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Humboldt–Universität zu Berlin

Spandauer Str. 1
10178 Berlin
GERMANY

Tel.: +49-30-2093-5603/2093-5718
Fax.: +49-30-2093-5712

email: brueggem@wiwi.hu-berlin.de / luetke@wiwi.hu-berlin.de

Abstract

In this paper we consider alternative modeling strategies for specification of subset VAR

models. We present four strategies and show that under certain conditions a testing proce-

dure based on t-ratios is equivalent to eliminating sequentially lags that lead to the largest

improvement in a prespecified model selection criterion. One finding from our Monte Carlo

study is that differences between alternative strategies are small. Moreover, all strategies

often fail to discover the true model. We argue that finding the correct model is not always

the final modeling objective and find that using subset strategies results in models with

improved forecast precision. To illustrate how these subset strategies can improve results

from impulse response analysis, we use a VAR model of monetary policy shocks for the U.S.

economy. While the response patterns from full and subset VARs are qualitatively identical,

confidence bands from the unrestricted model are considerably wider. We conclude that

subset strategies can be useful modeling tools when forecasting or impulse response analysis

is the main objective.
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1 Introduction

Following Sims’ (1980) critique of classical econometric modeling, empirical macroeconomic

studies are often based on vector autoregressive (VAR) models. In these models the relations

between the variables are usually investigated within an impulse response analysis or innova-

tion accounting. A criticisms that has been raised against this modeling strategy is that the

number of parameters quickly becomes large if a moderate number of variables is considered

and no or only a few restrictions are placed on the parameter matrices. In that case the

sampling uncertainty in the estimated models makes it difficult to discriminate between dif-

ferent theories. Moreover, a theoretical problem related to the inference on impulse responses

was pointed out by Benkwitz, Lütkepohl & Neumann (2000) and Benkwitz, Lütkepohl &

Wolters (2000). These authors argue that standard bootstrap procedures which are often

used for setting up confidence intervals for impulse responses may be grossly distorted if

zero coefficients are estimated unrestrictedly. They advocate subset VAR models where zero

restrictions are placed on some of the coefficients.

One possible approach is to decide on the restrictions on the basis of sample information and

exclude, for example, insignificant lags of some of the variables. Using a statistical procedure

for deciding on possible constraints may be advantageous compared to a procedure which

is based on a priori economic theory if one desires to avoid biasing the results towards a

particular theory at an early stage of an analysis. Therefore, in this study we will compare

alternative statistical procedures that have been proposed and used for lag length selection

in multivariate time series models. Typically applied researchers use testing procedures or

model selection criteria in placing restrictions on a given VAR. We will compare both types

of procedures in the following.

One testing procedure which is used occasionally is based on the t-ratios of the variables and

eliminates the variables with lowest t-ratios sequentially until all remaining variables have

t-ratios greater than some threshold value, say 2. We will discuss under what conditions

such a procedure is equivalent to eliminating sequentially those lags of variables which lead

to the largest improvement when the usual model selection criteria are applied instead of

statistical tests. Moreover, we will compare these strategies with a full search procedure

which chooses the restrictions that lead to the best overall model for a given model selection

criterion.
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The structure of this study is as follows. In the next section the model framework is presented

and some alternative model selection strategies are considered in Sec. 3. In that section

we distinguish between procedures which are based on single equation procedures, that is,

procedures which treat the individual equations of a system separately and procedures which

consider the full system at once. In Sec. 4, the results of a small sample comparison based

on a Monte Carlo study are reported. In Sec. 5 we use U.S. macroeconomic data to illustrate

the use of selection procedures and the effects of restrictions on impulse response analysis.

Conclusions follow in Sec. 6.

2 Vector Autoregressive Models

The characteristics of the variables involved determine to some extent which model is a suit-

able representation of the data generation process (DGP). For instance, trending properties

and seasonal fluctuations are of importance in setting up a suitable model. In the following

we will focus on systems which contain potentially I(0) and I(1) variables.

