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Abstract

Compared to its central role in policy discussions in the United States and most other

developed countries, the reliability of the measurement of the output gap has attracted

relatively little academic study. Furthermore, both the academic literature and the debate

among practitioners have tended to neglect a key factor. Although in a policy setting, it

is necessary to estimate the current (i.e. end-of-sample) output gap without the benefit

of knowing the future, most studies concentrate on measurement that employs data that

only become available later. In this paper we examine the reliability of alternative output

detrending methods, with special attention to the accuracy of real-time estimates. We show

that ex post revisions of the output gap are of the same order of magnitude as the output

gap itself, that these ex post revisions are highly persistent and that real-time estimates tend

to be severely biased around business cycle turning points, when the cost of policy induced

errors due to incorrect measurement is at its greatest. We investigate the reasons for these

ex post revisions, and find that, although important, the ex post revision of published data

is not the primary source of revisions in output gap measurements. The bulk of the problem

is due to the pervasive unreliability of end-of-sample estimates of the trend in output.
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Tel.: (514)340-6781, e-mail: simon.van-norden@hec.ca.
∗ We would like to thank Bryan Campbell and Andy Filardo for their comments, as well as seminar
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1 Introduction

One of the fundamental issues in macroeconomics is understanding macroeconomic fluctu-

ations. At the most aggregate level this entails the study of an economy’s output relative

to its potential level. Understanding whether the economy is operating at its full potential,

however, presupposes accurate measurement of both actual output as well as potential out-

put. The difference between the two is commonly referred to as the business cycle or the

output gap. Although macroeconomic analysis often takes the availability of such measures

for granted, considerable uncertainty surrounds them in practice.

The issue is of some importance for empirical macroeconomics since testing and compar-

ison of alternative models can be easily obscured by inaccurate measurements. Bluntly, to

evaluate whether a specific theory or model can provide an adequate accounting of macroe-

conomic fluctuations we must first measure the fluctuations that are to be accounted for.

The problem is especially acute for economic policy. While academic investigations

can afford the luxury of waiting for the accumulation of accurate historical data before

estimates of past actual and potential output need to be constructed, policy decisions require

such estimates in real-time and policy actions based on incorrect real-time estimates may

inadvertently contribute to undesirable macroeconomic outcomes.

For fiscal policy, it is often useful to abstract from cyclical influences to assess whether

policy is expansionary or contractionary and also to evaluate the path of government expen-

ditures and finance. The resulting “full employment” budget estimates, however, squarely

rest on accurate assessments of the economy’s performance relative to potential.

Uncertainty regarding the measurement of the business cycle arguably presents a bigger

problem for monetary policy. A central bank can influence credit conditions and conse-

quently aggregate demand via its monetary policy instrument. This potentially allows

monetary policy to dampen aggregate demand fluctuations and, when necessary, counter-

act inflationary pressures. However, since such policy actions affect aggregate demand and

inflation with a lag, timely measures and forecasts of the output gap are essential. Obviously,
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unless the economy’s potential can be reliably measured, policy choices may fail to react

to the true underlying economic conditions and may instead partially reflect measurement

error.

Three distinct issues complicate assessment of the economy’s performance relative to

its potential in real-time. First, output data (and other officially published macroeconomic

time series) are continually revised in response to more complete reporting, adjustment of

seasonal factors, refinements in concept or methodology, etc. This implies that measures of

the output gap available in real-time may differ from those constructed from data published

many years later. Second, most methods for estimating potential provide different estimates

of potential output for a given quarter if data on actual output in years following the relevant

quarter are made available. This may be because hindsight makes clearer which part of the

business cycle the economy was in at a particular point in time, even if our beliefs about the

processes driving output growth do not change. In this way, the passage of time may allow

better estimates of a specific quarter’s output gap to be made ex post, even if no revisions

are made to actual output data. Third, the subsequent evolution of output may indicate

that the economy has undergone a structural change. This in turn may lead to a change in

our beliefs about the economy and the expected evolution of potential output. It may also

cause us to revise our beliefs about potential output and the output gap in the period prior

to our becoming convinced that a structural change had taken place.

This paper investigates the quantitative relevance of these issues for the measurement

of the output gap in the United States over the last thirty years. We investigate several

well-known methods for estimating the output gap. For each method, we examine the

behaviour of end-of-sample output gap estimates and of the revisions of these estimates over

time. Specifically, we calculate the statistical propoerties of the revisions and decompose

them into their various sources, including the component due to revisions of the underlying

output data and that due to re-estimation of the process generating potential output. We

then compare the revision behaviour of the alternative methods.
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In the present paper, we restrict our attention to univariate methods for estimation of

the output gap. To conduct a thorough analysis based on multivariate techniques would

require compilation of unrevised data series for all variables involved and would also intro-

duce additional conceptual issues. Briefly, by utilizing information from additional sources,

multivariate techniques may reduce the errors associated with the end-of-sample estimates

of the output trend from univariate methods. However, multivariate techniques also intro-

duce additional sources of mispecification and parameter estimation problems which may

more than offset the potential improvement these methods offer. By concentrating on the

univariate methods we provide a benchmark against which these additional issues can be

examined. To help assess the pertinence of our results, we also provide a brief comparison

of our real time univariate estimates of the output gap to “official” real time output gap

estimates as constructed in the United States from the mid 1960s.

The potential quantitative relevance of the issues we investigate has been pointed out

before. Using final data, Kuttner (1994) and St-Amant and van Norden (1998) pointed

out that differences between end-sample and mid-sample estimates of the output gap can

differ substantially for some commonly used methods for estimating the output gap, such

as unobserved component and smoothing spline methods. Orphanides (1997,1999) docu-

mented that the errors in “official” estimates of the output gap available to policymakers

have indeed been substantial and several authors, including Kuttner (1992), McCallum and

Nelson (1998), Orphanides (1998) and Smets (1998) have elaborated on the policy impli-

cations of this issue. As far as we know this study is the first attempt at comprehensive

measurement and evaluation of the measurement errors associated with various techniques

based on real-time data for the past thirty years.
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2 Data Sources, Revisions and Concepts

2.1 How to measure the reliability of measured output gaps

Our aim in this study is to understand better the reliability and statistical accuracy of

commonly used estimates of output gaps. While there are many approaches to measuring

their reliability and accuracy, none is without limitations.

One way would be to generate artificial output data from an economic model which

would then be detrended by the various different methods under study. The different esti-

mates of the true output gap could then be compared to the known output gaps from the

economic model. The problem with such an approach is that results will in general depend

on the specification of the economic model and a wide range of specifications could reason-

ably be considered plausible.1 Furthermore, it would ignore the uncertainty introduced by

the ongoing revision of published data.

