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Abstract

We investigate several aspects of GARCH(p, q) models which are relevant for empirical ap-

plications. In particular, we note that the inclusion of a dummy variable as regressor can lead to

multimodality in the GARCH likelihood. This makes standard inference on the estimated coeffi-

cient impossible. Next, we investigate the implementation of different restrictions on the GARCH

parameter space. We present a small refinement to the Nelson and Cao (1992) conditions for a

GARCH(2, q) model, and show how these can be implemented by parameter transformations. We

argue that these conditions are also too restrictive, and consider restrictions which are formulated

in terms of the unconditional variance. These are easier to work with and understand. Finally,

we show that multimodality is a real concern for models of the£/$ exchange rate, and should be

taken account of, especially whenp ≥ 2.

1 Introduction

The ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models have found widespread application

since their introduction. Despite this, the literature has paid relatively little attention to the imple-

mentation aspects of GARCH models, and largely ignored the possibility of multimodality in the

likelihood.

In this note we illustrate how multimodality in the likelihood of GARCH-type models is induced

when correcting for an additive outlier in the mean equation through a dummy variable. We also show

in §2.2 that adding the corresponding dummy to the variance equation can exacerbate the problem.

Section 3 discusses restrictions on the GARCH parameter space. The next section then investigates

whether multimodality is of practical relevance, and if it depends on the adopted restrictions. We

conclude that multimodality is a potential problem in empirical applications, and recommend the

adoption of a limited search using random starting values whenever estimating a GARCH model.
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The regression model with normal-GARCH(p, q) errors is defined as:

yt = x′
tζ + εt,

εt = ξth
1/2
t , ξt|Ft−1 ∼ N(0, 1),

ht = α0 +
q∑

i=1

αiε
2
t−1 +

p∑
i=1

βiht−1, t = 1, . . . T.

(1)

Ft is the filtration up to timet. The ARCH(q) model corresponds to GARCH(0, q). Recent surveys

include Bollerslev, Engle, and Nelson (1994), Shephard (1996), and Gourieroux (1997).

The equation forht can be written in ARMA form usingut = ε2
t − ht = (ξ2

t − 1)ht:

ε2
t = α0 +

m∑
i=1

(αi + βi)ε
2
t−i −

p∑
i=1

βiut−i + ut, (2)

wherem = max(p, q) andβi = 0 for i > p, αi = 0 for i > q; note thatE[ut|Ft−1] = 0.

We also consider the EGARCH(p, q) specification (see Nelson, 1991):

log ht = α0 +
q∑

i=1

αi

(
ϑ1ξt−1 + ϑ2|ξt−1|

)
+

p∑
i=1

βi log ht−i, (3)

with α1 = 1.

In the remainder, dummies are always variables assuming value one for a single observation, and

zero otherwise.

2 Multimodality caused by dummy variables

In a normal regression model, the effect of a dummy variable is to set the residual for that observation

to zero. At first sight, it may be assumed that the same effect is achieved in the regression model with

ARCH or GARCH errors.

To illustrate that this is not the case, we use the Dow–Jones index (Dow Jones Industrial Average:

close at midweek from 1980 to September 1994);1 the first differences of the logs are given in Fig-

ure 1a. We start by estimating an ARCH(1) model, where the mean equation consists of a constant

and a dummy variable for 21-Oct-1987 (value one for the Wednesday after the crash, zero otherwise):

yt = c + γdcrash+ εt,

ht = α0 + α1ε
2
t−1.

Let ĉ, α̂0, α̂1, γ̂ be the maximum likelihood estimates. Figure 1b plots the log-likelihood values as a

function ofγ, with the remaining coefficients kept fixed atĉ, α̂0, α̂1. We were initially very surprised

to see the pronounced bimodal shape of the likelihood. Adding an ARCH term to a regression model

with a dummy variable clearly changes the role of the dummy.2

1We used 770 observations from 2-Jan-1980 to 28-Sep-1994; the first observation is lost when growth rates are used.

The figures are for Wednesday, or Tuesday if the stock market was closed on Wednesday. The Dow Jones data are available

from www.economagic.com.
2The role of the intercept is also changed: the residuals will not have mean zero despite the presence of a constant term.
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Figure 1:Log-returns on Dow–Jones index (top), with likelihood grid for the dummy parameter corresponding

to the 1987 crash (bottom).

2.1 ARCH(1) with a dummy variable in the mean

The following theorem explains the effect of the dummy variable for the ARCH(1) model.

Theorem 1 Consider the ARCH(1) regression model with mean specified asyt = x′
tζ + dtγ + εt.