Given a set of m time series variables yt = (y1t, . . . , ymt)
′, the basic VAR model considered

in the following has the form

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut = ν + AY t−p
t−1 + ut, (2.1)

where ν is a constant (m × 1) vector, A = [A1 : · · · : Ap], the Ai are (m × m) coefficient

matrices, Y t−p
t−1 = (y′t−1, . . . , y

′
t−p)

′ and ut = (u1t, . . . , umt)
′ is an unobservable zero mean

white noise process with time invariant positive definite covariance matrix Σu. That is,

the ut are serially uncorrelated or independent. The model (2.1) is briefly referred to as a

VAR(p) process because the number of lags is p. It is straightforward to introduce further

deterministic terms such as seasonal dummy variables or polynomial trend terms in the

model or include further exogenous variables. We use the simple model form (2.1) mainly

for convenience in the following.

A VAR(p) process is stable if

det(IK −A1z − · · · −Apz
p) 6= 0 for |z| ≤ 1. (2.2)

Assuming that it has been initiated in the infinite past, it generates stationary time series

which have time invariant means, variances and autocovariance structure. If the determi-

nantal polynomial in (2.2) has roots for z = 1 (i.e., unit roots), then some or all of the
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variables are I(1) and they may also be cointegrated. Thus, the present model is general

enough to accommodate variables with stochastic trends.

Clearly, the model (2.1) is in reduced form because all right-hand side variables are prede-

termined or deterministic and no instantaneous relations are modeled. Sometimes it is of

interest to model also the instantaneous relations. In that case it may be useful to consider

a structural form model,

A0yt = ν + A1yt−1 + · · ·+ Apyt−p + ut. (2.3)

Of course, restrictions have to be imposed to identify the parameters of this model. For

example, A0 may be triangular and Σu diagonal so that the system is recursive.

3 Lag Order Selection Strategies

3.1 Single Equation Approaches

We begin with strategies which are based on the individual equations of the above system.

Therefore we consider an equation of the form

yt = ν + x1tθ1 + · · ·+ xKtθK + ut, t = 1, . . . , T. (3.1)

Here the right-hand side variables denoted by xkt may include deterministic variables or

unlagged endogenous variables if the equation belongs to a structural form. We wish to

compare the following variable elimination strategies.

Full Search (FS)

Consider a criterion of the form

CR(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) + cT n/T, (3.2)

where SSE(i1, . . . , in) is the sum of squared errors obtained by including xi1t, . . . , xint in the

regression model (3.1) and cT is a sequence indexed by the sample size. Choose the regressors

which minimize CR(i1, . . . , in) for all subsets {i1, . . . , in} ⊂ {1, . . . , K} and n = 0, . . . , K. �
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Clearly, this procedure involves a substantial computational effort if K is large. More pre-

cisely, the set {1, . . . , K} has 2K subsets and, hence, there are as many models that have

to be compared. The following elimination procedures proceed sequentially and are com-

putationally less demanding. One variable only is eliminated in each step. For simplicity

we assume that the remaining variables are renumbered after each step so that in Step j,

K − j + 1 regressors are under consideration.

Sequential Elimination of Regressors (SER)

Sequentially delete those regressors which lead to the largest reduction in a given criterion

of the type (3.2) until no further reduction is possible. Formally:

Step j: Delete xkt if

CR(1, . . . , k − 1, k + 1, . . . , K − j + 1) = min
l=1,...,K−j+1

CR(1, . . . , l − 1, l + 1, . . . , K − j + 1)

and CR(1, . . . , k − 1, k + 1, . . . , K − j + 1) ≤ CR(1, . . . , K − j + 1). �

Testing Procedure (TP)

Delete sequentially those regressors with the smallest absolute values of t-ratios until all

t-ratios (in absolute value) are greater than some threshold value γ. Note that a single

regressor is eliminated in each step only. Then new t-ratios are computed for the reduced

model. Formally the procedure may be described as follows:

Let t
(j)
k be the t-ratio associated with θk in the jth step of the procedure.

Step j: Delete xkt if |t(j)k | = mini=1,...,K−j+1 |t(j)i | and |t(j)k | ≤ γ. Stop if all |t(j)k | > γ. �

The following proposition gives conditions under which these two lag selection procedures

are equivalent.

