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1. Introduction

The analysis of markets with adverse selection has attracted much attention during the last
three decades. Given the prevalence of private information in many real world settings such
as insurance, labor markets, or investor-bank relationships, this seems justified. On the other
side, it is fair to say that there exists no commonly accepted notion of competitive equilibrium
in markets with adverse selection. This holds even if we restrict attention to contributions in
the literature which, in the words of Gale (1996), emphasize the non-cooperative nature of
equilibrium?

To fix ideas, consider a labor market where workers have private information about their
productivity type. A labor contract signed between a single firm and a single worker specifies
a wage and additionally a sorting variable such as training or working hours. (The worker’s
payoff satisfies a standard sorting (or single crossing) condition in this variable.) Moreover,
assume that firms compete for workers as they constitute the long side of the market. There
exist two canonical approaches to analyze this setting. The most prominent approach is to
consider a two-stage screening game. At the first stageynimdormed agents, i.e. firms,
simultaneously offer a menu of contracts. At the second stage, workers pick an individual firm
and sign a contracétlt turns out that equilibrium contracts are unique and separating. However,
as found by Rothschild and Stiglitz (1976), an equilibrium in pure strategies may fail td exist.

A different approach is to consider a game of signaling wheréntloemed party proposes a
contract. Though contractual games of signaling have been predominantly analyzed for bilateral
monopolies, the analysis of the two-stage game in a frictionless market is ideAtiEabugh
existence is no longer an issue, signaling games are plagued with a multiplicity of equilibria.

From this brief overview of existing non-cooperative models, the following drawbacks emerge.

First, the outcome is very sensitive to the choice of the game, i.e. to the sequence of moves.

1 As we restrict ourselves to the non-cooperative strand of the literature, we refer the reader to Gale (1996) for
a list of alternative approaches.

2 The standard approach is to assume that competing firms have unlimited capacities (or vacancies). Only re-
cently, Inderst and Wambach (1999a, 1999b) have analyzed the case where capacities are constrained. We should
note that this makes no difference if workers can visit firms without costs. In contrast, if it is costly to be ra-
tioned as visiting another firm entails search costs, the non-existence problem of Rothschild and Stiglitz (1976)
disappears.

3 In response to the non-existence problem, Wilson (1977) and Riley (1979) have proposed alternative solution
concepts. These concepts can be given a game-theoretic foundation by extending the original two-stage game.
Hellwig (1987) summarizes several attempts in this direction.

4 For an overview see Kreps and Sobel (1994).

> To our knowledge, the only attempt to embed signaling games in a market enviroment with frictions is Inderst
(1999).



Hellwig (1987) notes that this discrepancy between the predictions in models of screening and
signaling presents a fundamental dilemma for applied economists. While the order in which
people move is crucial for the predictions, it may not be observable and may not even be fixed
in a given market. Second, each approach has its own serious problems. While the screening
approach suffers from the problem of non-existence, the signaling approach fails to make clear
predictions as there exist multiple equilibria with highly different outcomes. Thirdly, the picture

of africtionlessmarket which is assumed in either setting is surely an abstraction from reality.

In fact, in settings with complete information, the issue how to model decentralized markets has
been addressed in the literature on matching and search markets (see the overview in McMillan
and Rothschild (1994)).

The model presented in this paper intends to overcome all three drawbacks of the existing
approaches. Hence, we will allow for the simultaneous presence of both signaling and screen-
ing. Moreover, we explicitly introduce frictions by embedding the respective contractual games
in a matching market environment. The approach will allow to derive clear-cut results regard-
ing the equilibrium allocation (of contracts), while preserving existence. Additionally, it allows
to address issues which could not be analyzed previously such as the endogenization of the
distribution of types in the market.

To fix ideas, we stick to the picture of the labor market. We assume that each firm has a
single vacancy and that each job seeker can work for at most one firm. Moreover, we consider
a stationary environment where each moment (in discrete time) a fixed measure of potential
employers and employees appear on the market fringe and may decide to enter the market. To
simplify the analysis, we restrict attention to the case where potential employers outnumber
potential employees. This is formally equivalent to a zero-profit condition for firms and is
surely reasonable in the labor market context. In the market individuals are pairwise matched.
In a given match a party is chosen randomly to make a take-it-or-leave-it offer. Hence, if the
firm makes the proposal, we encounter a game of screening. Otherwise, the parties play a
game of signaling. If the offer is rejected, the match is dissolved and the two parties reenter
the market. Waiting to be matched anew is costly. We are mainly interested in the case where
frictions become arbitrarily small.

If we require that the market size remains bounded as frictions vanish, we can derive the
following main results of the paper. First, we show that equilibrium contracts converge to a
uniquely defined set of least-cost-separating contracts as frictions vanish. Hence, the unique-
ness result of the standard screening approach is preserved in the matching market. Secondly,
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focusing again on low frictions, we can establish existence. The key to the existence result
is that the matching market environment allows to endogenize the distribution of types in the
market. To our knowledge, the possibility that variations incheulation time of different
types are used to endogenize the distribution is new to the literature on markets with adverse
selectiorf

The rest of this paper is organized as follows. In Section 2 we introduce the model. Section
3 derives the convergence result, while Section 4 addresses existence. In Section 5 we discuss
equilibria where the stock of agents in the market grows beyond any boundary as frictions
disappear. In these equilibria the efficiency gains from a decrease in frictions are almost entirely
offset by longer waiting times for firms or low-type workers who crowd the market. Section 6
concludes with a discussion of alternative models for the contractual game in a match. Some

proofs are relegated to the appendix.
2. The Model

2.1 Players and Payoffs

The market consists of firms which have a single vacancy to fill and of potential workers who
may work for at most one firm. A worker has private information about his type denoted by a
natural numbef € I = {1, ...,Z} with finite 4 > 1. Firms assign probability.(i) > 0 to type
i€ I'with) ., u(i) = 1. Aworker and a firm can conclude a contract specifying two variables
t,y, wheret is a monetary transfer, whilg > 0 is real valued and may denote, for instance,
the number of hours worked. We abbreviate a contract by(¢,y) withc € C = R x Ry.
Denote the firm’s utility under a contractvith typei by U (i, ¢) and the utility of the worker by
V (i, c). Observe that both utilities depend on the worker's type. If a vacancy remains unfilled,
the firm’s utility is denoted by/°. Similarly, if the worker is not successful, his reservation
value is denoted by, which is assumed to be type-independent.

We make next a series of restrictions on the payoff functions. First, we restrict attention to

the case with transferable utility wheVg(i, c) = v(i,y) + t andU(i,c) = u(i,y) — t.” The

6 This seems reminiscent to results derived in the recent literature on decentralized markets with non-transferable
utility (see Burdett and Coles (1998)). The speed with which different types leave the market depends on the
acceptance behavior of their respective matching partners, which again depends on the aggregate distribution of
potential partners in the population. This mutual dependency allows for multiple equilibria. The possibility to
adjust the distribution of circulating agents has also been used in the axiomatic setting of Myerson (1995).

7 The main convergence result of this paper is generalized to the case with non-transferable utility in the working
paper version (see Inderst (1999c)).



functionso (i, -) andu(i, -) are twice continuously differentiable. Define the surplus function

s(i,y) = u(i,y) + v(i,y). We invoke the following assumptions.

(A.1) s(i,y) is strictly quasiconcavéim, _...ds(i,y)/dy < 0.
(A.2) dv(j,y)/dy > dv(i,y)/dy forall j >
(A.3) u(j,y) > u(i,y) for j > iandy > 0.8

Observe first that (A.1) admits in particular the case wh#fe ) is linear and strictly de-
creasing iny. We will frequently use this case as an example. (A.2) is standard in problems
of screening of this sort. Byv(j,y)/dy > dv(i,y)/dy for y > 0 andj > i the contractual
componeny, is a sorting variable as the worker's payoff satisfies a standard sorting condition
with respect to this variable. Finally, by (A.3) firms prefer to conclude a given contract with a
higher type.

Before illustrating (A.1)-(A.3) with two examples, consider for any tyghe program to
maximizeV (i, ¢) subject tac € C andU (i, c) > U°. By (A.1) a unique solution exists, which
is denoted by* (7).

Examples

- The Spence case: We specify(i,c) = t — y/a; andU(i,c) = a; — t for i € I, where
a; > a; > 0for j > i. Observe that the sorting variable is purely dissipative suchytiigt= 0
forall i € I. A standard example is education or some non-related training, which better types
can manage with less effort and thus less disutility.

- Working hours: Assume thagtrepresents hours of work. A high type is more eager to work,
i.e. he incurs less disutility from working additional hours, and he is also more productive
both absolutely from (A.3) and on the margin as we assume additionallyaaty) /dy >
du(i,y)/dyfor j > i.° If we assume thats(i, y) /dy > 0 aty = 0, we obtairny*(j) > y*(i) > 0

forall j > i.

Below we will consider a matching market with endogenous entry. To ensure that workers
of all types enter if frictions are low, their respective payoff must exdéédegardless of the
firms’ beliefs. The following assumption, which is particularly reasonable in the considered

context of a labor market, proves to be sufficient for this purpose.

8 In the working paper version (Inderst (1999c)) we also consider the case wihgre)/dy > dv(i,y)/dy in

(A.2) holds only almost everywhere, which admiisj, y) /dy = dv(i,y)/dy = 0 aty = 0.

9 Hence, the ranking of the marginal trade-offs between types is similar for workers and firms. In the terminology
of Beaudry and Poitevin (1993) this represents the ‘S case’, which they distinguish from the ‘RS case’ (e.g.
insurance contracts).



(A4 V(1,c (1)) > VPandV (j,c) > V(i,c)forallc e C, j > i.
2.2 Market

We consider a matching market with endogenous éhffyme runs discretely and the market
operates for an infinite number of periods. All agents discount future payoffs by a constant
discount factol) < 6 < 1. The primitives of the model are the time invariant measures of
agents newly arriving on the market fringe each period. For instance, we may suppose that each
period there is a new cohort of job applicants and firms. We denote the respective finite masses
by F° > 0 for firms and byiW°(¢) > 0 for workers of typel € 1. DenoteW® = >"._, W°(7)
andp®(i) = W°(i)/W°. Our main assumption on the primitives is that firms constitute the

longer side on the market fringe.
(A.5) FO > WO,

Technically, this assumption could be replaced by a zero-profit condition for firms as it will
imply that firms realize exactly their reservation utiliti? in the market.

In what follows, we will restrict attention to stationary markets where the measures of stocks
as well as that of agents exiting and entering are time invariant. We denote the stock of firms
by F' and that of workers of typé by W (:). The aggregate stock of workers equHls =
> ier W(i). ForW > 0 the distribution in the market is given (i) = W (i)/W. Let E* be
the measure of entering firms aid" (i) that of entering workers of type The measures of
exits are denoted b and X" ().

