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Abstract

Generalized Method of Moments (GMM) is widely applied in econometrics. In most cases,

there is a vast array of population moments upon which to base estimation and so the

researcher must decide which moments to use. Andrews (1999) proposes a method for

moment selection based on minimizing an information criterion which is the sum of the

overidentifying restrictions test and a bonus term re°ecting the number of overidentifying

restrictions. In this paper, we consider the problem of moment selection in the case where

generalized instrumental variables (GIV) estimation is used. In the literature on GIV,

it is known that it is desirable to choose instruments on the basis of three attributes:

orthogonality, relevance and uniqueness. It is shown that Andrews's (1999) method chooses

instruments on the basis of the orthogonality property alone, and so leads to the inclusion of

instruments which are irrelevant in the sense their inclusion has no impact on the asymptotic

variance of the estimator. While this weakness is inconsequential asymptotically, it has an

adverse e®ect on the ¯nite sample properties. In this paper we propose a new method for

selecting instruments on the basis of their relevance. This method is based on a canonical

correlations information criterion which we believe to be new to the literature. It is shown

that the method is consistent in the sense that it selects all relevant instruments from a

candidate set of instruments which are orthogonal. It is also shown that the combination

of Andrews's (1999) method and our own yields a consistent method for the selection of

relevant, orthogonal instruments from a candidate set. Simulation evidence suggests the

method works well.



1 Introduction

Generalized Method of Moments (GMM) (Hansen, 1982) has been widely applied in econo-

metrics because it provides a computationally convenient method of estimation based on

the type of information provided by economic models. This information takes the form of

a population moment condition involving a data vector and the unknown parameter vector

of interest. In many applications, the underlying economic model implies many such pop-

ulation moment conditions, and so researchers must decide which moments to use in the

estimation. One response to this dilemma has been to estimate the model using a number of

di®erent choices of moment condition and then to use the overidentifying restrictions test to

diagnoze which moments are compatible with the data. While frequently employed in prac-

tice, this strategy su®ers from repeated testing problems which render inferences suspect.

However, in a recent paper Andrews (1999) has provided a method of moment selection

based on the overidentifying restrictions test which circumvents these problems. Andrews

(1999) proposes an information criterion approach to the selection of moments in which the

criterion consists of the overidentifying restrictions test and a bonus term dependent on the

number of overidentifying restrictions.1 For certain choices of bonus term, Andrews (1999)

shows that minimization of this criterion over a particular set of moment conditions is a

consistent method of moment selection in the sense that it selects with probability one the

largest vector of moment conditions from this set which are compatible with the data.2

While Andrews's (1999) approach has circumvented the repeated testing problem, it

possesses certain weaknesses as a method of moment selection. These are best understood

by considering a leading case of GMM estimation, namely generalized instrumental vari-

ables estimators (GIV) (Hansen and Singleton, 1982) which is also the focus of our paper.

Within this framework, the population moment condition takes the form E[zt­ut(µ0)] = 0

1It should be noted that Andrews (1999) also considers downward and upward testing strategies based

on the overidentifying restrictions test.
2Strictly, this result is asymptotic and subject to certain important identi¯cation conditions.
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where µ0 is the parameter vector of interest. In most cases of interest, ut(µ0) is implied by

the underlying economic model, and so the problem of moment selection reduces to one of

choosing a vector of instruments from a set of candidates, Z say. Within the literature on

GIV, it has been recognized that it is desirable for the selected instrument to possess three

main properties: orthogonality, relevance and uniqueness.3 Since Andrews's (1999) method

is based on the overidentifying restriction test, it focuses purely on the orthogonality prop-

erty. However, there is growing evidence that the other two attributes { and relevance in

particular { are important determinants of both the asymptotic and ¯nite sample proper-

ties of the estimator. For example, Staiger and Stock (1997) and Stock and Wright (1997)

demonstrate that if the entire instrument vector is irrelevant, or nearly so, then standard

asymptotic theory is inappropriate. Furthermore, even if the instrument vector is relevant,

not all elements of the population moment condition may be informative about the param-

eter vector { or in the terminology of Breusch, Qian, Schmidt, and Wyhowski (1999), some

elements of the population moment condition may be \redundant". Although the inclu-

sion of redundant moment conditions does no harm asymptotically,4 there is compelling

evidence that it causes a deterioration in the ¯nite sample properties of the estimator.5 It

therefore seems desirable that orthogonality should not be the only attribute upon which

instruments are selected.

In this paper, we propose a method for selecting instruments based on their relevance.

Although the analysis covers nonlinear models, it is most convenient to introduce the ideas

within the context of the normal linear regression model and then present the extension to

nonlinear models and non{normality afterwards. To start, it is necessary to formulate a

3E.g. See Hall, Rudebusch, and Wilcox (1996).
4 The inclusion of additional valid population moment conditions can never increase the asymptotic

variance of the estimator.
5E.g. See Hall and Peixe (1999) and the evidence reported below. It should also be noted that this point

is generic to all GMM estimators; see Andersen and Sorensen (1996) for an illustration of this point for a

case in which the population moment condition does not take the form de¯ned above.
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precise de¯nition of the conditions under which an instrument is relevant or irrelevant. In

Section 2, we show that the canonical correlations between the regressors and instruments

provide a natural basis for a de¯nition of relevance. We also present a de¯nition of a

nearly irrelevant instrument inspired by the work of Staiger and Stock (1997) and Stock

and Wright (1997), and contrast our notion of irrelevance with the concept of redundancy

introduced by Breusch, Qian, Schmidt, and Wyhowski (1999). It emerges that redundancy

and irrelevance are closely related but have one important di®erence: redundancy is a

conditional property whereas irrelevance is unconditional. More speci¯cally, if we partition

the instrument vector into zt = [z
0
1t; z

0
2t]
0

then whether or not z2t is redundant depends on

the particular choice for z1t. In contrast, if z2t is irrelevant then it is redundant for all

possible choices of z1t.

This connection between irrelevance and redundancy is exploited in the instrument

selection method proposed below. In Section 3, we present a likelihood ratio statistic

for testing the null hypothesis that z2t is redundant conditional on z1t, that is given the

instrument vector takes the form zt = [z
0
1t; z

0
2t]
0
. This statistic is a function of the sample

canonical correlations, and is already familiar in statistics in other contexts. We show the

test is consistent against the alternative that the instruments are not redundant. Given

the relationship between irrelevance and redundancy described above, the irrelevance or

relevance of z2t can be diagnozed by testing whether z2t is redundant for all possible choices

of z1t. However, such a strategy runs into the repeated testing problems mentioned above

in the context of the overidentifying restrictions test. Therefore, in Section 4 we propose

a method of instrument selection based on the minimization of an information criterion.

This criterion consists of two functions: the ¯rst is the likelihood ratio statistic described

above and so depends on the sample canonical correlations; the second is a penalty function

which increases with the number of overidentifying restrictions. In view of this structure,

we refer to the minimand as the canonical correlations information criterion or CCIC for

short. It is shown that this method of instrument selection is consistent under certain
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conditions on the penalty function. In this context, consistency means that the method

excludes all irrelevant instruments with probability one in the limit. Section 5 shows how

all the previous analysis can be extended to nonlinear models and non{normally distributed

data.

In practice, it is desirable to choose instruments which are both orthogonal and rel-

evant. Just as Andrews's (1999) method focuses on orthogonality and ignores relevance,

our method focuses on relevance and ignores orthogonality. However, intuition suggests

that a combination of the two methods should achieve the desired goal. Section 6 explores

the properties of a strategy in which the two methods are applied sequentially. Given the

nature of the problem, the most logical sequence is to apply Andrews's (1999) method ¯rst

and then apply our method based on CCIC. It is shown that such a strategy includes all

variables from the candidate set of instruments which are both orthogonal and relevant

with probability one in the limit.

Section 7 concludes the paper and a mathematical appendix contains the proofs for all

the main results and certain other technical details.

2 Irrelevant instruments: de¯nition and consequences

As mentioned above, it is most convenient to introduce our method within the context of

the univariate linear regression model. Accordingly, we consider the case in which

yt = x
0
tµ0 + ut; t = 1; 2; : : : ; T (1)

and the p£ 1 parameter vector µ0 is estimated via GMM based on the population moment

condition

E[ztut(µ0)] = 0 (2)

where zt is a q£1 vector of instruments and ut(µ) = yt¡x0tµ. In this paper we are concerned

with the case in which zt is chosen from some candidate set of instruments, Z. Therefore
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we let Zt denote a qmax £ 1 containing all members of Z, and de¯ne zt = SqZt for some

q£ qmax selection matrix Sq. Since the main focus of this paper is on the development of a

new method for instrument selection, we adopt the following high level assumption about

generation of v
0
t = [x

0
t; Z

0
t ; ut].