Another way would be to simply use the statistical uncertainty associated with our

estimate of potential or trend output to put confidence intervals around these estimates

and therefore around our calculated output gaps. Unfortunately, some popular methods

(such as the HP filter) do not give statistical confidence intervals. Furthermore, this method

implicitly assumes that the statistical model is not misspecified, an assumption which often

appears to be at odds with the evidence. Finally, this too would ignore the effects of data

revision.

A third way would be to specify a particular measure of the value of output gap measures.

For example, if the goal of measuring output gaps is to aid policy makers in controlling

inflation, we might seek to measure the marginal forecasting power of output gaps for

subsequent inflation. Again, ambiguity about the goal of measuring output gaps implies

that different criteria might reasonably be used and could give varying results for any

particular method.2 More seriously, such a methodology would have to address the special

1For an example of such sensitivity analysis, see Guay and St-Amant (1996).
2This is not a criticism of the methodology, of course. This simply reflects the fact that some measures

may be better suited for some purposes than for others.
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problems posed by the Lucas Critique.3

The alternative approach which we use in this paper allows us to capture the effects

of errors due both to data revision and to misspecification of statistical models used to

estimate output gaps. At the same time, it is simple to implement and does not require

a priori assumptions on the true structure of the economy or on the time-series model

generating observed output. We explain this method in detail below. Briefly, it consists

of measuring the degree to which estimates of the output gap at any point in time vary as

data are revised and as data about the subsequent evolution of output becomes available.

To be sure, this method is not without its own limitations. We measure only revisions

in estimates of the output gap. However, it is reasonable to assume that some uncertainty

remains with long-past historical estimates of the output gap. Since the total amount of

uncertainty at the end of a sample is presumably the sum of the uncertainty from these

two sources, this approach gives us an overestimate of the precision and accuracy associated

with any detrending method. This has implications for the way we can interpret our results.

A finding that revision errors are small might not be very meaningful, since it would not

necessarily imply that the remaining “unrevised” errors are small. Similarly, it would be

naive to attempt to rank different methods on the basis of the size of their revisions. It is

nonetheless informative when and if we find that revision errors are relatively large, since

we can conclude that the total error of these estimators must be larger still.

2.2 Data

Most of our data is taken from the real-time data set compiled by Croushore and Stark

(1999). From their database we use the real-time variables for real output from 1965 to

1997. In each quarter, these time series reflect real output as published during that quarter

by the Department of Commerce. The latest observation is always the one corresponding

3To see this, consider the case where we directly observe the true output gap. If the gap is unknown to
the monetary policy authority, it will presumably have some forecasting power for inflation. However, if this
information is available to the policy maker and is used efficiently in setting policy, then it will appear to
have no forecasting power if there have been offsetting adjustments in monetary policy.
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to the previous quarter.4 The data are seasonally adjusted, and therefore alternative data

vintages reflect, among other changes, re-estimation of seasonal factors. The concept of real

output has also evolved over time. In the U.S. the benchmark series was GNP until the

end of 1991 and GDP since then. In addition, changes also reflect the choice of deflator.

Until the end of 1995 real output was measured in constant dollars with the benchmark

year changing once or twice in every decade. Since then a chain-weighted deflator is being

used.

We use 1999:Q1 data as “final data” recognizing, of course, that “final” is very much

an ephemeral concept in the measurement of output.

Even when the output concept and deflator are same, first released output data differ

significantly from subsequent releases. The biggest revisions are in the first few quarters

after the release. However, once a year a major revision is made and seasonals adjusted

with changes that are, at times, substantial for the few most recent years.

2.3 Measuring the revision of output gaps

We use the data set mentioned above with a variety of detrending methods (described in

the next section) to produce many different estimated output gap series. However, we also

apply each of these detrending methods in a number of different ways in order to estimate

and decompose the extent of the revisions in the estimated gap series. To understand how

the extent of the revisions is measured, we define several conceptually different ways in

which any existing detrending method may be applied. In the remainder of this section, we

describe how these methods were applied and their corresponding interpretations.5

4The Croushore and Stark database samples information in the middle of every quarter. As a result on a
few occasions when the data were released later than usual the real output data for the previous quarter are
not available. To avoid missing observations we supplemented the data with information published towards
the end of the quarter on those occasions using the first Survey of Current Business issue where information
for the previous quarter was reported.

5A more technical description of the methods we used may be found in the Appendix.
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2.3.1 Final Estimates

The first of these methods gives rise to a “Final” estimate of the output gap. This simply

takes the last available vintage of data we have available (in our case, this is the series

as published in 1999Q1) and detrends it. The resulting series of deviations from trend

constitutes the “Final” estimate of the output gap. This is the typical way in which such

detrending methods are employed.

2.3.2 RealTime Estimates

The “RealTime” estimate of the output gap is constructed in two stages. First, we detrend

each and every vintage of data available to construct an ensemble of output gap series. Of

course, earlier vintage output gap series are shorter than later vintages since the output

series on which they are based end earlier. Next, we use these different vintages to construct

a new series which consists entirely of the first available estimate of the output gap for each

point in time.

This new series is the “RealTime” estimate of the output gap. It represents the most

timely estimate of the output gap which policy makers could have constructed at any point

in time. The difference between the RealTime and the Final estimate give us the total

revision in the estimated output gap at each point in time. We use the statistical properties

of these revisions as our guide to reliability and accuracy of estimated output gaps recalling,

of course, that this is an overestimate of the true reliability of the RealTime estimates since

it ignores the estimation error in the final series.

2.3.3 QuasiReal Estimates

The differences between the RealTime and the Final estimates have several sources, one of

which is the ongoing revision of published data. To isolate the importance of this factor, we

define a third output gap measure, the “QuasiReal” estimate. Like the RealTime estimate,

the QuasiReal estimate is constructed in two steps.

The first step is to construct an ensemble of “rolling” estimates of the output gap. That
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is, we begin by taking the Final vintage of the output series but use only the observations up

to and including 1966:Q1 in order to compute the QuasiReal estimate for 1966:Q1. Next,

we extend the sample period by one observation and repeat the detrending. We continue in

this way until we have used the full sample period for the Final output series and we have

a full set of corresponding output gap series.

The second step is the same as that used to construct the RealTime series; we collect

the first available estimate of the output gap at each point in time from the various series

we constructed in step one. This sequence of output gaps is the QuasiReal series. The

difference between the RealTime and the QuasiReal series is entirely due to the effects of

data revision, since estimates in the two series at any particular point in time are based on

data samples covering exactly the same time period.

