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Abstract

We investigate several aspects of GAR@HY) models which are relevant for empirical ap-
plications. In particular, we note that the inclusion of a dummy variable as regressor can lead to
multimodality in the GARCH likelihood. This makes standard inference on the estimated coeffi-
cientimpossible. Next, we investigate the implementation of different restrictions on the GARCH
parameter space. We present a small refinement to the Nelson and Cao (1992) conditions for a
GARCHY(2, g) model, and show how these can be implemented by parameter transformations. We
argue that these conditions are also too restrictive, and consider restrictions which are formulated
in terms of the unconditional variance. These are easier to work with and understand. Finally,
we show that multimodality is a real concern for models offilfeexchange rate, and should be
taken account of, especially whern> 2.

1 Introduction

The ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models have found widespread application
since their introduction. Despite this, the literature has paid relatively little attention to the imple-
mentation aspects of GARCH models, and largely ignored the possibility of multimodality in the
likelihood.

In this note we illustrate how multimodality in the likelihood of GARCH-type models is induced
when correcting for an additive outlier in the mean equation through a dummy variable. We also show
in §2.2 that adding the corresponding dummy to the variance equation can exacerbate the problem.
Section 3 discusses restrictions on the GARCH parameter space. The next section then investigates
whether multimodality is of practical relevance, and if it depends on the adopted restrictions. We
conclude that multimodality is a potential problem in empirical applications, and recommend the
adoption of a limited search using random starting values whenever estimating a GARCH model.

*Correspondence to: jurgen.doornik@nuffield.ox.ac.uk



The regression model with normal-GARGCH§) errors is defined as:

y = x¢ + e,
e = &7 &JFi1 ~ N(O,1),

q P 1)
hy = Oé(]—{—zaiﬁg_l—{-zgiht,l, t=1,...T.
=1 =1

Fy is the filtration up to timg. The ARCHg) model corresponds to GARCBI(g). Recent surveys
include Bollerslev, Engle, and Nelson (1994), Shephard (1996), and Gourieroux (1997).
The equation fok; can be written in ARMA form usingy; = £? — by = (5? — 1)hy:

e —ao+z i + By)e Zﬁlut i+, (2)

wherem = max(p, q) andj3; = 0 for i > p, o; = 0 for ¢ > ¢; note thatE[u,|F;—1] = 0.
We also consider the EGARCHI(g) specification (see Nelson, 1991):

q p
loghy = ag+ > a; (&1 +Dalé]) + Y Bilog he i, (3)
=1 i=1

with ap = 1.
In the remainder, dummies are always variables assuming value one for a single observation, and
zero otherwise.

2 Multimodality caused by dummy variables

In a normal regression model, the effect of a dummy variable is to set the residual for that observation
to zero. At first sight, it may be assumed that the same effect is achieved in the regression model with
ARCH or GARCH errors.

To illustrate that this is not the case, we use the Dow—Jones index (Dow Jones Industrial Average:
close at midweek from 1980 to September 1994he first differences of the logs are given in Fig-
ure la. We start by estimating an ARCH(1) model, where the mean equation consists of a constant
and a dummy variable for 21-Oct-1987 (value one for the Wednesday after the crash, zero otherwise):

Yt = cC+yderash+ &t

hi = ap+ae? |,
Let ¢, &g, 1,4 be the maximum likelihood estimates. Figure 1b plots the log-likelihood values as a
function of~, with the remaining coefficients kept fixedatyg, &;. We were initially very surprised
to see the pronounced bimodal shape of the likelihood. Adding an ARCH term to a regression model
with a dummy variable clearly changes the role of the durimy.

We used 770 observations from 2-Jan-1980 to 28-Sep-1994; the first observation is lost when growth rates are used.
The figures are for Wednesday, or Tuesday if the stock market was closed on Wednesday. The Dow Jones data are available

from www.economagic.com.
2The role of the intercept is also changed: the residuals will not have mean zero despite the presence of a constant term.



