taxonomy

Consider a vector ofn stochastic variables{xt}, where the joint density ofxt at time t is
Dxt [xt|X1

t−1,qt], conditional on informationX1
t−1 = (x1 . . .xt−1) available at the time, when

qt denotes the relevant deterministic factors (such as intercepts, trends, and indicators). Because the
underlying densities may be changing over time, all expectations operators must be time dated. It is de-
sired to forecast a function ofxT+h, such as itself, or perhaps the non-integrated components (denoted
{yT+h} below) over forecast horizonsh = 1, . . . ,H, from a forecast origin atT . A dynamic model
Mxt [xt|Xt−s

t−1, q̃t,θt], with deterministic terms̃qt, lag lengths, and implicit stochastic specification
defined by its parametersθt, is fitted over the samplet = 1, . . . , T to produce a forecast sequence
{x̂T+h|T }. Parameter estimates are a function of the observables, represented by:

θ̂T = fT
(
X̃1

T , Q̃1
T

)
, (1)

whereX̃ denotes the measured data. The subscript onθ̂ in (1) represents the influence of sample size,
whereas that onθt in Mxt [·] denotes that the derived parameters may alter over time (perhaps reflected
in changed estimates). Letθe,T = ET [θ̂T ] (where that exists).

Since future values of the deterministic terms are known, but those of stochastic variables are un-
known:

x̂T+h|T = gh

(
X̃T−s+1

T , q̃T+h, θ̂T

)
. (2)

In (2), X̃T−s+1
T enters up to the forecast origin, which might be less well measured than earlier data: see

e.g., Wallis (1993).1 Forecast accuracy is to be judged by a criterion functionC
(
eT+1|T . . . eT+H|T

)
,

which we take to depend only on the forecast errorseT+h|T = xT+h − x̂T+h|T , where ‘smaller’ values
of C (·) are preferable. Because the model will generally be a mis-specified representation of the LDGP,
a different expectations operator,E [·], is used to denote expectations based on the estimated model, so
that:

ET

[
xT+h | X̃T−s+1

T , q̃T+h, θ̂T

]
= ET+h

[
x̂T+h|T | X̃T−s+1

T , q̃T+h, θ̂T

]
. (3)

It is easiest to understand (3) by a Monte Carlo analogy: using (2), the average forecast value that results
is given by the right-hand side of (3). Thus,ET [·] denotes the mean forecast forxT+h from the model

1The dependence ofbθT on the forecast origin is ignored below.
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usingθ̂T estimated overt = 1, . . . , T . The expected forecast error that eventuate is, however:

ET+h

[
eT+h|T | X1

T , {Q∗}1
T+h

]
= ET+h

[(
xT+h − x̂T+h|T

) | X1
T , {Q∗}1

T+h

]
(4)

where the actual values of the deterministic factors over the forecast period (incorporating any determ-
inistic shifts), are denoted by{Q∗}T+1

T+h and[Q1
T , {Q∗}T+1

T+h] = {Q∗}1
T+h.

Equation (4) is the expression of central importance to our explanation of forecast failure. Let:

εT+h|T = xT+h − ET+h

[
xT+h | X1

T , {Q∗}1
T+h

]
, (5)

be theh-steps ahead LDGP forecast error from an origin atT . By construction,ET+h[εT+h|T |X1
T , {Q∗}1

T+h] =
0, so εT+h|T is an innovation against all available information. Indeed, under ‘rational expecta-
tions’, εT+h|T in (5) is precisely the forecast error that would resultex post. However, even for
correctly-observed sample data – assumed hereafter – so thatX̃1

T−s = X1
T−s, it is not the case that

ET+h[eT+h|T |X1
T , {Q∗}1

T+h] 6= 0 in general, as we now show.

The forecast erroreT+h|T = xT+h − x̂T+h|T from the modelMT [xT+h|X̃T−s+1
T , q̃T+h, θ̂T ] can be

decomposed as:(
ET+h

[
xT+h | X1

T , {Q∗}1
T+h

]
− ET+h

[
xT+h | X1

T ,Q1
T+h

])
(ia)

+
(
ET+h

[
xT+h | X1

T ,Q1
T+h

]− ET

[
xT+h | X1

T ,Q1
T+h

])
(ib)

+
(
ET

[
xT+h | X1

T ,Q1
T+h

]− ET

[
xT+h | X1

T , Q̃1
T+h

])
(iia)

+
(
ET

[
xT+h | X1

T , Q̃1
T+h

]
− ET

[
xT+h | XT−s+1

T , q̃T+h,θe,T

])
(iib)