The matching market operates as follows. We consider an anonymous market with random
matching and a proportional matching technol&giy this case the market represents an ocean
of players who meet randomly irrespective of their type. Hence, if the market opens up, afirm’s
probability of being matched with a worker of typis equal tqu(i)m wherem = W/(F+W).
Analogously, the probability of a worker to be matched equalsm = F/(F + W). Ifa
match is formed, the two agents play a contractual game specified below. If this game leads to
the implementation of a contract, both players leave the market. Otherwise, they re-enter the

matching market.

10" In doing so we follow Gale (1987) and Peters (1992). In contrast, Rubinstein and Wolinsky (1985) take the
stocks in the market as the primitives and adjust entry flows to ensure stationarity. For more on this distinction see
Osborne and Rubinstein (1997, Chapter 7).

11 Proportional probabilities are assumed, for instance, in Rubinstein and Wolinsky (1985) and Gale (1987).
Anonymity and stationarity are standard assumptions. The impact of non-anonymity has been explored in Ru-
binstein and Wolinsky (1990).



By now it should be obvious that frictions in the market will imply delay, which should
always be costly to players. To ensure that this is indeed the case, we must assume that agents

are also impatient about realizing their outside optitns.
(A.6)U° >0,V > 0.
2.3 Contractual Games

If a match is formed, the following games are played. With probalility 1 — b < 1 the
worker is chosen to make a one-shot offer. We denote this gani&"byWe introduce the
following convention: We allow the worker to propose also the null conttaghich leads to
the immediate separation of the match. His actions are thus restricteétdtoC U {0}. For
notational convenience we further restrict attention to strategies where players randomize at
most over a countable number of actions. The mixed strategy of a single worker afig/pe
thus a distribution ovet® denoted by" (i, c). The firm may either accept or reject the offer.
Denote the acceptance probability of the firm{3y (i, c).

With probability b the firm is chosen to make an offer. We specify that the firm can offer a
menu of contracts. We restrict the menu to a finite numder ; of deterministic contracts’
It is also convenient to specify that the menu contains the null contract leading to a separation
of the match. If{c(n)},., <y denotes a single menu, we specify)) = ), while c(n) € C for
n > 0. The firm's mixed strategy represents a distributidh({c(-)}) over the set of menus
{0}yuC™. The worker may now choose a particular contractin the menu. Observe that choosing
n = 0 is equivalent to rejecting the offer. The mixed strategy of a worker of iypgeen facing
a menu{c(-)} is thus a distribution’"(i, {c(-)} ,n) over0 <n < N.

2.4 Discussion of the Modelling Assumptions

As our model constitutes a comparatively new approach to model markets with adverse selec-

tion, we should comment in more detail on the individual building blocks.

Matching market

Three elements are key to the definition of the market, which are discussed in turn.

12 Technically, (A.6) ensures that the market does not clog up over time. Alternatively, this could be ensured by
introducing a positive entry cost or some (additive) search costs.

13 In what follows, we will restrict ourselves to a characterization for low frictions where only the (adjacent)
upwards incentive compatibility constraints become important. As it is well-known, assuming tiaty) /dy?
iS nonincreasing i ensures that randomization over contractg’imloes not benefit the firm. Moreover, it is
straightforward to show that randomization over contracts end the possibility to break-up the match (i.e. the
null contractd) is not profitable even though reservation values become type-dependent.
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Frictions: We assume that agents are impatient and therefore prefer to contract immediately
instead of waiting to be matched anew. All results would continue to hold if we specified instead
that agents do not discount future payoffs but incur ‘search’ cost9) from (re-)entering the
matching market.

Matching technology: Though we specify a proportional matching technology, our results
rely only on two properties: continuity and monotonicity in the stocks of agents. In particular,
we could assume that only the ‘long” side of the market is rationed, while the “short’ side
finds a matching partner with probability one.

Flows and stocks: The primitives of our model are the potential entrants arriving at the
market fringe each period. An alternative approach would be to take the stocks in the market
as primitives and adjust entries and exits to ensure statiokaritye refer the reader to the
thorough arguments in Gale (1987) who convincingly argues in favor of the former approach.
A completely different and equally attractive setting would, however, be to consider a market
with fixed stocks which clears over time. With complete information this approach has been
pursued, for instance, by Binmore and Herrero (1988) and Gale (1987). Our arguments and

results do not necessarily extend to this setting.

Contractual games

The specification of the contractual games contains two major ingredients.

Both sides are active: By waiting sufficiently long, an agent can be sure that he will be chosen
as the proposer in some match. Allowing both sides of the market to become active is a crucial
ingredient of any matching model. Otherwise, one encounters the well-known monopoly price
paradoxon (see Diamond (1972)) which would cause the market to shut down.

Random choice and one-shot offers: In line with most contributions to the matching market
literature we specify that with a fixed probability either side may be chosen to make a one-shot
proposal. Given our motivation in the introduction, it seems moreover natural to combine the
two standard (one-shot) settings. In Section 6 we comment on alternative specifications such

as alternating offers or allowing also workers to propose menus.
2.5 Equilibria

We now derive equilibrium requirements. We first discuss the requirements for strategies in the

contractual games and turn next to equilibrium conditions for the matching market.

4 For more on this approach, see the working paper version (Inderst (1999c)).
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Contractual games

We restrict attention to symmetric and stationary strate§i€sr the signaling game"', we
denote a firm’s posterior beliefs if it observes the offday (i, c). We require that strategies
in T are sequentially optimal and that firms consistently update their beliefs. By the latter
requirement it holds that(i,c) = u(i)p" (i,¢)/[32;c; 1(5)p" (5, ¢)] in casep' (i,c) > 0
for somei € I. (Recall thatu(-) denotes the distribution of types in the market.) Similarly,
we require for the screening garhé that strategies are sequentially optimal. We summarize
strategies and beliefs fat" by o'V = (o', +", 1) and strategies fdrf by o = (p*', 7).

Given strategies for both games and both agents, we can define allocations as follows. For
'Y define for allc € C° the probabilitya' (i, ¢) = p" (i, ¢)y" (i, c). We denote the support
by BV (i). Similarly, we define fol'*" the allocations

a’’(i,c) = > PV ({e( )" (0, {e()} )

{{e()}e{0ruCN|e(n)=c}
and denote the support i3/ (7). We define the aggregate supportByi) = B (i) U B (7).

If B(i) N C is non-empty, we may also define for typ¢he distribution of contracts € C

which he implements in the market. By stationarity, the distribution function is given by
L b (i) + (1= b)Y (i,c)
G = T ) = L= D) (0, 0)°

1)

Matching market

We already noted that we restrict attention to stationary market environments implying that
we can neglect the time subscripts for stocks, entries, and exits for all agents. As is well known,
there always exists the trivial case where the market fails to open up as agents of either side will
not enter. In what follows, we will neglect this possibility. We next require that the decisions to
enter (or not) are optimal. To evaluate this choice, we must calculate reservation values realized
in the market. As entering the market requires one unit of time, reservation values are equivalent
to an agent’s expected utility after dissolving a match unsuccessfully. They are dendtéd by
for firms and byV (i) for workers of typei. We introduce the convention th&t(i, ()) = U%
andV (z,0) = VE(3). Given strategies played it andT'"V, we define the expected utilities

VE@G) = Z o (i,e)V (i, c),

cEBF (3)

15 As players are allowed to randomize and as we consider a continuum of agents on either side, the symmetry
restriction is only for convenience. Stationarity of strategies implies in particular that reservation values (in the
market) become stationary. If contracts specified only a transfer, stationarity of reservation values would follow
from the assumed stationarity of the market (see Gale (1987)). To see why this is not sufficient in our case, observe
that firms may be indifferent between several menus under which the information rent left to some types varies.
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V7Ey = > oV, 0)V(ie),

ceBY (i)

Ut o= > @) Y o ,0U,¢),
i€l ceBF (3)

UV o= > ) > a"(i,0U, ).
el ceBW (3)

These can be substituted to obtain the reservation values by
U = 6[(1-m)U+m@bU" +(1-bU")], @)
VEG) = 6§ [mVEE) + (1 —m)(VT (i) + (1 - b)V7(2)] .

For instance, the agent of typeealizes in a given match the expected utitity” (i) + (1 —
b)VW (i) as the gam&* (') is played with probability (1 —b). With probabilitym the agent
has to wait for the next round.

The optimality requirement for firms’ entry decisions is:

0 if UF < U°
EFf=¢ €[0,F ifUR=0U" .
FO if UF > U9
The respective condition for workers is analogous.

Summary of equilibrium conditions

A market equilibrium is described by a profile = (o', 0", F,{W (i)}, E", {EV (i) })
satisfying the following requirements:

1. Strategies if'*" are symmetric, stationary, and sequentially optimal.

2. Strategies i are symmetric, stationary, and sequentially optimal, while beliefs are
consistently updated.

3. Entry decisions are optimal.

4. The market is stationary, i.&" (i) = X"V (i) and B = X 1°

3. Convergence of Contracts

In this section we show that the distribution of contracts implemented in the matching mar-
kets converges as frictions vanish if we impose additionally an intuitive restriction on the set of
equilibria. We start by deriving a family of contracts which becomes essential in characterizing

the limit outcome.

16 Note that exit flows are fully determined by stocks and strategies in the contractual games.
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3.1 The Rothschild-Stiglitz Contracts

Define a family of contract§c™%(i)},_, as follows:

i) Fori = 1 the contract*(1) maximizesV/ (1, ¢) subject toc € C andU(1,¢) > U°.
i) For i > 1 the contract?(i) maximizesV (i, c) subject toc € C, U(i,c) > U°, and
V(i—1,¢) <V(i—1,c85G —1)).

Define the realized utilities by ?%(i) = V (i, c?(i)). The following result is standard
given (A.1)-(A.3).

Lemma 0. The family {¢"*(4)},_, is uniquely determined and satisfié&(i, c"%(i)) =
U°, yf5(i) > yfS(5) for all j > 4, and global incentive compatibility (i.e V(i) >
VES (i, S (5)) forall 4,5 € I).

We call {cRS (z’)}ie ; the Rothschild-Stiglitz (RS) contracts as these contracts would emerge
in the two-stage screening game described in the introduttidior an illustration, consider

again the examples introduced in Section 2.

Examples

- The Spence case: Recall that we specify in this 888ec) = t —y/a; andU (i, c) = a; —t
fori € I, wherea; > a; for j > i. Fori = 2 it is easily checked that the RS contracts specify
yR3(1) = 0andt®™ (1) = a; —U°, y®9(2) = a1(ay —ay) andt?¥(2) = a, —U°. The respective
utilities are equal t&’ (1) = a; — U° andV®%(2) = ay — a1(ag — ay) /as — U°.