ALog(DowJones), 9-Jan—1980 to 28-Sep-1994
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Figure 1:Log-returns on Dow—Jones index (top), with likelihood grid for the dummy parameter corresponding
to the 1987 crash (bottom).

2.1 ARCH(1) with a dummy variable in the mean

The following theorem explains the effect of the dummy variable for the ARCH(1) model.
Theorem 1 Consider the ARCH(1) regression model with mean specified as 2, + diy + &;.
The additional regressor is a dummniy, whered; = 1 whent = s,1 < s < T, andd; = 0 otherwise.

Define
1/2
1+45§+1 / 1 ™
aths ap

(a) WhenG, < 0 the log-likelihood/(#) has aunique solutiorfor ~:

Gs = =hs

ﬁo =Ys — x/séa
with &, = 0.
(b) WhenG, > 0, £(0) hastwo maxima which are only different in the value of

M, s =Ys — Tl — Gy?,

r}/ =Ys — xs( + G1/2

Both modes have identical likelihood values and second derivatives, and have otherwise the
same parameter values. In this cagg, = ys — x;& corresponds to a local minimum.
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The derivation of7; and the properties of the likelihood are given in Appendix 1.

Theorem 1 indicates that the dummy does not always lead to multimodali®, i negative or
zero,y = ys — x;&, and the dummy plays a similar role as in the regression model without ARCH
errors.

However, wherG; is positive, there are two identical maxima. The valugzgfdepends on the
parameter values, and, becabse= og + a2, on the residuals immediately after and before the
time of the impulse. Theorem 1 shows that the likelihood derivatives are identical at both maxima. As
a consequence, both estimatesydfave the same estimated standard error, which results in different
t-values. The estimation procedure may pick either maximum, but deciding significance by looking at
thet-value is problematié. There are also two residuals; ; = Gi/Q andéy s = —Gi/Q. Diagnostic
tests based on the residuals (or standardized residuals: there is one vadlye ¥all have different
outcomes, unless only the squared values are used.
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Figure 2:ARCH(1) model for growth rates of Dow-Jones with moving dummy varia@le(top), ¥, , — 1 .
(middle), and t-values and square root of likelihood-ratio test (bottom; only for observations with multimodal-
ity).

To assess the empirical relevance of Theorem 1, we run a singly dummy through the data, re-
estimating the ARCH(1) model every time (the mean is specifiathasd;, d; = 1 fort = s, s =

3Note that, when the constant is omitted, and only a dummy is included as regressor, standard econometric software may
find the local minimum instead of one of the maxima: the OLS-based starting value for the dummy parameter would have
a zero derivative, so that the estimate of its coefficient may not move in subsequent iterations.



3,...,770). Figure 2a plots the value @f, for the ARCH(1) model, with positive values indicating
multiple maxima. In this case, there are 59 cases @ith- 0, and correspondingly with two solutions

for +; the second graph displays the differerigg, — 4 ; = Gi/Q for the cases with multimodality.

The bottom graph shows thevalues wher(; > 0. In this graph, the observations with, < 0 are
omitted. Using a critical value of two, there are several cases with one t-statistic insignificant, and
the other significant. The graph also shows the square root of the likelihood-ratio test, which has one
degree of freedom. Now only three of the displayed observations are significant.

2.2 ARCH(1) with a dummy variable in the conditional variance

It may be considered that adding the corresponding dummy to the variance equation would provide a
solution:

Yy = 3¢+ yd + ey,
hy = a0+0z16%_1—|—7'dt,

where as beford; = 1 whent = s, and zero otherwise. In the ARCH(1) case, an analytical solution
immediately follows from (7) in Appendix 1:

2
S

T =& — oy — alszfl.

When+ is such that, = 0, thenh, = 0 and the log-likelihood is minus infinity. Consequently,

the maximum likelihood estimate does not exist whign < 0. WhenG, > 0, bimodality is still

present, as Table 2.2 shows. In this case, the outer-product of gradients can not be used to estimate
the variance-covariance matrix, because singularity is inducéd §¥¢;(6)/0)* = 0. The last line

in the table has another striking illustration of the fact that two diffeterglues are obtained. In this

case the-value and likelihood-ratio test also conflict when the dummy only enters in the variance
equation: the-value has a-value 0f49%, while that of the LR test is arourid)—>%.