+
(
ET

[
xT+h | XT−s+1

T , q̃T+h,θe,T

]
− ET

[
xT+h | X̃T−s+1

T , q̃T+h,θe,T

])
(iii )

+
(
ET

[
xT+h | X̃T−s+1

T , q̃T+h,θe,T

]
− x̂T+h|T

)
(iv)

+εT+h|T . (v)

(6)

The first two rows arise from structural change affecting deterministic (ia) and stochastic (ib) compon-
ents respectively; the third and fourth, (iia) and (iib), from model mis-specification decomposed by
deterministic and stochastic elements; the fifth (iii ) from forecast-origin inaccuracy; the sixth (iv) from
estimation uncertainty, and the last row from the inherent stochastic nature of economies.

When{Q∗}T+1
T+h = QT+1

T+h (so there are no deterministic shifts), then (ia) is zero; and in general, the
converse holds, that (ia) being zero entails no deterministic shifts. WhenET+h [·] = ET [·] (so there are
no stochastic breaks), (ib) is zero; but (ib) can be zero despite stochastic breaks, providing these do not
indirectly alter deterministic terms. When the deterministic terms in the model are correctly specified,
so Q1

T+h = Q̃1
T+h then (iia) is zero, and again the converse seems to hold. For correct stochastic

specification, soθe,T summarizes the effects ofX1
T , then (iib) is zero but now the converse is false – (iib)

can be zero in seriously mis-specified models. Next, when the data are accurate (especially important at
the forecast origin), sõX = X, (iii ) is zero, but the converse is not entailed. When estimated parameters
have zero variances, sôxT+h|T = ET [xT+h|·,θe,T ], then (iv) is zero, and conversely (except for events
of probability zero). Finally, (v) is zero if and only if the world is non-stochastic.

Thus, the taxonomy in (6) includes elements for the main sources of forecast error, partitioning
these by whether or not the corresponding expectation is zero. Its application to the forecast errors
from a VAR is discussed in the next section. Non-zero expectations entail systematic forecast errors,
whereas zero-expectation effects only influence higher moments. This suggests that the former will be
easier to detect than the latter, and that is the focus of section 6. If models represent an LDGP with
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no deterministic terms, then we anticipate that they will be more robust to breaks: that is the topic of
section 5, where DV and DDV models are shown to be more robust after breaks than VECMs. We return
in section 9 to consider its implications for models of expectation formation.

4 The taxonomy for a VAR

To illustrate (6) more concretely, consider a first-order vector autoregressive DGP which is stationary
in-sample (perhaps after appropriate cointegration and differencing transformations):

yT+h = φ + ΠyT+h−1 + εT+h,

with εt ∼ INn [0,Ωε] using the forecasting model:

ŷT+h = φ̂ + Π̂yT+h−1.

The unconditional mean ofyt is:

E [yt] = (In − Π)−1 φ = ϕ (7)

and hence, in deviations:
yt − ϕ = Π (yt−1 − ϕ) + εt.

Theh-step ahead forecasts at timeT for h = 1, . . . ,H can be written as:

ŷT+h − ϕ̂ = Π̂ (ŷT+h−1 − ϕ̂) = Π̂h (ŷT − ϕ̂) , (8)

whereϕ̂ = (In − Π̂)−1φ̂, and ‘∧’s denote estimates on parameters, and forecasts on random variables.
Although initial conditions are unknown in practice, we assumeE[ŷT ] = ϕ here, so that on average no
systematic bias results from data inaccuracy.

After the forecasts have been made at timeT , (φ : Π) change to(φ∗ : Π∗), whereΠ∗ still has all
its eigenvalues less than unity in absolute value, so the process remainsI(0). Then, fromT +1 onwards,
the data are generated by:

yT+h = φ∗ + Π∗yT+h−1 + εT+h

= ϕ∗ + Π∗ (yT+h−1 − ϕ∗) + εT+h

= ϕ∗ + (Π∗)h (yT − ϕ∗) +
h−1∑
i=0

εT+h−i,

so both the slope and the intercept alter. Letε̂T+h|T = yT+h−ŷT+h|T , then the forecast-error taxonomy
becomes (the matricesCh andFh are complicated functions of the whole-sample data, the method of
estimation, and the forecast-horizon – see e.g., Calzolari, 1981 –(·)ν denotes column vectoring, and the
subscriptp denotes a plim):



6

VAR forecast-error taxonomy

ε̂T+h|T '
(
In − (Π∗)h

)
(ϕ∗ − ϕ) (ia) equilibrium-mean change

+
(
(Π∗)h − Πh

)
(yT − ϕ) (ib) slope change

+
(
In − Πh

p

) (
ϕ − ϕp

)
(iia) equilibrium-mean mis-specification

+
(
Πh −Πh

p

)
(yT − ϕ) (iib) slope mis-specification

− (Πh
p + Ch

)
(yT − ŷT ) (iii ) forecast-origin uncertainty

− (In − Πh
p

)
(ϕ̂ − ϕ) (iva) equilibrium-mean estimation

−Fh

(
Π̂ − Π

)ν
(ivb) slope estimation

+
h−1∑
i=0

(Π∗)i εT+h−i (v) error accumulation.