The additional regressor is a dummydt, wheredt = 1 whent = s, 1 < s ≤ T , anddt = 0 otherwise.

Define

Gs =
1
2
hs

[(
1 +

4ε2
s+1

α1hs

)1/2

− 1

]
− α0

α1
.

(a) WhenGs ≤ 0 the log-likelihood̀ (θ) has aunique solutionfor γ:

γ̂0 = ys − x′
sζ̂ ,

with ε̂s = 0.

(b) WhenGs > 0, `(θ) hastwo maxima, which are only different in the value ofγ:

γ̂1,s = ys − x′
sζ̂ − G

1/2
s ,

γ̂2,s = ys − x′
sζ̂ + G

1/2
s .

Both modes have identical likelihood values and second derivatives, and have otherwise the

same parameter values. In this caseγ̂0,s = ys − x′
sζ̂ corresponds to a local minimum.
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The derivation ofGs and the properties of the likelihood are given in Appendix 1.

Theorem 1 indicates that the dummy does not always lead to multimodality. IfGs is negative or

zero, γ̂ = ys − x′
sζ̂, and the dummy plays a similar role as in the regression model without ARCH

errors.

However, whenGs is positive, there are two identical maxima. The value ofGs depends on the

parameter values, and, becausehs = α0 + α1ε
2
s−1, on the residuals immediately after and before the

time of the impulse. Theorem 1 shows that the likelihood derivatives are identical at both maxima. As

a consequence, both estimates ofγ have the same estimated standard error, which results in different

t-values. The estimation procedure may pick either maximum, but deciding significance by looking at

thet-value is problematic.3 There are also two residuals:ε̂1,s = G
1/2
s andε̂2,s = −G

1/2
s . Diagnostic

tests based on the residuals (or standardized residuals: there is one value forhs), will have different

outcomes, unless only the squared values are used.
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Figure 2:ARCH(1) model for growth rates of Dow-Jones with moving dummy variable:Gs (top), γ̂2,s − γ̂1,s

(middle), and t-values and square root of likelihood-ratio test (bottom; only for observations with multimodal-

ity).

To assess the empirical relevance of Theorem 1, we run a singly dummy through the data, re-

estimating the ARCH(1) model every time (the mean is specified asc + γdt, dt = 1 for t = s, s =
3Note that, when the constant is omitted, and only a dummy is included as regressor, standard econometric software may

find the local minimum instead of one of the maxima: the OLS-based starting value for the dummy parameter would have

a zero derivative, so that the estimate of its coefficient may not move in subsequent iterations.
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3, . . . , 770). Figure 2a plots the value ofGs for the ARCH(1) model, with positive values indicating

multiple maxima. In this case, there are 59 cases withĜs > 0, and correspondingly with two solutions

for γ; the second graph displays the differenceγ̂2,s − γ̂1,s = G
1/2
s for the cases with multimodality.

The bottom graph shows thet-values whenĜs > 0. In this graph, the observations withGs ≤ 0 are

omitted. Using a critical value of two, there are several cases with one t-statistic insignificant, and

the other significant. The graph also shows the square root of the likelihood-ratio test, which has one

degree of freedom. Now only three of the displayed observations are significant.

2.2 ARCH(1) with a dummy variable in the conditional variance

It may be considered that adding the corresponding dummy to the variance equation would provide a

solution:

yt = x′
tζ + γdt + εt,

ht = α0 + α1ε
2
t−1 + τdt,

where as beforedt = 1 whent = s, and zero otherwise. In the ARCH(1) case, an analytical solution

immediately follows from (7) in Appendix 1:

τ̂ = ε2
s − α0 − α1ε

2
s−1.

Whenγ is such thatεs = 0, thenhs = 0 and the log-likelihood is minus infinity. Consequently,

the maximum likelihood estimate does not exist whenGs ≤ 0. WhenGs > 0, bimodality is still

present, as Table 2.2 shows. In this case, the outer-product of gradients can not be used to estimate

the variance-covariance matrix, because singularity is induced by
∑

t(∂`t(θ)/∂γ)2 = 0. The last line

in the table has another striking illustration of the fact that two differentt-values are obtained. In this

case thet-value and likelihood-ratio test also conflict when the dummy only enters in the variance

equation: thet-value has ap-value of49%, while that of the LR test is around10−5%.

Table 1: ARCH(1) model for log-returns on Dow Jones with a constant in the mean. Dummy variable

for the 1987 crash entering in all possible ways.