Table 1: ARCH(1) model for log-returns on Dow Jones with a constant in the mean. Dummy variable
for the 1987 crash entering in all possible ways.

Dummy in mean equation in variance | log-likelihood
U A T A ¢(0)
- - - - — - 1897.5743
— — — - 0.0302 0.69 1910.9354
—-0.244 -13.7 —-3.1 —0.108 —-6.1 -—14 — — 1907.9715
—0.350 —3.50 —0.0017 —0.017 0.0296 0.53 1910.9355

The t-values are based on the Hessian matfi¥: of Bollerslev and Wooldridge (1992) type.



2.3 Dummy variable in GARCH and EGARCH models

Figure 3 shows that a dummy variable in the mean can also cause bimodality for both GARCH and
EGARCH models. As before, we plot the likelihood grid as a function,afith the other parameters
kept fix at the value found at the maximum.
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Figure 3:Likelihood grid for the dummy parameter corresponding to the 1987 crash, GARCH(1,1) (left) and
EGARCH(1,1) (right).

For EGARCH, the two maxima are at different likelihood values, owing to the asymmetry term
(when#; = 0in (3) both modes are at the same likelihood value). Because of the absolute value, the
local minimum is at a point where the likelihood is non-differentiable. In this case it matters which of
the two maxima is found.

We also estimated a GARCH(1,1) model with the same dummy variable both in the mean and in
the variance equation. When trying all possibly dummies, we did not encounter bimodality, but found
that over50% of cases did not converge.

Figure 4 plotsy, , — 4, ; for the GARCH(1,1) and EGARCH(1,1) models. Now there are about
30 cases with two modes in the likelihood.
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Figure 4:Estimates ofy, ; — 71,5 for the GARCH(1,1) model (top) and the EGARCH(1,1) model (bottom).



3 Parameter restrictions

In order to investigate the incidence of multimodality, it is important to know what restrictions are im-
posed on the parameter space. In practice, the GARCH model is often estimated without restrictions,
but Bollerslev (1986) formulated the model wiily > 0, and the remaining parameters nonnegative.

Nelson and Cao (1992) argued that imposing all coefficients to be nonnegative is overly restric-
tive, and that negative estimates occur in practice (they list several examples). Subsequently, He and
Terdsvirta (1999) have shown that such negative coefficients allow for richer shapes of the autocorre-
lation function. Nelson and Cao (1992) gave sufficient conditions such that the conditional variance
is always nonnegative for the GARCHg), and GARCHg, ¢) case?

Define the lag polynomial8(L) = 1 — Y% _, 3,L¢, anda(L) = >°¢_, a; L*. The restrictions are
imposed in the ARCHY{o) form:

he = B(L) " (oo + a(L)e?) = af + Z Sie? ., 4)

such that = ap/B(1) > 0 andd; > 0 Vi. This requires that the roots ¢fz) = 0 lie outside the
unit circle. Furthermore3(z) anda(z) are assumed to have no common roots.

In Appendix 3 we refine the conditions for the GARGHE 2, ¢) case by removing redundant
conditions. Table 2 summarizes the restrictions for low-order GARCH models. The conditions on
the roots wherp = 2 can also be expressed ds + $; < 1, 87 + 43, > 0. The restriction for
GARCH(2,2) which is unnecessary (i§ (a2 + S11) + o1 > 0; alsoag > 0 reduces tayy > 0.2
In addition, Appendix 3 shows how the restrictions can be imposed by parameter transformations for
p < 2, which allows implementation in the form of unconstrained optimization.

Table 2: Nelson & Cao conditions for some GARCH models

GARCH(1,1) a9 >0, a1 >0 0<p <1

GARCH(1,2) ap >0, a1 >0 0<p <1 as + pra; >0

GARCH(2,1) a9 >0, a1 >0 0<|py| <p; <1,py,pyreal

GARCH(2,2) a9 >0, 1 20 0<|pyf <p; <1,p,ppreal az+ (p;+ py)og =20
az + prag; >0

Notes: B(L) = (1-piL), 51 = P
_2 5( =1 =p L)1 = pyL), By = p1+ pa, By = —p1pa-
a(L) andS(L) have no common rootg; is largest absolute (inverse) root.

