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COMPARISON OF SCORING RULES IN POISSON VOTING GAMES

by Roger B. Myerson

1.  From social choice theory to analysis of voting games

The great impossibility theorems of social choice theory teach us that no democratic

voting rule can guarantee the existence of a unique pure-strategy equilibrium in all social choice

situations (Muller and Satterthwaite, 1977).  Thus, any democratic voting rule must sometimes

generate randomized equilibria or multiple equilibria in which the chosen alternative will not

depend uniquely on the voters' preferences.  But such impossibility results do not imply that all

voting rules generate the same sets of equilibria for a given social choice situation.  In fact, the set

of equilibrium outcomes in a social choice situation (where voters' preferences over the

alternatives are held fixed) may depend substantially on the voting rule.  To develop a practical

theory of social choice and constitution design, we need to understand this dependence.  That is,

we need to move from the negative impossibility theorems to a positive research agenda of

characterizing and comparing the equilibria that are generated by different voting rules.  In this

paper, we consider some simple social choice situations involving just three alternatives, and with

these examples we probe the ways that sets of equilibria may change when the voting rule is

changed.

The example that is considered first and longest in this paper is a version of the Condorcet

cycle.  Beginning with this example can help us to see more clearly the relationship between the

impossibility theorems of social choice theory and the analysis of voting games, because the

simple Condorcet cycle offers the easiest way to prove a social-choice impossibility theorem for
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anonymous neutral voting rules.  In social choice theory, a voting rule is called anonymous if it

treats the voters symmetrically, and it is called neutral if it treats the candidates symmetrically. 

Such anonymity and neutrality may be assumed as basic properties of any democratic voting rule. 

In the simplest version of the Condorcet cycle, there are three candidates (or social-choice

alternatives) which we may number 1, 2, and 3, and there are three voters whose preference

orderings are 1™2™3, 2™3™1, and 3™1™2, so that each candidate could be beaten by a majority

that prefers another candidate.  This simple Condorcet cycle has obvious symmetries among the

voters and candidates.  So when we complete the definition of a voting game for this example by

specifying an anonymous neutral voting rule, the three candidates must appear symmetrically in

the resulting set of Nash equilibria.  If the voting game for this example has a purestrategy

equilibrium in which candidate 1 would win the election for sure, then by symmetry it must also

have a second equilibrium in which candidate 2 would win the election, and it must also have a

third equilibrium in which candidate 3 would win the election.  

Thus, under any anonymous neutral voting rule, the simple Condorcet cycle cannot have a

unique equilibrium in which one candidate wins without randomization.  That is, under any

democratic voting rule, the Condorcet cycle will confront us with problems of randomization or

multiplicity of equilibria.  If a voting rule yields here a unique Nash equilibrium, then it must be a

randomized equilibrium in which the winner of the election is unpredictable, depending on random

factors that are not publicly known before election day.  On the other hand, if we have multiple

equilibria, then the winner of the election may be predictable once we know which equilibrium is

focal in the voters' perceptions, but this focal equilibrium selection may depend crucially on

payoff-irrelevant factors of cultural tradition or heresthetic manipulation. 
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This argument suggests that it may be useful to distinguish among voting rules on the

basis of whether they confront us with randomization or multiplicity of equilibria in examples like

the Condorcet cycle.  But the small number of voters in this simple Condorcet cycle may make it

less attractive as a test case for categorizing voting rules that are intended for elections with large

numbers of voters.  So in this paper we consider instead a replicated version of this example

where the voting population can be much larger, including many voters like each of the three

voters in the simple version of the Condorcet cycle.  Then, to complement and extend the insights

from this Condorcet-cycle example, we go on to consider three other simple social choice

situations.

A social choice situation here is defined by specifying a set of candidates (or social-choice

alternatives) and a probabilistic description of how many voters will have each possible utility

function over this set of candidates.  To complete the definition of a voting game, we must

additionally specify the voting rule that defines what permissible ballots can be cast by the voters

and how the winning candidate will be determined by the voters' ballots.

In this paper, the voting rules that we consider are scoring rules.  For three-candidate

elections, a scoring rule is characterized by a set C f ú  which represents the set of feasible3

ballots or vote-vectors that a voter is permitted to submit.  In this set C, a vote-vector c=(c ,c ,c )1 2 3

represents a ballot that gives c  points to candidate 1, c  points to candidate 2, and c  points to1     2      3

candidate 3.  At the end of the election, the vote-vectors of all the voters are added together to

compute a total point score for each candidate, and the winner of the election will be the

candidate who gets the highest score.  In the event of a tie for the highest score, we assume that

the winner will be selected randomly from the set of tied candidates, each with equal probability.
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We assume throughout this paper that the set C is a nonempty finite subset of ú  and that3

every component c  of every vector c in C is a rational number.  In plurality voting, for example,i

the set of feasible vote-vectors is

C = {(1,0,0), (0,1,0), (0,0,1), (0,0,0)}

because each voter must vote for exactly one candidate or abstain.  In approval voting, each voter

can give 0 or 1 point to each candidate, independently of the number of points that he has given to

other candidates, and so the set of feasible approval vote-vectors is

C = {(1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), (0,0,0)}.

(We can ignore the option of approving everyone, which is equivalent to abstaining.)  In Borda

voting, voters must rank-order the candidates and assign 1 point to the top-ranked candidate, 1/2

point to the middle candidate, and 0 points to the bottom candidate, and so the set of feasible

Borda vote-vectors is

C = {(1,1/2,0), (1,0,1/2), (1/2,1,0), (0,1,1/2), (1/2,0,1), (0,1/2,1), (0,0,0)}.

Negative-plurality voting (in which each voter votes against one candidate) may be represented by

the feasible set

C = {(1,1,0), (1,0,1), (0,1,1), (0,0,0)}.

Here (1,1,0) can be interpreted as a vote against candidate 3.

All these scoring rules are anonymous, because we are assuming that every voter can

choose from the same feasible set C.  The scoring rules that we consider in this paper are also

assumed to be neutral in the sense that, for any one-to-one permutation .:{1,2,3}6{1,2,3} on the

set of candidates and for any feasible votevector (c ,c ,c ) in C, the vector (c , c , c ) is also1 2 3      .(1)  .(2)  .(3)

a feasible vote-vector in C.  We will also assume (without loss of generality) that the scoring rules
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are normalized so that the maximal difference that one voter can make between any two

candidates is one point; that is, for any two candidates i and j,  

max  c ! c  = 1, c0C i  j

and that the vote-vectors that achieve this maximum have c  = 1 and c  = 0.i    j

Before we can analyze the equilibria of examples like the large replicated Condorcet cycle,

we need some basic concepts and technical results.  Section 2 develops the general models and

solution concepts which are used in this paper.  In particular, within a set of perfect asymptotic

equilibria, we look for discriminatory equilibria in which the voters' perceptions of the candidates

are very nonsymmetrical.  Section 3 then presents some basic techniques that we will use to

evaluate the probabilities of pivot events in large Poisson voting games, applying and extending

results from Myerson (1999).  (New proofs are in Section 8.)  With these results and definitions,

we characterize the scoring rules that generate discriminatory equilibria for the Poisson-replicated

version of the Condorcet cycle in Section 4.  We find that multiple discriminatory equilibria exist

for scoring rules that put more emphasis on rewarding the topranked or "best" candidate (as in

plurality voting), rather than on punishing the bottom-ranked or "worst" candidate (as in negative-

plurality voting).

Discriminatory equilibria seem problematic in the Condorcet cycle.  Section 5 analyzes the

discriminatory equilibria of a second simple example where the existence of a discriminatory

equilibrium seems highly desirable.  For this example, we find that a discriminatory equilibrium

fails to exist for scoring rules that put more emphasis on punishing the worst candidate rather than

rewarding the best.  So the scoring rules that appear best for our first two examples are those that

are intermediate between best-rewarding and worst-punishing, especially those that offer voters a
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choice between these two forms of expression.

In Section 6 we switch to looking at symmetric equilibria.  Applying methods of Cox

(1987, 1990) and Myerson (1993), we consider an example where two of the three candidates are

indistinguishable from the perspective of the voters,  and we show that the symmetric equilibria

are consistent with majority preference only for scoring rules that are exactly balanced between

best-rewarding and worst-punishing. 

The methodology of Sections 2 through 4 put heavy emphasis on calculating probabilities

that one vote could change the discrete winner of the election.  A reader might suspect that

rational voters would ignore these small pivot probabilities when they also consider the

continuous effects that a change in relative vote shares may have on subsequent political

decisions.  In Section 7, we consider a simple example from Piketty (1995) which shows that

continuous vote-share effects do not necessarily overwhelm discrete pivot effects.

2.  Pivot probabilities and discriminatory equilibria

In this paper, we consider social choice situations where the number of voters is a random

variable with a large mean, and the voters have independent private values over the candidates or

alternatives.  So we start by specifying the set of candidates or alternatives, which here (until

Section 7) is the set {1,2,3}.  The number of voters is assumed to be a Poisson random variable

with mean n (as in Myerson, 1999).  To study large games, we will consider a sequence of games

parameterized by n and look at the limit as n64.  In this paper, we will assume that voters differ

only in their independent private values for the various candidates.  Thus each type of voter here

can be characterized by a vector that lists the voter's utilities for the various candidates.  That is,
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we may suppose that a voter's type t is a triple

t = (t , t , t )1  2  3

where each t  is the utility payoff that the voter would get if candidate i won the election.  Wei

assume throughout this paper that the set of possible types T is a nonempty finite subset of ú . 3

We also assume that each voter's type is independently drawn from some probability distribution r

over this set.  For example, in Section 4 we will consider a Poisson-replicated version of the

Condorcet cycle where the type set is

T = {(10,5,0), (0,10,5), (5,0,10)}

and the probability distribution r is

r(10,5,0) = r(0,10,5) = r(5,0,10) = 1/3,

and so any voter is equally likely to have the preference ordering 1™2™3 or 2™3™1 or 3™1™2. 