Dummy in mean equation in variance log-likelihood

γ̂1,s tγ̂1,s
tBW
γ̂1,s

γ̂2,s tBW
γ̂2,s

tγ̂2,s
τ̂ tτ̂ `(θ̂)

− − − − − − 1897.5743
− − − − 0.0302 0.69 1910.9354

−0.244 −13.7 −3.1 −0.108 −6.1 −1.4 − − 1907.9715
−0.350 −3.50 −0.0017 −0.017 0.0296 0.53 1910.9355

The t-values are based on the Hessian matrix;tBW of Bollerslev and Wooldridge (1992) type.

5



2.3 Dummy variable in GARCH and EGARCH models

Figure 3 shows that a dummy variable in the mean can also cause bimodality for both GARCH and

EGARCH models. As before, we plot the likelihood grid as a function ofγ, with the other parameters

kept fix at the value found at the maximum.
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Figure 3:Likelihood grid for the dummy parameter corresponding to the 1987 crash, GARCH(1,1) (left) and

EGARCH(1,1) (right).

For EGARCH, the two maxima are at different likelihood values, owing to the asymmetry term

(whenϑ1 = 0 in (3) both modes are at the same likelihood value). Because of the absolute value, the

local minimum is at a point where the likelihood is non-differentiable. In this case it matters which of

the two maxima is found.

We also estimated a GARCH(1,1) model with the same dummy variable both in the mean and in

the variance equation. When trying all possibly dummies, we did not encounter bimodality, but found

that over50% of cases did not converge.

Figure 4 plotŝγ2,s − γ̂1,s for the GARCH(1,1) and EGARCH(1,1) models. Now there are about

30 cases with two modes in the likelihood.
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Figure 4:Estimates of̂γ2,s − γ̂1,s for the GARCH(1,1) model (top) and the EGARCH(1,1) model (bottom).
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3 Parameter restrictions

In order to investigate the incidence of multimodality, it is important to know what restrictions are im-

posed on the parameter space. In practice, the GARCH model is often estimated without restrictions,

but Bollerslev (1986) formulated the model withα0 > 0, and the remaining parameters nonnegative.

Nelson and Cao (1992) argued that imposing all coefficients to be nonnegative is overly restric-

tive, and that negative estimates occur in practice (they list several examples). Subsequently, He and

Teräsvirta (1999) have shown that such negative coefficients allow for richer shapes of the autocorre-

lation function. Nelson and Cao (1992) gave sufficient conditions such that the conditional variance

is always nonnegative for the GARCH(1, q), and GARCH(2, q) case.4

Define the lag polynomialsβ(L) = 1−∑p
i=1 βiL

i, andα(L) =
∑q

i=1 αiL
i. The restrictions are

imposed in the ARCH(∞) form:

ht = β(L)−1
(
α0 + α(L)ε2

)
= α∗

0 +
∞∑
i=1

δiε
2
t−i, (4)

such thatα∗
0 = α0/β(1) > 0 andδi ≥ 0 ∀i. This requires that the roots ofβ(z) = 0 lie outside the

unit circle. Furthermore,β(z) andα(z) are assumed to have no common roots.

In Appendix 3 we refine the conditions for the GARCH(p = 2, q) case by removing redundant

conditions. Table 2 summarizes the restrictions for low-order GARCH models. The conditions on

the roots whenp = 2 can also be expressed asβ2 + β1 < 1, β2
1 + 4β2 ≥ 0. The restriction for

GARCH(2,2) which is unnecessary isβ1(α2 + β1α1) + α1 ≥ 0; alsoα∗
0 > 0 reduces toα0 > 0.5

In addition, Appendix 3 shows how the restrictions can be imposed by parameter transformations for

p ≤ 2, which allows implementation in the form of unconstrained optimization.

Table 2: Nelson & Cao conditions for some GARCH models

GARCH(1,1) α0 > 0, α1 ≥ 0 0 ≤ ρ1 < 1.

GARCH(1,2) α0 > 0, α1 ≥ 0 0 ≤ ρ1 < 1 α2 + ρ1α1 ≥ 0
GARCH(2,1) α0 > 0, α1 ≥ 0 0 ≤ |ρ2| ≤ ρ1 < 1, ρ1, ρ2 real

GARCH(2,2) α0 > 0, α1 ≥ 0 0 ≤ |ρ2| ≤ ρ1 < 1, ρ1, ρ2 real α2 + (ρ1 + ρ2)α1 ≥ 0
α2 + ρ1α1 > 0

Notes: p = 1: β(L) = (1 − ρ1L), β1 = ρ1;
p = 2: β(L) = (1 − ρ1L)(1 − ρ2L), β1 = ρ1 + ρ2, β2 = −ρ1ρ2.
α(L) andβ(L) have no common roots;ρ1 is largest absolute (inverse) root.