- Working hours: Recall that in this case the sorting variable/hich represents working
hours, is not purely dissipative. Indeed, we ensured for the first-best choicgs(that v*(7)
for j > i. Hence, in contrast to the Spence case, first-best choicgsud type-dependent.
This may even ensure that the family of first-best contrgets:) },.; is incentive compatible

such that?9(i) = ¢*(4) for all types.
3.2 Convergence Result

Observe that in our model the stock of agents in the market is determined endogenously as the
primitives are the constant flows of potential entrants arriving at the market fringe each period.

As a consequence, the model does not impose any inherent restrictions on the size of stocks

17 This family of contracts features also prominently in the signaling literature. In standard (monotonic) signaling
games it would be selected by the Divinity criterion of Cho and Sobel (1990), while Kreps and Sobel (1994) show
that it is selected by the Intuitive Criterion if utilities are transferable and the game exhibits a “take-it-or-leave-it
setup’.
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other than the requirement that entries must be equal to exits. We regard it as (economically)
reasonable to impose such a restriction. If the market size remains bounded (as frictions vanish),
it can be shown that the distribution of equilibrium contracts converges. Moreover, we show
existence of a sequence of equilibria with this property.

The important implications of imposing an upper bound on the stocks of agents are that
neither the measure of firms nor the measure of low-type agents explodes as frictions vanish.
Indeed, in Section 5 we construct sequences of equilibria where one of these requirements fails
and the convergence result does not hold. To be more precise, convergence fails if search costs

incurred by firms do not vanish fér— 1. Formally, this is the case if
omb
f=1= (1 — mb)
does not converge to onedf — 1. Observe that for this to holth — 0 is necessary but

not sufficient. Hence, in what follows we will impose the requirement fhat 1, which is
weaker than requiring that the measure of firms remains bounded. The second requirement is
now that the distribution of types in the market remains bounded away from the boundaries of
the simplexA;. As it can be shown that all workers enter for low frictions and that workers of
the highest type will always conclude a contract in the screening gdmihis is equivalent to
requiring that the measure of workers remains bounded fer1.

For the rest of this section we thus impose the following restriction on equilibria, where

M > 0 is some upper bound.

Equilibrium selection:Define foré < 1 the set¥s(M) satisfying:

1) For ally € Us(M) the aggregate stock of workers in the market must saltisy M.

2) For anye > 0 there exist$ < 1 such that for alb > ¢ and equilibriay € W5(M) it holds
thatf > 1 —e.

In Section 4 we will prove that there exists a finité such that the set of equilibriés (1)
satisfying 1) and 2) is in fact non-empty for all sufficiently large valueé. of

The derivation of our convergence result proceeds now in two steps. We first prove that
reservation values must converge as frictions vanish. This result will then be used to derive the

convergence of the distribution of implemented contracts.

Proposition 1. For any e > 0 there exists) < 1 such that for all§ > ¢, ¢ € Vs(M), and
1 € I it holds that
VES(§) —e < V@) < VIS (i) + e 3)
The proof of Proposition 1 in Appendix A proceeds in several steps. For an intuition we
12



briefly outline the argument. Observe first that, by stationarity, the firms’ utility realized in the
matching market must be equalt®. Otherwise, the market could not be stationary or firms
would not find it optimal to enter at all. By (A.4) this implies that all workers will enter as
frictions become sulfficiently low. As the stock of workers in the market remains bounded, the
distribution of types remains bounded away from the boundaries of the simplagsé — 1.
As additionallyf — 1 holds by assumption, it becomes virtually costless for firms to wait until
they find themselves in a “specific’ match, e.g. in a match where they propose a contract to
some type. Suppose now that reservation values do not satisfy (3). By the nature of the RS
contracts this would imply that there are some unrealized gains for firms to trade with specific
types. These gains would be realizedéas~ 1. Precisely, consider the case of an upper
boundary ori/%%(i) and assume that the claim holds for all tyges i, but not for typei. By
construction of the RS family of contracts, any contractalizingV (i — 1,¢) < VE5(;) and
V(i,c) > VE5(i) must yieldU (i, c) < U°. Hence, it would only be proposed or accepted by
firms if they simultaneously realize more thai with some (higher) types. It is shown that
this cannot be the case in equilibrium as firms would be better off by restricting an offer to these
(higher) types. The main complication in the proof of Proposition 1 is that we allow both sides
to randomize when offering and when responding to a proposal.

Denote next for some contract C thee-neighborhood by)(c ). The convergence result,

which is proved in Appendix B, can then be stated as follows.

Proposition 2. For any € > 0 there exists) < 1 such thatforall§ > 6,1 € Ws(M),i € I,
and corresponding distributions of contragtki, -) with support B(4) it holds that®

Z Bi,c) >1—e.

c€B(i)NQ(cRS (i) ¢)
In words, as frictions become smaller, any typeust implement contracts in a small neigh-

borhood of his respective RS contract with a probability close to one. This result is intuitive
given the continuity of payoff functions and the characterization of reservation values in Propo-
sition 2.

Recall now from the introduction that the family of RS contracts is implemented in the unique
equilibrium (if firms play pure strategies) of the one-shot screening game. In contrast, multiple
equilibria with highly different outcomes are obtained under signaling. Embedding the contract

design in a matching market environment allows us to account for the simultaneous presence of

18 Hence, along a sequence of equilibria whére> 1, the distributions for some typeweakly converge to the
RS distribution3? (i) which puts mass one arf*“(i). The set of equilibrium distributions convergesx6° (i)
with respect to the topology derived from the Hausdorff metric.
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screening and signaling. The convergence results of Propositions 1-2 are driven by the presence
of screening. Intuitively, the same forces as in the standard two-stage model of screening are still

active in the matching market framework (under the assumed restrictions). As a consequence,

contracts implemented by some worker must truly reflect the worker's type, while ensuring

incentive compatibility.

4. Endogenization of the Distribution of Types

In this section we argue that the set of equilibria characterized in Propositions 1-2 is not
empty. Moreover, we feel that the way how this is established is itself of economic interest.
While typically models of adverse selection specify an exogenous distribution of types, this
becomes endogenous in the matching market environment. As the distribution of contracts
converges fov — 1, the distribution of agents in the market will adjust to ensure that it is
optimal for agents to make and accept the respective proposals.

To put this into perspective, we know from Rothschild and Stiglitz (1976) that the family
of RS contracts is only interim efficient (in the sense of Holmstrém and Myerson (1983)) if
the probability of low types is sufficiently lo®. If the family {c"%(i)},_, fails to be interim
efficient, it cannot arise as an equilibrium in the standard two-stage screening model where
firms compete for workers.

We proceed now as follows. We first give a constructive proof of existence for the two-
type Spence case, which illustrates the interdependence between the distribution of types in the
market and the shape of equilibrium contracts. Finally, we state an existence result for general

payoff functions.

Example: The Spence case with two types

Consider for a moment the program of a single firm which faces a single worker. The firm’'s
beliefs are given by and the worker's type-dependent reservation values are givéiby
fori € I = {1,2}.2° Assume additionally tha’ %(2) > V£(1). If the firm must offer both
types a feasible contract, we obtain the following results:

i) (1) > p*(1) = ay/az: The unique optimal menu specifies= V(1) andy = 0 for
i=1,y=(VE?2) - VEQ1))araz/(as — ar) andt = VE(2) + (VE(2) — VE(1))ay /(az — ay)

for: = 2.

19 See also Maksin and Tirole (1992) for a more thorough discussion of this issue.
20 Inderst (1999c) considers also the case with three types to show that the proposed method of construction
extends to more than two types.
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i) u(1) > p*(1): The unique optimal menu specifigs= 0 andt = V(2) fori = 1,2.

i) u(1) = p*(1): The firm is indifferent between the menus i) and ii).

Return now to the matching market environment and consider a sequence of equjligria
Us(M)whered — 1. Itis intuitive from the above analysis that the distribution of types cannot
satisfyus(1) < p*(1) as firms would then strictly prefer to offer a pooling contréicHence, if
the distribution among entrants satisfi€$1) < *(1), the resulting distribution in the market
must put more weight on low types. This is accomplished by creating different (expected) times
of circulation for low and high types. Precisely, we will ensure in this case that the distribution
in the market is equal tp*(1). Firms are then indifferent between offering a pooling or a
separating menu. If reservation values converge to the RS utilities WHeTe) > V£5(1),
low types strictly prefer to be pooled with high types. This “cross-subsidization” will ensure
that the reservation value for= 1 satisfiesi’#(1) = V#5(1) even at valueg < 1,22 which
in turn makes firms indifferent between offering the low type an acceptable contract or not.
Similarly, inT'" the low type becomes indifferent between implementift(1) or dissolving
the match unsuccessfully. It then remains to adequately choose the probabilities of breakdown
to arrive atu*(1).

We consider now two cases in turn.

Case 1 of the examplei®(1) > u*(1)

In this case we construct equilibria where the distribution in the market is equal to that among
potential entrants. We will index the equilibrium variablestbySuppose fol'"V that type:
offerst = a; — U°, y = y'*(i). InFfirms specify for the low type = 0, t'(1) = V;#(1), and
for the high typey? (2) = (V*(2) — Vi(1))aaz/(az — ar), t£(2) = V(2) + 4f' (2)/az. Al
matches are successful, and we specify that all workers gifefi{ = M°(i)), which implies
us(i) = p°(i). For firms we specifyz’ = E}V. By substitution we obtain for the reservation

values
R _ 6(1 —ms)(1 —b) 0
Vor(l) = qu—uimmywﬂM_UL “)

6(1 —ms)(1—b)

WO = TS man oy 2 e e = U
UF = Tt () = V() + )0 = Vi) ~ o ) )]

2L The non-existence result is formally derived in Inderst (1999c).
22 Of course, the probability with which firms choose the pooling contract will go to zefo-asl.
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RequiringUf = U° and substituting, we obtain

U%(1 — 6b)
~ (0 (Day + 10(2)az — U°) + 8(1 — )T
Observe thalim;_., ms = m for some0 < m < 1, implying in particular thaifs — 1. By

ms

®)

specifying the stock&°(i) = W;s(i)(1 — ms) andW° = Fsms, we ensure that the market is
stationary.

Observe next that by (A.6)ims_.; ms = m, and the definition of reservation values, there
exists some finiteV/ such thatV;*(i) > V(i) holds for: € I and highd, while Wy < M.
The first implication ensures that entry is optimal for all workers. ;A¢1) > u*(1) and
VE(i) < VES(4), we know from previous results that firms cannot profitably deviatEfin
Finally, workers’ strategies ifi*¥ can be supported by pessimistic out-of-equilibrium beliefs.
Summing up results, we have found a finite such thatls( A1) is non-empty for sufficiently
high 6.