Then we complete the definition of a Poisson voting game by specifying the set C f ú  which3

represents the set of feasible ballots or vote-vectors c = (c ,c ,c ) that a voter is permitted to1 2 3

submit in the election.

Given this set of choices C, beliefs about aggregate voting behavior can be described by a

probability distribution J = (J(c)) , where J(c) denotes the probability that a randomly sampledc0C

voter will cast the vote-vector c.  This distribution must be in the set of all probability

distributions on C,

)(C) = {J0ú *  J(c) $ 0 œc0C,  3  J(d) = 1}.C
d0C

The results of the voter's aggregate behavior will be some vote profile x = (x(c))   where x(c) isc0C

a nonnegative integer denoting the number of voters who cast the vote-vector c.  We let Z(C)

denote the set of all such vote profiles,
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Z(C) = {x0ú * x(c) is a nonnegative integer œc0C}.C

If the probability distribution J  in )(C) describes beliefs about the behavior of any randomlyn

sampled voter in a game with expected population size n, then the vector nJ  = (nJ (c))  is then  n c0C

expected vote profile.  If the expected number of voters is a Poisson random variable with mean

n, and nJ  is the expected vote profile, then the probability of a vote profile x in Z(C) isn

P(x*nJ ) = n

By the environmental-equivalence property of Poisson games (see Myerson 1998), any voter

would also assign this probability to the event that x the profile of votes cast by all other voters.

The high scorer(s) in the vote profile x are 

S(x) = argmax  3  x(c) c .i0{1,2,3} c0C  i

Assuming random tie-breaking, the probability that candidate i wins with the vote profile x is

W(x) = 0  if  ióS(x),  and  W (x) = 1'#S(x)  if  i0S(x)i           i

(where #S(x) is the number of high scorers at x).  Then the expected utility for a type-t voter is

U(x,t) = 3  W(x) ti0{1,2,3} i  i

when the vote profile is x.  (Recall that t  here is the payoff to a type-t voter when i wins.)  i

Now let x+[c] denote the vote profile that differs from x in that there is one additional c-

ballot.  With beliefs J  in a voting game of expected size n, voter of type t should want to choosen

a ballot c that maximizes the expected payoff

3  P(x*nJ ) U(x+[c],t).x0Z(C) n

A strategy function is a function F:T 6 )(C), where F(c*t) denotes the probability that any given

type-t voter would cast the ballot c.  So we may say that a strategy function F is a best response

to an expected vote profile nJ  iff, for each type t and each feasible ballot c, n
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if  F(c*t) > 0  then c 0 argmax  3  P(x*nJ ) U(x+[d],t).d0C x0Z(C) n

If everyone applied the strategy function F, then the probability of a randomly sampled

voter casting the ballot c would be

3  r(t) F(c*t).t0T

In this paper, we study strategy functions that would be optimal, even in very large games, and

even when there is some arbitrarily small probability of voters choosing any given ballot by

mistake.  So let us say that a perfect asymptotic equilibrium is a strategy function F together with

a probability distribution 0 on the set of candidates such that, for each g > 0, we can find an

infinite sequence of beliefs{J }, indexed on n64, such that:n

F is a best response to the expected vote profile nJ , œn,n

lim  J (c) > 0,  œc0C,  andn64 n

*lim  J (c) ! 3  r(t) F(c*t)* # g,  œc0C.n64 n   t0T

*0  ! lim  3  P(x*nJ ) W (x)* # g,  œi.i  n64 x0Z(C) n  i

We shall use this concept as our basic solution throughout this paper, so the term "equilibrium"

here may be taken to mean such a perfect asymptotic equilibrium.  The limiting win-probability 0i

for each candidate i is included in this definition of equilibrium so that we will be able to

distinguish two equilibria where voting behavior is the asymptotically the same but the winners are

different, as in Example 4 below.  (To show existence of asymptotic equilibria, we can apply an

equilibrium existence theorem for finite Poisson games, such as Theorem 0 of Myerson 1999, to a

sequence of large games that have been perturbed by small probabilities of new types that are

dedicated to each action; and then we can choose appropriately convergent subsequences as n64,

using the fact that there are only finitely many possible sets of best-response functions.)
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We are assuming here (until Example 4 in Section 7) that voters' utility payoffs depend on

their votes only through their effect on the winner of the election.  Thus, in the calculus of rational

voting, each voter must ask what is the probability that his vote could change the winner of the

election from one candidate to another.  So to compute optimal votes for any type of voter, we

need to compute the probability of various pivot events in which one vote can change the winner

of the election.  Let 7(c,i,j) denote the event that one more c-ballot could change the winner from

candidate i to candidate j,

7(c,i,j) = {x0Z(C)* W(x) > W (x+[c]), W (x) < W (c+[c])}.i   i  j   j

Then let 7*(i,j) denote the event that candidates i and j are in a close race where one vote could

make a difference between one of them winning or the other,

7*(i,j) = c  (7(c,i,j) c 7(c,j,i)).c0C

Let 7** denote the event that there is a close race between some pair of candidates,

7** = c  7*(i,j).(i,j)

As noted in Section 1, there is an obvious symmetry among the three candidates in the

Condorcet cycle (in our Poisson-replicated version as well as the simple three-voter version), and

any anonymous neutral voting rule will give us a voting game in which the three candidates are

treated symmetrically.  We would like to characterize the voting rules that generate multiple

nonsymmetric equilibria for this social-choice situation.  Unfortunately, analyzing whether such

nonsymmetric equilibria exist in great generality can be difficult, so we simplify the question here

by asking instead whether a particularly extreme form of nonsymmetry exists: a nonsymmetry in

which one candidate essentially vanishes from the rational voting calculus.

Obviously a voter's decision only matters in the event that there is a close race, when all
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other votes are counted.  That is,

argmax  3  P(x*nJ ) U(x+[d],t) = argmax  3  P(x*nJ ) U(x+[d],t).d0C x0Z(C) n    d0C x07** n

So we may say that a race between a pair of candidates i and j is serious if, conditional on the

event that there is some close race, there is a positive probability of the close race involving i

and j.  More formally, let us say that the {i,j} race is serious in an equilibrium F iff F can satisfy

the definition of a perfect asymptotic equilibria with sequences {J } that also satisfy the additionaln

property

lim  P(7*(i,j)*nJ )'P(7***nJ ) > 0.  n64 n n

Let us say that a candidate i is out of contention in an equilibrium F iff, for every other

candidate j, the {i,j} race is not serious in the equilibrium F.  Finally, let us say that an equilibrium

F is discriminatory iff some candidate is out of contention.

3.  Magnitudes of cones events in large Poisson games

We now develop some basic techniques for evaluating probabilities of events in large

Poisson games, reviewing and extending results from Myerson (1999).  In this section, we take as

given the finite set of possible actions C, and we consider the limits of event probabilities for

sequences of expected vote profiles nJ  as n64.n

Our first proposition is a direct consequence of Lemma 1 and Theorem 2 of Myerson

(1999), where the function R is defined as

R(2) = 2(1 ! log(2)) ! 1,  œ2 > 0,  and  R(0) = !1.

(Here the log is natural logarithm, base e.)  So R is a strictly concave continous function with 

RN(2) = !log(2),  and  max  R(2) = R(1) = 0.2$0
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Proposition 1.  Suppose that {x } is a sequence in Z(C), andn

lim  x (c)'(nJ (c)) = "(c) > 0  and  lim  J (c) = J(c) > 0,  œc0C.  n64 n n         n64 n

Then lim  log(P(x *nJ ))'n = 3  J(c) R("(c)).n64 n n   c0C

Furthermore, for any vector w = (w(c))  such that each w(c) is an integer (possibly negative),c0C

(3.1) lim  P(x !w*nJ )'P(x *nJ ) = J  "(c) .n64 n n n n   c0C
w(c)

In this result, the critical quantity x (c)'(nJ (c)) may be called the offset ratio for c at then n

vote profile x.  This offset ratio describes the number of c-ballots in x  as a fraction of then

expected number of cballots.

For any set R f ú , the probability of the event R with expected vote profile nJ  isC
n

P(R*nJ ) = 3  P(x*nJ ).n   x0R1Z(C) n

Given a sequence of probability distributions {J } in )(C), we define the magnitude of such ann

event R to be

µ(R) = lim  log(P(R*nJ ))'n.n64 n

Notice that the magnitude of any event must be zero or negative.  If the magnitude µ(S) is a

negative number, then the probability of S goes to zero exponentially like e  as n64.  If thenµ(S)

magnitude of an event R is strictly less than the magnitude of S, then the probability of R becomes

infinitesimal relative to the probability of S.  That is,

if  µ(R) < µ(S)  then  lim  P(R*nJ )'P(S*nJ ) = 0.n64 n n

General results for evaluating the magnitudes of many events have been developed by

Myerson (1999), but here we develop some slightly stronger results for events that have the

structure of a cone in ú .  In voting games, we are often interested in events that defined byC
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homogeneous linear inequalities, and so have the geometrical structure of a cone.  Such events

include, for example, the event that candidate 3 gets the highest score, and the event that

candidates 1 and 2 are tied. 