It could be argued that even the Nelson and Cao (1992) conditions are too restrictive.6 For exam-

ple, the restrictions implyht ≥ α∗
0. Also, when the initialδi are positive and dominate the coefficients

4Instead of nonnegativeht, we use positive; whenht is zero, the log-likelihood is minus infinity.
5This slightly simplifies the derivations in the Appendix of Engle and Lee (1999), where, in a component GARCH(1,1)

model, the component (which itself follows a GARCH(2,2) process) is shown to be positive.
6This point was also made by Drost and Nijman (1993).
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at higher lags, the probability of obtaining a negative conditional variance becomes essentially zero.

This is coupled with the fact that the constraints are very complex for higher order models. Therefore

we suggest another set of constraints which relax the positivity restrictions, but are easier to implement

and interpret. Definingm = max(p, q), βi = 0 for i > p, αi = 0 for i > q:

α0 > 0,
αi + βi ≥ 0, for i = 1, . . . ,m.

0 <
∑m

i=1 αi + βi < 1.

(5)

In terms of (2), these restrictions imply that the unconditional variance exists, and is always pos-

itive. Note that estimation automatically ensures that in-sample values ofht are positive, otherwise

the log-likelihood would be minus infinity or undefined. The restrictions (5) could be combined with

imposing invertibility ofβ(L).

4 Searching for multiple modes

Section 2 showed how a dummy variable can induce multimodality. It may be that, when the mean

only consists of a constant term, multimodality is not likely to occur. We have not found much

discussion of this issue in the literature.We consider the following parameter restrictions:

(UNR) Unrestricted:α0 > 0;

(N&C) Positive conditional variance: conditions (DO1)–(DO4) as explained in Appendix 3.

(UV) Positive and finite unconditional variance: restrictions (5) as explained in Appendix 4.

(POS) All coefficients positive:α0 > 0, αi ≥ 0, βi ≥ 0;

The choice of restrictions will affect the outcome: restricting the parameter space may reduce the

number of modes, but could also introduce additional solutions on the boundary of the parameter

space.

To look for multimodality, we estimate a GARCH model, giving parameter estimatesθ̂ (say). We

then re-estimate witĥθ + ε as starting values, withε drawn from the standard normal distribution.

In case restrictions are imposed, the transformed parameters are randomized, which keeps the new

starting values within the constraints. We sample starting value until 250 GARCH models have been

successfully estimated. If any local solutions are found, the models are then re-estimated to look at

specific properties. For example, the second derivative at the solution must be negative definite for a

local maximum.

Initially, we look at a GARCH(2,2) model for a short sample of 500 observations, from 7-Jun-

1973 to 9-Jun-1975, of the British pound to US dollar daily exchange rate.7 Next, we use a sample of

2915 observations (7-Jun-1973 to 28-Jan-1985), which is similar to some of the estimations in Nelson

and Cao (1992).

7The data source is: Federal Reserve Statistical Release H.10, available on the web from www.frbchi.org/econinfo

/finance/for-exchange/welcome.html
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Table 3 shows the solutions which were found to the GARCH(2,2) likelihood maximization prob-

lem at sample size 500, estimating the model 250 times with random starting values. The first column

lists the obtained log-likelihood value. The next four then indicate under which set of restrictions that

particular solution was found. We see, for example, that in unrestricted estimation we found -202.85

in 85% of the 250 successful estimations. In a small number of cases, a higher likelihood was ob-

tained. The final three columns give an indication of the properties of the solution; e.g.π1 < 0 rules

this solution out from UV, whileρ1 = −1.001 violates N&C. In the case of all positive parameters

(POS), 28% of the solutions are not listed in the table. These converged to a likelihood which was far

removed from the optimal solution.

Table 3: Likelihood values at located maxima for GARCH(2, 2) models for growth rates of£/$ daily

exchange rates at sample size 500. Based on 250 model estimates from random starting values.

log-like- Parameter restrictions Properties of solution

lihood UNR N&C UV POS 0 < πi < 1 S < 1 0 < ρ1 < 1

-201.33 6% π̂1 < 0 ρ̂1 = −1.001
-202.85 82% π̂2 < 0
-202.88 99% 99% π̂2 = 0
-203.06 1% π̂2 = 0 Ŝ = 1
-203.96 72%
-205.11 11% ρ̂1 = −0.9

πi = αi + βi, S =
∑

i αi + βi, ρ1 is largest absolute root ofβ(z−1)

Table 5 illustrates that the multimodality does not disappear at larger sample size. For GARCH(1,1),

GARCH(2,1), and GARCH(1,2) we found no multimodality. However, for higher order models, we

did find multiple solutions. In the unrestricted case in particular, the random search delivered coin-

siderably higher likelihoods. Testing down the lag length is problematic: it can easily happen that a

sequence of nested hypotheses is not nested in terms of likelihood values. This would be an obvious

sign of trouble. For the other cases, the solutions are very close in terms of the log-likelihood.