(9)

In (9), terms involvingyT − ϕ have zero expectations even under changed parameters (e.g., (ib) and
(iib)). Moreover, for symmetrically-distributed shocks, biases inΠ̂ for Π will not induce biased fore-
casts (see e.g., Clements and Hendry, 1998a), and theεT+h have zero means by construction. Con-
sequently, the primary sources of systematic forecast failure are (ia), (iia), (iii ), and (iva). However,
on ex postevaluation, (iii ) will be removed, and in congruent models with freely-estimated intercepts,
(iia) and (iva) will be zero on average. That leaves (ia) as the primary source. We now consider these
implications in more detail, commencing with mean effects, then turn to variance components.

4.1 Mean effects

The key effect derives from changes to the ‘equilibrium mean’ϕ (not necessarily the interceptφ
in a model, as seen in (9)), namely the unconditional expectationE[yt] (where that exists) of the
non-integrated components of the vector of variables under analysis. Consequently,ET+h [yT+h] −
ET [yT+h] is the major determinant of systematic forecast failure. In non-stationary dynamic pro-
cesses, where unconditional expectations may not be defined, this expression can be generalized to
ET+h [xT+h|XT ] − ET [xT+h|XT ] whereXT denotes observations up to and including the forecast
origin.

The admissible deductions on observing either the presence or absence of forecast failure are rather
stark, particularly for general methodologies which believe that forecasts are the appropriate way to
judge empirical models. In this setting of structural change in deterministic components, there may
exist non-causal models (i.e., models none of whose ‘explanatory’ variables enter the DGP) that do not
suffer forecast failure, and indeed may forecast absolutely more accurately on reasonable measures, than
previously congruent, theory-based, efficiently-estimated econometric models: example are provided
in Hendry (1997), Clements and Hendry (1999a) and section 5. Consequently, even relative success
or failure is not a reliable basis for selecting between models – other than for forecasting purposes.
Conversely, a model that suffers severe forecast failure may nonetheless have constant parameters on
ex postre-estimation: apparent failure on forecasting need have no implications for the goodness of a
model, or its theoretical underpinnings, as it may arise from incorrect data, that are later corrected (see
the concept of extended constancy in Hendry, 1996).

Mis-specification of zero-mean stochastic components is unlikely to be a major source of forecast
failure, but stochastic mis-specification could involve deterministic mis-specification, which might in-
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teract with deterministic breaks elsewhere in the economy, and thereby precipitate failure. Equally,
the false inclusion of variables which experience equilibrium-mean shifts could have a marked im-
pact on forecast failure: the model mean would shift although the data mean did not, thereby changing
ET [yT+h], whenET+h [yT+h] was unaltered. Finally, forecast-origin mis-measurement can also be per-
nicious, as an incorrect starting level is ‘carried forward’ in dynamic models – hence most forecasting
agencies carefully appraise the latest observations for consistency with other available information.

4.2 Variance effects

Compared to the problems of the previous section, estimation uncertainty for the parameters of
stochastic variables seems a secondary problem, as such errors add variance terms ofO(1/T ) for
stationary components – andO(1/T 2) for non-stationary – for samples of sizeT . However, mis-
estimation of coefficients of deterministic terms could be deleterious to forecast accuracy when
ET+h [yT+h] − ̂ET [yT+h] is large by chance. Neither collinearity nor a lack of parsimonyper seseem
key culprits, although interacting with breaks occurring elsewhere in the economy could induce serious
problems: see Clements and Hendry (1998a).