Case 2 of the examplgi®(1) < p*(1)

In this case we construct equilibria where the fraction of low types in the market strictly
exceeds the proportion among potential entrants. Precisely, we will ensumg(that 1*(1).
This will be established as matches with: 1 will be broken up unsuccessfully with sufficient
probability. Denote the probability with which matches with low types are successfpl by
Matches with high types are always successful. By stationarity and the assumption that all
workers enters(1) = p*(1) implies the requirement that

po(1) \
= p*(1).

pll—pOL)] +p°(1)
Given some matching probability:s, the stock of workers is given bi°(2) = (1 —

ms)Ws(2) andWO(1) = (1 —ms)Ws(1)p. We turn next to the contractual games. Suppose for
' thati = 2 offerst = ay + y*(2)/a, andy = y75(2), whilei = 1 proposes with probability
0 < pf < 1the contract = a;, y = 0, and with probabilityl — p}” the null contract® In
I'F firms offer with probabilitypf’P > 0 a single (pooling) contragt = 0, t = V{(2), while
offering with probabilitypf’s the separating menu wi# (1) andct'(2) described in Case 1.
With probability1 — p;"" — pi*® firms offer only ¢! (2) to i = 2. Observe that these strategies
yield
p=(1=b)pE +b(ps" + pi®). 6)
We impose now the requirement tHaf (1) = VV5(1) holds for all sufficiently high values

23 Recall that this is equivalent to offering any unacceptable contract.
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of 4, which transforms to
8(1 = ms)bps Vi (2)
1-6 [mg + (1 —me)(1 —bpy")
Observe that the reservation value fot 2 is still given by (4). To obtain the reservation

=a; — U°. @

value of firms, note that by previous results firms are indeed indifferent between all three spec-
ified offers asV;#(1) = VE9(1) andus(1) = p*(1). This yieldsUE = fs[u*(1)a; + p*(1)as —

V£(2)], which allows to obtain a unique matching probability from the requirement that

UER = U°. Indeed, inspection reveals tha is again uniquely determined by (8)It remains

to determine the probabilities with which agents randomize over the specified proposals. From
(7) we can solve for a unique valie< pf;’P < 1if § is sufficiently high?® Observe in par-
ticular thatlims_.; pi" = 0, which again allows for high values éfto find a pairp;>,p%
satisfying jointly withp; " the equation (6), whilg}"® + pi"* < 1, p < 1. The way we have
constructed the equilibrium candidate, only the sunpﬁb? andpy” is uniquely determined.

The rest of the argument is now analogous to that in Case 1.

We should note that even for Case 1 wifl{1) > 1*(1) the (refined) set of equilibrid s (M)
may be quite large. Though Proposition 2 puts much structure on the distribution of equilibrium
contracts for low frictions, this is not the case for the distribution of types in the market.

Observe finally that we have use mixed strategies to construct equilibria in Case 2. Given a
continuum of firms, this is equivalent to specifying asymmetric pure strategies. Moreover, the
nature of the mixed strategy equilibrium is different to that obtained in a two-stage screening
game, where pure strategy equilibria fail to existif1) < ©*(1).%% In the two-stage model
strategies are not ex-post optimal, i.e. individual firms would like to readjust their strategies

after observing their opponents choices. Of course, this is not an issue in our model.

General payoff functions

We state next an existence result for general payoff functions satisfying (A.1)-(A.3). Pre-
cisely, we want to ensure for sufficiently highexistence of a sequence of equilibria where
for 6 — 1 the stock of workers remains bounded, whfle— 1. Recall that these were the

requirements imposed for the definition®§()/) in Section 3.

24 To see this, substituté”(2) and observe that*(1)a; + p*(2)as = az — a1(az — a1)/az holds byi*(1) =
al/ag.

25 This is possible alims_,; Vi#(2) = VE9(2) > VE9(1) andlims_.1 ms = m.

26 See Dasgupta and Maskin (1986) on existence of the mixed strategy equilibrium in this case.
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For the sake of brevity, Appendix C only states the proofifer 2. The arguments used in

the proof, however, extend to any finité’.

Proposition 3. Consider the case withh = 2. Then we can findd < 1 and a finite M/ such
that there exists for alb > ¢ an equilibrium denoted bys where W < M and where, given

the specified values afis, it holds thatlims_., fs = 1.

5. Unbounded Markets

In this section we show by example that the convergence results of Propositions 1-2 cease to
hold if we do not restrict attention to some selectiog{ //). Recall that the restriction consists
of two parts. First, search costs for firms must vanishbfes 1 asf — 1. Second, the stock of
workers must remain bounded. Throughout this section we will use as an example the two-type

Spence case.
5.1 Firms Flooding the Market

We derive an example whepedoes not converge tbfor 6 — 1. Observe first thaf — 1

is surely necessary to obtain the convergence result in Propositions 1-2, as otherwise given the
convergence of contracts firms would not be able to redlize What is, however, of more
interest is the fact that such a sequence of equilibria exists. To put this into some perspective,

suppose first that there is no private information.

The benchmark with complete information

For low frictions it is straightforward to show that there exists a unique equilibrium (of the
two-type Spence case) where all workers enter and all matches are successful. Contracts are
free of distortionsy = 0), while transfers are chosen to make the responding party indifferent

between acceptance and rejection. Requitifig= U° we obtain

s — g yro— j?(élb— ) (1 — 1) (1 (1)ay + p°(2)as), (8)
Ry o 6(1—m5)(1—b) 0
V:S(Z) - 1_6[1_(1_m6)(1_b)][ai—U],
U°(1 — 6b)
mg =

8b(0(L)ar + 10(2)as — U%) + 6(1 — b)UO"

2T We should note that the delicate issue is not to establish existerae @fuilibrium, but of a sequence of
equilibria whered — 1, W < M, andlims_,1 fs = 1
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Foré — 1 the aggregate surplus realized by a newly entering cohort of workers becomes
WO ier 10(0)s (i, y*(4)) — U° — VO,

We construct now an equilibrium with private information where inefficiencies will persist
even as frictions vanish. Suppose thétl) > p*(1). InT" typei = 1 proposes = a; — U°
andy = y*5(1) = 0, whilei = 2 proposeg;” (2) = y*(2)+ A andt = a, — U°. The valueA
satisfies) < A < (ay — ;)% (Recall that/#5(2) — VES(1) = (ay — a1)?/ay.) InTFthe firm
offers a menu which specifies for the low type= 0 andtf' (1) = V(1) — U°, and for the high
typeyl (2) = (VE(2) — ViE(1))aras/(azy — ay) andtl’ (2) = VE(2) + yL'(2)/az. Moreover, all
workers enter, i.eE}" (i) = M°(:). As all matches are successful, this implig$i) = u°(i).

For firms we specifybf = E}V. SubstitutingV*(:) into the requirement/? = U° yields

a uniqgue matching probability:s, satisfyinglims_,;ms = 0. As we can specify pessimistic
beliefs in['" and agu®(1) > p*(1), itis easily checked that strategies in the contractual games
are optimaf®

As stocks in the market are given Bis(i) = W°(i) /(1 — ms) andFs = W°/ms, F5 grows
beyond any boundary @s— 1. More precisely, the stock of firms grows sufficiently fast such

thatlims_,. fs < 1. Infact, f = lims_,, fs is determined b¥?

Fl1U°+ 1°(2) =U".

Qg — ap
To see why this is intuitive, observe thiatns ., V(1) = V25(1) andlims_,V(2) =
VES(2) — A/ay. As a consequence, firms can realize strictly more #é&m I'f. However,
to keep the market stationary, firms must be kept indifferent between entering or not, implying
that their circulation time grows beyond any boundaryas: 1.3! As frictions vanish, the
resulting efficiency gains are thus almost entirely offset by increasing the expected waiting

time for firms. This type of inefficiency was completely absent in the benchmark case with

28 We should not that fof < 1 the market outcome is generally inefficient due to two well known reasons. First,
markets where transfers are determined after matches have formed fail to internalize the impact of players’ entry
decision on the matching probability of other agents (see Hosios (1990). Second, a single matching market cannot
adequately adjust to the preferences of heterogenous agents (on one side), i.e. to the different marginal rates of
substitution between the speed and the terms of trade (see e.g. Moen (1997)).

29 Observe in particular that*(1) < V£5(1) ensures that it is not optimal for firms to offer only a contract to
1= 2.

30 To see this, observe fér" that in the limit firms realize with high typeS® + A /as + 375 (2) /as —yf' (2) /as,
where we substiutedy — y?°(2) /ay = U° + V9(2).

31 In other words, circulation time and delay of trading become now an essential equilibrating device in a market
with adverse selection. This is reminiscent of the Walrasian approach in Gale (1992, 1996) who considers a one-
shot setting where probability of trade may vary in various (contractual) submarkets.
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complete informatiod?33

Recall at this point that we constructed an equilibrium in Proposition 3 where high types
implementc?9(2) in I'F'. We showed that the resulting unique matching probabilitywas
identical to that in (8), implying in particular that the low type’s utility was unaffected by the
presence of private information. In contrast, low types are better off in the “‘unbounded’ equi-

librium where firms flood the market.
5.2 Low Types Flooding the Market

We will show that the following strategies constitute an equilibrium for sufficiently highll
workers enter and offer ii"" the pooling contract withh = 0 andt = a; — U°+ us(2)(az —ay),

where the distribution of types in the market will be derived endogenously. Observe that firms
are indifferent between accepting and rejecting the proposal, which allows to specify that firms
accept with some probability}”” € [0, 1]. Below we will specify that both types do not receive

more than their reservation valueslifi, which yields

- I AV A (a1 = U (2 — )]

implying in particular tha¥/}(1) = V£(2). InT'¥ firms offer a single contract with = 0 and

Vy'(i)

t = V&(2). As this offer makes both types indifferent, we can assume that it is only accepted by
the high type. Combining the specification of strategies for the two games and the assumption
that all workers enter, The distributiqny(2) is equal to[(1 — b)pg 1°(2)]/[1 + bu’(1)]. We

impose now the requirements that

Vi'(i) = V(1) = a, - U° (©)
and that firms realize exactly®, which by (9) is the case if
omgb
0 _ 6 0 _
U’ = T30 —mib) (U” + us(2)(ag — a1)). (10)

Observe finally that the specified strategies are indeed optimal if equations (9)-(10) have a

solution.

32 We should note that the outcome under complete information depends on the assumption that one side is chosen
to make a take-it-or-leave-it offer. Other forms of ex-post agreements tend to generally induce too much entry by
traders on the long side of the market (see Peters 1992)) as the bargaining outcomes are relatively insensitive to
aggregate demand and supply (see also Bester (1987) and Muthoo (1993) on this issue.)

33 Admittedly, the relevant benchmark under private information is constrained (or interim) efficiency, as defined
e.g. by Holmstrom and Myerson (1983). As the delay of firms does not contribute to separation, the depicted
equilibrium will naturally fail an adequately defined notion of interim efficiency. (Circulation time of the informed
party can, however, be useful as a separating device in alternative settings which allow for the co-existence of
several submarkets. This is analyzed by Inderst and Muiller (1999) for a market with durable second-hand goods.)