It could be argued that even the Nelson and Cao (1992) conditions are too restrigtvexam-
ple, the restrictions implj; > ag. Also, when the initiab; are positive and dominate the coefficients

“Instead of nonnegativie;, we use positive; wheh, is zero, the log-likelihood is minus infinity.

5This slightly simplifies the derivations in the Appendix of Engle and Lee (1999), where, in a component GARCH(1,1)
model, the component (which itself follows a GARCH(2,2) process) is shown to be positive.

5This point was also made by Drost and Nijman (1993).



at higher lags, the probability of obtaining a negative conditional variance becomes essentially zero.
This is coupled with the fact that the constraints are very complex for higher order models. Therefore
we suggest another set of constraints which relax the positivity restrictions, but are easier to implement
and interpret. Definingr = max(p, q), 8; = 0fori > p, a; =0fori > ¢:

ag > 0,
a; +3; >0, fori=1,...,m. ®)

In terms of (2), these restrictions imply that the unconditional variance exists, and is always pos-
itive. Note that estimation automatically ensures that in-sample valuksak positive, otherwise
the log-likelihood would be minus infinity or undefined. The restrictions (5) could be combined with
imposing invertibility of 3(L).

4 Searching for multiple modes

Section 2 showed how a dummy variable can induce multimodality. It may be that, when the mean
only consists of a constant term, multimodality is not likely to occur. We have not found much
discussion of this issue in the literature.We consider the following parameter restrictions:

(UNR) Unrestricted:ay > 0;
(N&C) Positive conditional variance: conditions (DO1)—(D0O4) as explained in Appendix 3.
(UV) Positive and finite unconditional variance: restrictions (5) as explained in Appendix 4.
(POS) All coefficients positiveiag > 0,a; > 0,3, > 0;
The choice of restrictions will affect the outcome: restricting the parameter space may reduce the
number of modes, but could also introduce additional solutions on the boundary of the parameter
space.

To look for multimodality, we estimate a GARCH model, giving parameter estinfessy). We
then re-estimate with + ¢ as starting values, with drawn from the standard normal distribution.
In case restrictions are imposed, the transformed parameters are randomized, which keeps the new
starting values within the constraints. We sample starting value until 250 GARCH models have been
successfully estimated. If any local solutions are found, the models are then re-estimated to look at
specific properties. For example, the second derivative at the solution must be negative definite for a
local maximum.

Initially, we look at a GARCH(2,2) model for a short sample of 500 observations, from 7-Jun-
1973 to 9-Jun-1975, of the British pound to US dollar daily exchange’ ristext, we use a sample of
2915 observations (7-Jun-1973 to 28-Jan-1985), which is similar to some of the estimations in Nelson
and Cao (1992).

"The data source is: Federal Reserve Statistical Release H.10, available on the web from www.frbchi.org/econinfo
[finance/for-exchange/welcome.html



Table 3 shows the solutions which were found to the GARCH(2,2) likelihood maximization prob-
lem at sample size 500, estimating the model 250 times with random starting values. The first column
lists the obtained log-likelihood value. The next four then indicate under which set of restrictions that
particular solution was found. We see, for example, that in unrestricted estimation we found -202.85
in 85% of the 250 successful estimations. In a small number of cases, a higher likelihood was ob-
tained. The final three columns give an indication of the properties of the solutionte<g.0 rules
this solution out from UV, whilep;, = —1.001 violates N&C. In the case of all positive parameters
(POS), 28% of the solutions are not listed in the table. These converged to a likelihood which was far
removed from the optimal solution.