5 Robustness to breaks

Consider ann × 1 vector of I(1) time-series variablesxt, then maintaining the concrete example of a
VECM, write the first-order dynamic linear system as:

xt = Υxt−1 + τ + vt (10)

wherevt ∼ INn [0,Ωv]. In (10), the initial valuex0 is fixed, Υ is ann × n matrix of coefficients,
andτ an n × 1 vector of intercepts. Whenxt ∼ I (1) and the cointegrating rank isr, (10) can be
reparameterized as:

∆xt = Ψxt−1 + τ + vt (11)

whereΨ = Υ − In = αβ′ andα andβ aren × r of rankr < n. Hence:

∆xt = αβ′xt−1 + τ + vt. (12)

Let α⊥, β⊥ ben × (n − r) matrices orthogonal toα, β respectively, soα′
⊥α = 0, β′

⊥β = 0 then
(10) is notI(2) if α′

⊥β⊥ has rank(n − r), which we assume, as well as sufficient restrictions to ensure
uniqueness inα⊥, β⊥, α, andβ. Let the expectation of∆xt beγ (n × 1), which defines the growth
in the system, and letE

[
β′xt

]
= µ, which isr × 1, then from (12),τ = γ − αµ (see Johansen and

Juselius, 1990), and the DGP becomes:

∆xt = γ + α
(
β′xt−1 − µ

)
+ vt. (13)

In relation to (9), the firstr yt are the cointegrating combinationsβ′xt and the remaining(n − r) are
α′

⊥∆xt. The parametersγ andµ correspond directly toϕ: thus shifts in these induce forecast failure.
Two models with some robustness to deterministic shifts are a VAR in the differences of the variables

(DV):
∆xt = γ + ξt, (14)

which is generally mis-specified by omitting any cointegrating vectors (unlessα = 0); and a DV in the
differences of the variables (DDV), defined by:

∆2xt = ζt or ∆xt = ∆xt−1 + ζt. (15)
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These models are convenient for the analytic calculations, but can be generalized in an obvious manner
to allow for longer lag structures, trends etc. in empirical work. However, (15) will rarely provide a
congruent data characterization due to ‘over-differencing’.

To illustrate in the simplest setting, consider 1-step forecasting where the in-sample parameters are
constant and of negligible variance, estimated from accurate data for the correctly-specified first-order
VECM (13) with no additional dynamics, immediately following a deterministic shift at timeT − 1, so:

∆xT−1 = γ + α
(
β′xT−2 − µ

)
+ vT−1

∆xT = γ∗ + α
(
β′xT−1 − µ∗)+ vT (16)

∆xT+1 = γ∗ + α
(
β′xT − µ∗)+ vT+1,

whereas:
∆x̂T+1|T = γ + α

(
β′xT − µ

)
.

Then the taxonomy simplifies to

eT+1|T = ∆xT+1 − ∆x̂T+1|T = (γ∗ − γ) − α (µ∗ − µ) + vT+1, (17)

with a forecast-error bias of:

ET+1

[
eT+1|T

]
= (γ∗ − γ) − α (µ∗ − µ) .

By way of contrast, consider using∆x̃T+1|T = ∆xT from (15). Here,∆xt−1 does not enter the DGP
(13), so is not a causally-relevant variable. The corresponding taxonomy for (15) from (16) is:

∆xT+1 − ∆x̃T+1|T = γ∗ + α
(
β′xT − µ∗)+ vT+1 − ∆xT

= ∆vT+1 + αβ′∆xT , (18)

with a forecast-error bias of:

ET+1

[
∆xT+1 − ∆x̃T+1|T

]
= αβ′γ∗,

which is zero unless the structural change induced a new mean in the cointegration relationships. Until
the VECM switches to estimating growth ofγ∗ and equilibrium mean ofµ∗, (15) will outperform,
despite its non-causal basis.

Clements and Hendry (1999b) demonstrate both analytically and empirically that in the face of
deterministic shifts immediately prior to a forecast horizon, (14) and (15) will outperform (13), with
the latter being best over short horizons. This behaviour is precisely what was observed by Eitrheim,
Husebø and Nymoen (1997) in their study of the forecasting performance of the Norges Bank model.
Over the longest (12 quarter) evaluation horizon, the Bank’s model performed well (using known future
values of all ‘exogenous’ variables), followed by a DV modelled to be congruent: the equivalent of the
DDV did worst. But over a sequence of three4-period divisions of the same evaluation data, which
creates more forecasts after breaks, the DDV did best more often than any other method.