Suppose that K is a finite set, and b (c) is a rational number for each k in K and each ck

in C.  Let S denote a cone in ú  defined by the conditionsC

(3.2) S = {x0ú * x(c) $ 0 œc0C,  and  3  b (c) x(c) $ 0 œk0K}C
c0C k

Suppose also that there exists some vector x such that 

x 0 S, and x(c) > 0 œc0C, 

so that the cone S is compatible with having large numbers of all possible ballots in C.  Notice that

a cone always includes the zero vector, and the event of zero turnout has magnitude !1, because

the probability of zero population is e  when population is a Poisson random variable with mean!n

n.  So the magnitude of a cone S cannot be less than !1.

For any J in )(C), consider the following magnitude problem on the cone S with beliefs J:

(3.3) maximize  3  J(c) R("(c))  subject to  " c0C

3  b (c)J(c)"(c) $ 0,  œk0K,c0C k

and  "(c) $ 0, œc0C.

Proposition 2 tells us that the solutions to this optimization problem are well behaved.

Proposition 2.  For any J in )(C), the magnitude problem on the cone S with beliefs J has

an optimal solution " = ("(c))  in ú .  The optimal value of the object function in this magnitudec0C
C

problem is a continous function of J in )(C).  For each c in C, the value of "(c) in the optimal

solution is unique and is a continuous function of J in the domain where J(c) > 0.
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The next proposition tells us that, at least when the limiting fractions for all ballots are

positive, the magnitude of the cone S is the limiting solution to this optimization problem, and

almost all probability in the cone is concentrated in the region where offset ratios are close to its

unique solution.

Proposition 3.  Suppose  lim  J (c) = J(c) > 0  for all c in C.  Let " be an optimaln64 n

solution of the magnitude problem on S with J.  Then 

"(c) > 0,  œc0C,

lim  log(P(S*nJ ))'n = 3  J(c) R("(c)),  andn64 n   c0C

lim  P({x0S* "(c)!g#x(c)'(nJ (c))#"(c)+g, œc0C}*nJ )'P(S*nJ ) = 1  œg>0.n64  n  n n

Furthermore, for any vector w such that w(c) is an integer œc,

(3.4) lim  P(S!w*nJ )'P(S*nJ ) = J  "(c) .n64 n n   c0C
w(c)

(Here S!w = {x!w*x0S}.)

The cone structure of S enables us to apply duality to the magnitude problem. We may

define dual of the magnitude problem on the cone S with beliefs J to be the optimization problem:

(3.5) minimize  3  J(c) exp(3  8  b (c)) ! 1  subject to  8  $ 0  œk0K.8 c0C  k k k        k

Our next proposition shows how the dual gives us a solution to the primal magnitude problem.

Proposition 4.  Given any J in )(C), let D(J) = {c0C*J(c)>0}.  Suppose that there exists

some x in the cone S such that {c* x(c)>0} = D(J).  Then a vector " in ú  is an optimal solutionC

of the magnitude problem on S with J if and only if the corresponding dual problem has an
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optimal solution 8 such that,  

(3.6) "(c) = exp(3  8  b (c)),  œc0D(J).k0K k k

Furthermore, the optimal value of the objective function in the magnitude problem on S with J is

equal to the optimal value of the objective function in the corresponding dual problem. 

The proofs of these propositions are given in the Section 8 below.

4.  Example 1: the Poisson-replicated Condorcet cycle

Now we can analyze our primary example, the large Poisson version of the Condorcet

cycle.  In this example, there are three candidates, numbered 1 to 3.  There are three types of

voters, and each type t is characterized by its utility vector t = (t ,t ,t ), where t  denotes the utility1 2 3   i

payoff that the type-t voter would get if candidate i won the election.  With this notation, voters in

this example have three possible utility types:  (10,5,0), (0,10,5), and (5,0,10), yielding

preferences 1™2™3, 2™3™1, and 3™1™2 respectively.  The classical version of this example had

one voter of each type, as described in Section 1, but here we will consider a replicated version in

which the number of voters is random and expected to be large.  In our replicated version of the

Condorcet cycle example, we assume that the number of voters is a Poisson random variable with

some large mean denoted by n, and we suppose that each voter has an independent type that is

equally likely to be one of these three types.  That is, letting r(t) denote the probability that a

randomly sampled voter will have type t, this social choice situation is characterized by the

distribution

r(10,5,0) = r(0,10,5) = r(5,0,10) = 1/3.
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Then the numbers of voters of each type are independent Poisson random variables, each with

mean n/3.

In this symmetric social choice situation, if there exist any nonsymmetric discriminatory

equilibria then there exist discriminatory equilibria in which candidate 3 (say) is out of contention. 

So let us now begin to characterize the scoring rules for which there exists a discriminatory

equilibrium of the Condorcet cycle example, where candidate 3 is out of contention.

In a discriminatory equilibrium where the only serious race is between candidates 1 and 2,

every voter will want to cast a vote-vector that maximizes the difference between the points for

his more-preferred among {1,2} and his less-preferred among {1,2}.  To prove this, notice first

that all voters are assumed to have strict preferencces among candidates 1 and 2.  So let L(1,2)

denote the cone where candidates 1 and 2 are in a tie for first place.  The pivot event 7*(1,2) can

then be characterized as a finite union of events of the form L(1,2)!w, where w is an integer

vector in ú , chosen to make the scores of candidates 1 and 2 differ by one of the possible score-C

differences that has absolute value less than one.   (With C containing finitely many rational vote

vectors, the possible score differences is a discrete lattice in ú.)  By the offset condition (3.4) in

Proposition 3, each lim  P(L(1,2)!w*nJ )'P(L(1,2)*nJ ) must be a strictly positive finiten64 n n

number, and so we also get

lim  P(L(1,2)!w*nJ )'P(7***nJ ) n64 n n

= lim  P(L(1,2)!w*nJ )'P(7*(1,2)*nJ ) > 0n64 n n

(where the equality here uses the fact that {1,2} is the only serious race).  But suppose consider a

voter who prefers candidate 1 over 2 (say), and consider any two vote-vectors d and d such thatˆ

d !d  > d !d .  The event that this voter could make candidate 1 win instead of 2 by voting d1 2  1 2
ˆ ˆ
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instead of d includes L(1,2)![d], and so the limiting conditional probability of this event givenˆ   ˆ

7** must be positive, and so this event must in the limit be infinitely more likely than any pivot

event involving candidate 3.   So even if (say) the voter preferred candidate 3 most and d  wereˆ
3

greater than d , the voter's expected payoff (against the expected vote profile nJ , for all large n)3           n

would be increased by voting d instead of d.  Thus, the voter should choose a vote c thatˆ

maximizes c !c , because switching to such a vote would increase the probability of 1 winning1 2

instead of 2 by much more (proportionally) than any effect on candidate 3's probability of

winning.

Without loss of generality, we are assuming that the ballots in the scoring rule have been

normalized so that, in all feasible vote-vectors that maximize the difference between the highest

and lowest candidates' points, the highest candidate gets 1 point and the lowest candidate gets 0

points.  Scoring rules then may differ in the number of points that can be given to the

middleranked candidate, in any feasible vote-vector that maximizes the difference of points

between the other two candidates.  Given any scoring rule, we let A denote the lowest number of

points that can be given to candidate 3 in a feasible vote-vector that maximizes the difference of

points between candidates 1 and 2; and we let B denote the highest number of points that can be

given to candidate 3 in a feasible vote-vector that maximizes the difference of points between

candidates 1 and 2.  So when all voters have strict preferences among candidates 1 and 2, these

two parameters (A,B) tell us everything that we need to know about the scoring rule for the

purposes of characterizing discriminatory equilibria of voting games.

With the normalization assumed above, these parameters A and B must satisfy  

0 # A # B # 1.  
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Geometrically, the set of pairs (A,B) that satisfy this constraint is a triangle with extreme points

(0,0), (1,1), and (0,1) (as shown below in Figures 1 and 2).  The extreme point (A,B) = (0,0)

corresponds to plurality voting.  Plurality voting and the scoring rules near it in this triangle may

be called best-rewarding scoring rules.  The extreme point (A,B) = (1,1) corresponds to negative-

plurality voting.  Negative-plurality voting and the scoring rules near it in this triangle may be

called worst-punishing scoring rules.  The extreme point (A,B) = (0,1) corresponds to approval

voting, where voters can give either 0 points or 1 point to their middle candidate.  Approval

voting and the scoring rules near it in this triangle may be called flexible scoring rules.  Borda

voting corresponds to the point (A,B) = (1/2,1/2), the midpoint of the edge between plurality and

negative-plurality voting.

When candidate 3 is out of contention in the Condorcet cycle example, the voters with the

preference ordering 1™2™3 will want to give candidate 3 the fewest possible points (A) consistent

with maximally separating candidate 1 over candidate 2, and so they should all cast the vote-

vector (1,0,A).   The voters with the preference ordering 3™1™2 will want to give candidate 3 the

most possible points (B) consistent with maximally separating candidate 1 over candidate 2, and

so they should all cast the vote-vector (1,0,B).  Finally, the voters with the preference ordering

2™3™1 should cast the vote-vectors (0,1,A) or (0,1,B) to maximally separate candidate 2 over

candidate 1.  So for some number D such that 0 # D # 1, a discriminatory equilibrium of the

Condorcet cycle where 3 is out of contention would have to be F of the formG

F((1,0,A)*(10,5,0)) = 1,  F((1,0,B)*(5,0,10)) = 1,  G     G

F((0,1,A)*(0,10,5)) = D,  F((0,1,B)*(0,10,5)) = 1!D.G     G

Let J be the expected vote profile that is generated by this strategy function F:G             G
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J(1,0,A) = 1'3,  J(1,0,B) = 1'3,  J(0,1,A) = D'3,  J(0,1,B) = (1!D)'3.G     G     G     G

The expected point scores with a expected population size n are then

2n'3,  n'3,  A(1+D)n'3 + B(2!D)n'3

for candidates 1, 2, and 3 respectively.