Assumption 1 (i) vt » IN(0;§v); (ii) §v is given by

§v =

2
666664

§xx §xz §xu

§zx §zz 0qmax£1

§ux 01£qmax ¾2

3
777775

(iii) §xx, §zz are respectively p£p, qmax£ qmax nonsingular matrices, and ¾2 is a positive

scalar; (iv) rankf§xzg = p.

This rather restrictive distributional assumption is made purely to facilitate the exposition,

and we discuss the ways in which it can be weakened in Section 5. However, there are two

aspects of Assumption 1 which are not relaxed: (ii) implies the orthogonality of Zt and ut;

and (iv) implies that µ0 is identi¯ed by (2) with zt = SqZt for at least one choice of Sq.

Now let X, Z and y be respectively the T £ p , T £ qmax and T £ 1 matrices with tth rows

x
0
t, Z

0
t and yt. Under Assumption 1, the optimal weighting matrix for the GMM estimation

is WT = (SqT¡1Z0ZS
0
q)
¡1 and this leads to the IV estimator

µ̂T = [X 0ZS
0
q(SqZ

0ZS
0
q)
¡1SqZ

0X]¡1X 0ZS
0
q(SqZ

0ZS
0
q)
¡1SqZ

0y (3)

It can be shown that under Assumption 1

T 1=2(µ̂T ¡ µ0)
d! N ( 0; Vµ ) (4)

where

Vµ = ¾2[§xzS
0
q(Sq§zzS

0
q)
¡1Sq§zx]¡1 (5)

Equation (5) indicates that asymptotic variance of µ̂T depends in some way on the rela-

tionship between the instruments and regressors, but does not provide useful insights into
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exactly what aspects of this relationship are important. However, more progress can be

made by expressing the asymptotic variance in terms of the population canonical correla-

tions between xt and zt. To introduce this alternative representation we need the following

notation. Let f½i; i = 1; 2; : : : pg be the canonical correlations between xt and zt, and as-

sume ½i ¸ ½i+1. Let F and G be the p £ p and p £ q matrices whose ith rows, f
0
i and g

0
i

contain the weights in the linear combinations associated with the ith canonical correlation,

that is Corr(f
0
ixt; g

0
izt) = ½i. Bowden and Turkington (1984)[p. 29-32] show that

Vµ = ¾2FR¡2F 0 (6)

where R = diag (½1 : : : ½p). Equation (6) reveals that the asymptotic variance depends

crucially on the population canonical correlations.

Equation (6) is the key to our de¯nition of an irrelevant instrument. To present this

de¯nition, we introduce the following notation. Let zt;j be the jth element of Zt, and Sj;q

be a q £ qmax selection matrix whose jth column consists of zeros. Finally, let ½i[at : bt] to

denote the ith population canonical correlation between at and bt.

De¯nition 1 Irrelevant instrument

zt;j is said to be irrelevant (for the estimation of µ0) if

½i [xt : fzt;j ; Sj;qZtg] = ½i [xt : Sj;qZt]

for all i = 1; 2 : : : p, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q.

This de¯nition states that zt;j is irrelevant if its inclusion in the instrument vector, zt, has

no impact on the population canonical correlations regardless of the other variables included

in zt. We adopt the following de¯nition of relevance.

De¯nition 2 Relevant instrument

zt;j is said to be relevant if

½i [xt : fzt;j; Sj;qZtg] ¸ ½i [xt : Sj;qZt]
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for all i = 1; 2 : : : p, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q, and

½i [xt : fzt;j; Sj;qZtg] > ½i [xt : Sj;qZt]

for some i, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q.

Therefore zt;j is considered relevant if its inclusion increases
Pp
i=1 ½i for all possible choices

for the remaining variables in the instrument vector, zt. Notice this de¯nition is a stronger

statement than simply the converse of De¯nition 1. There is one other consequence of

De¯nitions 1 and 2 which should be noted. If Zt(R) are relevant and Zt(I) are irrelevant

then the correlation between Zt(R) and Zt(I) must be zero. Otherwise, Zt(I) would inherit

part of the correlation between xt and Zt(R) if the latter are omitted from the instrument

vector.

It might be argued that this de¯nition of irrelevance is too strong because in practice

the inclusion of an additional instrument is likely to increase the canonical correlations by

some amount even if this amount is only small. Such a scenario is considered by Staiger

and Stock (1997) and Stock and Wright (1997). These authors develop a framework to

analyze the consequences of nearly unidenti¯ed parameters for the limiting distribution of

various estimators and their associated statistics. We follow their approach to introduce

the following de¯nition of a nearly irrelevant instrument.

De¯nition 3 Nearly irrelevant instrument

zt;j is said to be nearly irrelevant instrument if

½i [xt : fzt;j; Sj;qZtg] = ½i [xt : Sj;qZt] + ´iT
¡1=2

for all i = 1; 2 : : : p, all q = p; p+ 1; : : : qmax ¡ 1, all Sj;q and ´i6= 0 for at least one i.

It is easily veri¯ed that the asymptotic variance of µ̂T is une®ected by the inclusion of nearly

irrelevant instruments.

It is instructive to compare our de¯nition of instrument irrelevance with the concept of

moment redundancy recently introduced by Breusch, Qian, Schmidt, and Wyhowski (1999).
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In general terms, a set of of moment conditions, g2(µ0) = 0, is redundant for the estimation

of µ0 given another set of moment conditions, g1(µ0) = 0, if estimation based on both sets of

conditions together does not improve asymptotic e±ciency relative to the estimation based

on g1(µ0) = 0 alone. This idea is quite general, and so to facilitate a comparison with our

de¯nition of irrelevance, we must ¯rst specialize the de¯nition of redundancy to our setting.

To this end, we partition the instrument vector in (2) into zt = (z
0
1t; z

0
2t)
0

where zit is qi£ 1

for i = 1; 2, and de¯ne §ix = E[zitx
0
t], §ij = E[zitz

0
jt] for i; j = 1; 2.

De¯nition 4 Redundant moment condition

The set of moment conditions E[z2tut(µ0)] = 0 is redundant for the estimation of µ0 given

E[z1tut(µ0)] = 0:6

§2x = §21§¡1
11 §1x (7)

The link between this concept and instrument relevance is expressed in the following theo-

rem.

Theorem 1 Let Assumption 1 hold. If E[z2tut(µ0)] = 0 is redundant for the estimation of

µ0 given E[z1tut(µ0)] = 0 then ½i [xt : zt] = ½i [xt : z1t] for all i = 1; 2 : : : p.

Theorem 1 indicates the key di®erence between redundancy and irrelevance. IfE[z2tut(µ0)] =

0 is redundant given E[z1tut(µ0)] = 0 then the canonical correlations between xt and zt are

the same as those between xt and z1t. However, this statement is speci¯c to the particular

vector z1t. In other words, redundancy is a conditional property. In contrast, if z2t is

irrelevant then it has no impact on the canonical correlations for any vector z1t, and so

irrelevance is an unconditional property. This di®erence becomes important below. In Sec-

tion 4, we introduce a method for instrument selection and establish its consistency. The

latter result must be premised on an identi¯cation condition. Such a condition is easily

6Breusch, Qian, Schmidt, and Wyhowski (1999)[Theorem 1] provide four equivalent conditions for re-

dundancy. Here we have used their Condition (C).
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stated in terms of relevant and irrelevant (or nearly irrelevant) instruments because of the

unconditional nature of these de¯nitions. It is far more problematic using a conditional

property such as redundancy. We discuss this issue further in Section 7. From here on,

for ease of exposition, we shall say that z2t is redundant given z1t if it satis¯es De¯nition 4

rather than ascribing this property to the associated population moment conditions.