Since forecast failure regularly occurs, we infer that deterministic shifts must do so as well. Thus,
models related to (15), namely ones that are highly adaptive, will perform successfully in forecasting
competitions, as seems to be the case empirically: see e.g., Makridakis (1982), Fildes (1992), and
Allen and Fildes (1998). Moreover, intercept corrections that ‘set a model back on track’ correspond to
imposing an additional unit root over the forecast horizon, helping explain why such devices enhance
forecast performance: see Turner (1990), Clements and Hendry (1998a), and section 8.1.
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6 The detectability of structural breaks

The taxonomies in (6) and (9) also highlight the relative ease and difficulty with which different kinds
of structural breaks can be detected. WithI(1) data generated from a cointegrated VAR, the detectability
of a change is not well reflected by the original VAR parameterization. Apparently-large shifts in both
the VAR intercept,φ, and dynamic coefficient matrix,Π, need not be detectable, so long asϕ remains
constant; whereas seemingly-small changes can have a substantial, and easily detected, effect: see
Hendry (1999). The VECM parameterization clarifies this outcome: shifts in the equilibrium-mean,ϕ,
are readily detectable, whereas mean-zero shifts are not. Thus, the implicit variation-free assumptions
about parameters are crucial in a world of structural shifts. The ease of detecting changes in equilibrium-
means reflects their perniciousness in forecasting; whereas the difficulty of detecting other changes has
consequential benefits of robustness in forecasting but drawbacks of non-detection in modelling.

To highlight the detectability of different breaks, we report a Monte Carlo simulation of a bivariate
VECM: the experiment is implemented in Ox byPcNaivefor Windows (see Doornik, 1996, and Doornik
and Hendry, 1998). The data are generated by:

∆x1,t = γ1 + α1 (x1,t−1 − x2,t−1 − µ) + ε1,t

∆x2,t = γ2 + α2 (x1,t−1 − x2,t−1 − µ) + ε2,t (19)

whereεi,t ∼IN[0, σii], with E[ε1,tε2,s] = 0 ∀t, s. Four groups of experiments established the size of the
test (when (19) is constant); the impacts of breaks inα1 andα2; breaks in the long-run mean (µ1); and
breaks in the growth rates (γ1 andγ2). Four sample sizes were considered:T = 24, 60, 100, and200
(denoted a, b, c, d on graphs), with breaks at0.5T , reverting to the original parameter values at0.75T .
Rejection frequencies at 1% nominal test sizes were recorded for 500 replications (standard errors of
about 0.004). A knownbreak point was assumed as this delivers the highest possible power for the test
used – given that the aim is to check on low power – but results in the neighbourhood of the breaks are
also shown. An unrestricted first-order VAR with intercept was estimated and tested.

The baseline experiment setα1 = −0.1 andα2 = 0.1, both changed by+0.05 (or 5
√

σ11). Also,
µ = 1 (changed by+0.3, soα1µ changed by3

√
σ11). Settingβ′ = (1 : −1) enforcedγ1 = γ2, set

equal to
√

σii = 0.01 (roughly 4% p.a. growth for quarterly data, changed to0.02). The experiments
are reported graphically, each panel showing all four sample-size outcomes for a given case; common
random numbers were used to control inter-experiment variation. The start date of a break is shown by
a vertical dotted line, and the end by a vertical dashed line: the design is such that all breaks end for a
given sample size before the first one starts in the next larger sample.

As fig. 1 (first panel) reveals, the actual and nominal sizes are close: the approximate 95% confid-
ence interval is (0.002, 0.018), shown on the graph as a dashed line. Few null rejection frequencies lie
outside those bounds once the sample size exceeds 60, but there is some over-rejection at the smallest
sample sizes, though never above 3%. These outcomes are not sufficiently discrepant to markedly affect
the outcomes of the ‘power’ comparisons below.

The top-right panel demonstrates that a change in the coefficient of a zero-mean disequilibrium is
not readily detectable: the powers are so low, do not increase with sample size, and barely reflect any
breaks, that one might question whether the Monte Carlo was correctly implemented – be assured it was.
This lack of detectability was predicted by the analysis above, by that in Clements and Hendry (1994),
and was found in a different setting by Hendry and Doornik (1997), so is not likely to be spurious. This
is despite the fact that both the dynamics and the intercepts shift considerably in the VAR representation:

xt = γ − αµ + αβ′xt−1 + εt = τ + Γxt−1 + εt,
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Figure 1 Constancy-test rejection frequencies in a cointegrated VAR.

from:

Γ =

(
0.9 0.1
0.1 0.9

)
; τ =

(
0.11

−0.09

)
(20)

to (using∗ to denote the post-first-break value):

Γ∗ =

(
0.85 0.15
0.15 0.85

)
; τ ∗ =

(
0.16

−0.14

)
(21)

yet the data hardly alter. Moreover, increasing the sizes of theαi, and the shifts in them, does not greatly
improve detectability: this also remains true when a VECM is used, imposing the known cointegrating
vector. Even settingα∗

1 = α∗
2 = 0, so that cointegration vanishes and the DGP becomes a VAR in first

differences, does not deliver high power (less than 30%) although the re-instatement of cointegration is
more detectable (without cointegration, thexs have drifted apart, so re-imposition has a marked effect).
Raising the size to 5% raises the power correspondingly, and hence is of no help.