The highest magnitude in 7** must be achieved in a pivot event that involves the winner

at the expected vote profile, because magnitude function is continuous and has a global maximum

at the expected vote profile.  So if candidate 3 were the winner at the expected vote profile, then

candidate 3 could not be out of contention.  Thus, a necessary condition for a discriminatory

equilibrium is that 

(4.1) A(1+D) + B(2!D) < 2, 

and candidate 1 must be the likely winner in any discriminatory equilibrium where 3 is out of

contention.

The magnitude of a {1,2} tie at a limiting distribution J is

max  3  J(c) R("(c)) subject to  3  (c !c )J(c)"(c) = 0." c0C      c0C 2 1

When we expect 2'3 of the voters to vote c !c  = !1 and 1'3 to vote c !c  = 1, this magnitude2 1       2 1

is, by duality,

min  (2'3)exp(!8) + (1'3)exp(8) ! 1 = (2'3)2  + (1'3)2  !1 = !0.0572.8
!0.5  0.5

That is, the optimal dual solution has 8 = 0.5 log(2).  The maximal magnitude in the {1,2}-tie

event is achieved at a vote profile where votes for 1 are decreased from the expected profile by a

multiplicative offset factor of 2 , and votes for 2 are increased from the expected profile by an!0.5

offset factor of 2 , which gives candidates 1 and 2 each a score of 2 n'3.  The score for0.5            0.5

candidate 3 with these offset ratios from nJ isG
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A(2  + D2 )n'3 + B(2  + (1!D)2 )n'3!0.5  0.5   !0.5  0.5

which is less than 2 n'3 whenever the condition (4.1) above is satisfied, and so such a vote0.5

profile is in the {1,2}-pivot event 7*(1,2).  Thus, by continuity, for any limiting distribution J that

is close to J, the magnitude of the {1,2}-pivot event must be close to !0.0572.G

Let M(3) denote the event that candidate 3 is high scorer (winning or tied to win).  Since

3 loses at the expected vote profile, the maximal magnitude in the cone M(3) must be achieved at

its boundary, where 3 is involved in a close race.  Thus, the magnitude of a close race involving 3

is the same as the magnitude of the cone M(3).  To check for a discriminatory equilibrium, we

need to check whether the magnitude of M(3) is less than !0.0572.

Consider first the case where B < 0.5.  In this case, candidate 3 cannot win with any

positive offset ratios from the expected vote distribution J, because the average of candidate 1'sG

points per voter and candidate 2's points per voter is always 0.5, while candidate 3 gets less than

0.5 points per voter in any ballot that has positive probability under J.  So for any value of D, theG

magnitude of M(3) at J is !1  (the magnitude of zero turnout).  Thus, for any positive voteG

distribution J near J, the magnitude of a close race involving 3 must be near !1, and so must beG

less than !0.0572.  Thus we can certainly find a discriminatory equilibrium with some F as above,G

when B < 0.5.

By a similar argument, if B = 0.5 and A < 0.5, then the magnitude of M(3) at J must beG

less than !1'3, because candidate 3 cannot win with the votes that have positive probability

under F unless all the voters who would give A points to candidate 3, at that is expected to be at

least 1'3 of the voters.  So for any positive J near J, the magnitude of a close race involving 3G

must be less than !0.33, which is less than !0.0572.  Thus we can find a discriminatory
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equilibrium with some F as above, when B = 0.5 and A < 0.5.G

For the voters with utility type (0,10,5), the optimal choice between the ballots (0,1,A)

and (0,1,B) will depend on whether a close race involving 3 is more likely to be with candidate 1,

in which case they prefer (0,1,B), or with candidate 2, in which case they prefer (0,1,A).  Since

candidate 1 is the likely winner with the expected vote distribution J, a natural conjecture is thatG

the {1,3}-close race is more likely than the {2,3}-close race, and so these voters should prefer to

vote (0,1,B); that is, D should be 0 in the definition of F.  In fact this conjecture is correct.  ToG

prove it, we need a technical lemma about the dual of the magnitude problem on M(3).  With any

expected distribution J, this dual on M(3) is

(4.2) minimize  3  J(c) exp(8 (c !c ) + 8 (c !c )) ! 1.8 c0C  1 3 1   2 3 2

Lemma.  Suppose B > 0.5.  If F as above is a discriminatory equilibrium whereG

candidate 3 is out of contention, then for any positive distribution J sufficiently close to J, anG

optimal solution 8 for the dual problem (4.2) on M(3) must satisfy 8  > 8 .1  2

Proof  See Section 8 below.

With 8  > 8  $ 0, we know that the maximal magnitude of M(3) must be achieved where1  2

candidates 1 and 3 are in a close race, because 8  is the Lagrange multiplier for the constraint that1

candidate 3's score is not less than 1's score, and this Lagrange multiplier can be positive only if its

constraint is binding.  If there is not also a close {2,3}-race where this maximal magnitude is

achieved, then the magnitude of a close {2,3}-race must be strictly less than the magnitude of a

close {1,3}-race in the limit, and so all voters with preferences 2™3™1 must prefer to vote (0,1,B)
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rather than (0,1,A).  So we are left with the case where the maximal magnitude in M(3) is

achieved where both constraints bind, at a three-way tie. So we know that, in the limit, almost all

probability in M(3) is concentrated in the region where offsets from the expected vote distribution

are close to the offsets " that solve the magnitude problem for M(3).  In this region, we can set up

a one-to-one correspondence between the vote profiles x such that

3 0 S(x + [0,1,B])  but  2 0 S(x + [0,1,A])

and vote profiles y such that

3 0 S(y + [0,1,B])  but  1 0 S(y + [0,1,A]),

such that corresponding points x and y satisfy

3  x(c) c  = 3  y(c) c ,c0C  3  c0C  3

3  x(c) c  = 1 + 3  y(c) c , c0C  1    c0C  2

1 + 3  x(c) c  = 3  y(c) c .c0C  2  c0C  1

To set up this correspondence, for any number * in the lattice of possible score differences

between candidates for vote profiles in Z(C), find an integer vector w  that minimizes*

3  *w (c)* subject to the constraints c0C *

3  w (c) c  = 0,  3  w (c) c  = * + 1 = !3  w (c) c .c *  3    c *  2      c *  1

(The neutrality of the scoring rule implies that such a vector w  can always be found.)  Then*

associate a vector x as above with a vector  y = x ! w   where  * = 3  x(c) (c !c ).  But then by*      c  2 1

the offset formulas (3.1) and (3.6)

P(y*nJ )'P(x*nJ ) .  n n

= exp(3  (8 (c !c ) + 8 (c !c ))w (c))c 1 3 1   2 3 2 *

= exp((8  ! 8 )(1+3  x(c)(c !c )) 1  2 c 2 1
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> 1,  because 8  > 8   and  2 0 S(x+[0,1,A]).1  1

So we have a one-to-one correspondence between outcomes x where the type-(0,10,5) voters

lose from voting (0,1,B) instead of (0,1,A) and more likely outcomes y where these voters would

gain the same amount from voting (0,1,B) instead of (0,1,A).  Thus, in expected value, these

voters must prefer to vote (0,1,B).  So a discriminatory equilibrium F must have D = 0.G

This result leaves us only to compute the magnitude of M(3) for the expected vote

distribution J such thatG

J(1,0,A) = 1'3,  J(1,0,B) = 1'3,  J(0,1,B) = 1'3G     G     G

and all other J(c) = 0.  We have already seen that the magnitude of M(3) must be achieved at theG

boundary where candidate 3 is tied with 1, so the magnitude of a {1,3}-tie is not less than the

magnitude of M(3).  Furthermore, the magnitude of a {1,3}-tie can be more than the magnitude

of M(3) only if the most likely {1,3}-tie occurs where 2 has a higher score than either 1 or 3, in

which case there must be a {1,2}-tie that is closer to the expected vote profile (where 1 wins) and

so the {1,2}-pivot event must have higher magnitude than either a {1,3} tie or M(3). So we have

a discriminatory equilibrium if and only if the event of a {1,3}-tie has a smaller magnitude than the

magnitude of a {1,2}-tie, which we have seen to be  2 '3!1 = !0.0572.  1.5

Now the dual of the magnitude problem on the {1,3}-tie event with a limit distribution J is

the one-dimensional problem

minimize  3  J(c) exp(8(c !c )) ! 1.8 c0C  3 1

The optimality condition on the dual variable 8 is

0 = 3  J(c) (c !c ) exp(8(c !c )),c0C  3 1  3 1

When J equals J as above, then, the optimal 8 for this dual must satisfyG
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0 = (A!1) exp(8(A!1)) + (B!1) exp(8(B!1)) + B exp(8B).

So if the 8 that satisfies this equation also gives us 

(1'3) exp(8(A!1)) + (1'3) exp(8(B!1)) + (1'3) exp(8B) ! 1 # 2 '3 ! 11.5

then we have a discriminatory equilibrium.  It is straightforward to verify that such 8 exist when

the when the (A,B) pair is below a curve that goes through the points

(0, 0.649),  (0.1, 0.621),  (0.2, 0.593),  (0.3, 0.563),  (0.4, 0.532),  (0.5, 0.500)

This curve is plotted by the thick line in Figure 1.  In this figure, scoring rules are

represented by points (A,B) in the triangle with corners (0,0), (0,1), and (1,1), where 0#A#B#1. 