To conclude this section, we consider the consequences of including irrelevant instru-

ments. From an asymptotic perspective, there is no cost because it can be shown that

the inclusion of additional valid instruments can never increase the asymptotic variance of

the estimator.7 However, this reassuring conclusion does not apply in ¯nite samples. To

illustrate, we report results from a small simulation study. Arti¯cial data were generated

for the model speci¯ed by (1) and Assumption 1 with p = 1 and qmax = 10. The matrix

§xz is de¯ned implicitly by generating xt via

xt = Z
0
t¼ + vt

where ¼ is a 10£ 1 vector whose ¯rst two elements are 0:5 and whose remaining elements

are zero. This speci¯cation implies that fzt;1; zt;2g are relevant and fzt;j; j = 3; 4; : : : 10g

are irrelevant by our de¯nitions. Data for yt are generated from (1) with µ0 = 0. We then

consider the behaviour of the IV estimator in (3) with the 10 choices of instrument zt = zq;t

where z1;t = zt;1 and z
0
q;t = (z

0
q¡1;t; zt;q)

0 for q = 2 : : : 10. Notice that with this construction

q = 1 involves one of the relevant instruments, and the move from q = 1 to q = 2 introduces

the second relevant instrument. However all subsequent increases in q introduce irrelevant

instruments. On each replication, we compute t{statistic for H0 : µ0 = 0, the empirical

size of the test (at a 10% nominal signi¯cance level), the simulated bias and simulated

mean squared error (MSE) of µ̂T . The sample size is set to T = 100 observations and the

calculations are based on 1000 replications.

7E.g. See White (1984).
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The results are presented in Table 1. It can be seen that all the statistics appear

reasonabley well behaved for q = 1 or 2 but that the inclusion of irrelevant instruments

increases both the biases of µ̂T and the t{statistic, and also the degree of overrejection of the

t test. Clearly, the biases and degree of overrejection increase with the number of irrelevant

instruments, and to such an extent that the t{statistic has an empirical size of nearly twice

its nominal value for q = qmax = 10. In contrast, the MSE drops rather dramatically with

the inclusion of the second relevant instrument and then holds fairly constant, although it

increases slowly with q once at least two irrelevant instruments are included.

This evidence suggests that it is bene¯cial for inference in ¯nite samples to base esti-

mation upon only those instruments which are relevant. In the next section, we present a

statistic for testing whether z2t is redundant conditional on z1t. Section 4 uses this statistic

to construct a method for the selection of all relevant instruments out of a candidate set.

3 Testing redundancy

In this section we present a statistic for testing whether a particular subset of the instrument

vector is redundant. To facilitate this analysis, we now specify the following reduced form

for xt,

xt = ¦zt + vt (8)

= ¦1z1t + ¦2z2t + vt (9)

where ¦ = [¦1;¦2], ¦i is a p £ qi matrix, q1 + q2 = q and z
0
t = [z

0
1t; z

0
2t] is partitioned

conformabley. It is assumed that (8) is the correct speci¯cation for xt and so the following

condition holds.

Assumption 2 Conditional on Zt, vt » IN(0;­).

The covariance matrix ­ can be derived from §v but its precise de¯nition does not matter

for our analysis. Below we derive a test for the redundancy of z2t, and so to ensure that µ0

10



is identi¯ed by (2) we impose the following condition.

Assumption 3 rankfE
h
z1tx

0
t

i
g = p.

The log-likelihood function of a sample of T observations is given by

L (­;¦) = (¡Tp=2) ln (2¼)¡ (T=2) ln j­j (10)

¡ (1=2)
TX

t=1

h
(xt ¡¦zt) (xt ¡¦zt)

0i

The null and alternative hypotheses of interest are respectively,

H0 : z2t is redundant given z1t

H1 : z2t is not redundant given z1t

Within our framework, the statement that z2t is redundant given z1t is equivalent to the

restriction ¦2 = 0, and so we can test H0 versus H1 using the likelihood ratio test for the

hypothesis ¦2 = 0. This statistic is:8

LRT = ¡T
pX

i=1

ln
³
1¡ ½̂2

i

´
+ T

pX

i=1

ln
³
1¡ r2

i

´
(11)

where the ½̂i are the sample canonical correlations between xt and zt, and ri are the sample

canonical correlations between xt and z1t. This statistic is well known in statistics but

to our knowledge has not been proposed as a test for redundancy per se.9 The following

theorem establishes the test's asymptotic properties under H0 and H1.

Theorem 2 Let Assumptions 1{3 hold. (i) If H0 is satis¯ed then LRT
d! Â2

pq2 ; (ii) If H1

holds then T¡1LRT
p! k for some positive constant k.

Theorem 2(ii) implies that LRT diverges a rate T under H1 and hence that the test is

consistent against this alternative.

8E.g. See Hamilton (1994)[p. 649].
9E.g. See Anderson (1984)[p.317].
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This statistic can be used to test whether z2t is redundant given z1t. Suppose now that

it is desired to determine whether z2t is irrelevant. As mentioned above, this hypothesis is

equivalent to the statement that z2t is redundant given all possible choices of z1t. Therefore,

one way to assess the relevance or irrelevance of z2t is to apply the test for redundancy

repeatedly using di®erent choices of z1t. However, it is hard { if not impossible { to

determine the overall signi¯cance level of such a testing strategy because of the dependencies

between the statistics. A more attractive approach is to use an information criterion to

determine which instruments are relevant. This is the topic of the next section.

4 Canonical correlations information criteria

Before we present the method for selecting relevant instruments, it is useful to impose the

following structure on the set of candidate instruments.

Assumption 4 (i) Zt = [Zt(R)
0
; Zt(I)

0
]0 where Zt(R) is a qR £ 1 vector of instruments

which are relevant for the estimation of µ0 and Zt(I) is qI £ 1 vector of instruments which

are irrelevant for the estimation of µ0; (ii) S0 is the qR £ qmax selection matrix which

satis¯es Zt(R) = S0Zt.

Assumption 4(i) de¯nes the decomposition of the candidate set into relevant and irrelevant

instruments. Notice that Assumption 1(iv) and De¯nitions 1 and 2 imply rankfE[xtZt(R)
0
]g =

p, and so µ0 is identi¯ed by E[Zt(R)ut(µ0)] = 0. This condition also stipulates that qR ¸ p.

However, there are no restrictions on qI , which may be zero.

Since any instrument vector can be written as SqZt, the problem of instrument selection

can be viewed as a search for the appropriate selection matrix from the set,

S =
©
Sq 2 <q£qmax ;Sq is a selection matrix; rank(Sq) = q; q = p; p+ 1; : : : qmax

ª

Notice that the selection matrix S0 is contained in S.
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For a given choice of Sq, the canonical correlations information criterion (CCIC) is

de¯ned to be

CCIC(Sq) =
pX

i=1

ln
³
1¡ r2

i

´
+ (q ¡ p)f(T )

T
(12)

where fri; i = 1; 2 : : : pg are the sample canonical correlations between xt and SqZt, (q¡ p)

is the degree of overidenti¯cation and f(T ) is a function of the sample size. It is well

known in the literature on information criteria that f (T ) must satisfy certain properties in

order to establish consistency results. Guided by the earlier work, we impose the following

condition.

Assumption 5 f(T )!1 as T !1 and f(T ) = o(T ).

Inspection of CCIC(Sq) reveals that its two components move in opposite directions in

response to the inclusion of an additional instrument: the ¯rst term,
Pp
i=1 ln

¡
1¡ r2

i

¢
, can

never increase and the second term increases. Therefore, if the selection matrix is chosen to

minimize CCIC(Sq) then resulting instrument vector retains only those instruments whose

inclusion reduces
Pp
i=1 ln

¡
1¡ r2

i

¢
su±ciently to o®set the increase in the penalty function,

(q ¡ p)f(T )=T . Let the chosen selection matrix be ~S, that is

~S = argminSq2S CCIC(Sq) (13)

The following theorem establishes the consistency of this method.

Theorem 3 If Assumptions 1, 4 and 5 hold then ~S
p! S0.

In other words, if the selection matrix is chosen to minimize CCIC(Sq) then the chosen

instrument vector contains only the relevant instruments with probability one as T !1.

The three most popular choices of f(T) are 2, ln(T ) and Qln(ln(T )) (for Q > 2) which

are associated respectively with the Akaike (1974), Schwarz (1978) and Hannan and Quinn

(1979) information criteria. For simplicity, we refer to the CCIC with these three choices

of f(T ) as CCAIC, CCBIC and CCHQIC respectively. Inspection reveals that the choices
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of f(T ) for CCBIC and CCHQIC satisfy Assumption 5 but the choice for CCAIC does not.