The contrasting ease of detecting breaks inµ is stark, even at small sample sizes, as the lower-left
panel shows. Because the relative positions of the breaks are fixed, the power only increases slowly as
T grows: as with shifts in dynamics, larger samples do not ensure higher powers for detecting breaks.
To emphasize the determinants of detectability, the corresponding VAR has the sameΓ as (20), constant
throughout, but:

τ =

(
0.11

−0.09

)
changes toτ ∗ =

(
0.14

−0.12

)
. (22)

Without the underlying taxonomy to explain this outcome, it might seem astonishing that (22) can cause
massive forecast failure, yet the shift in (21) is almost completely undetectable.
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Finally, doubling the growth rate – a dramatic change in real growth – is again almost undetectable
on these tests at smallT , but becomes increasingly easy to discern as the sample size grows: see the
lower-right panel. Since the data exhibit a broken trend, but the model does not, larger samples with
the same relative break-points induce effects of a larger magnitude. Thus, the type of structural break
affects whether larger samples help. The model formulation also matters: if a VECM is used, the first
growth break shows up much more strongly, as the shift inγ is isolated, whereas the VAR ‘bundles’ it
with γ − αµ, where the second component can camouflage the shift (VAR estimates ofγ − αµ have
large standard errors in anI(1) representation, whereas estimates ofγ are usually precise). Even so, a
large growth-rate change has a surprisingly small effect even atT = 200.

Hendry (1999) shows that pure changes inβ to β∗, whereE
[
(β∗)′ xt − µ∗] = 0 maintains the

disequilibrium mean at zero, andβ′γ = 0 both before and after the shift, are also surprisingly hard to
detect. In practice, the relevant shift inµ would be unknown, so an induced mean-shift would occur,
making detection easy. Also, since the process drifts, power should rise quickly as the sample size
grows.

With I(1) data from a cointegrated VAR, the detectability of a change is not well reflected by the ori-
ginal VAR parameterization. Apparently-large shifts in both the VAR intercept and dynamic coefficient
matrix need not be detectable, whereas seemingly-small changes can have an easily-detected effect.
Thus, variation-free assumptions about parameters are crucial in a world of structural shifts. Other tests,
including monitoring and variance-change tests, might deliver higher powers for some of these cases,
but overall, the results suggest a focus on mean shifts to detect changes of concern to economic fore-
casting. The graphs in 2 of one sample atT = 200 from each of these four cases is telling: hardly any
movement occurs for a change in the dynamics, but the mean shift is blatant, and the change in growth
can be seen.
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Figure 2 Four data samples from a cointegrated VAR.
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7 Selecting models by forecast accuracy

A statistical forecasting system is one having no economic-theory basis, in contrast to econometric
models for which economic theory is the hallmark.2 Since the former systems rarely have implications
for economic-policy analysis – and may not even entail links between target variables and policy instru-
ments – being the ‘best’ available forecasting device is insufficient to ensure its value for policy analysis.
Consequently, the main issue is the converse: does the existence of a dominating forecasting procedure
invalidate the use of an econometric model for policy? Since forecast failure often results from factors
unrelated to the policy change in question, an econometric model may continue to characterize the re-
sponses of the economy to a policy, despite its forecast inaccuracy. Further, when policy changes are
implemented, forecasts from a statistical model may be improved by combining them with the predicted
policy responses from an econometric model. Thus, forecasting models should remain distinct from
policy models, as explained by Hendry and Mizon (1999).

The rationale for this analysis follows from the taxonomy of forecast errors in section 3 which re-
corded that deterministic shifts were the primary source of systematic forecast failure in econometric
models. Devices like intercept corrections can robustify forecasting models against breaks which have
occurred prior to forecasting (see e.g., Clements and Hendry, 1996a, and Hendry and Clements, 1999).
While such ‘tricks’ may mitigate forecast failure, the policy-analysis implications of the resulting mod-
els are neither more nor less useful than those of the failed counterparts. Conversely, post-forecasting
policy changes will induce breaks in models that did not embody the relevant policy links, whereas
econometric systems need not experience that policy-regime shift. Consequently, when both structural
breaks and regime shifts occur, neither class of model alone is adequate: this suggests that they should
be combined, and Hendry and Mizon (1999) propose, and empirically illustrate, one approach to doing
so.