2.3.4 QuasiFinal Estimates

For unobserved component (UC) models, we are able to further decompose the revision

in the estimated gap by defining another estimate of the output gap. This QuasiFinal

estimate uses more information than the QuasiReal estimate (which uses subsamples of

Final data) but less than the Final estimate (which uses the full sample of Final data.)

This is relevant because UC models use the data in two distinct phases. First, they use the

available data sample to estimate the parameters of a time-series model of output. Next,

they use these estimated parameters in the Kalman filter to arrive at estimates of the output

gap. However, they distinguish between “filtered” and “smoothed” estimates of the output

gap. The smoothed estimate uses the full sample parameter estimates and data from 1 to

T to form an optimal estimate of the gap in quarter t (1 ≤ t ≤ T ). However, the filtered

estimate uses only data from 1 to t with the full sample parameter estimates to make an

optimal estimate of the output gap at t.

For this class of models, smoothed estimates of the output gap are used to construct

the Final series, while filtered estimates are used for the QuasiFinal series.6 The difference

6In both cases, the UC model’s parameters are estimated using the full sample of the Final vintage data,

8



between the QuasiFinal and the QuasiReal series then reflect solely the effects of using

different parameter estimates for the model to filter the data (i.e. the full-sample ones

versus the partial sample ones). The extent of the difference will reflect the importance of

parameter instability in the underlying UC model. The difference between the QuasiReal

and the RealTime series reflects the importance of ex post information in estimating the

output gap given the parameter values of the process generating output.7

3 Alternative Detrending Methods

Having explained how we will measure the precision and reliability of different detrending

methods, we now briefly review a variety of detrending methods.

We consider four types of methods. They are:

1. Deterministic Trends.

2. The Hodrick Prescott Filter

3. The Beveridge Nelson Decomposition

4. Unobserved Component Models.

Next we briefly discuss each of these four groups and the variants of these methods

which we apply. Readers familiar with these detrending methods may wish to just skim

this section and pass rapidly onto section 4, where we discuss our results.

3.1 Deterministic Trends

The first set of detrending methods we consider assume that the trend in (the logarithm of)

output is well approximated as a simple deterministic function of time. We consider three

such functions; linear, quadratic, and piece-wise linear functions.

and the same data is then used for filtering and smoothing.
7St-Amant and van Norden (1998) argue that the degree to which the subsequent behaviour of output is

informative about the output gap is linked to presence or absence of hysteresis in output.
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The linear trend is the oldest and simplest of these models. It assumes that output may

be decomposed into a cyclical component and a linear function of time

yt = α+ β · t+ ct (1)

where ct is the business cycle and yt is our chosen measure of output (in logarithms). The

quadratic trend adds a second term in the deterministic component:

yt = α+ β · t+ γ · t2 + ct (2)

This allows the flexibility to detect a slowly changing trend in a simple way. Because of the

noticeable downturn in GDP growth after 1973, another simple deterministic technique is

a breaking linear trend that allows for the slowdown in that year. In general, the breaking

trend model can be written as:

yt = α+ β · t+ ct for t ≤ t1

yt = α+ β · t+ γ · (t− t1) + ct for t > t1 (3)

Breaking trends were first formally studied by Perron (1989), who allowed also for multiple

breaks in the trend.

Our implementation of the breaking trend method will incorporate the assumption that

the location of the break is fixed and known. Specifically we assume that a break in the trend

at the end of 1973 would have been incorporated in real time from 1977 on. This conforms

with the debate regarding the productivity slowdown during the 1970s and evidence (e.g.

Council of Economic Advisers, 1977) that it would not have been reasonable to introduce

the 1973 break earlier but would be appropriate to do so as early as 1977.8

Due to their simplicity, deterministic trends remain appealing. Some authors use deter-

ministic trend methods, particularly when simplicity is greatly valued as in some applica-

tions regarding monetary policy evaluation. For example, Taylor (1993) relied on deviations

8We also investigated alternatives, including ones with a break of unknown location and also the possibility
of multiple breaks. For compactness we only report the fixed break in 1973 case since this method is more
common for practical applications, especially ones relating to productivity and output. Qualitatively, the
results were similar for the other alternatives.
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from a linear trend to measure the cycle, and Clarida, Gali and Gertler (1998) employed a

quadratic trend. The use of deterministic trends, however, remains a matter of controversy.

Nelson and Plosser’s (1982) seminal critique of the adequacy of deterministic trend model,

has sparked fully two decades of research and debate. To briefly summarize a vast and still

unsettled literature, there is still no consensus on the adequacy of the model, with at least

some recent papers disputing Nelson and Plosser’s claim that output was better modeled

as containing a stochastic rather than a deterministic trend.9 However, the possibility that

output contained a unit root (and possibly more than one) suggested a variety of other

detrending methods which we consider next.

3.2 The Hodrick Prescott Filter and Smoothing Splines

In recent years, smoothing splines have frequently been used to detrend output and other

time series. The most popular of these is that proposed by Hodrick and Prescott (1997)

and is commonly called the HP filter.10 The HP filter decomposes a time series yt into an

additive cyclical component, yct , and a growth component ygt ,

yt = yct + ygt (4)

and then chooses the series {ygt } to minimize the variance of the cyclical component yct

subject to a penalty for the variation in the second difference of the growth component ygt .

Formally, the HP-filtered trend is given by

{ygt }
T+1
t=0 = argmin

T∑
t=1

{(yt − y
g
t )

2 + λ[(ygt+1 − y
g
t )− (ygt − y

g
t−1)]2} (5)

and yct is the resulting measure of the output gap. λ is called the “smoothness parameter”

and penalizes the variability in the growth component. The larger the value of λ, the

smoother the growth component and the greater the variability of the output gap. As λ

approaches infinity, the growth component corresponds to a linear time trend. For quarterly

data, Hodrick and Prescott propose setting λ equal to 1600.

9For example, see Rudebusch (1993), Rothman (1997), Cheung and Chinn (1997).
10The method was proposed by Hodrick and Prescott in their influential 1981 working paper. The devel-

opment of smoothing splines dates back to the work of Whittaker (1923) and Henderson (1924).
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King and Rebelo (1993) show that under some conditions the HP filter will be the

optimal filter for identifying the cyclical component of a series. Harvey and Jaeger (1993)

compare it to a structural time-series model and conclude “...that the HP filter is tailor-

made for extracting the business cycle component from US GNP” (p. 236). Baxter and King

(1995) show that the HP filter “...can, in some cases, produce reasonable approximations to

an ideal business cycle filter” (p. 21-22). However, use of the HP filter remains controversial.