Each parameterization selects a different model according to the AIC criterion, see Table 4.

Table 4: GARCH model selected by AIC, for GARCH(p ≤ 3, q ≤ 3).

T = 2915∗ T = 2915∗∗

unrestricted (3, 2) (2, 3)
Positive conditional variance (3, 2) (3, 2)
Positive and finite unconditional variance (2, 2) (2, 2)
All coefficients positive (2, 1) (2, 1)

∗ is outcome using most commonly found solution.
∗∗is outcome using best solution.
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Table 5: Likelihood values at located maxima for growth rates of£/$ daily exchange rates at sample

size 2915. Based on 250 model estimates from random starting values.

log-like- Parameter restrictions Properties of solution

lihood UNR N&C UV POS 0 < πi < 1 S < 1 0 < ρ1 < 1

GARCH(1,1)

-2147.17 100% 100% 100% 86%
GARCH(1,2)

-2142.32 100% 100% α̂2 < 0
-2147.17 100% 70%

GARCH(2,1)

-2143.86 100% 100% 100% 84%
GARCH(2,2)

-2113.10 7% π̂1 < 0 ρ̂1 = −1.0014
-2134.78 0.5% Ŝ = 1.014 ρ̂1 = −0.998
-2139.03 6% π̂1 = 0 Ŝ = 1 ρ̂1 = −0.998
-2142.56 92% 100% 90%
-2143.86 71% α̂2 = 0
-2144.94 4% π̂2 = 0 Ŝ = 1 ρ̂1 = −0.998

GARCH(2,3)

-2095.92 16% π̂3 < 0 Ŝ = 1.01 ρ̂1 = −1.001
-2112.66 2% π̂1 < 0, β̂3 < 0 S = 1.016 ρ̂1 = −0.999
-2139.03 6% π̂1 = 0 S = 1 ρ̂1 = −0.998
-2141.31 82% 100% π̂3 < 0
-2142.56 94% α̂3 = 0
-2143.86 78% α̂2 = α̂3 = 0

GARCH(3,2)

-2099.76 0.5% π̂1 > 1, β̂3 < 0
-2102.73 1.5% π̂1 < 0, β̂3 < 0 Ŝ = 1.004 ρ̂1 = −1
-2133.77 66% 75% π̂2 < 0, π̂1 > 1
-2141.05 32% π̂2 < 0
-2142.30 99% α̂2 = β̂2 = 0
-2142.33 25% 97%
-2144.65 2.5% π2 = 0

πi = αi + βi, S =
∑

i αi + βi, ρ1 is largest absolute root ofβ(z−1).
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5 Planned extensions

Recently, Gan and Jiang (1999) re-interpreted White (1982)’s information matrix test as a test for a

global maximum. Although there are a couple of potential problems (the GARCH model may be used

in a QML setting, as well as the notoriously bad size properties of the information-matrix test), we

intend to investigate its usefulness for GARCH models.

In addition, we are looking at autoregressive conditional-duration models (Engle and Russell,

1998), which have a close similarity to GARCH models.

6 Conclusion

We found that inclusion of a dummy variable in the mean equation of a GARCH regression model

could lead to multimodality in the likelihood. We believe that this curiosity, while of empirical rele-

vance, has not yet been noted in the literature.

This finding has important consequences for empirical modelling. Firstly, at-test on the coeffi-

cient of a dummy variable cannot be used in GARCH regression models. When there are two maxima,

at γ̂1,s and γ̂2,s, they will both have the same estimated standard errors, and hence potentially very

differentt-values. Consequently, it is possible that one is significant, and the other insignificant. Sec-

ondly, all model statistics which involve the value of the dummy are affected. Next, we noted that with

only dummies as regressors, standard software may find a local minimum of the likelihood. Finally,

asymptotic likelihood theory is affected by this violation of the regularity conditions.