Table 3: Likelihood values at located maxima for GARQHY) models for growth rates d¥/$ daily
exchange rates at sample size 500. Based on 250 model estimates from random starting values.

log-like- Parameter restrictions Properties of solution
lihood | UNR N&C UV POS|0<m<l S<1 0<p <1
-201.33 | 6% w1 <0 p1 = —1.001
-202.85 | 82% o <0

-202.88 99% 99% g =0

-203.06 1% Fa=0 S=1

-203.96 72%

-205.11 | 11% p=—0.9

mi=a; +0;,S =Y, + 3, p, is largest absolute root gf(z ')

Table 5 illustrates that the multimodality does not disappear at larger sample size. For GARCH(1,1),
GARCH(2,1), and GARCH(1,2) we found no multimodality. However, for higher order models, we
did find multiple solutions. In the unrestricted case in particular, the random search delivered coin-
siderably higher likelihoods. Testing down the lag length is problematic: it can easily happen that a
sequence of nested hypotheses is not nested in terms of likelihood values. This would be an obvious
sign of trouble. For the other cases, the solutions are very close in terms of the log-likelihood.

Each parameterization selects a different model according to the AIC criterion, see Table 4.

Table 4: GARCH model selected by AIC, for GARGH({ 3, < 3).

T =2915" T = 2915**

unrestricted (3,2) (2,3)
Positive conditional variance (3,2) (3,2)
Positive and finite unconditional variance (2,2) (2,2)
All coefficients positive (2,1) (2,1)

* is outcome using most commonly found solution.
**is outcome using best solution.



Table 5: Likelihood values at located maxima for growth ratef/$fdaily exchange rates at sample
size 2915. Based on 250 model estimates from random starting values.

log-like- Parameter restrictions Properties of solution
lihood UNR N&C uv POS O<m<l1 S<1 0<p <1
GARCH(1,1)
-2147.17] 100% 100% 100% 86% |
GARCH(1,2)
-2142.32| 100% 100% b <0
-2147.17 100% 70%
GARCH(2,1)
-2143.86| 100% 100% 100% 84% \
GARCH(2,2)
-2113.10] 7% 71 <0 pp = —1.0014
-2134.78| 0.5% S=1.014 p; =-0.998
-2139.03 6% 1 =0 S=1 pp = —0.998
-2142.56| 92% 100% 90%
-2143.86 71% g =10
-2144.94 4% 3 =20 S=1 p1 = —0.998
GARCH(2,3)
-2095.92| 16% 73 <0 S=101 p, =-1.001
-2112.66| 2% m <0,83<0 S=1.016 p; =-0.999
-2139.03 6% 1 =0 S=1 pp = —0.998
-2141.31| 82% 100% 3 <0
-2142.56 94% a3 =0
-2143.86 8% | Go=a3=0
GARCH(3,2)
-2099.76| 0.5% 1> 1,35 <0
-2102.73| 1.5% 71 <0,83<0 S =1.004 p=—1
-2133.77| 66%  75% o < 0,71 > 1
-2141.05| 32% g <0
-2142.30 99% | Gy =p8,=0
-2142.33 25% 97%
-2144.65 2.5% mg =10

=0+ 3,5 =Y, 2 + B3, p, is largest absolute root gf(z ).
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5 Planned extensions

Recently, Gan and Jiang (1999) re-interpreted White (1982)'s information matrix test as a test for a
global maximum. Although there are a couple of potential problems (the GARCH model may be used
in a QML setting, as well as the notoriously bad size properties of the information-matrix test), we
intend to investigate its usefulness for GARCH models.

In addition, we are looking at autoregressive conditional-duration models (Engle and Russell,
1998), which have a close similarity to GARCH models.

6 Conclusion

We found that inclusion of a dummy variable in the mean equation of a GARCH regression model
could lead to multimodality in the likelihood. We believe that this curiosity, while of empirical rele-
vance, has not yet been noted in the literature.

This finding has important consequences for empirical modelling. Firsthtest on the coeffi-
cient of a dummy variable cannot be used in GARCH regression models. When there are two maxima,
at9, , and+, 4, they will both have the same estimated standard errors, and hence potentially very
differentt-values. Consequently, it is possible that one is significant, and the other insignificant. Sec-
ondly, all model statistics which involve the value of the dummy are affected. Next, we noted that with
only dummies as regressors, standard software may find a local minimum of the likelihood. Finally,
asymptotic likelihood theory is affected by this violation of the regularity conditions.