20



Existence of a solution is established for higim the following Lemma.

Lemma 1. There existsd < 1 such that for§ > § the system of equations (9)-(10) has a

solution (ms, py ) where0 < ms < 1and 0 < py’ < 1.

Proof. Consider first (10). For givem: and0 < § < 1 there exists a unique valye(m) defined by
U° = fs[U° + p}i(m)(az — a1)]. (Observe that it is not guaranteed thg{m) < 1.) Moreover,u}(m) is
continuous and strictly decreasing witmn,,, opi(m) = oo andu}(1) = U°(1 — §)/[(az — a1)éb]. Consider

next (9), where we can substitute

bu(1)

W _ 2 ,
A e e

which is well-defined forus(2) < p°(2). (Observe, however, tha' < 1 is only satisfied ifus(2) is chosen

(11)

sufficiently low.) For givernm andé, (9) defines a unique valye?(m) < p°(2) solving V(1) = VES(1).
Observe thap?(m) is continuous and strictly increasing withn,,,_.1 u%(m) = 1°(2) and a finite valug:Z(0).

It also holds thatims_1u2(0) = 0 andlims_1u}(1) = 0. By the properties ofi}(m) and u2(m), we can
thus find a threshold; < 1 such that ford > ¢, there exists a unique valile< mgs < 1 realizingus(2) =
pi(ms) = p2(ms) < p°(2). It remains to show thats(2) substituted into (11) realizeg < 1 for sufficiently
high values ob. This is implied by the stronger claim th&in;s_.,p5° = 0. If the latter assertion did not hold,
we would obtain for an adequately selected subsequénce s, (2) = i > 0. By inspection of (9) this
implieslims, —.1ms, = 0, while by the definition ofu?(-) it must hold thatiims, —.1ms, = 1, which yields a
contradiction. Bylims_.1py’ = 0 we can thus indeed find sordg < 1 such that fob > &, it holds thatp}” < 1.

Choosingd = max {81, 62 } completes the proofQ.E.D.

Inspection of the proof reveals thatns ., py = 0 and thereforéims_.,s(2) = 0. Observe
that in the constructed equilibrium low-type workers only implement the contracth)
andt = a; — U° + pus(2)(az — ay), which actually converges to their RS contract. However,
aslims_1py = 0, high-type workers will for hight almost always implement the contract
proposed in'*', which specifiegy = 0 and thus differs from their RS contract. Interestingly,
observe that the surplus realized in a successful match specifies the first-best value of the sorting
variabley = 0. However, as firms realiz€® and adim;_., V(i) = a, — U° for both types
1 € I, much surplus gets dissipated by search frictions as 1. (Observe, however, that this
time f converges td asé — 1.)

In the light of Proposition 2 and the two examples where convergence fails as the market
size increases beyond any boundary, it would be interesting to know more about the efficiency
properties of different equilibria. The derived results suggest that there is a trade-off between
dissipating surplus by excessive search or circulation time and reducing the surplus in individual
matches by distorting the sorting variable.
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6. Conclusion

This paper explores a new approach to analyze markets with adverse selection. We con-
sider a matching market environment where in a given match either side may have the right
of proposal. This allows for the simultaneous presence of signaling and screening. Our ap-
proach yields three main insights. First, if the market size remains bounded as frictions vanish,
the distribution of implemented contracts converges. Second, the distribution of types in the
market must not necessarily reflect the distribution among entrants as different types may have
different circulation times depending on how successful their matches are. Third, matching
markets with adverse selection may exhibit a new type of inefficiency which is absent in mar-
kets with complete information: excessive circulation of either firms or low types (of workers).

In essence, this is due to the fact that high types may realize less than their “true’ share of the
surplus if firms have pessimistic beliefs. The residual surplus is then offset by sufficiently long
circulation of either firms or low types. Of course, by the convergence result, this inefficiency
vanishes if frictions disappear and the market size remains bounded.

To our knowledge this paper represents the first contribution which models markets with
adverse selection in this fashion. To conclude we want to stress one avenue for further research.
We conjecture that our convergence result is independent of the particular contractual games, as
long as the uninformed side has some right of proposal. However, we would find it worthwhile
to explore the following two alternatives. First, we may allow also the informed party to pro-
pose a menu of offers from which it can pick any contract after acceptanideis would put
additional restrictions on the set of equilibrium outcorfieSecond, a natural way of modeling
bargaining in a match would be to consider a game of alternating offers. Unfortunately, there
is so far almost no literature on bargaining over contracts (with an open time horizon) even in

a bilateral monopol§?

Appendix A: Proof of Proposition 1

The proof proceeds in a series of claims. Claims 1-2 derive implications which are intuitive given the primitives

of our matching models. In Claim 1 we show tfiaf = U°, which is subsequently used to prove that all workers

34 In a bilateral monopoly this approach has been pioneered by Maskin and Tirole (1992).

35 Indeed, we conjecture for this specification that we can find for given primitives a thresholtl such that
for b > b equilibrium outcomes converge to the RS allocation of contracts as frictions vanish.

36 To our knowledge, alternating offers with private information and a sorting variable have only been considered
in Inderst (1999b). However, this contribution is restricted to two types, private values, and only a subset of
parameters (discount factors). Inderst (1998) considers the case where only the uninformed party makes offers but
cannot commit to a final proposal.
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enter for highd.

Claim 1. Inall ) € Wit holds thatU”® = U".
Proof. Recall that we restrict consideration to equilibria where the market opens up, impiying U°. As

agents exit in pairst’® > W0 impliesU” < U° to ensure stationaritQ.E.D.

Claim 2. There exists); < 1 such thatforall§ > 61, € Us(M), and i € I it holds that EV (i) = WO (i).
Proof. We first prove by contradiction thaf" (i) = W9(i). Otherwise, there exists a sequengewhere
§ — 1,5 € Us(M), andEY (i) < WO(i). (Observe that all variables determinediip are indexed by
§.) By (A4), EYV (i) < WO(i) impliesVE(i) = VO if EYV (i) > 0 for somei < i. Observe next that from
(A.3)-(A.4) it holds thatl (i, c*5(1)) > U° andV (i, c?9(1)) > VO for all i € I, implying thatc with ¢ =
tR9(1) + (V(1,e5(1)) — V9) /2 andy = y*9(1) is strictly acceptable to all types. If a firm rejects all offers and
proposes: in I'F, the expected utility is bounded from below By= f5[U° + (V (1, ¢5(1)) — V9) /2], where

f . 6bm5
P S = by

If a worker of typei behaves similarly, we obtain as a lower boundgry- gs[V° + (V(1,¢?5(1) — V°)/2],

where
S b)(1—my)
BT - -b(T—my)]
AsUF = U° by Claim 1, it must hold thal/ < U°, which implieslims_., fs < 1 and therefordims . gs =

1. As a consequenc®, > V° holds if § > &, for somes; < 1, which yields a contradiction tbj (i) = V°.

We next extend the claim to all < i. By E}Y (i) = W°(i) we obtainms < m? for somem? < 1, as
otherwiselWs < M could not be ensured. If a typeenters the market, his utility is bounded from belowiby
as defined above. Agis < m? implieslims_,1 gs = 1, this exceed¥? if § > 57 for somes; < 1. Choosing
61 = max {5}, S?} completes the prooRQ.E.D.

Claim 2 has the following implications faf > 6, andvy € Ws(M). We already observed in the proof of
Claim 2 thatms < mZ < 1 must hold to ensur®’s < M. By the same argument there existé < 1 such that
" (i,0) + o (i,0) < o forall i € I. (Recall thatn? (i, )) denotes the probability with which a match with
typei is broken up in"¥'.) Moreover, byW; (i) > EV (i) = W°(i) andW;s < M there existg:® > 0 such that
us(i) > pP foralli € I. Given the definition of's(M) andms < mP it follows for any sequence of equilibria
s Wheres — 1 andys € Us(M) thatfs — 1 andgs — 1, while by s (i) > p® it also holds for alk € I thaf’

5#5 (l)bm(5 -
1= 6[1 = ps()bme] 8 (12)

These results will be frequently used in what follows. We proceed by deriving a lower bound on reservation

values.

Claim 3. For any ¢ > 0 there existss, < 1 such that for all§ > 62, ¢ € Us(M) and corresponding
reservation valued’ (i), it holds that V25 (i) — e < VI (3).
Proof. The proof is inductive. Considegr = 1. We argue to a contradiction and assume that there exists

a sequence of equilibrigis wheres — 1, vs € Ws(M), and V(1) < VEI(i) — e. A firm offering ¢ with

37 By definition of Ws(M) the convergence is uniform.
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t = t175(1) — /2 andy = y™9(1) in TF while rejecting all offers il receives at least
6u5(1)bm5

L —6[1 — ps(1)bms]

where we use common values afidl, c*%(1)) > U°. By (12), the expression (13) excedd$ if § > §5(1)

(UY +¢/2), (13)

for somed,(1) < 1, which yields a contradiction. Assume now that the assertion holds up to @ tyge< i.

We argue again to a contradiction. Recall next that the RS family of contracts is by Lemma 0 globally incentive
compatible. By the inductive claim, the contracwith y = y*9(i) andt"*%(i) — t = /2 is rejected by all
types;j < i and accepted byif 6 becomes sufficiently large. Hence, by an argument as fer1, the firms’
expected payoff is bounded from below By.s (i)brns][U° + /2] /[1 — 6 [1 — ps(i)bms]], which again exceeds

U if 6 > 6,() for somed, (i) < 1. Choosingd, = 6-(7) proves the claim by the finiteness bf Q.E.D.

We turn next to the upper bound on reservation values. We proceed indirectly by proving a result on the set of

implemented contracts, where we discuss first the case-of.

Claim 4. For any & > 0 there existsd3(2) < 1 such that for all§ > 65(Z) and «» € Us(M), it holds that

(@ (1,¢) +af'(1,¢)) <&
ceB(1)N{c|V(1,c)>V RS (1)+&}
Proof. We argue to a contradiction and assume that there exists a seqleac® (M), wheres — 1, such

that there is a non-empty s€¢ C Bj(1) satisfying) " ., (" (1,¢) +af (1,¢)) > gandV (1,¢) > VAS(1) +&
for all ¢ € Cs. Define nextCE = Cs N BE (1) andC}Y = Cs N BY (1). We distinguish between two cases. We
can either choose a subsequeficeuch thaguecéw aggu, ¢) > £/2 holds along the sequence, or a subsequence

wherey’ cor af (1,¢) > &/2 holds.

Case i) Subsequence witH}”

Take the original sequence as the subsequence imp}yg&y al (1,¢) > /2. We prove first the following
implication.

Assertion 1. Under the assumption of Case i), there exists (for gi¥emsequence of contract{gs } and types
{is}, and a valuez > 0 such that:

) cs € CV; m(is,cs) > & and vV (1,cs) > E.

i) Ulis,cs) > U° + & with is # 1.