Proposition 1

For given K and T , TP and SER lead to the same final model if the threshold value γ in TP

is chosen as a function of the step j as follows: γ = γj = {[exp(cT /T )−1](T −K +j−1)}1/2.

Note that the result in the proposition is purely algebraic and does not involve distributional

assumptions. Of course, the t-ratios are not assumed to have actually a t- or standard normal
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distribution. At this stage we do not even assume that all parameters are identified if (3.1)

is a structural form equation. Also the proposition remains true if the search is refined to a

subset of the regressors in the model (3.1). The proposition implies a computationally effi-

cient way to determine the regressor whose elimination will lead to the greatest reduction in

any one of the usual model selection criteria. We do not have to estimate all possible models

with one coefficient restricted to zero but we just have to check the t-ratios of the coefficients.

Proof: For simplicity we assume that K − j + 1 = n so that x1t, . . . , xnt are the regressors

included before the jth step is performed. We show that both strategies eliminate the same

regressor in that step. The squared t-ratio of the kth regressor is

t2k = (T − n)SSE(1,...,k−1,k+1,...,n)−SSE(1,...,n)
SSE(1,...,n)

= (T − n)
(

SSE(1,...,k−1,k+1,...,n)
SSE(1,...,n)

− 1
)

(see Judge et al. (1988), Sec. 6.4). Obviously, t2k is minimal if (SSE(1, . . . , k − 1, k +

1, . . . , n)/T )/(SSE(1, . . . , n)/T ) and, hence,

log(SSE(1, . . . , k − 1, k + 1, . . . , n)/T )− log(SSE(1, . . . , n)/T )

is minimal. Therefore the two strategies eliminate the same regressor if a regressor is deleted

at all which happens if t2k ≤ γ2
j . Choosing γj as in the proposition, this is equivalent to

(T − n)
(

SSE(1,...,k−1,k+1,...,n)
SSE(1,...,n)

− 1
)
≤ [exp

(
cT

T

)− 1
]
(T − n)

⇐⇒ SSE(1,...,k−1,k+1,...,n)/T
SSE(1,...,n)/T

≤ exp
(

cT

T

)
⇐⇒ log(SSE(1, . . . , k − 1, k + 1, . . . , n)/T )− log(SSE(1, . . . , n)/T ) ≤ cT /T

⇐⇒ log(SSE(1, . . . , k − 1, k + 1, . . . , n)/T ) + cT

T
(n− 1) ≤ log(SSE(1, . . . , n)/T ) + cT

T
n

⇐⇒ CR(1, . . . , k − 1, k + 1, . . . , n) ≤ CR(1, . . . , n)

which proves the proposition. �

In the simulation comparison in Sec. 4 we will also consider the following so-called top-down

strategy which checks the importance of the regressors in reverse order of there subscripts

(see Lütkepohl (1991, Ch. 5)). Thus, the procedure depends to some extent on the number-

ing of the regressors.
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Top-Down Strategy (TD)

Delete the last regressor xKt from the equation if its removal does not increase a prespecified

model selection criterion, CR say, keep it otherwise. Repeat the procedure for xK−1,t, . . . , x1t.

Formally:

Step j: Delete xK−j+1,t if removal does not increase CR. Keep it otherwise. �

Typical criteria used for time series model selection are

AIC(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) + 2n/T,

(see Akaike (1974)),

HQ(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) +
2 log log T

T
n

(see Hannan & Quinn (1979)) and

SC(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) +
log T

T
n

(see Schwarz (1978)). Because a time series length of about T = 100 is not untypical in

macroeconomic studies with quarterly data we give some relevant γj for these three model

selection criteria in Table 1. Obviously, the γj are in the range starting roughly at the 0.70

quantile of the standard normal distribution and reaching far out in its upper tail. With

T=100 and K=12, for example, choosing a model by HQ roughly corresponds to eliminating

all regressors with t-values which are not significant at 10% level. Because the t-ratios in

the presently considered models with possibly integrated variables can be far from standard

normal, the proposition also shows that using the SER procedure with standard model

selection criteria may be problematic. All three lag selection procedures can be applied

directly for choosing the right-hand side variables in a specific equation of the levels VAR

model (2.1) or the structural form (2.3).