We considered several types of restrictions on the GARCH parameters. In particular, we presented
a small refinement to the Nelson & Cao constraints, and showed how these can be made operational
within an unconstrained maximization setting. We also suggested

We have shown that multimodality of the GARCH likelihood is of practical relevance. It is likely
that many applied results have been published without the authors being aware of the possibility of
multiple modes. Our results indicate that, especially when going beyond the GARCH(1,1) model, a
search for local maxima is important. We have also investigated the role of different restrictions of the
parameter space. Unrestricted estimation is especially likely to show multimodality (for example with
a unit root in thesd lag-polynomial, or with the sum of the coefficients greater than one). However, no
set of restrictions is clearly better.
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Appendix 1  Proof of Theorem 1

The log-likelihood of (1) is given by:

T T 2
(o) =3t =c— 13 (1og<ht> ¥ h—) . (6)

t=1 t=1

Assuming that the start-up of the recursive process does not depend on the parameters:

8&(0) Et 88,5 11 2 Bht
= L S (py—e2) 2L 7
Bl he 00 2h§(t “t) g %
In this cases; = y; — 24¢ — dyy andhy = ag + €74, SO:
Os oh
8—,; = —dy, 8—*; = —2a16¢1dt-1,

Sinced; = 0 for t # s andds = 1, the score with respect tpis:
oel) e 1

Ay O

Finding the zeros of this expression gives= 0, with the remaining zeros found from:

(herl — Engl) Q1€g. (8)

h2. 4 + hsay (hss1 — 5§+1) =0. )

462 1/2
—1+ (1 stl :
< - aihs >
Sinceh,,, must be positive, the negative term can be dropped. In termstbé additional solutions
to 9¢(0)/0~ = 0 can be written as

1 4e2 1/2 o

~2 s+1 0

= —hg 14+ —=—= -1 — — =G,
&s 2 [< (¥1h3>

Solving the quadratic in,, 1 gives:

1
hsy1 = §h5041

If the G; does not have a positive value, then the only solutien is 0, with ¥ = ys—2.(. Otherwise
the additional two solutions are= y, — z,( + Gip. In that case, the likelihood and its derivatives
are identical for both values.
The second derivative of the log-likelihood with respect tis:
0M(0)  4Aaiel (1 ez, 1 aq
(07)? a h§+1 <§ - h8+1> hs - @
Considers;, = 0. In that case the second derivative is block diagonal with respegt &l terms
in the derivative of (8) w.r.t. the ARCH parameters invokse The first term in (10) drops out; the
remaining term is equal to (9) divided byhhs+1. If G < 0, (9) has no feasible solution, and is
always positive. This makes the Hessian element negative, required for a maxim@m >0 and
gs = 0, hg1q IS at its minimum, where (9) takes on negative values. This creates a positive diagonal
element in the Hessian, violating the conditions for a maximum. O

(hss1—€241) - (10)
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Appendix 2 Implementing the GARCH likelihood

Implementation of the GARCH likelihood involves several decisions, often only summarily discussed
in the literature:

1. How to select initial values for the variance recursion;
Evaluation of the likelihood requires presample valuessfoand h;. Bollerslev (1986) sug-
gested to use the mean of the squared residuals:

T
el =h; =T &, fori<o. (11)
t=1

An alternative is to use the recursion (2): singehas mean zero, it can be started up from
e2...¢2,. In that case, the likelihood is evaluated frers m + 1 onwards, conditional on the

m presample values; the first term then is:

m
hmi1 = ag + Z(Oéz + Bi)emi1—i-
=1
Other methods include: adding the missirfg .. €2, as parameters which are to be estimated,
using the unconditional variance provided it exists, backwards forecasting of the missing values;
all these make the likelihood derivatives more complex.
2. Which restrictions to impose;
Bollerslev (1986) proposed the GARCH model wiih > 0, «; > 0, and3; > 0. This ensures

thath; > 0, and can easily be implemented. L&}, ... ,¢,., be the parameters used in
estimation, themvp, ay, ..., 3, = e, ... e®+r will ensure that all coefficients are positive.
The Jacobian matrix of this transformation is(dg, a1, . .. , 3,). More general formulations

are discussed i3, and below.