The scoring rules that yield discriminatory equilibria for the Condorcet cycle are in the lower

portion of this triangle, from the corner (0,0) up to the thick line.  The scoring rules that do not

allow discriminatory equilibria for the Condorcet cycle are in the upper portion of the triangle,

above the thick line.  

[INSERT FIGURE 1 ABOUT HERE.]

Plurality voting, for example, has (A,B) = (0,0) and yields three discriminatory equilibria

for the Condorcet cycle.  If the voters focus on the equilibrium in which candidate 3 is out of

contention, then the voters with preference orderings 1™2™3 and 3™1™2 voters should all vote

(1,0,0), while voters with preferences 2™3™1 should all vote (0,1,0), and so candidate 1 will

almost surely win.  But if the voters focus on the equilibrium in which candidate 2 is out of

contention, then the voters with preference orderings 3™1™2 and 2™3™1 voters should all vote

(0,0,1), while voters with preferences 1™2™3 should all vote (1,0,0), and so candidate 3 will

almost surely win.  So focal manipulation can be critical under plurality voting.
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Approval voting, with (A,B) = (0,1), does not admit discriminatory equilibria for the

Condorcet cycle.  If everyone thought that candidate 3 was out of contention, then the 1™2™3

voters would vote (1,0,0), the 2™3™1 voters would vote (0,1,1), and 3™1™2 voters would vote

(1,0,1), and so a close race between candidates 1 and 3 (each with expected score 2n'3) would

actually be much more likely than a close race between candidates 1 and 2 (who has expected

score n'3), thus contradicting the assumption that candidate 3 was out of contention.

Negative plurality voting, with (A,B) = (1,1), also does not admit discriminatory equilibria

for the Condorcet cycle.  If everyone thought that candidate 3 was out of contention, then

everyone would vote either (1,0,1) or (0,1,1), with the result that candidate 3 would actually win

the election.

Borda voting, with A = B = 0.5, is a difficult boundary case which we can best understand

by instead considering examples with slightly higher and lower values of A and B.  So let us

consider instead the cases of A = B = 0.6 and A = B = 0.4.

First we consider the scoring rule where the middle candidate must be given 0.6 points,

that is (A,B) = (0.6,0.6).  If the voters believed that candidate 3 was out of contention, then the

voters with prefernce orderings 1™2™3 and 3™1™2 voters would vote (1,0,0.6), and the 2™3™1

voters would vote (0,1,0.6), which gives the expected vote distribution

J(1,0,0.6) = 2'3,  J(0,1,0.6) = 1'3.G     G

But when everybody is expected to vote either (1,0,0.6) or (0,1,0.6), candidate 2 wins if less than

40% vote (1,0,0.6), candidate 3 wins if between 40% and 60% vote (1,0,0.6), and candidate 1

wins if more than 60% vote (1,0,0.6) (which is the expected result).  Candidates 1 and 2 are close

to tied only when about 50% vote (1,0,0.6), but in this case they both would be far behind
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candidate 3, unless all voter turnout has vanished.  So the magnitude of a {1,2}-pivot event is

µ(7*(1,2)) = !1 < µ(M(3)) = µ(7*(1,3)) = !0.010

as we approach this expected vote distribution J.  Thus, the assumption that candidate 3 would beG

out of contention leads to the contradictory conclusion that the pivot event 7*(1,3) has a strictly

greater magnitudes than the pivot event 7*(1,2) for all limiting distributions J near J, and so theG

scoring rule with A = B = 0.6 does not admit any discriminatory equilibria.

Now consider the scoring rule where the middle candidate must be given 0.4 points, that is

(A,B) = (0.4, 0.4).  If the voters believed that candidate 3 was out of contention, then the voters

with prefernce orderings 1™2™3 and 3™1™2 voters would vote (1,0,0.4), and the 2™3™1 voters

would vote (0,1,0.4), which gives the expected vote distribution

J(1,0,0.4) = 2'3,  J(0,1,0.4) = 1'3.G     G

When everybody is expected to vote either (1,0,0.4) or (0,1,0.4), candidate 2 wins if less than

50% vote (1,0,0.4), and candidate 1 wins if more than 50% vote (1,0,0.4) (which is the expected

result).  Candidate 3 cannot win at all when only these two ballots are used, unless total voter

turnout goes to zero, which is an event of magnitude !1.  Thus, the pivot events 7*(1,3) and

7*(2,3) have magnitudes 

µ(7*(1,3)) = µ(7*(2,3)) = µ(M(3)) = !1,

while the pivot event 7*(1,2) has magnitude

µ(7*(1,2)) = !0.0572.

Thus, the assumption that candidate 3 would be out of contention leads to the conclusion that the

pivot events 7*(1,3) and 7*(2,3) would indeed have strictly smaller magnitude than the pivot

event 7(1,2), and so we have found a discriminatory equilibrium for the Condorcet cycle under
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the scoring rule with A = B = 0.4.

In this discriminatory equilibrium with A = B = 0.4, the expected scores for candidates

1,2, and 3 are respectively 2n'3, n'3, and 0.4n.  So candidate 1 is likely to win, and candidate 3

is most likely to be in second place.  But even though candidate 3 is expected to get more points

than candidate 2, the pivot event 7*(1,2) has a strictly higher magnitude than the pivot event

7*(1,3), because !0.0572 > !1.  This result contradicts the assumption of Myerson and Weber

(1993) that pivot probabilities should be ranked according to the expected scores of the

candidates.  In the Myerson-Weber (1993) calculus, the pivot event 7*(1,3) is assumed to have

infinitely greater probability than any other pivot event when candidates 1 and 3 have respectively

the highest and second-highest expected scores.  But the results of the Poisson model in this case

show the flaws of this assumption.  When voters only use the vote-vectors (1,0,0.4) and (0,1,0.4),

the expected second-place candidate 3 can draw even with the expected first-place candidate 1

only by a relatively large (0,1,0.4) vote, which would then move candidate 2 up to or ahead of

candidate 3.  In essence, the Myerson-Weber assumption failed here because the relative

supporters of the expected second-place candidate against candidate 1 are also even stronger

supporters of the expected third-place candidate.

Because of the importance and difficulty of estimating equilibria of multicandidate voting

games under different voting rules, Myerson and Weber (1993) tried to simplify the analysis of

large voting games by some admittedly naive assumptions about how the expected vote

distribution J might determine the relative magnitudes of pivot probabilities.  The Myerson-Weber

methodology appears to be seriously inappropriate in this case of A=B=0.4, in comparison with

our more sophisticated (but much more difficult) Poisson methodology of this paper.  When we
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look at the set of all scoring rules, however, the differences between the two methodologies

seems less significant.  According the Myerson-Weber (1993) methodology, discriminatory voting

equilibria would exist for the Condorcet cycle when 2B+A#1, which would put the upper

boundary of the discriminatory region below but not far from the line in Figure 1 that we

generated with the Poisson model.  Thus, the simpler Myerson-Weber analysis and the more

sophisticated Poisson analysis agree in the general conclusion that the Condorcet cycle has

multiple discriminatory equilibria only for scoring rules that are relatively close to plurality voting

in this figure. 

5.  Example 2:  One rotten apple

In the Condorcet cycle, discriminatory equilibria break an obvious symmetry among the

candidates and allow a wide scope for heresthetic focal manipulation by political leaders.  Thus,

the Condorcet cycle is an example where the existence of discriminatory equilibria may be seen as

undesirable or problematic.  But there are other social choice situations where the existence of

discriminatory equilibria seems more desirable, and nonexistence of discriminatory equilibria

becomes problematic.  In this section, we consider a simple example of such a situation.

In this Example 2, there are again three candidates, numbered 1, 2, and 3, but there are

only two types of voters.  The first type of voters, whom we may call type-1, have utility t =

(10,5,0), so their preference ordering over the candidates is 1™2™3.  The second type of voters,

whom we may call type-2, have utility t = (5,10,0), so their preference ordering over the

candidates is 2™1™3.  The number of voters is a Poisson random variable with a large mean n, and

each voter is equally likely to be either of these two types.  That is, letting r(t) denote the



29

probability that a randomly sampled voter will have utility function t over the set of candidates,

this Example 2 can be characterized by the distribution

r(10,5,0) = r(5,10,0) = 1/2.

Then the numbers of each type of voter in this example are independent Poisson random variables,

each with mean n'2.

In many social choice situations (like the Condorcet cycle), the meaning of the democratic

ideal that social choices should implement majority preferences can be obscure.  In this simple

Example 2, however, the meaning of this ideal seems clear:  The ideal democratic winner should

be candidate 1 if there are more type-1 voters, and should be candidate 2 if there are more type-2

voters.  This ideal outcome would certainly occur if candidates 1 and 2 were the only candidates

on the ballot.  So in an ideal democratic system, the outcome of the election should not be

affected by the presence of candidate 3, who is disliked by all of the voters.  But we will see that,

under some voting rules, candidate 3 may serve as a "rotten apple" who can spoil the election.

An event has magnitude 0 in a Poisson game if the event can occur when the offset ratio

for each type (that is, the number of players of each type divided its expected value) is close to 1. 