We considered several types of restrictions on the GARCH parameters. In particular, we presented

a small refinement to the Nelson & Cao constraints, and showed how these can be made operational

within an unconstrained maximization setting. We also suggested

We have shown that multimodality of the GARCH likelihood is of practical relevance. It is likely

that many applied results have been published without the authors being aware of the possibility of

multiple modes. Our results indicate that, especially when going beyond the GARCH(1,1) model, a

search for local maxima is important. We have also investigated the role of different restrictions of the

parameter space. Unrestricted estimation is especially likely to show multimodality (for example with

a unit root in theβ lag-polynomial, or with the sum of the coefficients greater than one). However, no

set of restrictions is clearly better.
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Appendix 1 Proof of Theorem 1

The log-likelihood of (1) is given by:

`(θ) =
T∑

t=1

`t(θ) = c − 1
2

T∑
t=1

(
log(ht) +

ε2
t

ht

)
. (6)

Assuming that the start-up of the recursive process does not depend on the parameters:

∂`t(θ)
∂θ

= − εt

ht

∂εt

∂θ
− 1

2
1
h2

t

(
ht − ε2

t

) ∂ht

∂θ
. (7)

In this caseεt = yt − x′
tζ − dtγ andht = α0 + α1ε

2
t−1, so:

∂εt

∂γ
= −dt,

∂ht

∂γ
= −2α1εt−1dt−1,

Sincedt = 0 for t 6= s andds = 1, the score with respect toγ is:

∂`(θ)
∂γ

=
εs

hs
+

1
h2

s+1

(
hs+1 − ε2

s+1

)
α1εs. (8)

Finding the zeros of this expression givesεs = 0, with the remaining zeros found from:

h2
s+1 + hsα1

(
hs+1 − ε2

s+1

)
= 0. (9)

Solving the quadratic inhs+1 gives:

h̃s+1 =
1
2
hsα1

[
−1 ±

(
1 +

4ε2
s+1

α1hs

)1/2
]

.

Sinceh̃s+1 must be positive, the negative term can be dropped. In terms ofεs the additional solutions

to ∂`(θ)/∂γ = 0 can be written as

ε̃2
s =

1
2
hs

[(
1 +

4ε2
s+1

α1hs

)1/2

− 1

]
− α0

α1
= Gs.

If theGs does not have a positive value, then the only solution isεs = 0, with γ̂ = ys−x′
sζ. Otherwise

the additional two solutions arẽγ = ys − x′
sζ ± G

1/2
s . In that case, the likelihood and its derivatives

are identical for both values.

The second derivative of the log-likelihood with respect toγ is:

∂2`(θ)
(∂γ)2

=
4α2

1ε
2
s

h2
s+1

(
1
2
− ε2

s+1

hs+1

)
− 1

hs
− α1

h2
s+1

(
hs+1 − ε2

s+1

)
. (10)

Considerεs = 0. In that case the second derivative is block diagonal with respect toγ: all terms

in the derivative of (8) w.r.t. the ARCH parameters involveεs. The first term in (10) drops out; the

remaining term is equal to (9) divided by−hshs+1. If Gs ≤ 0, (9) has no feasible solution, and is

always positive. This makes the Hessian element negative, required for a maximum. IfGs > 0 and

εs = 0, hs+1 is at its minimum, where (9) takes on negative values. This creates a positive diagonal

element in the Hessian, violating the conditions for a maximum. �
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Appendix 2 Implementing the GARCH likelihood

Implementation of the GARCH likelihood involves several decisions, often only summarily discussed

in the literature:

1. How to select initial values for the variance recursion;

Evaluation of the likelihood requires presample values forε2
t andht. Bollerslev (1986) sug-

gested to use the mean of the squared residuals:

ε2
i = hi = T−1

T∑
t=1

ε2
t , for i ≤ 0. (11)

An alternative is to use the recursion (2): sinceut has mean zero, it can be started up from

ε2
1 . . . ε2

m. In that case, the likelihood is evaluated fromt = m + 1 onwards, conditional on the

m presample values; the first term then is:

hm+1 = α0 +
m∑

i=1

(αi + βi)ε
2
m+1−i.

Other methods include: adding the missingε2
1 . . . ε2

m as parameters which are to be estimated,

using the unconditional variance provided it exists, backwards forecasting of the missing values;

all these make the likelihood derivatives more complex.

2. Which restrictions to impose;

Bollerslev (1986) proposed the GARCH model withα0 > 0, αi ≥ 0, andβi ≥ 0. This ensures

that ht > 0, and can easily be implemented. Letφ0, . . . , φq+p be the parameters used in

estimation, thenα0, α1, . . . , βp = eφ0 , . . . , eφq+p will ensure that all coefficients are positive.

The Jacobian matrix of this transformation is dg(α0, α1, . . . , βp). More general formulations

are discussed in§3, and below.