8 Modelling shifts

Modelling and/or offsetting changes in deterministic terms is manifestly important. To allow forex ante
breaks needs foresight from some extra-model source (such as judgement, or early-warning signals).
Unfortunately, we do not yet know how to predict when economic ‘meteors’ will strike, and can but
advise on what to do after they have hit. Recurrence of shifts would allow models of their behavior, as in
regime-shifting equations, though there are other possibilities, such as the approach in Engle and Smith
(1998). Improved ntercept corrections may be possible: Clements and Hendry (1998c) and section 8.1
discuss some ideas.

Regime-shifting models, such as Markov-switching autoregressions, as in Hamilton (1989, 1993),
or self-exciting threshold autoregressive models, as in Tong (1978), seek to model changes by including
stochastic and deterministic shifts in their probability structure. By separately modelling expansionary
and contractionary phases of business cycles, say, an implicit assumption is that the shifts are regular
enough to be modelled. In practice, the forecasting superiority of such approaches is controversial:
conditional on being in a particular regime, these models may yield gains (see, e.g., Tiao and Tsay,
1994, and Clements and Smith, 1999), but unconditionally there is often little improvement over linear
models on criteria such asMSFE (see, e.g., Pesaran and Potter, 1997, and Clements and Krolzig, 1998).
However, they may be favoured on qualitative measures of forecast performance, or by approaches that
evaluate the whole forecast density (Clements and Smith, 2000). Given the prominence of deterministic

2This section draws heavily on Hendry and Mizon (1999) and is only included for completeness.
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shifts as an explanation for forecast failure, efforts to model such shifts may yield significant rewards.

8.1 Intercept corrections

When the source of a model’s mis-specification is known, it is usually corrected, but in many set-
tings, mis-specifications are unknown, so are difficult to correct. One widely-used tool is intercept
correction (denoted IC), which sets the model ‘back on track’ to start from the actual forecast origin
xT . Hendry and Clements (1994) develop a general theory of intercept corrections, and Clements and
Hendry (1996b) show that such corrections can robustify forecasts against breaks that have happened,
but only at the cost of an increase in forecast-error variance. The form of correction envisaged in that
analysis is such that the correction alters as the forecast origin moves through the sample – the correc-
tion is always based on the error(s) made at, or immediately prior to, the forecast origin. However, those
forms of correction require a steadily-expanding information set, and can be implemented by adding an
indicator variable equal to unity from the last sample observation onwards, so that the same correction
is applied at all forecast origins. An IC will work if, immediately prior to forecasting, the model is
mis-fitting by a substantial amount, so ‘shifting’ the forecast origin towards the data will offset much of
the later mis-forecasting. To reduce the forecast-error variance, the IC can be set to unity for the last
few sample observations.

Alternatively, ICs can be based on the comparative robustness of different forecasting models to
breaks, using say the DDV forecasts to intercept correct an econometric model. Such an approach is
close to that advocated by Hendry and Mizon (1999).

9 Implications for models of expectations formation

In an economy made non-stationary by unanticipated deterministic shifts, ‘rational expectations’ as-
sumptions are stringent, since they require agents not only to know all the relevant information, but
also to know how every component enters the joint data density at each point in time, when many
of the events and their consequences cannot be easily unanticipated. ‘Rational agents’ would be
unwise to use model-based expectations, when models – including their own – are manifestly mis-
specified for a non-constant LDGP. These claims are clear from (6): the model erroreT+h|T equals
the ‘rational expectations’ errorεT+h|T if and only if every other term is zero.3 When x̂T+h|T =
ET+h[xT+h|X1

T , {Q∗}1
T+h], then indeed (6) collapses to leave onlyεT+h|T , but the required impli-

cit knowledge of recent and future deterministic and stochastic shifts is untenable. Moreover, once
{Q∗}1

T+h is replaced byQ1
T+h andET+h by ET , previous sections showed that the resulting forecasts

can be dominated by methods that use no causally-relevant variables. ‘Sensible’ agents might learn that
they cannot form expectations any better than such forecasting models, and so adopt ‘robust forecasting
rules’. Since such ‘rule’ have the property that they do not usually vary with policy changes, although
their forecasts do, they have interesting implications for the Lucas (1976) critique, discussed in the next
section..

In practice, the claim by several non-nested macro-models to embody ‘rational expectations’ is
contradictory: at most one could be correct, and at best the rest have ‘model consistent’ expectations.
But since such models are bound to be mis-specified, ‘model consistent’ expectations have no formal
basis in the processes considered here. Indeed, they seem to embody the worst of all possible features:
they are not robust to structural change, unlike robust rules, and do not coincide with how agents actually
form expectations.