So in the ideal democratic scenario for this example, the pivot event 7*(1,2) must have

magnitude 0, because it can occur when the numbers of the two types of voters exactly equal their

expected values (each n'2).  On the other hand, candidate 3 cannot win in this ideal democratic

scenario when there is any positive number of voters, and so the pivot events 7*(1,3) and 7*(2,3)

must have magnitude !1 (the magnitude of no voter turnout).  So the democratic ideal can be

achieved in equilibrium here if and only if there exists a discriminatory equilibrium where

candidate 3 is out of contention.
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If the voters think that candidate 3 is out of contention, then they will all maximally

separate candidates 1 and 2 on the ballots, and will give the despised candidate 3 the fewest points

possible subject to the constraint that he is the middle candidate in the ballot.  So the type-1

voters will vote (1,0,A), and the type-2 voters will vote (0,1,A) if 3 is out of contention.  That is,

a discriminatory equilibrium where 3 is out of contention must have the expected vote distribution

J(1,0,A) = 1/2 = J(0,1,A).

It is straightforward to verify that, with this expected vote distribution J, the pivot events 7*(1,3)

and 7*(2,3) have magnitudes that are less than the magnitude of 7*(1,2) if A < 1/2, and so

Example 2 has a discriminatory equilibrium where candidate 3 is out of contention when A < 1/2. 

But when A > 1/2, this expected vote distribution J would make candidate 3 the expected winner,

and so 3 could not be out of contention.  Thus, the dotted line at A = 1/2 in Figure 1 marks the

boundary between the scoring rules that have discriminatory equilibria where 3 is out of

contention (left of the dotted line) and scoring rules that do not have such discriminatory

equilibria (right of the dotted line).

The region in the top left section of Figure 1, above the thick line and left of the dotted

line, represents the set of scoring rules that do not generate discriminatory equilibria for the

Condorcet cycle, where discriminatory equilibria seem problematic, but allow discriminatory

equilibrium in Example 2, where discriminatory equilibria are desirable.  So these two examples

suggest the desirability of scoring rules like approval voting (A=0, B=1) which give voters a wide

range of choices about how many points to give their middle-ranked candidate while maximally

separating the other two.  In comparison, the scoring rules in the bottom left region of Figure 1

(including plurality voting in the A=B=0 corner) may have too many discriminatory equilibria, and
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the scoring rules in the top right region of Figure 1 (including negative-plurality voting in the

A=B=1 corner) may have too few discriminatory equilibria.

6.  Example 3:  Symmetric equilibria when a bloc has two similar candidates

In our analysis of the Condorcet cycle, we compared voting rules in terms of the existence

or nonexistence of nonsymmetric discriminatory equilibria.  For the Condorcet cycle, because all

three candidates are symmetric, a symmetric equilibrium of the Condorcet cycle would obviously

give each candidate an equal 1/3 probability of winning under any anonymous neutral voting rule. 

But we can also consider examples where the symmetry only involves two out of three

candidates.  For such situations, Cox (1987,1990), Myerson and Weber (1993), and Myerson

(1993) have found considerable differences among electoral systems.  In this section we consider

the simplified version of Cox's model that was formulated in the final section of Myerson (1993),

to generate results that can be compared to Figure 1.

So our Example 3 is a three-candidate election in which candidates 2 and 3 are equally

desirable from the perspective of all voters.  In this example there are just two types of voters. 

One type, whom we may call type-1 voters, prefer candidates 1 over candidates 2 and 3, say

according to the utility vector t=(10,0,0).  The other other type in this population, whom we may

call type-2 voters, prefer candidates 2 and 3 equally over candidate 1, say according to the utility

vector t=(0,10,10).  Assume that the number of voters is a Poisson random variable with a large

mean n, and suppose that each voter has an independent probability Q of being a type-1 voter

who prefers candidate 1.  So the expected type distribution r is

r(10,0,0) = Q,  r(0,10,10) = 1!Q.
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Thus we have a situation in which there are two similar candidates seeking to represent

the bloc of type-2 voters.  Under some electoral systems, the rivalry between these similar

candidates could hurt this bloc's chances of getting representation, unless the voters reach some

pre-election understanding about concentrating their support behind one of the two rivals.  Under

other electoral systems, the bloc could win even if they failed to coordinate and simply treated the

similar candidates symmetrically.  It is easy to characterize these two categories of electoral

systems for the class of scoring rules represented in Figure 1.

So let us now suppose that the parameters A and B in Figure 1 (where A<B) completely

characterize the scoring rule.  That is, suppose that the permissible vote-vectors in the scoring

rule are (1,A,0), (1,B,0), and all permutations of these two vectors.  (This assumption was

without loss of generality only when we were studying discriminatory equilibria.)  In the unique

symmetric (with respect to candidates 2 and 3) equilibrium of this simple example, type-1 voters

all randomize between the vote-vectors (1,A,0) and (1,0,A) with equal probability, while the

type2 voters all randomize between the vote-vectors (0,B,1) and (0,1,B) with equal probability. 

The critical question then is whether the expected total point score for candidate 1, which is Qn, is

greater or less than the expected score for candidates 2 and 3, which for each is

0.5(1!Q)n + 0.5(1!Q)nB + 0.5QnA .

These expected point totals are equal when Q equals the critical value Q* such that 

(1!Q*) + B(1!Q*) + AQ* = 2Q*,  that is,

Q* = .

This quantity Q* is Cox's threshold of diversity for these simple scoring rules with three
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candidates.  (See Cox 1987, 1990, and Myerson, 1993.)  When the expected fraction of voters

who prefer candidate 1 over candidates 2 and 3 is greater than this threshold Q*, we have

symmetric equilibria in which the candidate 1 will win almost surely.  On the other hand, when the

expected fraction of voters who prefer candidate 1 over candidates 2 and 3 is less than Q*, we

have symmetric equilibria in which winner will almost surely be one of the similar candidates 2

and 3.

Lines where the Cox threshold Q* is constant are shown in Figure 2.  Of particular

interest is the line where Q* = 0.5, which includes approval voting at (A,B)=(0,1) and Borda

voting at (A,B)=(0.5,0.5).  For scoring rules below this line, we can construct examples with

Q* < Q < 0.5 such that the single candidate of an expected minority bloc will win almost surely

when the majority bloc has two similar candidates and treats them symmetrically.  On the other

hand, for scoring rules above this line, we can construct examples with 0.5 < Q < Q* such that the

single candidate of an expected majority bloc will almost surely lose when the minority bloc has

two symmetric candidates on the ballot.  From this perspective, Q* = 0.5 seems to be the ideal.

[INSERT FIGURE 2 ABOUT HERE]

7.  Example 4:  An election with a vote-share effect

The above analysis assumed that voters are motivated purely by an interest in the winner

of the election.  But future political events may also depend on the share of the votes that each

candidate gets in the current election, and so voters' payoffs may depend on the distribution of

votes itself, not only on the identity of the winner.  In this section we review an example from

Piketty (1995) to show that, although such vote-share effects may of course change the analysis,
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they do not eliminate the importance of pivot events in rational voters' calculations.

So as Example 4, let us consider an example that is adapted from Piketty (1995) to the

Poisson framework.  In this example, the election is a national referendum on the question of

whether to ratify an international economic treaty.  The treaty will be ratified if the number voting

"Yes" is greater than the number voting "No."  Let us suppose for simplicity that ratifying the

agreement would offer substantial benefits to all voters.  But suppose also that the higher is the

percentage of votes for the treaty in this referendum, the weaker will be the bargaining position of

this nation's representatives in subsequent international negotiations on other agreements.  Let (

denote the fraction of "Yes" votes in the election results.  Then we may suppose that the utility

payoff U to each voter from the referendum is

U = 1!g(()  if ( > 0.5,  U =  !g(() if  ( # 0.5.

Here g(() represents the expected loss from weakening the nation's position in subsequent

negotiations, in a utility scale where the benefits from the treaty equal 1.  Suppose that g is an

increasing continuously differentiable function, so

gN(() > 0  for all ( between 0 and 1.

The number of voters is a Poisson random variable with a large mean n.

With gN(0) > 0, there always exists an equilibrium in which everyone votes "No."  But we

now show that there also exist asymptotic equilibria in which each voter independently

randomizes between voting "Yes" and "No" with positive probability.  (We ignore any possibility

of abstention here.) 

Let J (Y) and J (N) = 1!J (Y) denote the expected vote shares for "Yes" and "No" in ann   n   n

election of expected size n, and let J(Y) denote a limit of J (Y) as n!4.  For any large n, eachn
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voter should figure that, if he votes "Yes" instead of "No" in the referendum, his vote will increase

the expected loss in subsequent negotiations by the approximate amount

gN(J(Y))'n.   

The pivot event that the treaty would be ratified if he voted "Yes" but would fail if he voted "No"

is the event that, when everyone else's vote has been counted, there will be either an exact tie or

the treaty will be ahead by one vote.  This tie or near-tie event has magnitude

µ = min  J(Y) exp(8) + (1!J(Y)) exp(!8) ! 1 =  .8

(See formula (5.1) in Myerson, 1999.)  When J(Y) =/  1/2, this magnitude µ is strictly negative,

and so the pivot probability must be going to zero an exponential rate, as e , which becomesnµ

infinitesimal relative to gN(J(Y))'n.  Thus, if J(Y) is not 1/2 then the expected benefits from

possibly causing the treaty to be ratified become infinitesimal relative to the expected loss from

weakening the subsequent bargaining position, and so each voter would prefer to vote against the

treaty.