King and Rebelo note that the conditions for optimality are unlikely to be satisfied and

Harvey and Jaeger find the HP filter performs less well on other series. Cogley and Nason

(1995) discuss the dangers of spurious cyclicality induced by the HP filter while Guay and

St-Amant (1996) argue that the HP filter does a poor job of extracting business cycle

frequencies from macroeconomic time series.11 Despite this, the HP filter remains popular

in applied work (e.g. Taylor, 1998). Multivariate applications of the filter have also been

developed (e.g. Laxton and Tetlow, 1992 and Kozicki, 1998).

3.3 The Beveridge-Nelson Decomposition

Beveridge and Nelson (1981) consider the case of an ARIMA(p,1,q) series, y, which is to be

decomposed into a trend and a cyclical component. For simplicity, we can assume that all

deterministic components belong to the trend component and have already been removed

from the series. Since the first-difference of the series is stationary, it has an infinite-order

MA representation of the form

∆yt = εt + β1 · εt−1 + β2 · εt−2 + · · · = et (6)

where ε is assumed to be an innovations sequence. The change in the series over the next

s periods is simply

yt+s − yt =
s∑
j=1

∆yt+j =
s∑
j=1

et+j (7)

11A summary of these critiques and others may be found in St-Amant and van Norden (1997). See also
Christiano and Fitzgerald (1999) for comparisons of the HP filter with the band pass filter.
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The trend is defined to be

lim
s→∞

Et(yt+s) = yt + lim
s→∞

Et(
s∑
j=1

et+j) (8)

From equation 6, we can see that

Et(et+j) = Et(εt+j + β1 · εt+j−1 + β2 · εt+j−2 + · · ·) =
∞∑
i=0

βj+i · εt−i (9)

Since changes in the trend are therefore unforecastable, this has the effect of decomposing

the series into a random walk and a cyclical component, so that

yt = τt + ct (10)

where the trend is

τt = τt−1 + et

and et is white noise.

To use the Beveridge-Nelson decomposition we must therefore: (1) Identify p and q

in our ARIMA(p,1,q) model. (2) Identify the {βj} in equation 6. (3) Choose some large

enough but finite value of s to approximate the limit in equation 8.12 (4) For all t and

for j = 1, · · · , s, calculate Et(et+j) from equation 9. (5) Calculate the trend at time t as

yt +Et(
∑s
j=1 et+j) and the cycle as yt minus the trend.

Based on results for the full sample, we use an ARIMA(1,1,2), with parameters re-

estimated by maximum likelihood methods before each recalculation of the trend.

When applied to GDP, the Beveridge-Nelson decomposition typically implies relatively

small and not very persistent output gaps.13 The Beveridge-Nelson decomposition was in-

fluential in the 1980s when the small variance of its cycles in output was interpreted as

implying that real rather than nominal shocks dominated output fluctuations. This rea-

soning has been discredited by the work of Watson (1986) and Quah(1992), who stressed

12This need not be very large since changes in the detrended log of output may not be very persistent.
For example, Blanchard and Fischer (1989) argue that changes in the detrended log of U.S. GDP are well
approximated by an MA(2), implying that the correct model for log output is an ARIMA(0,1,2) and that
s = 2 is sufficient.

13This reflects the fact that ARMA models have little ability to forecast changes in output.
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that other decompositions could lead to other conclusions, and Lippi and Reichlin (1994)

who noted that the random walk assumption imposed on the trend does not match the

implications of business cycle models.14 Perhaps as a result, multivariate extensions of this

method have been much more influential in recent years. (See e.g. Rotemberg and Wood-

ford, 1996, for such an application for business cycle analysis.) Such methods currently form

the basis of the OECD’s measures of the output gap and their work on cyclical adjustment

of government deficits and surpluses. (Giorno et al., 1995.)

3.4 Unobserved Component Models

Unobserved component (UC) models attempt to specify the time-series properties of output

and use the resulting model to identify cyclic and trend components. Surveys of its use in

business cycle estimation may be found in Enders (1994) and Maravall (1996). Among the

simplest UC models are the Local Level models,

yt = µt + εt,

µt = µt−1 + ηt, (11)

and the Local Linear Trend models,

yt = µt + εt,

µt = µt−1 + βt−1 + ηt, (12)

β = βt−1 + ζt.

In the former (equation 11), the observed output series yt is composed of a random walk

component µt and white noise εt. εt and the increments of the random walk are assumed to

be mutually uncorrelated and follow independent Gaussian distributions. This implies that

yt follows an IMA(1,1), with the size of the MA term determined by the relative variances

of ε and µ. The local linear trend modifies the local level model by assuming that the

14Quah (1992) notes that of all possible decompositions, the Beveridge-Nelson decomposition minimizes
the variance of the cyclical component.
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increments to the trend component, µt, are not i.i.d, but themselves follow a local level

model.15 This implies that yt must be I(2) rather than I(1).

Popular models of quarterly output are typically based on one of these two basic models,

adding only richer short-term dynamics. The first of these to be applied was that of Watson

(1986), who modified the linear level model by replacing the white noise error term εt with

an AR(2) process to allow for more business cycle persistence.

yt = µt + ct

µt = δ + µt−1 + ηt (13)

ct = ρ1 · ct−1 + ρ2 · ct−2 + εt

Next was Clark (1987), who similarly modified the local linear trend model to allow for an

AR(2) cycle.

yt = nt + xt

nt = gt−1 + nt−1 + νt

gt = gt−1 + wt (14)

xt = φ1 · xt−1 + φ2 · xt−2 + et

where νt, wt and et are i.i.d mean-zero gaussian processes.

Finally, Harvey and Jaeger (1993) offered a different modification of the local linear

trend model in which Clark’s AR(2) cycle is replaced by a sinusoidal stochastic process, ψt.

yt = µt + ψt + εt

µt = µt−1 + βt−1 + ηt

βt = βt−1 + ζt (15)

ψt = ρ · cos(λc · ψt−1) + ρ · sin(λc · ψ
∗
t−1) + χt

15Again, all the error terms are assumed to be normally distributed and mutually independent at all leads
and lags.
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ψ∗t = −ρ · sin(λc · ψt−1) + ρ · sin(λc · ψ
∗
t−1) + χ∗t

where {ε, η, ζ, χ, χ∗} are all mean-zero gaussian i.i.d. errors and are uncorrelated at all leads

and lags.

All three of the above-mentioned papers suggested using the cycle-trend decompositions

implied by these models as a measure of the business cycle.16 These univariate models have

led to a series of multivariate extensions which are currently used extensively in output gap

measurement.17

We examine the simpler univariate models in this paper for a variety of reasons. First,

there are some indications that the multivariate versions are not always much more precise

than their simpler univariate counterparts. In those cases, our analysis of the revision errors

should help us understand the reliability of the resulting estimates. Second, the inclusion

of the UC models allows us to further decompose the difference between the QuasiReal and

the Final estimates and thereby better understand the importance of parameter instability

in causing revisions to output gap estimates. Finally, since UC models also allow us to

calculate the confidence intervals around our estimated output gaps, the revision errors

serve as a useful check on the accuracy of these standard errors in the face of possible

misspecification.