This leads to the following corollary of Theorem 3.

Corollary 1 If Assumptions 1 and 3 hold then CCBIC and CCHQIC are consistent but

CCAIC is inconsistent.

The inconsistency of CCAIC is one sided in the sense that it includes all relevant instru-

ments with probability one in the limit but there is a non zero probability in the limit that

irrelevant instruments are also included.

As remarked above in Section 2, the de¯nition of irrelevance is rather strong because

it implies such instruments make no contribution to the population canonical correlations

regardless of the other instruments included. This motivated our de¯nition of nearly irrel-

evant instruments, and we now consider the properties of CCIC in this case. So we replace

Assumption 4 by the following condition.

Assumption 6 (i) Zt = [Zt(R)
0
; Zt(NI)

0
]0 where Zt(R) is a qR £ 1 vector of instruments

which are relevant for the estimation of µ0 and Zt(NI) is qNI £ 1 vector of instruments

which are nearly irrelevant for the estimation of µ0; (ii) S0 is the qR£qmax selection matrix

which satis¯es Zt(R) = S0Zt.

The following theorem establishes the method is still consistent.

Theorem 4 If Assumptions 1, 5 and 6 hold then ~S
p! S0.

The de¯nition of ~S in (13) requires estimation with all possible selection matrices in S

and this may be computationally burdensome if qmax is relatively large. However, inspection

of the proof of Theorem 3 reveals that CCIC increases with probability one asymptotically

if a relevant instrument is removed but decreases with probability one asymptotically if an

irrelevant is removed. This suggests the following simpli¯ed selection strategy.

De¯nition 5 Simpli¯ed selection strategy

The chosen instrument vector is ŜZt where Ŝ is constructed as follows. Calculate the
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criteria with all instruments; let this value be CCIC(Iqmax). For j = 1; 2; : : : qmax, calculate

the criteria with zt = Sj;qmaxZt for j = 1; 2 : : : qmax where Sj;qmax is the (qmax ¡ 1)£ qmax
constructed by deleting the jth row of Iqmax. Let fji; i = 1; 2 : : : qg be values of j for which

CCIC(Sj;qmax) > CCIC(Iqmax). Then Ŝ is the q £ qmax matrix with ith row equal to the

jthi row of Iqmax.

The following Corollary to Theorems 3 and 4 gives the properties of Ŝ.

Corollary 2 If the conditions of either Theorems 3 or 4 then Ŝ
p! S0.

To conclude this section, we discuss the results from a simulation study designed to

investigate the ¯nite sample properties of both the instrument selection strategies described

above. The model is the same as in section 2 except we now set qmax = 8, and so the relevant

instruments are fzt;1; zt;2g and the other six, fzt;j; j = 3; 4 : : : 8g, are irrelevant. Even with

this simple design, there are total of 255 possible instrument vectors. We begin with the

simpli¯ed selection strategy given in De¯nition 5. Table 2 reports the frequency with which

each of the eight instruments is selected. It is clear that all three criteria tend to pick the

two relevant instruments with probability very close to one if T = 100 and equal to one

if T = 500. The main di®erence in the three criteria appears to be in the frequency with

which they select irrelevant instruments. Clearly, CCAIC includes irrelevant instruments

most frequently which is in line with Corollary 1. Of the two consistent methods, CCBIC

includes irrelevant instruments less frequently as would be expected from the choices of

f(T ) associated with the criteria. Table 2 also reports the mean and empirical size of the

t-statistic for µ0 = 0 based on the IV estimator calculated with ŜZt. For T = 100, CCBIC

appears to lead to a t-statistic whose behaviour is most closely approximated by asymptotic

theory and this re°ects the value of excluding irrelevant instruments. By T = 500, the

empirical size of all three versions of the t-statistic is very close to the nominal value of 0:1.

This evidence suggests the simpli¯ed instrument selection strategy works well.
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We now consider the behaviour of the original strategy de¯ned by (13). In view of the

large number of possible combinations of instruments, it was decided to limit the search by

choosing the instruments in pairs. One pair consists of the two relevant instruments, that

is (z1; z2), and the remaining three are the pairs of irrelevant instruments given by (z3; z4),

(z5; z6), (z7; z8). This way there are only a total of 15 options for zt. While motivated

by computational convenience, this scenario is not completely without practical interest.

In Euler equation models, it is common for the set of candidate instruments to take the

form fvt¡i; i = 1; 2 : : : Lg where vt is itself a vector, and then instrument selection problem

reduces to deciding which lags of vt to include in zt. The results are presented in Tables 3

and 4. For brevity, we break the possible combinations of instruments into four categories:

the relevant pair only, the relevant pair plus at least one irrelevant pair, some combination

of only the irrelevant pairs, and ¯nally all four pairs. Once again, CCBIC has the highest

probability of selecting just the relevant pair at both sample sizes. CCHQIC also does

well, but CCAIC again demonstrates a tendency to include both relevant and irrelevant

instruments. In nearly every case, the rejection frequency of the t-statistic is very close to

the nominal value with the one exception being when CCAIC is used at T = 100.

5 Extensions to non-normality and non-linear models

So far we have concentrated on the normal linear model. In this section we demonstrate

that the foregoing results apply for non{normal data and also show how to extend the

method to nonlinear models.

Inspection of the proofs of Theorems 3 and 4 indicates that the result rests on the

following two properties of the likelihood ratio statistic in (11): (i) if z2t is relevant then

T¡1LRT
p! k > 0; (ii) if z2t is irrelevant then LRT = Op(1). While normality is su±cient

for these results, it is not necessary. So we now replace Assumption 1(i) by the following

condition.
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Assumption 7 (i) fvtg is an i.i.d. process; (ii) T¡1PT
t=1 vtv

0
t
p! §v = E[vtv

0
t].

Certain other conditions are needed and for brevity these are listed in the Appendix. Under

these conditions, we have the following extension of Theorems 3 and 4.

Theorem 5 If Assumptions 1 (ii)-(iv), 4(ii), 5, 7, A.1 (in the appendix) and either 4(i)

or 6 then: ~S
p! S0.

We now consider the extension to nonlinear models and so must modify our de¯nition

of ut(µ).

Assumption 8 Let ut(µ) = u(wt; µ0) where: (i) (r£1) random vectors fwt;¡1 < t <1g

form an i.i.d. sequence with sample space W µ <r; (ii) u : W ££ ! < is continuous on

£ for each v 2 V; (iii) E[Ztut(; µ)] exists and is ¯nite for every µ 2 £; (iv) E[Ztut(µ)] is

continuous on £.

We assume the derivative of ut, dt(µ) = @ut(µ)=@µ possesses the following properties.

Assumption 9 (i) dt(µ) exists and is continuous on £ for each w 2 W; (ii) µ0 is an

interior point of £; (iii) E[@f(vt; µ0)=@µ0] exists and is ¯nite.

We also impose the the following restrictions on the evolution of v
0
t = [dt(µ0)

0
; Z
0
t ; ut(µ0)].

Assumption 10 (i) fvtg is an i.i.d. process; (ii) T¡1PT
t=1 vtv

0
t
p! §v = E[vtv

0
t]; (iii)

§ =

2
666664

§dd §dz §xu

§zd §zz 0qmax£1

§ud 01£qmax ¾2

3
777775

(iv) §dd, §zz are respectively p£ p, qmax£ qmax nonsingular matrices, and ¾2 is a positive

scalar; (v) rankf§dzg = p.

Let µ̂T denote the two step GIV estimator based on E[ztut(µ0)] = 0 where zt = SqZt.

It can be shown that under Assumptions 8{10 (and certain other regularity conditions)10

10E.g. See Newey and McFadden (1994).
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that

T 1=2(µ̂T ¡ µ0)
d! N

³
0; ¾2[§dzS

0
q(Sq§zzS

0
q)
¡1Sq§zd]

¡1
´

(14)

A comparison of (4) and (14) reveals that dt plays the same role in nonlinear models as

xt did in the linear model. This motivates the following extensions of our de¯nitions of

irrelevance and relevance.

De¯nition 6 Irrelevant instrument in nonlinear models

zt;j is said to be irrelevant (for the estimation of µ0) if

½i [dt(µ0) : fzt;j ; Sj;qZtg] = ½i [dt(µ0) : Sj;qZt]

for all i = 1; 2 : : : p, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q.