But now consider the case where J (Y) converges to 1/2 as n64.  Each voter should thinkn

that, when all other votes are counted, the number of votes for the treaty and the number of votes

against the treaty are independent Poisson random variables with means nJ (Y) and n(1!J (Y))n   n

respectively.  In the region where offset ratios are close to 1 (near the expected values), large

Poisson random variables can be approximated by the integer-rounding of Normal random

variables that have variance equal to the mean (see Theorem 3 in Myerson 1999).  So the net

surplus of votes for the treaty (that is, the number of votes for the treaty minus the number of

votes against the treaty) can be approximated by the integer rounding of a Normal random

variable with mean
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 nJ (Y) ! n(1!J (Y)) = n(2J (Y)!1) n   n   n

and with variance 

nJ (Y) + n(1!J (Y)) = n.n   n

For large n, the probability that this random variable is equal to 0 or 1 is approximately

When J (Y) is exactly 0.5, this probability must be much larger than the expected loss gN(0.5)'nn

for all sufficiently large n, because 1'n becomes infinitesimal relative to  .  So there is some

interval around 0.5, which shrinks as n64, such that, when J (Y) is n this interval, the expectedn

loss from weakening the subsequent bargaining position is smaller than the expected benefits from

possibly causing the treaty to be ratified, and so each voter would prefer to vote for the treaty. 

The voters become willing to randomize between voting for or against the treaty at the boundaries

of this interval, which can be estimated by the equation

.

This equation holds when

J (Y) = .n

So we find two randomized equilibria, one in which J (Y) is slightly bigger than 0.5, and anothern

in which J (Y) is slightly less.  The aymptotic equilibrium strategy in either case isn

F(Y)=F(N)=1/2, but the limiting probability of the "Yes" side winning the election is very

different in the two sequences.

In the equilibrium where J (Y) is bigger than 0.5, the net surplus of votes for the treatyn
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has mean 

n(2J (Y)!1) = n

and has standard deviation , and so the probability of the treaty being ratified (having a positive

net surplus of votes) goes to one as n64.  In the case where g(() = ( and n is 100 million, for

example, these equilibrium formulas give us J (Y) = 0.500212, and the difference between then

votes for and against the treaty has expected value 42,400 with standard deviation 10,000.  This

equilibrium also has a certain stability, in the sense that if the expected number of votes for the

treaty were larger than this equilibrium amount then some voters would have an incentive to

switch to voting against the treaty, and if the expected number of votes for the treaty were slightly

less than this equilibrium amount then some voters would have an incentive to switch to voting

for the treaty.  So in this equilibrium the pivot probability creates an incentive to vote for the

treaty that successfully counteracts the vote-share effect's incentive to vote against the treaty. 

In the other randomized equilibrium where J (Y) is slightly less than 0.5, the treaty failsn

with high probability when n is large.  But this equilibrium is not stable in the above sense.

8.  Proofs of the Propositions and the Lemma

Proposition 1.  Suppose that {x } is a sequence in Z(C), andn

lim  x (c)'(nJ (c)) = "(c) > 0  and  lim  J (c) = J(c) > 0,  œc0C.  n64 n n         n64 n

Then lim  log(P(x *nJ ))'n = 3  J(c) R("(c)).n64 n n   c0C

Furthermore, for any vector w = (w(c))  such that each w(c) is an integer (possibly negative),c0C

lim  P(x !w*nJ )'P(x *nJ ) = J  "(c) .n64 n n n n   c0C
w(c)

Proof.  The first conclusion of Proposition 1 follows from Lemma 1 of Myerson (1999),
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with the continuity of the R function.  The second conclusion is a special case of Theorem 2 of

Myerson (1999).  It also can be easily derived from the basic Poisson formula, because

P(x !w*nJ )'P(x *nJ ) = J  (nJ (c))  x (c)!'(x (c)!w(c))!n n n n   c0C n  n n
!w(c)

which approaches J  (x (c)'(nJ (c)))   as the x (c) become large. Q.E.D.c0C n n     n
w(c)

Proposition 2.  For any J in )(C), the magnitude problem on the cone S with beliefs J has

an optimal solution " = ("(c))  in ú .  The optimal value of the object function in this magnitudec0C
C

problem is a continous function of J in )(C).  For each c in C, the value of "(c) in the optimal

solution is unique and is a continuous function of J in the domain where J(c) > 0.

Proof.  The objective function 3  J(c) R("(c)) and the constraints 3  b (c) J(c) "(c)c0C      c0C k

obviously do not depend on "(c) when J(c)=0.  So let D(J) = {c0C* J(c)>0}.  When we ignore

the irrelevant components of " for c not in D(J), we get the problem of choosing ("(c))  toc0D(J)

maximize 

3  J(c) R("(c)),c0D(J)

which is a strictly concave function of ("(c)) , subject to the linear constraints c0D(J)

3  b (c) J(c) "(c) $ 0,  œk,  c0D(J) k

"(c) $ 0, œc0D(J).

Letting " be the zero vector satisfies all constraints and yields a magnitude of !1.  But if

3  J(c) "(c) > e  then 3  J(c) R("(c)) < R(e) = !1.  So our continuous objective functionc0D(J)       c0D(J)

must achieve a maximum within the compact set satisfying 3  J(c) "(c) # e and the otherc0D(J)

linear constraints of S.  Strict concavity of the objective guarantees that this optimal solution

("(c))  must be unique.  The solution can then be extended to " 0 ú  by letting "(c) be anyc0D(J)
C
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nonnegative number when J(c)=0.

Now suppose that {J } is a sequence in )(C) that converges to J.  For each n, let "  be ann                n

optimal solution to the magnitude problem on S with J .  Let  y (c) = " (c) J (c).  We know that n     n   n  n

3  y (c) = 3  " (c) J (c) # e,c0C n   c0C n  n

and so y  sequence must have a subsequence that is  convergent in the compact set of nonnegativen

vectors that sum to less than e.  Let y denote the limit of this sequence.

By construction, if J (c) = 0 then y (c) = 0.  We could have a sequence with J (c)>0n     n           n

converging to J(c)=0, but in this case the y (c) must converge to y(c)=0, because the termn

J (c) R(" (c)) = J (c) R(y (c)'J (c)) = n  n   n  n n

= J (c)((y (c)'J (c))(1 ! log(y (c)'J (c))) ! 1)n n n   n n

= y (c)(1 ! log(y (c)'J (c))) ! J (c)n   n n   n

would take our objective function to !4 as n64 if y (c) converged to a positive limit while J (c)n        n

went to zero; but we know that the optimal value of the object is bounded below by !1.  So y(c)

is 0 when J(c) is 0.  Then let "(c) = y(c)'J(c) if J(c) > 0, and let "(c) = 1 if J(c) = 0.  This vector

" is feasible for the magnitude problem on S with J because

3  b (c) J(c) "(c) = 3  b (c) y(c) = lim  3  b (c) J (c) " (c) $ 0,  œk.c k     c k    n64 c k  n  n

The value of the objective at this vector " is 

3  J(c) R("(c)) = lim  3  J(c) R(" (c)) $ lim  3  J (c) R(" (c)),c    n64 c  n   n64 c n  n

where the last inequality admits a possibility that the negative numbers J (c)R(" (c)) mightn n

converge to a nonzero limit when J (c)60 (which is the one case where " (c) does not convergen        n

to "(c)).  Thus, the value of the objective in our maximization problem with J is not less than the

limit of the values of the objective with J .n
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Now suppose that $ is an optimal solution for the magnitude problem on S with J. 

Without loss of generality, we can also assume that J (c) > 0 for all n in the sequence for all cn

such that J(c) > 0.  So let $ (c) = $(c) J(c)'J (c) when J(c) > 0, and let $ (c) = $(c) if J(c) = 0. n    n        n

Then $  is feasible for the magnitude problem on S with J , becausen          n

3  b (c) J (c) $ (c) = 3  b (c) J(c) $(c) $ 0.c k  n  n   c k

By optimality of "  with J , we getn  n

3  J (c) R(" (c)) $ 3  J (c) R($ (c)),  œn.c n  n   c n  n

But  $  converges to $ and J  converges to J, and so by continuityn     n

lim  3  J (c) R($ (c)) = 3  J(c) R($(c)).n64 c n  n   c

So we have

3  J(c) R("(c)) $ lim  3  J (c) R(" (c)) $ 3  J(c) R($(c)),  c    n64 c n  n   c

which implies (by definition of $) that " is an optimal solution to the magnitude maximization

problem on S with J, and all three of these expressions must be equal.  Thus the optimal value of

the objective is a continuous function of the distribution J in )(C), and the "(c) in the optimal

solution depends continuously on the distribution J when J(c)>0. Q.E.D.