3. Which maximization technigque to use;
We prefer BFGS (see e.g. Fletcher, 1987 or Gill, Murray, and Wright, 1981). This avoids
the need for second derivatives, while being one of the most robust methods available. This
is supplemented by a line search when, at an iteration step, the likelihood does not increase.
BFGS was not considered by Fiorentini, Calzolari, and Panattoni (1996), but we found 100%
convergence when replicating their Table 1 with 1000 replications (requiring about 17 iterations
on average, whether starting from the DGP values, or from a starting value routine).

4. How to compute starting values fot the parameters;
We apply the method of Galbraith and Zinde-Walsh (1997) applied to the squared data (after
removing regressors in the mean). If necessary, the resulting parameter values are reduced to
enforce the unconditional variance to exist.

5. Whether to use numerical or analytical derivatives;
Numerical derivatives are more convenient, but less accurate than analytical derivatives (see
Fiorentini, Calzolari, and Panattoni, 1996). The latter are to be preferred, but convenience

13



often dictates the use of the former. In simple GARCH models, we found numerical derivatives

sufficiently effective, with model estimation taking the same amount of time, and convergence

achieved as frequently. All estimates in this paper use analytical derivatives, except when the

Hessian matrix is required for the variance-covariance matrix, and for EGARCH-type models.
6. Which estimate of the variance-covariance matrix to use.

A comparison of various estimators is given in Fiorentini, Calzolari, and Panattoni, 1996.

Appendix 3 Positive conditional variance

Nelson and Cao (1992) (hereafter NC) formulated conditions so that the coefficients in (4) are always
positive. The conditions, expressed in terms of the lag polynomiigls and«(L), require that the

roots of 3(z) = [[t_,(1 — p;z) = 0 lie outside the unit circle. Furthermorg(z) anda(z) are
assumed to have no common roots. Dhin (4) can be derived recursively for=1,2,...:

d; =0, 1< 1,
0i =5 _1Bj0i—j+ai, i<q, (12)
51‘ = ?:1 ﬂjéi_j, 1> q.

S06; = a3.

GARCHK 2, q) case

The necessary and sufficient conditions fpe> 0 Vi for the GARCH, ¢) case are:

op > 0; (DO1)

0<p <1, p;isreal (DO2.1)
P2l < p1, ppisreal  (DO2.2)
6;>0,i=1,...,q; (DO3)

;1:1 pi 7 aj > 0. (DO4)
NC Theorem 2 gives these conditions as:

ag > 0; (NC1)

0<py, p,poarereal (NC2)
6 >0,i=1,...,¢; (NC3.1)
dg+1 2 0; (NC3.2)

9o ey >0 (NC4)

Where it is assumed that,| < |p, | without loss of generality. In the next theorem we show that these
two sets of conditions are identical.

Theorem 2 Conditions (NC1)—(NC3.2) and (DO1)—(DO3) are equivalent wiwgh< |p,| < 1.
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Proof (DO2.1) and (DO2.2) combine (NC2) with the assumption thdt) is invertible, andp, is the
largest root in absolute value. Next, (DO2.x) imply tl¥l) = 1 — p; — py + p1p9 > 0, reducing
(NC1) to (DO1).

To see that (NC3.2) is redundant whenis negative use

q+1 ﬂ15 + 390 qg—1= (p1 + P2)5 P1P25q—17

andd,1 > 0 follows from (NC3.1) and) < —p, < p;.
If the roots are real and distinct (NC equation A.9):

mln(z,q
5i = (p ( I+i—j 1+z>j)aj7 i=1,....
7j=1
. . min(i,q) 1—j . min(i,q) 1—j5 .
Writing a; = > ;- py Cajandb; =0 py Yoyt
07 = i (p1 — pa) = prai — pbi.