De¯nition 7 Relevant instrument in nonlinear models

zt;j is said to be relevant if

½i [dt(µ0) : fzt;j; Sj;qZtg] ¸ ½i [dt(µ0) : Sj;qZt]

for all i = 1; 2 : : : p, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q, and

½i [dt(µ0)xt : fzt;j; Sj;qZtg] > ½i [dt(µ0) : Sj;qZt]

for some i, all q = p; p+ 1; : : : qmax ¡ 1 and all Sj;q.

The CCIC will be given by (12), where ri are the sample canonical correlations between

dt(~µT ) and zt where ~µT is an estimator of µ0. This estimator can be a ¯rst or second step

estimator but it must satisfy the following condition.

Assumption 11 ~µT ¡ µ0 = Op(T¡1=2).

Once again we partition the instrument vector as in Assumption 4(i) and de¯ne S0 by

Assumption 4(ii). Let ~S and Ŝ be the selection matrices de¯ned by (13) and De¯nition 5

respectively with dt(~µT ) substituted for xt. The following theorem extends Theorem 3 and

Corollary 2 to nonlinear models.
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Theorem 6 If Assumptions 8{11 and A.2 (given in the Appendix) hold then: ~S
p! S0 and

Ŝ
p! S0.

A similar extension is possible for the case where the irrelevant instruments are replaced

by nearly irrelevant instruments. However, we omit the details for brevity.

6 Instrument selection in practice

The foregoing analysis has been premised on the assumption that all members of the candi-

date set are orthogonal to ut(µ0). In practice, this condition is unlikely to be satis¯ed and

so it is desirable to develop a method which selects instruments on the basis of both their

orthogonality and relevance. Neither Andrews's (1999) method nor the CCIC approach can

meet this objective on their own because each addresses just one of these properties. How-

ever, intuition suggests that a combination of the two methods should achieve the desired

goal. This section explores the properties of such a selection strategy.

For simplicty, we return to the normal linear model discussed in Sections 2{4. However

this time the candidate set of instruments is assumed to have the following composition.

Assumption 12 (i) Zt = [Zt(O)
0
; Zt(C)

0
]0 where Zt(O) is a qO £ 1 vector of instruments

which are orthogonal to ut, that is E[Zt(O)ut(µ0)] = 0, and Zt(C) is qC £ 1 vector of

instruments which are correlated with ut(µ0), that is E[Zt(O)ut(µ0)] 6= 0; (ii) Zt(O) =

[Zt(R)
0
; Zt(I)

0
]0 where Zt(R) is a qR £ 1 vector of instruments which are relevant for the

estimation of µ0 and Zt(I) is qI £ 1 vector of instruments which are irrelevant for the

estimation of µ0; (iii) S1 is the qO £ qmax selection matrix which satis¯es Zt(O) = S1Zt;

(iv) S0 is the qR £ qmax selection matrix which satis¯es Zt(R) = S0Zt.

So the candidate set now involves the invalid instruments Zt(C), relevant instruments Zt(R)

and the irrelevant instruments Zt(I).

19



For this model Andrews's (1999) criteria takes the form

MSC(Sq) = JT (Sq) ¡ KT (q; p) (15)

where JT (Sq) is the overidentifying restrictions test associated with estimation based on

E[SqZtut(µ0)] = 0 and KT (q; p) is a bonus term dependent on the number of overidentifying

restrictions. More speci¯cally, these two components of (15) are given by:

JT (Sq) = u(µ̂T )0ZS
0
q(SqZ

0ZS
0
q)
¡1SqZ

0u(µ̂T )=¾̂2
T

where u(µ) is the T £ 1 vector with tth element ut(µ), µ̂T is de¯ned in (3) and ¾̂2
T =

T¡1u(µ̂T )0u(µ̂T ). Andrews (1999) considers various choices of bonus term but for simplicity

we consider just one, KT (q; p) = (q ¡ p)ln(T ), which uses the bonus associated with the

Schwarz criterion. The researcher chooses Sq to minimize MSC(Sq) over S and so the

resulting instrument vector is Ẑt(O) = ¹SZt where

¹S = argminSq2SMSC(Sq)

Andrews (1999) provides a set of conditions under which ¹S
p! S1. Therefore, the method

selects only those instruments which are orthogonal with probability one in the limit. Once

invalid instruments have been excluded, it is then possible to apply CCIC to select which

members of Ẑt(O) are relevant. Our earlier analysis is easily extended to show that such a

selection strategy leads to S0Zt = Zt(R) with probability one in the limit.

We conclude this section by considering how well such a selection strategy works in

practice. The simulation design is the same as in Section 4 except that z7 and z8 are

now endogenous. We report results for three slection strategies: MSC by itself, CCBIC

by itself and MSC followed by CCBIC. The results are given in Table 4. For ease of

presentation, we divide the possible instrument combinations into four groups: only the

relevant instruments, (z1; z2); all the orthogonal instruments, fzi; i = 1; 2 : : : 6g; only the

relevant and endogenous instruments, fzi; i = 1; 2; 7; 8g; all other combinations. We now
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consider the results for each selection strategy in turn. If MSC is used alone then all the

orthogonal instruments are selected with high probability. If CCBIC is applied alone then

it selects both the relevant and endogenous instruments with high probability. However, if

MSC and CCBIC are applied sequentially then the set of relevant instruments is selected

with very high probability. At both sample sizes, it is the sequential strategy which leads

to a t-statistic whose behaviour is closest to that predicted by asymptotic theory.11 At

T = 500 this approximation is good, but at T = 100 there is substantial distortion. This

contrasts with the behaviour reported in Table 3 for the case in which all the instruments

are orthogonal. This suggests that the sequential method selects endogenous instruments

with su±cient frequency at T = 100 to distort the behaviour of the t-statistic.

7 Concluding remarks

In this paper we have proposed a method for selecting the relevant instruments from a

set of orthogonal instruments based on a canonical correlations information criterion. It is

shown that the method is consistent and also performs well in ¯nite samples. In practice,

it is typically unknown whether potential instruments are orthogonal, and so we propose a

sequential strategy. On the ¯rst step, Andrews (1999) information criterion based on the

overidentifying restrictions test is used to screen out the invalid instruments, and then on

the second step the CCIC is applied to determine which of the orthogonal instruments are

relevant. Our simulation evidence suggest that this sequential strategy works well.

The consistency proof for CCIC is premised on the assumption that the candidate set

consists of instruments which are either relevant or (nearly) irrelevant. This condition

serves as an identi¯cation condition because it implies CCIC is uniquely minimized by

zt = Zt(R). While there are certainly cases in which the candidate set has this structure,

11It should be noted that within this design the scope for the inclusion of irrelevant instruments is rather

limited, and it is for this reason that the use of MSC alone does not create the size distortions reported in

Table 1.
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it is also desirable to extend the analysis to allow for the case in which the candidate set

contains instruments, z2t, which are redundant for some z1t but not for others. Within this

more general framework, an important issue is whether or not there is a unique instrument

vector which minimizes CCIC. Uniqueness (or identi¯cation) is important because of the

potential impact of instrument selection on subsequent inferences. If the method selects a

unique instrument vector with probability one then inference can proceed as if the chosen

vector had been picked a priori without recourse to the data. If identi¯cation fails then

the statistical properties of the instrument selection method may impact on the limiting

distribution of the IV estimator. Our decomposition of the candidate set provides one

approach to identi¯cation. One alternative option is to assume the uniqueness of S0 directly

as follows.

Assumption 13 (i) Zt = [(S0Zt)
0
; Zt(NI)

0
]0 where S0 is a ~q £ qmax selection matrix; (ii)

Pp
i=1 lnf1 ¡ ½2

i [xt;S
0Zt]g <

Pp
i=1 lnf1 ¡ ½2

i [xt;SqZt]g for all Sq with q < ~q or q = ~q and

Sq6= S0.

It can be recognized that Assumption 13 implies S0Zt minimizes
Pp
i=1 lnf1¡ ½2

i [xt;SqZt]g

over S and all other instrument vectors which achieve this minimum contain more elements.

This is su±cient to achieve identi¯cation, and it is straightforward to establish Theorems

3{6 under this alternative condition.12 This identi¯cation assumption is similar in spirit to

Assumptions IDc0 and IDµ0 which underlies the consistency results in Andrews (1999).

However, in both contexts, such identi¯cation conditions are assumptions and it is impor-

tant to explore the consequences of their failure. This topic is an interesting area for future

research.