4 Results

Figure 1 compares the estimated business cycles for the eight different methods mentioned in

Section 3. RealTime estimates are shown in the top half of the figure while Final estimates

are shown in the lower half. Several features are readily apparent.

First, the different methods have strong short-term comovements. Most appear to be

moving upwards or downwards at roughly the same time, although the amount of these

moves vary from one method to another.

16Clark (1987) also considered a bivariate model of output growth.
17For example, see Kuttner (1992, 1994), Amato (1997), Gerlach and Smets (1997) and Kichian (1999).
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Second, despite having similar short-term movements, the different methods typically

give rise to a wide range of different estimates of the output gap. The difference between the

highest and lowest estimate is frequently over 4 percent of output and is the same order of

magnitude as the size of the business cycle itself. The dispersion of estimates is sufficiently

great that estimates of both signs can usually be found and exceptions to this rule tend

to be short-lived. Curiously, both the RealTime and the Final estimates show a period

during which all the estimates tended to be tightly clustered. However, these periods are

quite different for the two kinds of estimates; around 1973 for the RealTime estimates and

1984-1990 for the Final estimates.

To provide a first impression of the variation and size of the revisions implied by the

real-time and final estimates shown in figure 1, we plot the difference of the two series for

each method in figure 2. As with the estimates themselves, the dispersion of revisions is

great, especially in the mid 1970s, suggesting that interpreting the accuracy of estimates

during that period might have been especially difficult. The mid 1970s also coincides with

the period when the “official” estimates of the output gap (which were prepared at the time

by the Council of Economic Advisers) were most inaccurate. At the time, those estimates

were based on a segmented trend method for estimating potential output which proved

particularly misleading for assessing the productive capacity of the economy following the

productivity slowdown of the late 1960s and early 1970s. By 1975, these estimates suggested

that output was more than 10 percentage points below potential—similar to what is shown

in figure 1 for our linear and quadratic trend method estimates.

4.1 Revision size and persistence

To better understand the differences between the RealTime and the Final estimates, Ta-

ble 1 provides descriptive statistics on the various RealTime, QuasiReal, QuasiFinal and

Final estimates, while Table 2 provides similar statistics for the total revision (i.e. Final

estimate - RealTime estimate). Comparing the two tables, we see that the revisions are of

the same order of magnitude as the estimated output gaps, although this varies somewhat
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across methods. The last column of table 2 reports the estimated first order autocorrela-

tion coefficients for the revisions, showing that they are highly persistent. Aside from the

Beveridge-Nelson model, the persistence ranges from 0.80 for the Breaking Trend to 0.96

for the Linear Trend and the Watson model.

It is worth noting that the statistical properties of these revisions are broadly in line

with those of the revisions of “official” output gap estimates for the U.S. One such series

is examined in Orphanides (1999), who has compiled the real-time output gap estimates

available at the Federal Reserve from 1965 to 1993. These were based on the Council of

Economic Advisers estimates during the 1960s and 1970s and Federal Reserve staff estimates

during the 1980s and 1990s. The standard deviation of these real-time estimates from

1966Q1 to 1993Q4 is 3.8 percent. Comparison of these real-time estimates with the historical

Federal Reserve staff estimates available in 1994Q4 suggests large and highly persistent

revisions. The standard deviation of these revisions is 2.6 percent and their first order

serial correlation is about 0.9.

Because the various methods have substantial variation in the size of the cyclical com-

ponent they produce, it is easier to compare their reliability in real-time by looking at

comparably scaled measures of the revisions. Table 3 presents some such measures. In col-

umn 1 we present the correlation between the Final and RealTime series for each method.

(This would be 1 in the ideal case where no revisions to the RealTime estimates were ever re-

quired.) As can be seen these correlations range from a low of 0.53 for the Hodrick-Prescott

filter and 0.56 for the Harvey-Jaeger model to a high of 0.87 for the Breaking Trend and

0.81 for the Linear Trend.

The remaining three indicators in Table 3 measure in different ways the relative im-

portance of the revisions. (In the ideal case of no revisions, each of these indicators would

equal 0.) The first of these indicators, NS, reports the ratio of the standard deviation of

the total revision to the standard deviation of the final estimate of the gap; this gives us

a proxy for the “noise-to-signal ratio” in the RealTime estimates. For example, looking at
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the Hodrick Prescott method, we see that this ratio is 1.03 (i.e. the revision has a slightly

larger variance than the final estimate of the output gap itself). This is the worst ratio for

the eight methods, although it is not far from the 0.93 and 0.92 for the Quadratic Trend

and Harvey-Jaeger models, respectively. By this criterion, even the best models have rather

large ratios, between one-half and two-thirds.

The last two columns provide the frequencies with which the RealTime estimate is ”bad.”

The OPSIGN column shows the frequency with which the RealTime and Final gaps were of

opposite signs. For the Watson and Linear trend models, this frequency exceeds 50 percent.

Not all methods do as badly by this criterion with the Breaking Trend model misclassifying

only 12 percent and the Beveridge Nelson only 21 percent. The XSIZE column shows the

frequency with which the absolute value of the revision exceeds the absolute value of the

Final series. The different detrending methods give more similar results in this respect. In

five of the eight models this frequency exceeds 50 percent and in two others it exceeds 40

percent. The Breaking Trend again stands out as the best with revisions larger than Final

gaps only 30 percent of the time.

We reiterate that the revision errors we measure here are underestimates of the total

estimate error; we are measuring only the estimation errors which we subsequently correct.

This also means that we must be particularly cautious in trying to compare the reliability

of the different methods. With this caveat firmly in mind, we may note that some methods

appear on the surface to be less desirable than others. For example, the Hodrick Prescott

filter combines the lowest correlation (0.53) between the Final and RealTime estimates and

the worst noise-signal ratio with a higher than average persistence of revisions (0.93). The

Quadratic Trend does not fair much better, with the second-worst noise-signal ratio and

the third-highest persistence (0.95.) In contrast, the Breaking Trend combines the highest

correlation (0.87) with the second-lowest persistence (0.80) and by far the best frequency

of correctly signing the output gap.
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4.2 Decomposition of Revisions

Figure 3 through Figure 6 help us understand the importance of different factors in account-

ing for the total revision in the estimated output gap as we move from RealTime to Final

estimates. Table 4 presents detailed related summary statistics for the various methods.