Proposition 3.  Suppose  lim  J (c) = J(c) > 0  œc0C.  Let " be an optimal solution ofn64 n

the magnitude problem on S with J.  Then 

"(c) > 0,  œc0C,

lim  log(P(S*nJ ))'n = 3  J(c) R("(c)),  andn64 n   c0C

lim  P({x0S* "(c)!g#x(c)'(nJ (c))#"(c)+g, œc0C}*nJ )'P(S*nJ ) = 1  œg>0.n64  n  n n

Furthermore, for any vector w such that w(c) is an integer œc,
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lim  P(S!w*nJ )'P(S*nJ ) = J  "(c) .n64 n n   c0C
w(c)

Proof.  With all J(c) > 0, all "(c) must be nonzero at an optimal solution, because RN(2)

goes to +4 as 2 goes to 0, and so for any vector x in S that has all positive components, the

formula

3  J(c) R("(c) + gx(c)'J(c))c0C

would be an increasing function of g when g is close to 0 if some "(c) were equal to zero, while

("(c)J(c) + gx(c))  would be in the cone S, which would contradict the optimality of ".c0C

Theorem 1 of Myerson (1999) gives us

lim  log(P(S*nJ ))'n = lim  max  3  J (c) R(x(c)'nJ (c))n64 n   n64 x0S c0C n  n

= lim  max  3  J (c) R("(c))  subject to  ("(c)J (c))  0 S.n64 " c0C n       n c0C

Then by Proposition 1 above

lim  max  3  J (c) R("(c))  subject to  ("(c)J (c))  0 Sn64 " c0C n       n c0C

= max  3  J(c) R("(c))  subject to  ("(c)J(c))  0 S." c0C       c0C

Let  R = {x0S* "(c)!g # x(c)'(nJ (c)) # "(c)+g, œc0C}.   The set S(R excludes an

neighborhood of the unique optimum " for the magnitude problem on S, so

lim  max  3  J (c) R(x(c)'(nJ (c)) n64 x0S(R c0C n  n

< 3  J(c) R("(c)).c

So by Theorem 1 of Myerson (1999),   

lim  log(P(S(R*nJ ))'n < lim  log(P(S*nJ ))'n.n64 n   n64 n

Thus  lim  P(S(R*nJ )'P(S*nJ ) = 0  and  lim  P(R*nJ )'P(S*nJ ) = 1.n64 n n       n64 n n

The final formula in Proposition 3 is an application of Theorem 2 in Myerson (1999) to

the cone S.  It also can be derived from the preceding result with the offset formula in
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Proposition 1. Q.E.D.

Proposition 4.  Given any J in )(C), let D(J) = {c0C*J(c)>0}.  Suppose that there exists

some x in the cone S such that {c* x(c)>0} = D(J).  Then a vector " in ú  is an optimal solutionC

of the magnitude problem on S with J if and only if the corresponding dual problem has an

optimal solution 8 such that,  

"(c) = exp(3  8  b (c)),  œc0D(J).k0K k k

Furthermore, the optimal value of the objective function in the magnitude problem on S with J is

equal to the optimal value of the objective function in the corresponding dual problem. 

Proof.  Let x in S satisfy {c* x(c) > 0}= D(J), and let $ in ú  satisfy $(c)J(c) = x(c) for allC

c.  Then as in the proof of Proposition 3,  if (J(c)"(c))  is in S then "+g$ is a feasible offsetc0C

vector for the magnitude problem on S with J, for all g $ 0, and if "(c) = 0 for some c in D(J)

then  3  J(c) R("(c) + g$(c))  must be strictly increasing for all sufficiently small g (becausec0C

RN(0) = +4).  So an optimal solution of the magnitude problem on S with J must have "(c) > 0

for all c in D(J).  That is, the nonnegativity constraints are not binding at the optimal solution.

The Lagrangean associated with the magnitude problem on S with J is

3  J(c) R("(c)) + 3  8  3  b (c) J(c) "(c)c0C    k0K k c0C k

The objective in this maximization problem is concave and differentiable, and the constraints are

linear.  So a necessary and suffient condition for an optimum " is that there exist some vector of

Lagrange multipliers 8 = (8 )  such thatk k0K

0  = J(c) RN("(c)) + 3  8  b (c) J(c),  œc0C,k0K k k

8  $ 0  and  3  b (c) J(c) "(c) $ 0, with at least one equality, œk0K.k      c0C k
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But RN("(c)) = !log("(c)).  So the optimality equations give us equation (3.6):

"(c) = exp(3  8  b (c)),  œc 0 D(J).k0K k k

Then the remaining optimality conditions become, with 8  $ 0 for all k,k

3  b (c) J(c) exp(3  8  b (c)) $ 0, with equality when 8  >  0, œj0K.c0C j   j0K k k       j

Now consider the dual problem

minimize  3  J(c) exp(3  8  b (c)) ! 1  subject to 8  $ 0, œk0K.8 c0C  k0K k k       k

The derivative with respect to 8  in this minimand is j

3  J(c) b (c) exp(3  8  b (c))c0C  j  k0K k k

The objective in this problem is convex and differentiable, and so a necessary and sufficient

condition for an optimal solution is that, for all j in K,

3  J(c) b (c) exp(3  8  b (c)) $ 0, with equality if  8  > 0.c0C  j  k0K k k        j

Thus, " is an optimal solution of the magnitude problem if and only if there exists some 8 that is

optimal for the dual, such that equation (3.6) is satisfied.

The optimal values of the magnitude problem and its dual are equal because, with

equation (3.6) and the dual optimality conditions, 

3  J(c) R("(c))c0C

= 3  J(c) ("(c)(1 ! log("(c)) ! 1)c0C

= 3  J(c) ("(c) (1 ! 3  8  b (c)) ! 1)c0C     k0K k k

= 3  J(c) "(c) ! 3  8  3  b (c) J(c) "(c) ! 3  J(c)c0C    k0K k c0C k     c0C

= 3  J(c) exp(3  8  b (c)) ! 0 ! 1. Q.E.D.c0C  k0K k k

Lemma.  Suppose B > 0.5.  In the Condorcet cycle example, we consider the strategy
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function F such that F((1,0,A)*(10,5,0)) = 1, F((1,0,B)*(5,0,10)) = 1, F((0,1,A)*(0,10,5)) = D,G    G    G    G

and F((0,1,B)*(0,10,5)) = 1!D, which generates the expected vote distribution J such thatG          G

J(1,0,A) = 1'3, J(1,B) = 1'3, J(0,1,A) = D'3, J(0,1,B) = (1!D)'3,  and all other J(c) = 0.  If FG    G    G    G        G      G

is a discriminatory equilibrium where candidate 3 is out of contention for the Condorcet cycle,

then for any positive distribution J sufficiently close to J, an optimal solution 8 for the dualG

problem on candidate 3's win-cone M(3) must satisfy 8  > 8 .1  2

Proof.  Let R denote the cone where twice candidate 3's score is greater than or equal to

the sum of the other candidates' scores.  The dual problem on this cone R may be written

minimize  G((,J) = 3  J(c) exp((2 c !c !c )() ! 1.(   c0C   3 1 2

At an optimal solution of this problem, we have 

MG((,J)'M( = 3  J(c) (2 c !c !c ) exp((2 c !c !c )() $ 0  and  ( $ 0, c0C   3 1 2   3 1 2

and at least one of these inequalities must be satisfied as equality.

The vote distribution J assigns positive probability to (1,0,B), in which candidate 3 gets moreG

points than the average of candidates 1 and 2, given that B > 0.5, and so the hypothesis of

Proposition 4 is satisfied at any J near J.  So the optimal value of the dual is the same as theG

primal in a neighborhood of J, and so Proposition 2 can be applied to show that the optimal ( is aG

continuous function of J in a neighborhood of J. G

For any 8 = (8 ,8 ), let1 2

F(8,J) = 3  J(c) exp(8 (c !c ) + 8 (c !c )) ! 1. c  1 3 1   2 3 2

Then the dual problem on the cone M(3) with J is 

minimize  F(8,J)  subject to  8  $ 0  and  8  $ 0.8      1      2
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The derivatives of this dual objective are expected vote differences

MF(8)'M8  = 3  (c !c ) J(c) exp(8 (c !c ) + 8 (c !c )),  for i=1,2.i  c 3 i   1 3 1   2 3 2

At the distribution J, the dual objective isG

F(8,J) = (1'3) exp(8 (A!1)+8 A) + (1'3) exp(8 (B!1)+8 B) G
1 2    1 2

+ (D'3) exp(8 A+8 (A!1)) + ((1!D)'3) exp(8 B+8 (A!1)).1 2    1 2

Thus, at 8 = ((, () (where ( is the optimal solution of the dual on R with J), we find

MF(((,(),J)'M8  + MF(((,(),J)'M8  1  2

= 3  J(c) (2 c !c !c ) exp((2 c !c !c )()c0C   3 1 2   3 1 2

= MG((,J)'M( $ 0,  with equality if ( > 0.

But when J=J, we also get  G

MF(((,(),J)'M8  < MF(((,(),J)'M8 ,  G   G
1  2

because

MF(((,(),J)'M8  ! MF(((,(),J)'M8  = 3  (c !c ) J(c) exp(((2c !c !c ))G   G     G
1  2  c 2 1   3 1 2

= (D'3 ! 1'3) exp(((2A!1)) +((1!D)'3 ! 1'3) exp(((2B!1)) < 0.

So for all J sufficiently close to J, we must haveG

MF(((,(),J)'M8  > 0.2

Notice also that ((,() cannot be an optimal solution of the dual on M(3).  Even in the case where

( is 0 (where the above inequality does not prove suboptimality of ((,() for the dual on M(3)),

we cannot have an optimum where 8 is (0,0), because candidate 1 beats candidate 3 at the

distribution J, and soG

MF((0,0),J)'M8  = 3  (c  ! c ) J(c) < 01  c 3  1

for all J close enough to J.G
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Now let 8 denote an optimal solution of the dual problem on M(3) with J.  Then by

convexity of F,

F(((,(),J) > F(8,J) 

$ F(((,(),J) + (8 !() MF(((,(),J)'M8  + (8 !() MF(((,(),J)'M8  1  1  2  2

= F(((,(),J) + (8 !8 ) MF(((,(),J)'M8  + 8  MG((,J)'M(.2 1  2  1

Thus, we must have 8  < 8 . Q.E.D.2  1
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Figure 1.  Existence of Discriminatory Equilibria.
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Figure 2.  Level lines of Cox's threshold of diversity Q*.
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