There are many other interesting extensions of our results. First it is desirable to

extend the CCIC method to independently but non{identically distributed data and also

dependent data. Second, and more generally, it is interesting to expand the ideas in this

12Similar results apply if Zt(NI) are replaced by Zt(I) in Assumption 13.
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paper to tailor instrument selection to the objectives of the researcher whatever they may

be. Implicit in our approach is the assumption that the primary objective of estimation

is to perform inference about the unknown parameter vector. Often this is the objective,

but in many other cases the objective is something di®erent such as forecasting. In such

circumstances, it seems desirable to develop an instrument selection criterion which re°ects

the ultimate objective of the estimation. All these topics are currently under investigation.
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Mathematical Appendix

Proof of Theorem 1

Let f½i; i = 1; 2; : : : ; pg be the canonical correlations between x and z and let fri; i = 1; 2; : : : ; pg

be the canonical correlations between x and z1. To establish the result stated in the theo-

rem, it is necessary to show that the condition for redundancy in (7) implies

fri; i = 1; 2; : : : ; pg = f½i; i = 1; 2; : : : ; pg

The canonical correlations between x and z1 are the square roots of the eigenvalues of

the matrix

§¡1
xx§x1§¡1

11 §1x (16)

The canonical correlations between x and z are the square roots of the eigenvalues of the

matrix

§¡1
xx§xz§

¡1
zz §zx = §¡1

xx

·
§x1 §x2

¸
2
64

§11 §12

§21 §22

3
75

¡1 2
64

§1x

§2x

3
75 (17)

Using the partitioned inversion result from Magnus and Neudecker (1991)[p. 11] it follows

that

§¡1
zz =

2
64

§11 §12

§21 §22

3
75

¡1

=

2
64

§¡1
11

³
I + §12F2§21§¡1

11

´
¡§¡1

11 §12F2

¡F2§21§¡1
11 F2

3
75 (18)

where F2 = (§22 ¡ §21§¡1
11 §12)¡1. The substitution of (18) into (17) yields

§¡1
xx§xz§

¡1
zz §zx = §¡1

xx§x1§¡1
11

³
I + §12F2§21§¡1

11

´
§1x

¡§¡1
xx§x1§¡1

11 §12F2§2x ¡ §¡1
xx§x2F2§21§¡1

11 §1x

+§¡1
xx§x2F2§2x (19)

The subsitution of (7) in (19) yields

§¡1
xx§xz§

¡1
zz §zx = §¡1

xx§x1§¡1
11 §1x + §¡1

xx§x1§¡1
11 §12F2§21§¡1

11 §1x

¡§¡1
xx§x1§¡1

11 §12F2§21§¡1
11 §1x ¡ §¡1

xx§x2F2§21§¡1
11 §1x
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+§¡1
xx§x2F2§21§¡1

11 §1x

= §¡1
xx§x1§¡1

11 §1x

which establishes the desired result.

Proof of Theorem 2

Part (i) is proved by Anderson (1984)[p.317]. To establish part (ii) notice that:

T¡1LRT
p!

pX

i=1

ln

(
1¡ ½2

i [xt : z1t]

1¡ ½2
i [xt : (z1t; z2t)]

)
= k; say. (20)

Now if z2t is not redundant given z1t then it follows that

½i[xt : (z1t; z2t)] ¸ ½i[xt : (z1t)] i = 1; 2; : : : p

½i[xt : (z1t; z2t)] > ½i[xt : (z1t)] for some i

and so k > 0.

Proof of Theorem 3:

The proof rests on considering the limiting behaviour of CCIC(Sq) when the instrument

vector is expanded from zt = z1t to zt = [z
0
1t; z

0
2t]
0 and zt contains Zt(R). Notice the latter

condition implies that (8) is correctly speci¯ed. Let fri; i = 1; 2 : : : pg be the sample canon-

ical correlations between xt and z1t = Sq1Zt, f½̂i; i = 1; 2 : : : pg be the sample canonical

correlations between xt and zt = SqZt and q2 = q ¡ q1 then

¢ = CCIC(Sq) ¡ CCIC(Sq1)

=

" pX

i=1

ln
³
1¡ ½̂2

i

´
¡

pX

i=1

ln
³
1¡ r2

i

´#
+ q2

f(T )

T

= ¡T¡1LRT + q2
f (T )

T
(21)

where LRT is the likelihood ratio statistic for the null hypothesis that z2t is redundant

given z1t.

First consider the case in which z2t is relevant. In this case, it follows from De¯nitions

2 and 4 that z2t is not redundant given z1t and so from Theorem 2(ii)

pX

i=1

ln
1¡ ½2

i (xt; zt)

1¡ ½2
i (xt; z1t)

= ¡k < 0 (22)
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Since f(T )=T ! 0 as T ! 1, it follows that ¢
p! ¡k < 0. Equation (22) has the

following important implication. To explore this implication, it is necessary to de¯ne

Zt(R) = [Z1t(R)
0
; Z2t(R)

0
]
0
, Zt(I) = [Z1t(I)

0
; Z2t(I)

0
]
0

and Sa, Sb be the selection matrices

such that SaZt = [Z1t(R)
0
; Z1t(I)

0
]
0
, SbZt = [Zt(R)

0
; Z1t(I)

0
]
0
. Now (22) implies that

lim
T!1

P [CCIC(Sb) < CCIC(Sa)] = 1 (23)

and so if the instrument vector contains only some of the relevant instruments then the

criterion is always reduced (asymptotically) by augmenting the instrument vector with the

omitted relevant instruments.

Now consider the case in which z2t is irrelevant. In this case, ¢ = op(1) and so we

consider

T¢ = ¡LRT + q2f(T )

If z2t is irrelevant then it follows from De¯nitions 1 and 4 that z2t is redundant given z1t,

and so ¡LRT = Op(1) from Theorem 2(i). From Assumption 4, it follows that

lim
T!1

P [
T¢

f (T )
= q2] = 1 (24)

and so T¢ diverges at rate f(T ). Therefore, CCIC increases with probability one as T !1

when irrelevant instruments are added to the instrument vector. Equation (24) implies that

lim
T!1

P [CCIC(S0) < CCIC(Sb)] = 1 (25)

where Sb is de¯ned above. Equations (23){(25) imply the desired result.

Proof of Theorem 4

We follow the same basic strategy as the proof of Theorem 3. First notice that if z2t is

relevant then we can use the same logic as in the previous proof to deduce (22). So we

now focus on proving that (24) holds if z2t is nearly irrelevant. To this end it is useful to

introduce the following de¯nition.
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De¯nition A.1 Near redundancy

z2t is said to be nearly redundant given z1t if

½[xt : zt] = ½[xt : z1t] + T¡1=2´i (26)

for i = 1; 2 : : : p and ´i > 0 for some i where zt = [z
0
1t; z

0
2t]
0
.

Now if z2t is nearly irrelevant then it follows from De¯nition 3 and (26) that is also nearly

redundant given any z1t. The statement that z2t is nearly redundant given z1t is equivalent

to the restriction that ¦2 = T¡1=2C in (9) where C is a p £ q2 matrix of ¯nite constants.

Recall that LRT is the likelihood ratio test for H0 : ¦2 = 0 and so from standard likelihood

theory it follows that LRT converges to a noncentral Â2 distribution under the sequence of

local alternatives ¦2 = T¡1=2C. Therefore, LRT = Op(1) if z2t is nearly irrelevant and so

(24) holds.

Proof of Theorem 5

In order to present Assumption A.1 it is necessary to introduce the following de¯nitions.

Let:

² Á = (vechf­g0; vecf¦g0)0 be a m£ 1 vector of unknown parameters in the model (8)

and Á0 denote the true value of Á.

² lt (Á) be the conditional log likelihood for the tth observation.

² LT (Á) =
PT
t=1 lt (Á).

² vec(¦2) = r (Á).

² Á̂T is the unrestricted ML estimator.

² ~ÁT is the restricted ML estimator obtained by maximizing LT (Á) subject to r(Á) = 0.

² A0 = ¡E
h
@2lt(Á0)
@Á@Á0

i
.

27



² HT (Á1; Á2; !) be the m £ m matrix with ith row equal to the ith row of
@2LT (¹Á(i))
@Á@Á

0 ,

where ¹Á(i) = !(i)Á1 + (1¡ !(i))Á2, and ! = [!(1); : : : !(m)] and !(i) lies on the closed

unit interval for all i.