3. Which maximization technique to use;

We prefer BFGS (see e.g. Fletcher, 1987 or Gill, Murray, and Wright, 1981). This avoids

the need for second derivatives, while being one of the most robust methods available. This

is supplemented by a line search when, at an iteration step, the likelihood does not increase.

BFGS was not considered by Fiorentini, Calzolari, and Panattoni (1996), but we found 100%

convergence when replicating their Table 1 with 1000 replications (requiring about 17 iterations

on average, whether starting from the DGP values, or from a starting value routine).

4. How to compute starting values fot the parameters;

We apply the method of Galbraith and Zinde-Walsh (1997) applied to the squared data (after

removing regressors in the mean). If necessary, the resulting parameter values are reduced to

enforce the unconditional variance to exist.

5. Whether to use numerical or analytical derivatives;

Numerical derivatives are more convenient, but less accurate than analytical derivatives (see

Fiorentini, Calzolari, and Panattoni, 1996). The latter are to be preferred, but convenience

13



often dictates the use of the former. In simple GARCH models, we found numerical derivatives

sufficiently effective, with model estimation taking the same amount of time, and convergence

achieved as frequently. All estimates in this paper use analytical derivatives, except when the

Hessian matrix is required for the variance-covariance matrix, and for EGARCH-type models.

6. Which estimate of the variance-covariance matrix to use.

A comparison of various estimators is given in Fiorentini, Calzolari, and Panattoni, 1996.

Appendix 3 Positive conditional variance

Nelson and Cao (1992) (hereafter NC) formulated conditions so that the coefficients in (4) are always

positive. The conditions, expressed in terms of the lag polynomialsβ(L) andα(L), require that the

roots ofβ(z) =
∏p

i=1(1 − ρiz) = 0 lie outside the unit circle. Furthermore,β(z) andα(z) are

assumed to have no common roots. Theδi in (4) can be derived recursively fori = 1, 2, . . . :

δi = 0, i < 1,
δi =

∑p
j=1 βjδi−j + αi, i ≤ q,

δi =
∑p

j=1 βjδi−j, i > q.

(12)

Soδ1 = α1.

GARCH(≤ 2, q) case

The necessary and sufficient conditions forδi ≥ 0 ∀i for the GARCH(2, q) case are:

α0 > 0; (DO1)

0 < ρ1 < 1, ρ1 is real; (DO2.1)

|ρ2| ≤ ρ1, ρ2 is real, (DO2.2)

δi ≥ 0, i = 1, . . . , q; (DO3)∑q
j=1 ρq−j

1 αj > 0. (DO4)

NC Theorem 2 gives these conditions as:

α∗
0 > 0; (NC1)

0 < ρ1, ρ1, ρ2 are real; (NC2)

δi ≥ 0, i = 1, . . . , q; (NC3.1)

δq+1 ≥ 0; (NC3.2)∑q
j=1 ρ1−j

1 αj > 0. (NC4)

Where it is assumed that|ρ2| ≤ |ρ1| without loss of generality. In the next theorem we show that these

two sets of conditions are identical.

Theorem 2 Conditions (NC1)–(NC3.2) and (DO1)–(DO3) are equivalent when|ρ2| ≤ |ρ1| < 1.
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Proof (DO2.1) and (DO2.2) combine (NC2) with the assumption thatβ(L) is invertible, andρ1 is the

largest root in absolute value. Next, (DO2.x) imply thatβ(1) = 1 − ρ1 − ρ2 + ρ1ρ2 > 0, reducing

(NC1) to (DO1).

To see that (NC3.2) is redundant whenρ2 is negative use

δq+1 = β1δq + β2δq−1 = (ρ1 + ρ2)δq − ρ1ρ2δq−1,

andδq+1 ≥ 0 follows from (NC3.1) and0 < −ρ2 ≤ ρ1.

If the roots are real and distinct (NC equation A.9):

δi = (ρ1 − ρ2)
−1

min(i,q)∑
j=1

(
ρ1+i−j
1 − ρ1+i−j

2

)
αj , i = 1, . . . .

Writing ai =
∑min(i,q)

j=1 ρ1−j
1 αj andbi =

∑min(i,q)
j=1 ρ1−j

2 αj:

δ∗i = δi (ρ1 − ρ2) = ρi
1ai − ρi

2bi.

Thenδ∗q ≥ 0 andρ2 > 0 impliesρ2ρ
q
1aq ≥ ρq+1

2 bq. Combining this with (NC4), which isaq > 0:

δ∗q+1 = ρq+1
1 aq − ρq+1

2 bq ≥ ρq+1
1 aq − ρ2ρ

q
1aq = ρq

1aq (ρ1 − ρ2) ≥ 0.