3.2 Systems Approaches

It is also possible to consider the complete system at once in selecting the lags and variables

to be included. In that case a multivariate model of the type

yt = Xtθ + ut, t = 1, . . . , T, (3.3)
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is considered. Here Xt is a (m × J) regression matrix and θ is a (J × 1) parameter vector.

Note that Xt is typically block-diagonal,

Xt =




x′
1t 0 · · · 0

0 x′
2t 0

...
. . .

...

0 0 · · · x′
mt


 ,

where xkt is the (Jk × 1) vector of regressors in the kth equation and J = J1 + · · ·+ Jm. For

example, if the full model (2.1) is considered, Xt = Im ⊗ [1 : Y t−p
t−1

′
], so that Jk = mp + 1

(k = 1, . . . , m). If lags are eliminated in some or all of the equations, the structure of Xt

will usually become slightly more complicated with different numbers of regressors in the

different equations. In that case, estimation is usually done by a GLS or SURE procedure,

that is, the estimator of θ is

θ̂ =

(
T∑

t=1

X ′
tΣ̂

−1
u Xt

)−1 T∑
t=1

X ′
tΣ̂

−1
u yt, (3.4)

where Σ̂u is a consistent estimator of Σu. For instance, Σ̂u may be based on the residuals

from an unrestricted or restricted OLS estimation of each individual equation.

Lag selection may again be based on sequential elimination of coefficients with smallest t-

ratios. If the procedure is based on the full system we abbreviate it as STP. Alternatively,

model selection criteria may be used in deciding on variables and lags to be eliminated. In

the systems context, criteria of the type

V CR(j) = log det(Σ̃u(j)) + cT J/T (3.5)

are used, where cT is as in (3.2), j indicates the restrictions placed on the model and Σ̃u(j)

is a corresponding estimator of Σu. For example, starting from a full model such as (2.1),

j may be an ((m2p + m) × 1) vector of zeros and ones where a one stands for a right-hand

side variable which is included and a zero indicates a variable which is excluded. Ideally

the ML estimator is used for Σ̃u(j). However, for restricted systems computing the exact

ML estimator involves computationally demanding iterative methods in general. Therefore,

using

Σ̃u(j) = T−1

T∑
t=1

ûtû
′
t with ût = yt −Xtθ̂ (t = 1, . . . , T ) (3.6)

is a feasible alternative. We will use this estimator in the following in combination with two

types of selection strategies considered in the single equation context, FS and SER. In the
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systems context they will be abbreviated as SFS and SSER. We do not use the Top-Down

strategy in the system framework because it may result in a somewhat arbitrary model

specification.

Note that the simple relation between STP and SSER given in Proposition 1 for the single

equation case is no longer available in the presently considered systems case. The reason is

that the Wald and the LR versions of tests for linear restrictions differ in the multivariate

case. The usual t-test may be viewed as a Wald test whereas the LR version has the direct

link to the lag selection criteria of the type (3.5) (see Lütkepohl (1991), Ch. 4). Given that

the test versions are closely related, it is of course possible that both strategies lead to the

same models in relevant small sample situations.

4 Simulation Comparison of Lag Selection Strategies

We have considered processes of different orders, dimensions and correlation characteristics

to study the small sample properties of the selection strategies. In the following we will

highlight some important findings and illustrate them with results from one example process

(to be completed).

4.1 Single Equation Strategies

Many of the most important findings of our simulation study can be illustrated with the

following stable bivariate VAR process from Lütkepohl (1991):
y1t

y2t


 =


.02

.03


+


.5 .1

.4 .5




y1,t−1

y2,t−1


+


 0 0

.25 0




y1,t−2

y2,t−2


+


u1t

u2t


 (4.1)

with covariance matrix

Σu =


.09 0

0 .04


 .

We simulated 1000 sets of time series. Then we applied the single equation strategies from

Section 3 to the generated time series. Specifically, we applied the subset strategies to

a VAR(3) process and thus the last coefficient matrix A3 contains zeros only. For every
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realization in the experiment we recorded whether the strategies decided correctly on the

zero restrictions of individual coefficients and list the resulting relative frequencies of correct

decisions.