Proof. The assumption th@cecgv o’ (1,c) > &/2implies the existence of a sequence of contréet$ and
of two valueszy, €5 > 0 such that the following two claims hold:

- If ¢; is offered inI'", a firm accepts with probability not belogy .

- Additionally, when observings, the firm's consistent beliefs put not less than probabiitpni = 1.38

Observe next that, for giveh> 0, there exists some; > 0 such that/(1,¢) < U° — 3 holds for allc € C

whereV/ (1,c) > V(1) +&. (Given transferable utilities and the definitiond¥ (1), we can choosg; = £.) By

38 More formally, take some equilibriunts. Recall that we denote the probability with which some typeo-
posesc € C by p}¥ (i, c) and the acceptance probability of the firm ®§ (i,c). Asc € B}V, beliefs are de-
fined by Bayes’ rule and denoted by(i, ¢) = ps(i)pl (i, c)/ djer ws(5)p¥ (4, c). Recall next the requirement
Dcecy al (1,¢) > &/2, wherealY (i,c) = p¥ (i,¢)vY (i, c). This immediately implies existence of two val-
uesz;, &, > 0and aseCy’ C O such thab” e p¥ (1,¢) > gy andy)Y (1,¢) > &, forallc € CY. Finally,
the finiteness of allows to pick a contraats € C’XV and some, > 0 such that indeed;s (1, cs) > &;.
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optimality, the firm only accepts; if the expected utility is not below°. GivenU (1, cs) < U° -3, the finiteness
of the type sef, and the fact that the firm’s posterior beliefs after observingssign at least probabilig to the
typei = 1, this implies existence of some typg > 0 and a boundary, > 0 such thatl/ (is, cs) > U° + 4.
Finally, choos& = min [g1,&2,3,E3]. Q.E.D.

In the remainder of the proof for Case i) we show that firms can profitably deviatdasomes sufficiently
high. We will construct a contract fromy, which will be offered by firms i"*" and which will only attract types
1 > 1is . For this construction we need the following auxiliary result.

Assertion 2. For any ¢, there exists somé (;) > 0 such thatV®(i) > V(i,cs) — &1 forall i € 1.

Proof. If type i follows the strategy to reject all offers and to propesen I'', which by Assertion 1 is

accepted with a probability not beloav> 0, his expected utility is bounded from below by
- (1 —0b)(1 —mP)e
1-6[1—-(1-b)(1-mP)e]
where we usens; < m¥? < 1. The assertion follows now immediately from the equilibrium requirement that
V < V{#(i)3° Q.E.D.
Define now byC the set of contractse C satisfyingU (i, c) > U andV (i, c) > V°forsomei € I. By (A.1),

V(i,cs),

the finiteness of , and continuity of payoffs the set is compact. By (A.2) this implies existence of two vialues
k > 0, suchthatds(i,y)/dy| < kandd[v(j,y)—v(i,y)]/dy > kforallc € C. Forany smalt; > 0we construct
now fromes a contracts(s2), which will be used for a profitable deviation. Defigg(e2) = ys +e2/k (where
ys is the sorting variable ins) and adjust the transfeto ensuré/ (is, és(e2)) = V (is, cs) +2/2. Suppose for a
moment that contracts on the line combiningvith és(s2) belong toC'. By the derived boundaries on derivatives,
thisimpliesV (j, ¢s(e2)) < V (4, cs)—ez/2forall j < isandU (is, és(e2)) > Ui, cs)—e2(k/k)—e2/2. Contracts
on the line combining;s with és(c2) belong indeed ta@ for sufficiently small values of,.4°

Recall next the construction 6{(81) from Assertion 2. Specifying; < e5/4thus ensures that all typgs< i
rejectés(eq) for 6 > 31(51). By (A.3), the utility realized with typeg > i is not lower thari/ (is, ¢s(¢2)). Hence,
the expected utility realized by a firm which follows the strategy to reject all offers and to prép@se in I'*,

is by Assertion 1 bounded from below by

~ _ (Sbm(su(s (15)
1-6 [1 — bm(su(s(ig)]
By (12) this strictly exceed& " if ¢, becomes sufficiently small andsufficiently large, which completes the

[U° + & —ea(k/k) —e2/2] .

proof for case i).

Case ii) Subsequence with}’

Take again the original sequence as the subsequence imﬁlng(gg af(1,¢) > /2. Inan abuse of notation,
we denote for a proposed mefie(-)} the realized utility of type by V (i, {c(-)}) = maz,enV (i, c(+)). (Recall
the convention that(0) = () such that/ (i, ¢(0)) = V£ (i). This dependency on the reservation value is suppressed
in the notationV/ (7, {c(-)}).)

Assertion 3. Under the assumption of Case ii), there exists (for gigen sequence of menysgs(-)} and a

39 To be precise, we need also thati, cs) is bounded from above (for any. If this was not the casé/f (i)
would grow beyond any bound, which would contradict optimality for firms.

40" More formally, this follows from Assertion 1 and Claim 3, by whikl{is, cs) > Vi (is) > V° holds for low
frictions.
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value > 0 such that:

) pf ({es()}) > 0; V(L {es()}) > VES(1) + & and of (1, {e5(1)},0) < 1 - 2.4

i) U(l,c) <U°%—zforall ¢ € {cs(-)} NC realizing V(1,c) = V(1,{cs(-)}).

iii) For any & there exists somé (e,) > 0 suchthatV2(i) > V (i, {cs(-)})—e1 forall i € Tand 6 > da(e).

Proof. By an argument as in Assertion Ececép af(1,¢) > &/2 implies existence of a sequenceménus
denoted byC{" and a value; > 0 such thay >y )yecr pE({c(1)}) > &1, while V(1,{c(-)}) > VE3(1) + &
and~{ (1, {c()},0) < 1 —& forall {¢(-)} € CI. Inwords, the set of menusS} is offered with at least
probabilityz,, and if a menu in this set is proposeéds= 1 accepts with at least probabiligy. By the finiteness
of I we can choose next somde > 0 and a sequencées(-)} € CF such that for any € I it holds that
2 {e()}€CF () p§ ({c()}) > &2, where

CE (i) = {{e()} € CF |V, {e()}) = Vi{es()D) } -

In words, {cs(-)} is chosen fronC{" to ensure that for all typeise I the probability that firms offer menus
in CF realizing not less thai (i, {cs(-)}) is not below some thresholg. Using the arguments of Assertion 2
this immediately implies the claim iii). Finally, regarding the claim ii), by construction’®f(1) it holds that
U(l,c) < U’ —ZincaseV(1,c) > VES(1) + & for c € C. We can now choose= min {&,&s,}. Q.E.D.

We are now in a position to construct a profitable deviation for firms. Assertion 3 allows us to restrict consid-
eration to deviations where firms offer I’ a single contract. At this point the argument is, in fact, completely
analogous to that in Case i). We are therefore rather brief. Assertion 3 implies that we can again identiiy a type

with which firms realize strictly more thati®. Denote first
¢s(i) € argmaz, 6, Ui, c), whereCs = { €e{es()} IV (i,d)=V(i,{cs()})}.
By us(1) > p® and i)-ii) in Assertion 3 there exists now sofie> 0 (depending only o) and some type
is > 0 such thatV (is, és(is)) > Vi(is) andU (is, es(is)) > U® +E. As VE(i) > V(i,{cs(-)}) — 1 holds
by iii) in Assertion 3 for all types it > 32(51), we can now construct a deviating contract frégis), which is

rejected by all types < is, while it is implemented with probability one by. The construction is identical to

that in Case i).
Having covered all possible cases in i) and ii), the proof of Claim 4 is compl&éeiD.
We next extend Claim 4 to all higher types.

Claim 5. For any & > 0 there exists, (&) < 1 such that for all§ > 6,4(2), v € Us(M), and i > 1 it holds
that

> (@ (i,c) + af'(i,¢)) <& (14)
ceB(1)N{c|V (i,c)>VES(3)+&} B
Proof. We argue by induction. Suppose the claim holds up to fypé < i. Precisely, we assume that for any

€1 there exists somél(z‘ —1,&1) < 1 such that (14) holds for afl > 31(i —1,&y) andj < i. We first prove an

immediate implication of this claim.

41 Recallthapl ({cs(-)}) denotes the probability with which firms offer the mefay(-) }, whiley£ (1, {cs(-)} , n)
denotes the probability with which type = 1 selects the variant from the menu{cs(n)}. In particular,
vE (1, {cs(-)},0) denotes the probability of rejection.
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Assertion 1. If (14) holds for all j < i and 6 > §,(i — 1,2,), then there also exists,(i — 1,&;) < 1 such
thatforall 6 > 65(i — 1,2,), ¢ € Us(M),and j < i it holds that V&(j) < VES(5) 4 &,.

Proof. Recallthal) ", . (g’ (j, ¢) +a§ (4, ¢)) > aP forall j € I. The assertion follows then immediately
from the definition of reservation values in (2) and from the inductive assumption (i.e. from @Q4)D.

To prove the extension to typewe argue again to a contradiction and assume that there exists a sequence
Ys € Ws(M), wheres — 1, and a sequenc€s C Bs(i) such thaty . (a}’ (i,¢) + of (i,¢)) > & and
V(i,c) > VES(i) + &forall c € Cs.

We prove first an auxiliary result which allows us to proceed subsequently as in Claim 4.

Assertion 2. Given ¢ there exists53 < landforé > 53 a selectionCs C Cj, as well as some threshold
Z > 0, such that the following claims hold:

) Ve, (@ (i,0) + af (i,0)) 2 &

iy Ui,c) < U —Zforall c e Cs.

Proof. Observe first that, give#, there exists some, > 0 such thatV' (i — 1,¢) < VES(i — 1) + £, and
V(i,c) > VES(i) + & mustimplyU (i, c) < U® — ;. (Formally, this follows from the definition af?S (i) and
continuity of payoff functions.) Define the subsgf C Cs wherec € Cs if V(i — 1,¢) < VES(i — 1) + &.
We claim that there exists; < 1 such thaty ¢, (aV (i,c) + af (i,c)) > &/2 for § > §3. We argue to
a contradiction and assume that this is not the case. This allows to select a subségquehees,, — 1 and
Zcec\éé (Y (i,c)+ak (i,c)) > /2. Consider now the following strategy for type 1. By following (partially)

the strategy of typéto propose or accept contracts C\C%, the expected utility is bounded from below by
§(1—mP)z/2

TS (e mpyg VG D rE] (15)

where we usens; < m? < 1. Recall from Assertion 1 thaty?(j) < VES5(j) 4+ &, for § > 8,(i — 1,&,) and
j < i. By choosingt; sufficiently low, the utility in (15) therefore strictly exceetlg® (i — 1) for sufficiently high
6. This yields a contradiction such that the threshiglck 1 exists. The assertion follows now from the two steps
by choosing = min {£/2,,}. Q.E.D.
In what follows we restrict consideration to values- &5 such that Assertion 2 applies.
We are now in a position to argue as in Claim 4. This time the starting point is the assumed existence of a
sequence of setSs and a threshold > 0 with 3>, (o (i,¢) + af (i,c)) > EandV (i,c) > VS(i) + & for
all c € Cs. Denote the set6” = Cs N BY andC}¥ = Cs N BY. We can again distinguish between two cases

where along a subsequence either. ay (1,¢) > &/20r >cecr af (1,¢) > &

Case i) (Subsequendg!")