Thend, > 0 andp, > 0 implies pypla, > p “b Combining this with (NC4), which ig, > 0:

* 1 1

wi1 =01 ag = p87 by = p1ag — paplag = plag (o1 — ps) > 0.

When the roots are equal, = p, = p > 0 (NC equation A.6):

min(,q)
§i= Y (L+i-jpT" oy, i=1,....
j=1
So
p g1 =Y p I+ g =Gy + Y p ey = 6y + pay,
j=1 j=1
which is positive by (NC4) and (NC3.1). 0

(DO1)-(D0O4) has one restriction more than the number of parameters. How%Vé(’NC4)
= (DO4) is not always binding. For example, when= 1, it is automatically satisfied. In the
GARCH(2,2) case:

P10 + Qg > Oa (NC4),
(p1 + p2)oa +az >0, fromd,in (12).

Whenp, is negative (makings, positive), the first restriction is not binding.
The set of restrictions can implemented by transformation when (DO4) ard0 are combined
in one restriction, obviating the need for constrained estimation. The conditions

z —1Bj0q—j + g >0,

ql q—
F Taj 4 ag > 0,
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are both satisfied when, is sufficiently large. Therefore, we estimate the product as a parameter
exp(¢,) which is always positive, and take, as the largest root.
To restrict any coefficient betweenp andp we can usé:

1—¢?
14 e?’

l1—a/p
14+x/p

xT=p —p<z<p & qb:log( >,—oo<qz5<oo.

See Marriott and Smith (1992) for the application of such Fisher-type transformations to impose
stationarity in ARMA models.

The restrictions can be implemented as follows. &gt ... , ¢y, 1, ¢, be the unrestricted
parameters. Then:

(G) Qo = exp((b(())v ) ( )
__exp(yg _ 1 —exp(py
(b) 1= 1 +6Xp(<,01)’ P2 pll +eXp(<,02)’
(¢) B1=p1+pa Bo=—p1p2;
(d) ;i =0d; =35 ) B;0i—j usingd; = exp(¢;) for 1 <i<gq—1, §; =0fori <1,
1/2 _ —q
(€) ag=-@+y) +5[@—y>+dep@,)]?, == 8645 y= 0101y,

This transformation imposes the necessary and sufficient conditions for GARZH] models.
As NC point out, starting the recursion with the sample mean (11) will ensure positive conditional
variance. This is not necessarily the case when conditioning on initial values.

Appendix 4 Positive and finite unconditional variance

Estimation under restrictions (5) is achieved by transforming the GARCH parameters. A\Veite
a; + B;, ands; for the partial sumss; = Z; — 1 m;. The restrictions imply thal < s; < sp--- <
Sm < 1, m = max(p, q). This can be implemented by introducifig< 6; < 1:

k m+1—k

=1

=1

For example, forn = 3:

T = 010203,
T + o = 91927
T+ T+ T3 = 0.

An unrestricted parameteris mapped tq0, 1) usingf; = [1 + exp(—¢)] L.
If the unconstrained version &, = ag, 71,... ,7m, 31, .-, B,, n = min(p, ¢), and the trans-
formed parameterizatiop = log ag, @1, .- , &, B1s -+ - 5 Bp, USING@,; = log[f1/(1 — 671)], then the

P @
8Numerically, it is better to us%;—% wheng < 0, and¢—;
e e

— } otherwise. This prevents overflow when evaluating

the exponential.
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Jacobian matrix can be used to move backwards and forwards. For exampleywheén

—1
1 0 0 1 1 1
o0 )
ﬁ: 0 (7T1—|—7T2—|—7T3) 0 m3 w3 —1 )
0 0 (71 + m2)? s —1 0

anddg; /00; = [¢;(1 — ¢;)] .

This allows the use of standard derivatives, as given in Fiorentini, Calzolari, and Panattoni (1996)
for example. This representation also makes it easy to imfiesd , which estimates the IGARCH(q)
model.
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