We present results for T = 30 in Table 2. As there is very little sample information in

this case, none of the criteria and strategies detects the zero elements with high probability.

Especially, the small nonzero upper right element of the matrix A1, denoted as a12,1, is set

to zero fairly often.

Comparing the results from SER/TP with those from FS it is interesting to note that the

latter performs slightly better for coefficients which are actually zero. This can be seen

from the values of A3, for example. In contrast, SER/TP performs better for the nonzero

coefficients.

For the TD strategy we find in all cases higher individual frequencies of correct decisions

than for the SER/TP procedure, indicating that the TD procedure performs somewhat

better than SER/TP for this particular process. With a few exceptions for small nonzero

coefficients, TD performs better than FS when the actual coefficient is not equal to zero and

vice versa.

On average the SC criterion selects models with more zero restrictions than HQ and AIC.

This result is in line with the theoretical properties of these criteria (see Lütkepohl (1991,

Ch. 4)). In particular, the SC criterion is less successful when the true coefficient is not

equal but close to zero. On the other hand, if the true coefficient is zero, the SC criterion

performs better than AIC and HQ. With T = 30, the difference between HQ and AIC is

small in all subset strategies.

To get a more complete picture of the quality of the models selected, we also computed

normalized forecast mean squared errors (MSEs) by adjusting for the theoretical forecast

error covariance matrix. To be more precise, we denote the h-step forecast at time T of the

n-th generated times series as ŷT (h)n. Moreover, let Σy(h) be the forecast error covariance

matrix (see, e.g., Lütkepohl (1991) for precise expressions). Then the normalized forecast

MSE in Tables 2 and 3 is

1

m

1000∑
n=1

(yT+h,n − ŷT (h)n)′Σy(h)−1(yT+h,n − ŷT (h)n)/1000, (4.2)

where yT+h,n is the generated value of the n-th time series corresponding to the forecast.

The normalized MSE relates the forecast MSE of the estimated model based on the subset
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strategies to the forecast MSE of the true model and should ideally be 1 because we divide

by the dimension of the process m. Note that impulse responses are forecasts conditional

on a specific assumed history of the process. Therefore the forecasting performance of the

models is also an important characteristic if impulse response analysis is the objective of the

analysis.

For T = 30 we show the 1- and 5-step MSEs in the last two columns of Table 2. The differ-

ences in forecast performance between the models chosen from alternative subset strategies

are small. The corresponding 1- and 5-step MSE for the unrestricted model turn out to

be 1.307 and 1.352, respectively. Thus, to improve the forecast precision compared to the

unrestricted VAR, we can use any of the proposed strategies in conjunction with either AIC

or HQ. The 5-step forecast MSE is largest in AIC models, followed by HQ and SC models.

In contrast, the 1-step MSE is largest in models chosen by the SC criterion. This effect

possibly results from incorrect restrictions set by the SC criterion when the sample size T is

small.

In addition to what has been said, we are interested in the number of models with correctly

identified restrictions, i.e. the number of models that have the same zero restrictions as the

coefficient matrices of the true DGP. We call these models ‘fully correct’ models. Moreover,

we want to know in how many cases the strategies find a specification without incorrect zero

restrictions. Therefore, we counted all models where at least the nonzero coefficients from

the true model are unrestricted. Such a model is classified as ‘not overly restricted’. This

implies, of course, that ‘not overly restricted’ models may include specifications where the

true coefficient is zero but is not restricted by the selection procedure.

The first part of Table 4 shows the frequencies of ‘fully correct’ and ‘not overly restricted’

models for T = 30. For all strategies the number of data sets for which all zero coefficients are

found and all restrictions are correct (‘fully correct’ models) is disappointingly small. When

the SC criterion is used, the number of ‘fully correct’ models is zero and only 1 or 2 out of

1000 models have no incorrect zero restrictions. At best, when AIC is used in combination

with TD the number of ‘fully correct’ models is 13, while nearly 86% of all chosen models

show incorrect restrictions. Clearly, none of the strategies is very successful. Overall the Top-

Down and SER/TP procedures with AIC and HQ do the best job. Somewhat surprisingly,

the very computer intensive full search procedure does not do better and usually performs

worse than these procedures.
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We repeated the Monte Carlo study for T = 100 and list the results in Table 3. Naturally,

the relative frequency of correct decisions increases with the sample size for all coefficients.