3Except cancellation by fluke.
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9.1 Implications for the Lucas critique

Lucas (1976) criticized the use of estimated econometric models for policy analysis in the following
quote:

“...Given that the structure of an econometric model consists of optimal decision rules for economic
agents, and that optimal decision rules vary systematically with changes in the structure of series relevant
to the decision maker, it follows that any change in policy will systematically alter the structure of
econometric models...” Lucas [1976, p.41].

There are several questionable assumptions essential for Lucas’s assertion. First, that “optimal
decision rules vary systematically with changes in the structure of series relevant to the decision maker”
– unanticipated deterministic shifts are among the most drastic changes facing agents, yet the robust
forecasting rules described above do not alter with them. Thus, an econometric model in which variables
such as∆xt entered representing∆x̃t|t−1 would not necessarily change even when forecast failure
occurred (‘gear changes’ of the kind discussed by Flemming, 1976, shifting variables fromI(1) to I(2)
say, could induce changed forecasting rules). In fact, this is precisely the formulation discussed by
Favero and Hendry (1992), albeit on completely different grounds.

Secondly, “that any change in policy will systematically alter the structure of econometric models”
conflates regime shifts in policy, when the underlying rules are altered, and different policy-variable
values within the same regime. Provided the models embody the policy variables of relevance, changes
in their values will be correctly reflected, and changes in rules need not alter them.

The third, less obvious, assumption, is that agents can extract the “structure of series relevant to
the(m)”, and this seems untenable in precisely the type of processes consistent with intermittent forecast
failure. Thus, the critique is far from being an explanation for forecast failure, and does not entail the
implication that econometric models have no future in a world where policy rules change.

The final implicit assumption is that any changes in econometric models will have noticeable empir-
ical consequences. As we have seen, zero-mean changes are difficult to detect, and do not necessarily
disrupt forecasts. Thus, the unimportant consequences of such changes, rather than their absence, could
account for the lack of empirical evidence that the critique occurs: see Ericsson and Irons (1995). Nev-
ertheless, for policy models, such undetected changes could be hazardous: the estimated parameters
would appear to be constant, yet be mixtures across regimes, leading to inappropriate advice – in partic-
ular, Hendry (1999) shows that estimated impulse responses could have the wrong sign in VARs where
breaks are not detectable. In the context of a progressive research (i.e., from the perspective of learning),
this is unproblematic for econometric systems, since most policy changes involve deterministic shifts
(as opposed to mean-preserving spreads), hence earlier incorrect inferences will be detected rapidly.
Unfortunately, that is cold comfort to the policy maker, or the economic agents subjected to the wrong
policies.

10 Conclusion

The generalized and VECM taxonomy of forecast errors shown above, and the resulting derivations
of forecast-error biases and variances, suggest that deterministic shifts are a primary source of serious
forecast failure. The taxonomies predicted that differencing several times would be effective, when
breaks have occurred, for forecast evaluation over short horizons. The simulation results illustrated
the relative difficulties of detecting breaks in deterministic and other parameters. In a four-variable
empirical example of forecasting using a small monetary model of the UK, when there was a known
major financial innovation, Clements and Hendry (1998b) show that the theoretical results match the



15

outcomes over both pre- and post-break forecast periods for the three methods considered above, and
confirmed the effectiveness of the intercept-correction strategies they investigated. These findings are
also consistent with the results of using a large macro-econometric system as reported in Eitrheimet al.
(1997). Thus, although other forms of structural break, model mis-specification, a lack of parsimony
including failing to impose restrictions such as unit roots and cointegration, inaccurate forecast-origin
data, and inefficient estimation may all exacerbate forecast failure, we believe they play supporting
roles, as found in Hendry and Doornik (1997).

One consequence of these results is to caution against automatic adoption of a method that happens
to win a particular forecasting competition: careful analysis as to why is strongly recommended. If
a deterministic shift is suspected, or confirmed, then methods that are not robust to such a shift are
likely to have performed poorly. That would not necessarily preclude the continued use of a model that
suffered forecast failure, subject to appropriate intercept corrections being used. In the policy context
of forecasting after a structural break, where policy is then altered, Hendry and Mizon (1999) show the
benefits of using a ‘time-series’ model (such as the DDV) to intercept correct the econometric system,
when the latter is retained for policy analysis despite forecast failure.

Finally, the stringent requirements for forming ‘rational expectations’ were described, and the im-
plications noted for the Lucas critique of agents’ adopting robust forecasting methods.
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