Assumption A.1 (i) r(Á0) = 0; (ii) ~ÁT
p! Á0, Á̂T

p! Á0; (iii) T¡1HT (Á1; Á2; !T )
p! ¡A0

for (Á1; Á2) = (Á̂T ; ~ÁT ); (Á̂T ; Á0); (~ÁT ; Á0);13 (iv) T¡1=2@LT (Á0) =@Á
d! N (0; V ).

Notice that we can use essentially the same structure of proof as Theorem 3 once it is

established that (i) if z2t is irrelevant then LRT = Op(1); (ii) if z2t is relevant then LRT
p!

k > 0. We ¯rst show (i) and then (ii).

Proof of (i):

A second order Taylor expansion for LT
³

~ÁT
´

around Á̂T yields:

LT
³

~ÁT
´

= LT
³
Á̂T
´

+
@LT

³
Á̂T
´

@Á0
³

~ÁT ¡ Á̂T
´

+ 0:5
³

~ÁT ¡ Á̂T
´0
HT (Á̂T ; ~ÁT ; !T )

³
~ÁT ¡ Á̂T

´

(27)

The ¯rst order conditions for unrestricted estimation imply that
@LT (Á̂T )

@Á0 = 0 and so (27)

becomes

LT
³

~ÁT
´

= LT
³
Á̂T
´

+ 0:5
³

~ÁT ¡ Á̂T
´0
HT (Á̂T ; ~ÁT ; !T )

³
~ÁT ¡ Á̂T

´

With some rearrangement we obtain

LRT = ¡T 1=2
³

~ÁT ¡ Á̂T
´0
T¡1HT (Á̂T ; ~ÁT ; !T )T 1=2

³
~ÁT ¡ Á̂T

´
(28)

From Assumption A.1 (iii)

T¡1HT (Á̂T ; ~ÁT ; !T )
p! ¡A0 (29)

Now consider T 1=2
³

~ÁT ¡ Á̂T
´
. Since

T 1=2
³

~ÁT ¡ Á̂T
´

= T 1=2
³

~ÁT ¡ Á0

´
¡ T1=2

³
Á̂T ¡ Á0

´
(30)

13For notational brevity we have used the same !T for each combination of (Á1; Á2) but in general the

three matrices are evaluted at di®erent !T .
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we consider each term on the right hand side of (30) in turn.

Using a ¯rst order Taylor expansion on the ¯rst order conditions we obtain

0 =
@LT

³
Á̂T
´

@Á
=

@LT (Á0)

@Á
+HT (Á̂T ; Á0; !T )

³
Á̂T ¡ Á0

´
(31)

With some rearrangement (31) becomes

T 1=2
³
Á̂T ¡ Á0

´
= ¡(T¡1HT (Á̂T ; Á0; !T ))¡1T¡1=2 @LT (Á0)

@Á
(32)

It follows from (32), Assumption A.1(iii)-(iv) that

T 1=2
³
Á̂T ¡ Á0

´
= Op(1) (33)

Now consider T 1=2
³

~ÁT ¡ Á0

´
. The Lagrangean is:

L = LT (Á)¡ ½0r (Á)

and the associated ¯rst order conditions are:

0 =
@LT

³
~ÁT
´

@Á
¡R0~½T (34)

0 = r
³

~ÁT
´

(35)

where R = @r (Á) =@Á0 is independent of Á because the restrictions are linear. To proceed

we must take two more expansions

@LT (~ÁT )

@Á
=

@LT (Á0)

@Á
+ HT (~ÁT ; Á0; !T )(~ÁT ¡ Á0) (36)

r(~ÁT ) = r (Á0) + R(~ÁT ¡ Á0) (37)

Using r(Á0) = 0 and (36)-(37) in (34)-(35), it follows that

0 =

2
64
HT (~ÁT ; Á0; !T ) ¡R0

R 0

3
75

2
64

~ÁT ¡ Á0

~½T

3
75 +

2
64
@LT (Á0)=@Á

0

3
75 (38)

If both sides of (38) are scaled by T 1=2 and then it follows from (38) that14

T 1=2
³

~ÁT ¡ Á0

´
=

½
B¡1
T ¡B¡1

T R0
h
RB¡1

T R0
i¡1

RB¡1
T

¾
T¡

1
2
@LT (Á0)

@Á
(39)

14E.g. See Magnus and Neudecker (1991)[p. 11].
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where BT = ¡T¡1HT (~ÁT ; Á0; !T ). It follows from Assumptions A.1(iii)-(iv) and (39) that

T 1=2(~ÁT ¡ Á0) = Op(1) (40)

The desired result then follows (28), (29), (33) and (40).

Proof of (ii):

This follows directly from Assumption 7 because the canonical correlations are continuous

functions of the elements of T¡1PT
t=1 vtv

0
t.

Proof of Theorem 6

Before we present the proof and Assumption A.2, it is necessary to introduce the following

de¯nitions. We ¯rst generalize the model in (8) as follows. For a given value of µ we de¯ne

dt(µ) = ¦(µ)zt + vt(µ) (41)

= ¦1(µ)z1t + ¦2(µ)z2t + vt(µ) (42)

where ¦(µ) = [¦1(µ);¦2(µ)], ¦i(µ) is a p £ qi matrix, q1 + q2 = q and z
0
t = [z

0
1t; z

0
2t] is

partitioned conformabley. Further set ­(µ) = V ar[vt(µ)]. Note that within this framework

the condition for z2t to be redundant given z1t is ¦2(µ0) = 0. With this in mind, we

generalize our earlier de¯nitions as follows. Let:

² Á(µ) = [vechf­(µ)g; vecf¦(µ)g] and m = dim(Á(µ));

² LT (Á; µ) be the log-likelihood function in (10) with xt = dt(µ) for a given value of µ.

² r (Á(µ)) = vecf¦2(µ)g = 0;

² Á̂T (µ) be the unrestricted ML estimator of Á for a given µ;

² ~ÁT (µ) be the restricted ML estimator;

² LR¤T = 2
h
LT
³
Á̂T (~µT ); ~µT

´
¡ LT

³
~ÁT (~µT ); ~µT

´i
be the LR statistic forH0 : r

³
Á(~µT )

´
=

0;
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² H¤T be them£mmatrix whose ith row is equal to the ith row of @2LT [ ¹Á
(i)
T (~µT ); ~µT ]=@Á@Á0,

where ¹Á
(i)
T (~µT ) = !

(i)
T Á̂T (~µT ) + (1¡ !(i)

T )~ÁT (~µT ), and !
(i)
T is a constant which takes a

value in the closed unit interval for i = 1; 2; : : :m.

² FT be them£p matrix whose ith row is equal to the ith row of @2LT [Á(µ0); ¹µ
(i)
T ]=@Á@µ0,

where ¹µ
(i)
T = !

(i)
T

~µT + (1 ¡ !(i)
T )µ0, and !

(i)
T is a constant which takes a value in the

closed unit interval for i = 1; 2; : : : p.

Assumption A.2: (i) r (Á(µ0)) = 0; (ii) ~ÁT (~µT )
p! Á0(µ0) and Á̂T (~µT )

p! Á0(µ0); (iii)

T¡1H¤T
p! H, a matrix of constants; (iv) T¡1FT

p! F , a matrix of constants;

(v) T¡1=2@LT [Á0(µ0)); µ0]=@Á = Op (1).

The proof of Theorem 6 rests on the following Lemma.

Lemma A.1If (i) Assumptions 8{11 and A.2 hold; (ii) dt(µ0) satis¯es (41)-(42) evaluated

at µ = µ0 with E[vt(µ0)jzt] = 0; then LR¤T = Op(1).

Proof: A second order Taylor expansion for LT
³

~ÁT (~µT ); ~µT
´

around Á̂T (~µT ) (recognising

that the score vector is zero) yields:

LT
³

~ÁT
³

~µT
´

; ~µT
´

= LT
h
Á̂T
³

~µT
´

; ~µT
i

+

0:5
h

~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i0

H¤T
h
~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i

After some rearrangement, it follows that

LR¤T = T 1=2
h
~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i0 ³
¡T¡1H¤T

´
T 1=2

h
~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i

(43)

From Assumption A.2(ii) it follows that T¡1H¤T
p! H. Now consider T 1=2

h
~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i

.