However, the basic pattern is the same as observed before: In all strategy/criterion combi-

nations, we find the lowest frequency for the small nonzero coefficient a12,1. According to the

normalized MSEs there is not much of a difference in forecasting accuracy between models

chosen from different strategies. All strategies find models with MSEs close to one.2

The second part of Table 4 provides information on the number of ‘fully correct’ and ‘not

overly restricted’ subset models for T = 100. As expected all subset strategies find the correct

model more often than with T = 30. The Top-Down/HQ combination, for example, results

in 111 ‘fully correct’ models. Again, the Top-Down strategy seems to be the most successful.

Also note the increasing number of ‘not overly restricted’ models: At best, around 37% of

the models have no incorrect restrictions. In the majority of cases, however, the statistical

procedures end up with incorrectly restricted models.

Overall our Monte Carlo experiments show that none of three subset procedures is very

successful in finding the true underlying restricted model in samples of the size typically

available in macroeconometric studies. The overall performance strongly depends on the

structure of the underlying DGP. It is particularly interesting that the computationally

efficient Top-Down and SER/TP strategies perform as well or even better than a Full Search

procedure. Despite the fact that the true model is identified poorly, forecast precision tends

to increase in the subset models relative to full models. Generally the subset strategies

perform better in conjunction with the less parsimonious criteria HQ and AIC than with

SC.

A test procedure that removes variables with lowest t-ratios until all remaining variables

have t-ratios greater than 2 is often used in applied work. Note that such a strategy would

be more parsimonious than a SER/TP procedure based on AIC or HQ. Even with these

criteria the SER/TP procedure often fails to discover all zero restrictions correctly. In

general, subset strategies may end up with misspecified models but still forecast well if the

sample information is reasonably rich.

2MSE values smaller than one are due to the Monte Carlo variability.
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4.2 Systems Approaches

to be completed

5 Empirical Application

The results from Section 4 suggest that the subset strategies presented are not very successful

in identifying the true underlying model. Nevertheless, similar strategies are frequently used

in applied work. In this section we illustrate how the use of subset strategies can in fact

improve results of the final modeling objective, e.g. impulse responses or forecasts. To be

more precise, we investigate the effects of a monetary policy shock in the U.S. measured

as a shock to the federal funds rate. In the literature, unrestricted VAR models have been

extensively used to analyze the effects of a monetary policy shock (see for example Christiano,

Eichenbaum & Evans (1996), henceforth CEE). We compare impulse responses from an

unrestricted VAR with results from a subset VAR as specified from the TP/SER procedure.

Since impulse responses are special forecasts, as mentioned earlier, the results of the previous

section indicate that our subset strategy may be useful for specifying suitable models for this

kind of analysis as well.

As in the previous literature we identify monetary policy shocks as disturbances of a central

bank’s reaction function. To be more precise, the monetary authority is assumed to set its

policy instrument according to a linear feedback rule that can be written in VAR(p) form

as in (2.1), where the vector of variables yt includes the monetary policy instrument and

variables the central bank is looking at when setting the policy instrument. We distinguish

between policy and non-policy variables. Policy variables are variables that are influenced

immediately by central bank actions such as the federal funds rate, reserves or monetary

aggregates. Non-policy variables that can only be influenced with a lag by the monetary

authority, include the real GDP and a measures of the price level among others. With this

setup, orthogonalized responses (see Lütkepohl (1991) for precise formulas) to an impulse in

the monetary policy instrument show the effects of a monetary policy shock.