We again take the original sequence as the subsequence su@cg@b af’ (1,¢) > Z/2. As in Assertion
1 of Claim 4 we can next extract a sequereg} with ¢s € C‘;’V such that for some valug > 0 it holds that
n(i,cs) > € andv)Y (i,cs) > £. Additionally, it holds thatl/ (is,cs) > U° + £ for someis # 1. Observe
that we can use from Assertion 2 (of this proof) thatalt C}V already satisfyl/(i,c) < U° — £ for a fixed
thresholdE. Assertion 2 of Claim 4 carries over immediately, i.e. for anythere exists somé4(sl) < 1 such
that Vi (j) > V(j,cs) — 1 forall j € T andé > é4(<;). Moreover, the construction of a deviating offgkss)

from ¢s for all smalle; > 0 is again identical. Finally, we can again choaseande, sufficiently small and
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§ > max {83, 84(51)} to complete the argument.

Case ii) (Subsequendg!’)
We again take the original sequence as the subsequence su@ctg@t, af(1,¢) > /2. Assertion 3 of
Claim 4 carries over with the modification that we have to substitutg the newly derived threshokd which

has, however, no qualitative impact on the arguments.
As the set of types is finite, Claim 5 follows from a finite repetition of the argum@rit.D.

Recall now thad . ;) (o' (i,¢) + o’ (i,¢)) > o holds for alli € I in all considered equilibria i§ > 6.

The following result follows then from Claims 4-5 and the definition of reservation values in (2).

Claim 6. For any ¢ > 0 there existsd; < 1 such that for all§ > &5, ¢ € Us(M), and corresponding

reservation valued/ (i), it holds that V79 (i) — e > VE(3).

Proposition 1 follows now from Claims 3 and 6 by choosing max {61, 62,65 }. Q.E.D.

Appendix B: Proof of Proposition 2

The proof proceeds in a series of steps. Claims 1-2 provide auxiliary results.

Claim 1. For any & > 0 there exists; () > 0 such that any contract € C, which satisfies for somee T

V(i,c) > VE9(i) -7 (¢),
V(ii—1,¢) < VES(G—1)+5@)ifi>1,
U(i,c) > U —7(8),

must also satisfy: € Q(c?5 (i), &).
Proof. We argue to a contradiction. If the assertion does not hold, there exists a sequence of cantfauots

types{i, } with ¢, ¢ Q(c?%(i,,), ) and a sequencg,, } with £, — 0 such that

V(in,cn)

Vv

VES (i) — &, (16)
Vi(ip —1,c0) < VB(i, —1)4&,ifi, >1,
Ulin,cn) > U°—&,.
By the finiteness of we can select a subsequence where all typese identical. Assume that this is satisfied

for the original sequence and a type- i,,. Moreover, for all sufficiently small values @f,, (16) implies from

(A.1) that allc,, belong to some compact set denoted’hyHence, we can select a subsequence where contracts
converge to some € C\Q(cf*9(4), ). As (16) is satisfied along this sequence, this contradicts the construction
of ¢f*9(4). Q.E.D.

The following result is now implied by the definition of*® (i) and the continuity of payoff functions.

Claim 2. For any € > 0 we can findz2(¢) > 0 such that the following implications hold for arye C:
i) For i > 1,U(i,c) > U° + Zimplies V(i,c) < VEI(i) —53(8) or V(i — 1,¢) > VES(i) +52(3).
i) For i =1,U(1,¢) > U° + ZimpliesV(1,c) < VES(1) — 55(8).
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We now proceed stepwise to reduce the set of equilibrium allocations.

Claim 3. For any & > 0 there existsd; () < 1 such that for allé > 6;(g),i > 1, and ¢ € Ws(M) it holds
that 3= ..oy (@' (i, ¢) + a¥(i,¢)) < & whereC(i) = {c | V(i —1,¢) > V(i —1) +&}. Moreove, for all
i€l,V(i,c) < VES(i) — gimpliesa™ (i,c) + af (i,c) = 0.

Proof. The assertion follows directly from Proposition 1 and its proof. (The argument regarding the adjacent

typei — 1is identical to that used in Assertion 2 of Claim §).E.D.

Claim 4. For any & > 0 there exists52(Z) < 1 such that for all§ > 6(€), 7 € I, and 1 € Ws(M), it holds
that Zcec(i)(aw(i,c) +af(i,c)) <& whereC(i) = {c| U(i,c) <U® —&}.

Proof. We argue to a contradiction. By the finitenesslofve can then assume that there exists a tiype
a sequence’s € Us(M), where§ — 1, and a sequence of sefs C Bs(i) satisfyingy_ ¢, (" (i,¢) +
af(i,c)) > gandU(i,c) < U° — & for all ¢ € Cs. Recall next that the expected payoff of firms equafs By
us(i) > u®, which was proved in Proposition 1 for sufficiently highit follows from inspection of (2) that there
exist a sequence of typésand of sets of contracts}, and a thresholds > 0, such thatU (is, c) > U° + &5 for
all ¢ € C§, while Zcecé(agv(ig, )+ af'(is,c)) > 3.

We use now Claims 2-3 to show that this can not be the case for high valie8gfClaim 2 we know that
Ulis,c) > UY + &, implies eitherV (is,c) < V(i) — £5(23) or V(is — 1,¢) > VE9(is — 1) + E49(83).
(Of course, foris = 1 only the first possibility is relevant.) Hence, we can derive a sequence of $etsth
Zcecg(ag"(ig, ) +af'(is,c)) > £3/2 where eitheW (is, c) < V(i) — 25(g3) or V(is — 1,¢) > VES(i5 —
1)+&2(€3). Both possibilities must, however, contradict Claim 3. Precisely, this is the case if we ¢hoosgz,)
with &4 = min {2(g3),&35/2}. Q.E.D.

The following assertion combines Claim 1 with Claims 3-4.

Claim 5. For any & > 0 there existsd3(2) < 1 such that for all§ > 65(€), i € I, and 1) € ¥s(M), it holds
that 3 .c o aens (i) 2) (@' (i,¢) + a” (i) <&

Proof. Given somesy, it holds by Claims 3-4 for alb > max {61(e1/2),62(c1/2)}, i € I, andy € Ws(M)
thaty” ..o (W (i,e)+af (i,c)) < €1, whereC(i) comprises all contractse C satisfying any of the following
conditions:

-Fori > 1,V(i—1,¢) > VE9(i — 1) +¢;.

-Viiye) < VES (i) —e;.

-U(i,c) < U° —&.

Given & we can derive next from Claim 1 the boundaryé) > 0. The claim follows then by choosing
e1/2 =%1(¢) and definingds (2) = max {61(¢1/2),62(e1/2) }. Q.E.D.

While we have so far restricted attention to allocations, observe that the assertion in the Proposition makes a
claim on the resultinglistribution of contracts, as defined in (1). Recall now from the proof of Proposition 1 that
in any considered equilibrium it holds for highand for alli € I thata" (i, ¢) + of'(i,c) > o > 0. The claim

in the proposition follows then directly from the definition (1) and ClaintBE.D.
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Appendix C: Proof of Proposition 3

For highé we will prove existence of an equilibrium where agents adopt the following strategies:

- All workers enter, i.e EV (i) = WO(i), while B = W°.

- InTF firms choose between the following two strategies. They may either randomize over a set of menus of
which each ensures that the match is successful with both types. Or they offer a contract which is only accepted
by the high type. The latter strategy is chosen with probability p".

-InT" the high type offerg**(2) with probability one, which is accepted. The low type offefs (1) only
with probability o'V, while with probabilityl — o' the match is dissolved unsuccessfully.

GivenEY (i) = WO(i) and the strategies in the contractual games, we obtain for the distribution in the market

0
_ p'(1)
H) = D @) A =0+ o]
#O(1) + p0(2) [(1 = b)p™ + bp”]
Moreover, observe that stocks in the markets are fully specified if we determine additionally

17)

We proceed now in three steps. First, we set up a fixed-point problem in the three vagjghlg¥’,m) and
show that this has a solution for afy The specified solution will also determine the contracts offerddfirsuch
that the equilibrium candidate is fully specified. As the conditions imposed for the fixed-point problem do not
already imply that strategies are optimal, we show in a second step that this is indeed the case for high values of
6. Finally, we argue that the selected sequence of equilibria satisfies the asserted requireryiemtddn

To set up the fixed-point problem, we define first some programs and derive auxiliary results.

Programs and auxiliary results

Define the following progran®(V#(1), V£(2), u): For agiven distributiop, choose a paiic(1), ¢(2)) € C?
to maximize

p(D)(v(1,y(1)) + (1) + p(2)(v(2,4(2)) +(2))

subject to the following constraintsfC/(1) with V' (1,¢(1)) > V(1,¢(2)), IR(1) with V(1,¢(1)) > VE(1),
andl R(2) with V' (2,¢(2)) > VE(2). (Observe that we do not consider incentive compatibility for the high type.
Moreover, the menu must specify an acceptable contract for either/Bg.JA.1)-(A.2) a solution always exists,
while by optimality I R(2) becomes binding. We introduce the following notation. The realized value is denoted
by UF(-). The program may have more than one solution which may also implement different utilities for the low

type. Denote by () the convex set dbtteries over the low type’s utilities.

Claim 1. VP(.)is USC, whileU¥(-) is continuous (all in the parameterd/ (1), V#(2), u)). Moreover,
inf VX (-) and sup V() are constant inV/ (1) or increasing with slope on&

Proof. Denote the set of solutions 7 (-). By optimality, it must hold that(2) = V#(2) — v(2,y(2)) and
y(1) = y*(1). Moreover, as one of the constraintsfet 1 becomes binding, we obtaffil) = min {V#(1),V(1,¢(2))} -
v(1,y*(1)). The residual program is continuousiji2) and(V #(1), V#(2), u), which together with (A.3) proves
continuity of U (-) and USC ofC?’(-) by the maximum theorem. USC & '(-) follows from the continuity of

42 In what follows, it will be ensured that(1) > 0, while the program naturally extends to the case where

n(2) = 0.
43 For concreteness, define the slope as the right-side derivative.