Figure 3 shows results for the Linear Trend method in the upper panel and the Watson

model in the lower panel. (The reason for this grouping will become clear shortly.) In each

graph, we see the RealTime estimate of the output gap together with the total subsequent

revision (Final - RealTime) of that estimate. The fact that the revision is roughly equal to

the RealTime estimate at the trough of the 1975 recession tells us that our final estimate of

the output gap is roughly zero. In other words, despite the extreme evidence of recession

in the RealTime estimate, ex post we would judge that the economy was operating roughly

at potential at that time. The size of these revisions (about 8 to 10 percentage points in

this period) underline the lack of precision of these methods’ RealTime estimates.

To understand the source of these revisions, both graphs also show the effects of data

revision. (This is constructed as the RealTime estimate minus the QuasiReal estimate.)

This is simply the component of the overall revision which is due to subsequent changes

in the published data (as opposed to the addition of new data points to the sample.) For

example, since we see that the total revision and data revision are roughly equal in both

graphs in late 1995, this means that nearly all of the revision in our estimated output gap

for those quarters was due to subsequent revisions in the published data.

Looking at the whole sample period, the data revision is typically less than ± 2 percent

of output and its variability tends to be small compared to that of the total revision. This

in turn means that most of the revision is due to the addition of new points to our data

sample. However, data revisions still play a role as can be confirmed by looking at the

summary statistics of the difference between the QuasiReal and RealTime estimates of the

output gap shown in Table 4.

In the case of the Watson model, we can further identify the source of the revisions
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by identifying the effects of parameter revisions (calculated as QuasiReal - QuasiFinal).

The lower panel of Figure 3 shows that these parameter revisions account for much of the

revisions of our estimates of the output gap.18

Considering the evidence presented so far on the Linear Trend and Watson models, we

are led to the conclusion that they are not well suited to the estimation of business cycles

due to their assumption of a constant long-term trend in output growth. This assumption

leads to parameter instability as samples are lengthened and the trend rate of growth is

revised downwards. It gives us output gap estimates which seem to contain a downward

trend (see Figure 2), output gaps which are furthest from zero and the largest standard

deviation of revision.

Figure 4 considers the two other deterministic trend models, the Quadratic Trend and

the Breaking Trend. The two give visually similar RealTime estimates, the main difference

coming in 1977, when the Breaking Trend estimates undergo a discrete shift as the trend

break is introduced in 1973. The total revision is again often close to the size of the RealTime

output gap (particularly in the mid-1990s.) We note that although the data revisions seem

to play a secondary role in explaining the total revision of the RealTime estimates, a major

exception appears during 1974 and 1975 when substantial data revisions eventually helped

to moderate initial perceptions of a disastrous recession.

Figure 5 again presents visually similar results from two conceptually different methods,

this time from the Hodrick-Prescott filter and the Harvey-Jaeger unobserved component

model.19 In both cases we find revisions that are fully as large as the RealTime estimates

and that cannot be attributed to the effects of data revisions (particularly once we exclude

the 1974-75 revisions.) Results for the Harvey-Jaeger model further indicate that the effects

of parameter revision are similarly small, unlike the first case we considered above. The

18The parameter instability was evident when performing the rolling estimation of the Watson model;
parameter estimates tended to fluctuate between two different sets of parameters with quite different impli-
cations for the estimated business cycle.

19The similarity in the Final estimates from these two methods was noted in the original article by Harvey
and Jaeger (1993).
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large revision of our estimates must therefore be due almost entirely to the addition of

subsequent observations to our sample.

A further striking feature of these two methods is that the revision seems to systemati-

cally lead the RealTime estimate by about one year. This does not imply that the RealTime

estimates use the available data inefficiently, since the revisions can obviously only be cal-

culated with Final data. These results appear to contrast with those of St-Amant and van

Norden (1997), who examined the spectral properties of HP filters at the end of sample

(similar to our QuasiReal estimates.) They found that while there was a phase lag of about

2 quarters at most business cycle frequencies, the overall phase shift was effectively zero

due to the effects of spectral leakage from lower frequencies.20

In Figure 6, we consider the results from the last pair of models, the Beveridge-Nelson

and Clark models. The upper frame shows that results for the Beveridge-Nelson decom-

position are atypical in almost every way. The estimated output gap is much smaller and

much less persistent that produced by any other method, facts which were also evident in

Table 1. However, we now also see that the RealTime estimates look very little like the

output gaps we would associate with U.S. business cycles. For example, the recessions of

1982 and 1991 are difficult to distinguish from the background “noise” and appear to be

very brief and mild (with the gap never exceeding 1.5 percent of output in absolute value.)

By far the largest output gap in the sample, that of 1975, is largely accounted for by data

revisions and becomes unremarkable in Final estimates. Indeed, the total revisions for this

method are dominated by the effects of data revision; the two series are highly correlated

and their plots are often difficult to separate visually.

The lower frame shows that the results for Clark are much more typical of those for the

other unobserved components models. Revisions are almost as large as the RealTime gaps

and are persistent. Both parameter revision and data revision effects are relatively minor.

Perhaps the most striking feature of the RealTime estimates are that after 1973 they are

20St-Amant and van Norden (1997), p. 32.
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almost never strongly positive; that is, in real-time the economy appears to be virtually

continuously at or below potential for twenty-five years with this method.

4.3 Turning Points

It is particularly interesting to know how the different business cycle measures do around

business cycle turning points, since these are presumably periods where accurate and timely

estimate of the output gap (and its changes) would be of particular interest to policy makers.

To help assess this, we calculated a number of descriptive statistics regarding the size or

the revision in RealTime estimates in the three quarters centered about each of the NBER

business cycle peaks from 1966 to 1997. Results are shown in Table 5.

We see that all methods seem to underestimate the output gap in RealTime at cyclical

peaks, although the degree to which this is true varies considerably from one method to

another. The Linear Trend and Watson methods have by far the most severe underestimates

while the Beveridge-Nelson has the smallest.

4.4 Revisions and Confidence Intervals

As noted previously, our revision errors overestimate the overall reliability of the output

gap series since they neglect the estimation error which remains in the Final estimates.

Alternatively, we can also use standard statistical methods to calculate the reliability of

some of the output gap measures. These too will overestimate the reliability of the gap

since they ignore the effects of data revision and model misspecification. Of course, if

these two are relatively small, statistical methods may be a useful guide to the reliability

of RealTime output gap estimates.

To investigate this question, we focused on the three UC models and calculated 95%

confidence intervals about the RealTime estimates of the output gap.21 The results are

shown in figures 7 through 9, which compare these confidence intervals to the final estimates

21These were calculated using the usual formulas for the standard errors surrounding estimates produced
by the Kalman filter. Note that in addition to the effects of data revision and model misspecification
mentioned above, these also do not take account of the uncertainty in the model’s estimated parameters.
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of the output gap. If the statistical confidence intervals are reliable, we should find that our

Final estimates fall outside the 95% RealTime confidence interval very infrequently.