Since

T1=2
h

~ÁT
³

~µT
´
¡ Á̂T

³
~µT
´i

= T1=2
h

~ÁT
³

~µT
´
¡ Á0 (µ0)

i
¡ T 1=2

h
Á̂T
³

~µT
´
¡ Á0 (µ0)

i
(44)

we consider each term on the right hand side of (44) in turn.

Using a ¯rst order Taylor expansion for the score we obtain

T 1=2
h
Á̂T
³

~µT
´
¡ Á0 (µ0)

i
= ¡

2
4T¡1

@2LT
h
¹ÁT
³

~µT
´

; ~µT
i

@Á@Á0

3
5
¡1

T¡1=2
@LT

³
Á0 (µ0) ; ~µT

´

@Á
(45)

31



Using Assumption A.2 (ii) it follows that

¡
2
4T¡1

@2LT
h
¹ÁT
³

~µT
´

; ~µT
i

@Á@Á0

3
5
¡1

p! H¡1 = O(1)

Expanding now the second term of the right-hand side of (45) around µ0 we obtain

T¡1=2
@LT

³
Á0(µ0); ~µT

´

@Á
= T¡1=2 @LT (Á0(µ0); µ0)

@Á
+ T¡1FTT

1=2
³

~µT ¡ µ0

´
(46)

Now using Assumptions 10 and A.2(iii)-(iv), it can be deduced from (45){(46) that

T 1=2
h
Á̂T
³

~µT
´
¡ Á0 (µ0)

i
= Op(1) (47)

For T 1=2
h

~ÁT
³

~µT
´
¡ Á0 (µ0)

i
, we need to set up the Lagrangean:

L¤ = LT
³
Á
³

~µT
´

; ~µT
´
¡ ½0r

³
Á
³

~µT
´´

The ¯rst order conditions are:

0 =
@LT

³
~ÁT
³

~µT
´

; ~µT
´

@Á
¡R0~½T (48)

0 = r
³

~ÁT
³

~µT
´´

(49)

where R = @r(Á)=@Á0. To proceed we must take three more expansions

@LT
³

~ÁT (~µT ); ~µT
´

@Á
=

@LT
³
Á0(µ0); ~µT

´

@Á
+ P ¤T

h
~ÁT (~µT )¡ Á0(µ0)

i
(50)

@LT
³
Á0(µ0); µ̂T

´

@Á
=

@LT (Á0(µ0); µ0)

@Á
+ FT

³
~µT ¡ µ0

´
(51)

r
³

~ÁT (~µT )
´

= r (Á0(µ0)) + R
h

~ÁT (~µT )¡ Á0(µ0)
i

(52)

where P ¤T is de¯ned in a similar way to H¤T . Using r (Á0(µ0)) = 0 and (50)-(52) in (48)-(49),

it follows that

0 =

2
64
P ¤T ¡R0

R 0

3
75

2
64

~ÁT (~µT )¡ Á0(µ0)

~½T

3
75

+

2
64
@LT (Á0(µ0); µ0) =@Á+ FT (~µT ¡ µ0)

0

3
75 (53)
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Using the partitioned inverse formulae in Magnus and Neudecker (1991)[p.11] and scaling

by T 1=2, it follows from (53) that

T 1=2
h
~ÁT (~µT )¡ Á0(µ0)

i
= f ¡(T¡1P ¤T )¡1 + (T¡1P ¤T )¡1R0 £

h
R(T¡1P ¤T )¡1R0

i¡1
R(T¡1P ¤T )¡1 g £

·
T¡1=2 @LT (Á0(µ0); µ0)

@Á
+ T¡1FTT

1=2(~µT ¡ µ0)

¸
(54)

Using Assumptions 10 and A.2, it can be deuced from (54) that T 1=2
h

~ÁT (~µT )¡ Á(µ0)
i

=

Op(1). This result, together with (47), (44) and Assumption 11, implies that LR¤T = Op(1).

Proof of Theorem 6: The proof follows similar lines to the proof of Theorem 3. It can be

recalled that this proof rests on showing (22) holds if z2t is relevant and (24) holds if z2t is

irrelevant. We consider these in turn. Using De¯nition 7 and

ri
h
dt
³

~µT
´
; zt
i
¡ ri [dt (µ0) ; zt]

p! 0

½i
h
dt
³

~µT
´
; zt
i
¡ ½i [dt (µ0) ; zt]

p! 0

it follows that (22) holds if z2t is relevant in the nonlinear case as well. Using De¯nition 6

and Lemma A.1 it can be shown that (24) holds if z2t is irrelevant in the nonlinear case as

well.
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Table 1: Consequences of the inclusion of irrelevant instruments

q bias rmse tstat size

1 ¡0:015 0:232 0:057 0:082

2 0:011 0:144 0:165 0:092

3 0:022 0:142 0:212 0:099

4 0:030 0:142 0:316 0:114

5 0:039 0:144 0:391 0:128

6 0:048 0:145 0:444 0:147

7 0:056 0:148 0:493 0:152

8 0:065 0:147 0:573 0:169

9 0:071 0:148 0:625 0:181

10 0:079 0:150 0:708 0:197

Notes: bias and rmse are the simulated bias and rmse of µ̂T . tstat denotes the simulated mean of t-statistic

for H0 : µ0 = 0. size denotes the empirical size of the t-test with nominal size 0.1.
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Table 2: Properties of simpli¯ed selection strategy

T=100 T=500

inst: CCAIC CCBIC CCHQIC CCAIC CCBIC CCHQIC

z1 1:000 0:995 0:999 1:000 1:000 1:000

z2 0:999 0:994 0:998 1:000 1:000 1:000

z3 0:166 0:042 0:091 0:163 0:014 0:063

z4 0:179 0:044 0:094 0:160 0:013 0:055

z5 0:171 0:038 0:085 0:161 0:013 0:055

z6 0:181 0:041 0:095 0:168 0:012 0:063

z7 0:173 0:040 0:090 0:167 0:012 0:057

z8 0:177 0:043 0:092 0:160 0:010 0:052

tstat 0:374 0:236 0:300 0:178 0:087 0:126

size10 0:128 0:108 0:116 0:105 0:102 0:102

Notes: The entries for CCAIC, CCBIC and CCHQIC denote the frequency with which a particular

instrument is selected using that version of CCIC. tstat denotes the mean of the t-statistic for µ0 = 0.

size10 denotes the empirical size of the t-statistic when the nominal size is 0:1.
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Table 3: Probability of selecting various combinations of instruments in

full pairwise strategy

T=100 T=500

inst: CCAIC CCBIC CCHQIC CCAIC CCBIC CCHQIC

R 0:620 0:961 0:853 0:642 0:995 0:928

R=I 0:376 0:039 0:146 0:354 0:005 0:072

I 0:000 0:000 0:000 0:000 0:000 0:000

all 0:004 0:000 0:000 0:005 0:000 0:000

tstat 0:311 0:166 0:222 0:146 0:071 0:090

size10 0:122 0:099 0:108 0:104 0:100 0:101

Notes: R denotes the pair of relevant instruments, R=I denotes the cases where at least one of the irrelevant

pairs is included, I denotes the cases in which only irrelevant pairs are included, all denotes the case in

which all instruments are included. The entries for CCAIC, CCBIC and CCHQIC denote the frequency

with which a particular combination is selected using that version of CCIC. tstat denotes the mean of the

t-statistic for µ0 = 0. size10 denotes the empirical size of the t-statistic when the nominal size is 0:1.
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Table 4: Probability of selecting various combinations of instruments

with MSC, CCBIC and sequential strategy

T=100 T=500

inst: MSC CCBIC Seq: MSC CCBIC Seq:

R 0:000 0:009 0:863 0:000 0:000 0:989

O 0:872 0:000 0:000 0:989 0:000 0:000

R=E 0:000 0:965 0:022 0:000 0:996 0:000

Others 0:129 0:026 0:115 0:011 0:004 0:012

tstat 0:704 2:365 0:486 0:202 5:082 0:081

size10 0:206 0:720 0:182 0:111 0:998 0:103

Notes: R denotes the pair of relevant instruments, O denotes the case where all the orthogonal pairs are

included, R=E denotes the case in which only the relevant and endogenous pairs are included, Others

denotes all other combinations. The entries for MSC, CCBIC and Seq: (sequential) denote the frequency

with which a particular combination is selected using each method. tstat denotes the mean of the t-statistic

for µ0 = 0. size10 denotes the empirical size of the t-statistic when the nominal size is 0:1.
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