When the roots are equal,ρ1 = ρ2 = ρ > 0 (NC equation A.6):

δi =
min(i,q)∑

j=1

(1 + i − j)ρ1+i−jαj, i = 1, . . . .

So

ρ−1δq+1 =
q∑

j=1

ρ1+q−j(1 + q − j)αj +
q∑

j=1

ρ1+q−jαj = δq + ρ−qaq,

which is positive by (NC4) and (NC3.1). �
(DO1)–(DO4) has one restriction more than the number of parameters. However,ρq−1

1 (NC4)

= (DO4) is not always binding. For example, whenq = 1, it is automatically satisfied. In the

GARCH(2,2) case:

ρ1α1 + α2 > 0, (NC4),

(ρ1 + ρ2)α1 + α2 > 0, from δq in (12).

Whenρ2 is negative (makingβ2 positive), the first restriction is not binding.

The set of restrictions can implemented by transformation when (DO4) andδq ≥ 0 are combined

in one restriction, obviating the need for constrained estimation. The conditions

∑p
j=1 βjδq−j + αq > 0,∑q−1
j=1 ρq−j

1 αj + αq > 0,
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are both satisfied whenαq is sufficiently large. Therefore, we estimate the product as a parameter

exp(φq) which is always positive, and takeαq as the largest root.

To restrict any coefficient between−ρ andρ we can use:8

x = ρ
1 − eφ

1 + eφ
, −ρ < x < ρ ⇔ φ = log

(
1 − x/ρ

1 + x/ρ

)
, −∞ < φ < ∞.

See Marriott and Smith (1992) for the application of such Fisher-type transformations to impose

stationarity in ARMA models.

The restrictions can be implemented as follows. Letφ0, φ1 . . . , φq, ϕ1, ϕ2 be the unrestricted

parameters. Then:

(a) α0 = exp(φ0),

(b) ρ1 = exp(ϕ1)
1 + exp(ϕ1)

, ρ2 = ρ1
1 − exp(ϕ2)
1 + exp(ϕ2)

,

(c) β1 = ρ1 + ρ2, β2 = −ρ1ρ2,

(d) αi = δi −
∑p

j=1 βjδi−j usingδi = exp(φi) for 1 ≤ i ≤ q − 1, δi = 0 for i < 1,

(e) αq = −1
2(x + y) + 1

2

[
(x − y)2 + 4exp(φq)

]1/2
, x =

∑p
j=1 βjδq−j , y =

∑q−1
j=1 ρq−j

1 αj.

This transformation imposes the necessary and sufficient conditions for GARCH(≤ 2, q) models.

As NC point out, starting the recursion with the sample mean (11) will ensure positive conditional

variance. This is not necessarily the case when conditioning on initial values.

Appendix 4 Positive and finite unconditional variance

Estimation under restrictions (5) is achieved by transforming the GARCH parameters. Writeπi =
αi + βi, andsi for the partial sums:si =

∑i
j = 1 πj. The restrictions imply that0 < s1 ≤ s2 · · · ≤

sm < 1, m = max(p, q). This can be implemented by introducing0 < θi < 1:

k∑
i=1

πi =
m+1−k∏

i=1

θi.

For example, form = 3:

π1 = θ1θ2θ3,

π1 + π2 = θ1θ2,

π1 + π2 + π3 = θ1.

An unrestricted parameterφ is mapped to(0, 1) usingθi = [1 + exp(−φ)]−1.

If the unconstrained version isθu = α0, π1, . . . , πm, β1, . . . , βn, n = min(p, q), and the trans-

formed parameterizationφ = log α0, φ1, . . . , φm, β1, . . . , βn, usingφi = log[θ1/(1 − θ1)], then the

8Numerically, it is better to use1 − eφ

1 + eφ whenφ ≤ 0, and e−φ − 1
e−φ + 1

otherwise. This prevents overflow when evaluating

the exponential.
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Jacobian matrix can be used to move backwards and forwards. For example, whenm = 3:

∂θ

∂π′ =




1 0 0
0 (π1 + π2 + π3)2 0
0 0 (π1 + π2)2




−1 


1 1 1
π3 π3 −1
π2 −1 0


 ,

and∂φi/∂θi = [φi(1 − φi)]−1.

This allows the use of standard derivatives, as given in Fiorentini, Calzolari, and Panattoni (1996)

for example. This representation also makes it easy to imposeS = 1, which estimates the IGARCH(p, q)

model.
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