The figures show that the reliability of calculated confidence intervals varies. Final

estimates from the Watson model are often outside the real-time confidence intervals. This

happens only rarely (and then briefly) for the Harvey-Jaeger model, and not at all for the

Clark model. This finding suggests that the assumption of a constant drift rate for trend

output growth embedded in the Watson model is at odds with the data and implies that

the calculated confidence intervals for this model omit an important source of error.

5 Conclusions

We have examined the reliability of univariate detrending methods for estimating the output

gap in real time. In doing so, we have focused on the internal consistency of output gap

estimates over time as more information arrives and data are revised. This gives us results

which are robust to alternative assumptions about the structure of the economy, but may

tend to overestimate the reliability of the estimated output gaps from any given method.

Our results suggest that the reliability of output gap estimates in real time tends to be

quite low. Different methods give widely different estimates of the output gap in real time

and often do not even agree on the sign of the gap. The standard error of the revisions is of

the same order of magnitude as the standard error of the output gap for all the methods.

The measurement error problem is compounded by a high degree of persistence of the

revisions and further by a systematic bias around business cycle turning points. These

findings suggest that measurement error would pose a serious policy problem for any of

these measures of the output gap. The relative size and persistence of the revision errors

we report are also similar to those associated with “official” real-time output gap estimates,

such as those reported in Orphanides (1999).

Some important differences between the alternative methods also emerged. The Beveridge-

Nelson method does not give reasonably sized or persistent gaps. Methods which assume a
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cycle around a constant growth trend (Linear Trend and Watson models) have particularly

large revisions due to parameter instability in the estimated trend rate of growth. This

confirms that models with time-varying trend rates of growth should be preferred.

We also found that, although important, the revision of published data does not appear

to be the primary source of revisions for any of the methods we examined. Rather, the

subsequent evolution of the economy seems to be very informative for estimation of the

current position in the business cycle. Thus, even if the reliability of the underlying real-

time data were to improve, real-time estimates of the output gap would remain unreliable.
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Appendix: Alternative Measures of the Output Gap

Let yvt be the value of output published at time v for an observation at time t. Due to

publication lags, we require t ≤ v − 1. The full series published at any point in time v

can be written as the vector Y v ≡ [yv1, y
v
2 , . . . , y

v
v−1]. We can also refer to the subvector

Y v
N ≡ [yv1 , y

v
2 , . . . , y

v
N ].

Now suppose Z is an N ×M matrix consisting of real and non-real numbers. We restrict

all its non-real entries (which represent unavailable observations) to lie below the main

diagonal. We construct matrices of this form by placing series of different length in the

columns, with each series starting in row 1. The remaining entries in each column (after

the end of each series) are then filled with some non-real constant. We denote this as

Z ≡ z(A,B, . . . ,M) (A.1)

where the arguments A,B, . . . ,M are simply column vectors of (possibly) unequal length.

We also define the last-value function l(Z) : RN×M → RM , which simply selects the last

real observation (i.e. the one with the highest row number) in each column of Z. Combining

the z and l functions into one gives us

`(A,B, . . . ,M) ≡ l(z(A,B, . . . ,M)) (A.2)

Suppose that we also have an arbitrary detrending function f(X) : RN → RN . The Final

estimate of the output gap for this detrending function is just

ŶFinal ≡ f(YM ) (A.3)

where M is the ”final” vintage of data available (in our case, 1999Q1.)

The RealTime estimate of the output gap is

ŶRealT ime ≡ `(f(Y 1), f(Y 2), . . . , f(YM )) (A.4)
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The QuasiReal estimate of the output gap is given by

ŶQuasiReal ≡ `(f(YM
N−M+1), f(YM

N−M+2), . . . , f(YM
N )) (A.5)

The QuasiFinal estimate of the output gap only exists for detrending functions of the

form f(X, θ) where θ is a set of parameters. Typically, these parameters describe the

data-generating process for X and the maximum-likelihood estimate of the parameters may

be denoted θ̂(X). When the samples which we detrend are the same as those used to

estimate the parameters, then we may define a new detrending function g(X) ≡ f(X, θ̂(X))

which can be used to construct the conventional RealTime, QuasiReal and Final output

gap estimates. In the case of the QuasiFinal estimate, however, we compute

ŶQuasiF inal ≡ `(f(YM
N−M+1, θ̂(Y

M )), f(YM
N−M+2, θ̂(Y

M ), . . . , f(YM
N , θ̂(YM )) (A.6)
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Table 1

Output Gap Summary Statistics:

1966:1 – 1997:4

Method MEAN SD MIN MAX COR

Hodrick-Prescott

Final 0.06 1.71 −4.58 3.70 1.00

Quasi-Real −0.15 1.75 −4.30 3.84 0.56

Real-Time −0.27 1.90 −6.63 3.84 0.53

Breaking Trend

Final 0.33 2.51 −6.24 4.84 1.00

Quasi-Real 0.25 2.86 −6.90 6.94 0.91

Real-Time 0.21 3.15 −10.52 5.02 0.87

Quadratic Trend

Final 0.55 2.54 −6.93 5.35 1.00

Quasi-Real −1.02 2.72 −7.57 6.16 0.72

Real-Time −0.96 3.03 −10.83 4.70 0.65

Linear Trend

Final 1.47 4.96 −7.15 9.68 1.00

Quasi-Real −3.74 4.17 −11.32 6.94 0.88

Real-Time −3.45 3.98 −10.52 5.02 0.81

Beveridge-Nelson

Final −0.06 0.53 −1.80 1.66 1.00

Quasi-Real −0.10 0.51 −1.81 1.54 0.99

Real-Time −0.20 0.75 −4.14 1.98 0.79

(Continued next page)
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Table 1 (continued)

Method MEAN SD MIN MAX COR

Clark

Final 0.24 2.11 −5.38 3.84 1.00

Quasi-Final −0.61 1.45 −4.15 3.11 0.87

Quasi-Real −0.69 1.63 −4.34 3.41 0.79

Real-Time −0.93 1.91 −6.99 3.02 0.77

Harvey-Jaeger

Final 0.03 1.55 −3.89 3.91 1.00

Quasi-Final −0.07 1.22 −2.68 2.91 0.63

Quasi-Real −0.04 1.35 −3.12 3.21 0.58

Real-Time −0.10 1.48 −5.04 3.01 0.56

Watson

Final 1.32 3.44 −4.37 7.19 1.00

Quasi-Final 0.16 3.35 −4.73 6.37 0.96

Quasi-Real −2.38 2.65 −7.75 4.41 0.81

Real-Time −2.08 2.61 −7.43 3.56 0.78

Notes: The alternative detrending methods are as described in the text. The statistics

shown for each variable are: MEAN, the mean; SD, the standard deviation; and MIN and