30



payoff functions** The assertions regardimgf V7 (-) andsup V7 (-) are immediate from the construction of the

program.Q.E.D.
Define next the progran?— (V£(1), VE(2), 1), wherec(2) € C is chosen to maximize
pU® + u(2)(0(2,5(2)) +(2))

subject tolC(1) andI R(2). A solution exists by (A.1)-(A.2), where by optimality(2, ¢(2)) = V#(2). Denote
the realized utility byU —(-).

Claim 2. U~ (+) is continuous.

Proof. The proof is analogous to that of continuity@f’(-). Q.E.D.

We define next an auxiliary fixed-point problem which is used below. Giy€n p"V'), m , andV9(2),

denote byl'(VE(2), pf', p'', m) the set of all value¥ (1) which satisfy the following conditions:

VP(1) e VE(VEQL), VE(2), 1) (18)

VE(1) = max

1=6[1—=(1—=m)bpF +1-0)] "1-=06[1—(1—m)bp"] (19)

Inwords, given the choice af (1), the expected valug” (1) is realized if firms choose to make an acceptable

8(1—m) [bpF VE(1) + (1= B)VES1)]  8(1 — m)bpF VP (1) }

offer to both types, while givel (1), the valuel/ (1) represents the low type’s reservation value if he optimally
chooses between making an acceptable offef’d{1) in 'V or not. Observe in particular that fpf’ = 0 the

actual realization ot/ (1) does not enter into (19).

Claim 3. T'(-) is non-empty, convex, and USC.

Proof. Observe that (19) defindg?(1) as a nondecreasing and continuous functio 6{1), which has a
slope strictly smaller than one. Given the results of Claim 2, existence of a fixed-point and convekity of
follow from a simple graphical argument. Finally, continuity of the expression in (19) and UST 6f) establish
USC of T'(-). Q.E.D.

Fixed-point argument

Recall the definitions of andg as functions of andm. Fix now a triple(p?’, p"¥', m), where each element is
restricted td0, 1], and calculate the respective values:f, andf. Define nextV (2) = gV 75 (2). We define
now a mapping : [0, 1]* — [0, 1]® in a series of steps.

- Take some&/ 2(1) € T(VE(2), pI', o'V, m). Note next that the choice df #(1) also defines uniquely a
valueUT (VE(1), VE(2), u) and a valud/ — (VE(1), VE(2), u).

- Keeping (p*", p"',m) fixed, define for any choice o (1) the setp(p!", p"',m, V(1)) of all triples
(»*, p"V', ), which simultaneously satisfy the following three conditions:

1. m is uniquely defined by

femmaz {U~(),U7()} = U°if f(maz {U(),U7()} > U°, (20)

m = 1 otherwise.

44 Observe thaC* (-) may not be convex. For this reason we allow firms to randomize so as to realize any (ex-
pected) utility in the convex sat?’ (-). Alternatively, it can be checked that (A.1)-(A.2) together with (5, y) /dy? <
d*v(i, y)/dy?* for j > i convexifies the set of solutions.
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2. p¥ satisfies

0 if U=(-) >UF()
ph = { 1 “()<UP() (21)
€l0,1] U-()=U"()
3. p" satisfies
0 if VEI(1) < VE(1)
=<1 VES(1) > VE(1) (22)
€[0,1] VR (1) =VH(1)
Observe first that by uniquenessidfand by (21)-(22) the se(-) is convex. Define next
w(p”, " m) = U p(p", " m, VE(1)).

VE()ET(VE(2),pF,pW,m)
By convexity of T(-) and continuity o/ (-) andU~(-), ¢(-) is convex. We show next that it is also USC in
(¥, p"V,m). This follows again from continuity o/ ’(-) andU ~(-) and from USC off'(-).
By applying Kakutani's theorem, the equatigr”, o'V, m) € p(p*", p', m) has thus a fixed-point. We choose
one for givens and denote the respective valuesddy p¥', andms. Observe that with this choice we have also

determined the following variablegs, gs, s, Vi (1), UL, Uy .

Properties for high ¢
The fixed-point result so far neither implies existence of an equilibrium, nor that the asserted characteristics

are satisfied. This will follow for higld from a series of claims.

Claim 4. It holds that fs — 1.

Proof. We argue by contradiction, which implies existence of a subsequence iere f < 1. Take the
original sequence as the subsequence and observe that this implies existence &f someuch thatms < 1
for all § > 8,, while alsogs — 1. By construction this implies next thag?(2) — VI9(2), while from (19) a
lower boundary foi/*(1) converges t&’#%(1). To obtain a contradiction, we derive next a series of implications
following from the assumption thgks — f < 1.

We claim first that there exist, > 0,6, < 1 such that fos > &, it holds thatus(2) > z;, while alsop’” > 0.

To see that this holds, recall first that (20) is solved by seme< 1 forall § > §,. By U° > 0andf < 1,
firms must realize strictly more thaii® in T'¥', which by construction off*“(1) and the property oF*(1) can
only be the case with the high type, implying indeed flagf) must remain bounded away from zero. In case the
claim for p!” does not hold, we can select a subsequence of high vé,LuwSIereng = 0, implying from (19)
that V(1) — VES(1). By construction of the RS family of contracts this ensuresthat— U° such that (20)
cannot be satisfied. Hence, we have shown th&2) > z;, while aI50p5F > 0 holds for$ > 31.

We claim next that there exist > 0,8, < 1 such that fo§ > &, it holds thatV;F (1) > VES(1) + &,. To
see this, recall first that faf > 6, it holds fromp! > 0 that fsUF = U°. By fs — f < 1, the properties of
ViE(i), and construction of**(1), this can only be the case3f**(2) > y*(2) and contracts foi = 2 in T'*
are sufficiently less distorted. The assertigfi(1) > V(1) + 2, follows then immediately from (A.2) and
incentive compatibility for = 1.

We claim next that there exisg > 0,63 < 1 such that fors > &3 it holds thatp! > 3. By us(2) > &;

for § > &, this is indeed the case if we can show thdt = 0 holds for sufficiently high values af, which
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would follow from (22) in casé/{*(1) > V#9(1). To prove the last assertion we argue to a contradiction and
assume that this does not hold for higjalong some subsequence. By (1) > V(1) + &, for é,, > &, and
gs, — 1, thisimpliesp; — 0, such that for higld it follows from (21) thatfs, Uy = U°. By V5(1) < VF5(1),
fs, — f < 1,andU° > 0 this leads again to a contradiction given the constructiarf’6{2). Hence, we have
shown that/ (1) > V#9(1) must hold for highs, implying p > 3.

We are now in a position to complete the proof of Claim 4. Gigén> z; andV{ (1) > VE9(1) + &, for
o> {32, 33}, we know fromgs — 1thatV,*(1)— V£ (1) — 0. We can next apply an argument as used repeatedly
in the proof of Proposition 1. By constructiongf® (1) we can conclude frof’ (1) > V(1) +z, that the firm
realizes a strictly negative utility with= 1. As us(1) > 1°(1) holds by construction and & (1) - V¥ (1) — 0,
it follows from (A.2) that firms are strictly better off for highby restricting an offer ta = 2. Formally, we can
find somed, < 1 such that fors > 4, it holds thatU; > UF > Foré > max {80,81,32,83,84} we have
thus arrived at a contradiction &5 > U andp! > 0 contradict (22). By contradiction we have therefore
established thafs — 1. Q.E.D.

Claim 5. There existe > 0, 6; < 1 such that for§ > ¢, it holds thatus(1) < 1 —e.

Proof. We argue to a contradiction and assume existence of a subsequenceuwhéle— 1. Take the
original sequence as the subsequence. From (17) this imglies 1 for high §, which by (22) is only the case
if Vi#(1) > VES(1). For this to hold, however, it must be the case #fat> 0 and thatV" (1) > V.£(1), i.e.
that 7R(1) is not binding in a solution td(-) for high 6. By optimality this implies thaf C'(1) binds and that
the respective value of the sorting variable specified for the high type, which we dengté2yis chosen to
maximizeys (2)s(2, ys(2)) + ps(1) [v(2,y5(2)) — v(1,y5(2))]. By (A.2) this impliesys(2) — oo asus(1) — 1,
which yields for high$ a contradiction td/’ (1) > V;%(1). This proves the assertio@.E.D.

Claim 6. There existn? < 1, § < 1 such that for§ > 8, it holds thatms < m?.

Proof. We argue to a contradiction and assume existence of a subsequencenyhere 1. Take the orig-
inal sequence as the subsequence. Consider the strategy for firms to dfferoimly a contract ta = 2. By
specifyingy = y®°(2) andt = V£(2) — V(2,y59(2)), incentive compatibility fori = 1 is ensured due
to VE(1) > gsVE9(1) andV#(2) = gsV79(2). As firms must not receive more thdi’ under this strat-
egy due the requirement (20), it must hold that > fs[us(1)U° + ps(2)(s(2,y79(2)) — V(2)), which by
5(2,y%5(2)) = U® + VI9(2) transforms to the requirement

0
R TR @9
Observe next that byis — 1 the expression
1—gs 1—6(1 —bmyg)

L—fs  1=06(1—(1—-b)(1—ms))
grows beyond any boundary &s— 1. As us(2) remains bounded away from zero by Claim 5 ang@s- 1 by

Claim 4, this contradicts (23). Hence,s must indeed be bounded away from one for sufficiently high values of
6. Q.E.D.

We are finally in a position to complete the existence proof. By Claim 6 it followsghat 1, implying from

45 Recall thatV,”’ (1) may be the expected outcome if firms randomize. In this case the argument holds for all
offers realizing for low types not less than the expected vafi¢l).
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VE(i) > gsVE5(i) for i € I that entry is indeed optimal fof > &3 and some; < 1. Observe next that by
ms < 1for§ > 6, it holds by (20) thatfsmaz {U~(-),UF(-)} = U°. Recall also that we have ensured by
construction that firms make an optimal choicdif, while the same holds for the decision of low types to break
up a match il"". By specifying pessimistic beliefs we ensure that offer'ih are optimal.

It thus remains to show that the high type’s incentive compatibility constraint, which was negled®d,in
holds for highs. To see this, note first that? (i) — V5(i), which indeed ensures th&}?(2) > V(1) +
v(2,9*(1)) — v(1,y*(1)) holds fors > 63 and some, < 1. Existence of an equilibrium is thus ensured for all
§ > 6 =max {51,52,53,54}.

By Claim 4 the constructed sequence also satigfjes 1. It thus remains to show that the measure of workers
remains bounded. By (17) we obtain tifat— b)py” + bp! is equal to[u®(1)(1 — ps(1))]/[rs(1)°(2)], which
by us5(1) < 1 — ¢ due to Claim 5 remains faf > 6 strictly bounded from below by some valge> 0. As also
ms < mP for § > 6 due to Claim 6, stocks are bounded from abovély(2) < W (2) = EV(2)/(1 — m?)
andWs(1) < W (1) = EW(1)/[(1 — m®?)p]. ChoosingM = W (1) + W (2) completes the prooRQ.E.D.
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