MAX, the minimum and maximum values. COR, denotes the correlation with the final

estimate of the gap for that method.
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Table 2

Summary Revision Statistics

Final vs Real-Time Estimates

1966:1 – 1997:4

Method MEAN SD MIN MAX AR

Hodrick-Prescott 0.32 1.77 −3.41 3.42 0.93

Breaking Trend 0.12 1.54 −4.85 5.40 0.80

Quadratic Trend 1.49 2.36 −3.40 7.56 0.95

Linear Trend 4.97 2.83 −2.33 11.51 0.96

Beveridge-Nelson 0.14 0.46 −1.11 2.66 0.29

Clark 1.17 1.37 −1.90 4.35 0.92

Harvey-Jaeger 0.12 1.43 −2.93 3.67 0.85

Watson 3.40 2.16 −1.93 7.53 0.96

Notes: The detrending method and statistics are as described in the notes to Table 1. AR

denotes the first order serial correlation of the revision series shown.
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Table 3

Summary Reliability Indicators

1966:1 – 1997:4

Method COR NS OPSIGN XSIZE

Hodrick-Prescott 0.53 1.03 0.40 0.60

Breaking Trend 0.87 0.62 0.12 0.30

Quadratic Trend 0.65 0.93 0.34 0.52

Linear Trend 0.81 0.57 0.52 0.59

Beveridge-Nelson 0.79 0.87 0.21 0.43

Clark 0.77 0.65 0.31 0.49

Harvey-Jaeger 0.56 0.92 0.41 0.58

Watson 0.78 0.63 0.51 0.57

Notes: The table shows measures evaluating the size, sign and variability of the revision

between the final and the real-time estimates for alternative methods. COR, denotes the

correlation of the real-time and final estimates (from table 1). NS indicates the ratio of

the standard deviation of the revision and the standard deviation of the final estimate of

the gap. OPSIGN indicates the frequency with which the real-time and final gap estimates

have opposite signs. XSIZE indicates the frequency with which the absolute value of the

revision exceeds the absolute value of the final gap.
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Table 4

Detailed Breakdown of Revision Statistics

1966:1 – 1997:4

Method MEAN SD MIN MAX AR

Hodrick-Prescott

Final/Real-Time 0.32 1.77 −3.41 3.42 0.93

Final/Quasi-Real 0.21 1.62 −3.52 3.27 0.97

Quasi-Real/Real-Time 0.11 0.59 −0.97 2.71 0.60

Breaking Trend

Final/Real-Time 0.12 1.54 −4.85 5.40 0.80

Final/Quasi-Real 0.08 1.18 −3.76 2.24 0.87

Quasi-Real/Real-Time 0.03 1.06 −2.98 3.84 0.77

Quadratic Trend

Final/Real-Time 1.49 2.36 −3.40 7.56 0.95

Final/Quasi-Real 1.56 1.97 −1.80 5.14 0.98

Quasi-Real/Real-Time −0.09 1.04 −2.89 3.80 0.76

Linear Trend

Final/Real-Time 4.97 2.83 −2.33 11.51 0.96

Final/Quasi-Real 5.20 2.35 0.00 8.25 0.96

Quasi-Real/Real-Time −0.27 1.20 −3.62 3.84 0.81

Beveridge-Nelson

Final/Real-Time 0.14 0.46 −1.11 2.66 0.29

Final/Quasi-Real 0.04 0.06 −0.25 0.26 0.59

Quasi-Real/Real-Time 0.10 0.46 −1.19 2.62 0.31

(Continued next page)
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Table 4 (continued)

Method MEAN SD MIN MAX AR

Clark

Final/Real-Time 1.17 1.37 −1.90 4.35 0.92

Final/Quasi-Final 0.85 1.11 −1.23 3.24 0.93

Quasi-Final/Quasi-Real 0.07 0.47 −0.86 1.20 0.93

Quasi-Real/Real-Time 0.24 0.59 −0.75 2.65 0.84

Harvey-Jaeger

Final/Real-Time 0.12 1.43 −2.93 3.67 0.85

Final/Quasi-Final 0.10 1.22 −2.47 3.30 0.87

Quasi-Final/Quasi-Real −0.03 0.24 −0.48 0.60 0.95

Quasi-Real/Real-Time 0.06 0.39 −0.60 1.91 0.82

Watson

Final/Real-Time 3.40 2.16 −1.93 7.53 0.96

Final/Quasi-Final 1.16 0.92 −0.56 2.81 0.95

Quasi-Final/Quasi-Real 2.53 1.59 −0.45 4.59 0.98

Quasi-Real/Real-Time −0.29 0.95 −2.45 2.35 0.85

Notes: See notes to tables 1 and 2.
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Table 5

Revision Statistics at NBER Peaks

Final vs Real-Time Estimates

Name MEAN SD MIN MAX

Hodrick-Prescott 2.33 0.73 0.77 3.42

Breaking Trend 0.71 0.73 −0.79 1.81

Quadratic Trend 2.95 1.73 −0.51 5.17

Linear Trend 6.11 1.98 2.49 8.60

Beveridge-Nelson 0.31 0.49 −0.44 1.26

Clark 1.71 1.09 0.01 3.74

Harvey-Jaeger 1.68 0.94 −0.16 2.96

Watson 4.29 1.64 0.94 6.65

Notes: The revision is defined as the difference between the final and the real-time estimates.

For each method, the sample used to compute the revision statistics is limited to the three

quarters centered around each of the NBER peaks from 1966 to 1997. See also notes to

Table 1.
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Figure 1

Real-Time Estimates of the Business Cycle
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Final Estimates of the Business Cycle
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Figure 2

Total Revision in Business Cycle Estimates
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Figure 3

Estimated Business Cycle: Linear Trend
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Estimated Business Cycle: Watson
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Figure 4

Estimated Business Cycle: Breaking Linear Trend
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Estimated Business Cycle: Quadratic Trend
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Figure 5

Estimated Business Cycle: Hodrick-Prescott
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Estimated Business Cycle: Harvey-Jaeger
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Figure 6

Estimated Business Cycle: Beveridge-Nelson

-6

-4

-2

 0

 2

 4

1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996

 

Percent

RealTime
Total Revision
Data Revision

Estimated Business Cycle: Clark
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Figure 7

Real-Time 95% Confidence Interval and Final Estimates

Unobserved Component Models
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