Following CEE we include the following variables in our analysis for the U.S.:

yt = (gdpt, pt, pcomt, fft, nbrdt, trt, m1t)
′ (5.1)
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where gdp is the log of real GDP, p the log of the GDP deflator, pcom the log of a commodity

price index, ff the federal funds rate, nbrd the negative log of nonborrowed reserves, tr the

log of total reserves and m1 the log of M1. Shocks to ff are regarded as a measure for

monetary policy shocks. We use quarterly seasonally adjusted U.S. data over the period

1960q1–1992q4 (T = 132). The time series are depicted in Figure 1. Clearly, all time series

used show trending behavior and given the choice of variables, cointegration between these

variables might be possible. Since we are also interested in a comparison of our results to

the ones of CEE, we ignore possible cointegration and proceed by estimating the model in

levels representation.

We start out with an unrestricted VAR(4) model, i.e. we initially include four lags as in

CEE. In this model, we estimate 203 parameters including the intercept terms. Since we

wish to compare this unrestricted model to the restricted counterpart, we apply the SER/TP

procedure presented in Section 3. We use the AIC criterion, which performed relatively well

in the simulations. The resulting model has 115 zero restrictions leaving 88 parameters

to be estimated. This subset model is then estimated with feasible GLS. We compute

orthogonalized responses to a shock in the federal funds rate from both, the unrestricted

and restricted system. In addition to the point estimates we compute confidence intervals to

account for the fact that impulse responses are nonlinear functions of estimated coefficients

and hence, estimates. We use a bootstrap procedure proposed by Hall (1992). For details on

this bootstrap method see Benkwitz, Lütkepohl & Wolters (2000). They argue that Hall’s

percentile intervals are advantageous compared to the standard bootstrap intervals.

Figures 2 and 3 show the responses for all system variables to a monetary shock. The solid

lines represent the point estimates, while the dashed lines are approximate 95% confidence

bands computed from a bootstrap with 1000 draws. The left column shows responses from

the unrestricted VAR(4) model, the right column is based on the subset model.

The results from our impulse response analysis are largely in line with the results of CEE.

While CEE compute confidence bands that approximately correspond to the 90% confidence

level, we draw our conclusions based on results from the subset VAR (restricted model)

and on a 95% level. A positive impulse or shock in the federal funds rate corresponds to a

contractionary monetary policy shock. This shock is associated with a persistent fall of real

GDP and a delayed decline in the GDP price deflator. In contrast to CEE, we only find a

13



small delayed decline in commodity prices.3 Moreover, we find that the shock in ff leads to

a rise in the federal funds rate and a decline of nonborrowed and total reserves. In addition,

the contractionary policy shock leads to a persistent decline of nominal money M1. In our

example, the same conclusions can be drawn from the unrestricted model, however, using

90% level confidence intervals for the impulse responses.

The comparison of the unrestricted and the restricted model shows two interesting results:

First, even though the restricted model includes a substantial number of zero coefficients, the

pattern of estimated impulse responses remains basically unchanged. Overall, this indicates

that restrictions from the SER/TP procedure with the AIC criterion seem to be reasonable.4

There is no indication of any bias induced by these restrictions. Thus, the potential inference

problems reported by Benkwitz, Lütkepohl & Neumann (2000) may not be present here.

Second and perhaps more important, the subset specification yields confidence bands that are

substantially narrower than in the unrestricted model. Provided the restrictions are correct,

impulse responses can be estimated more precisely and hence allow for easier interpretation.

As mentioned before, impulse responses are conditional forecasts. Therefore, it is especially

interesting to evaluate the forecast performance of the specified subset model. We do so

with the simulation technique presented in Section 4. To begin with, we assume that the

subset specification used above is the true underlying model, i.e. we use the restricted EGLS

estimates for the parameter matrices Ai and the covariance matrix Σu. We use this DGP

and real observations as presample values to generate 1000 time series with length T = 137.

Then, we apply SER/TP and the Top-Down procedure to specify subset VARs.5 Table 5

shows normalized mean squared errors computed according to (4.2) from both strategies

and from the unrestricted model. When using AIC and HQ models, both strategies perform

better in forecasting than the unrestricted model. In contrast to simulation results from

the previous section, MSEs from the SER/TP procedure are now slightly smaller than from

Top-Down. However, differences between SER/TP and TD are only small. Given this result,

it is not surprising that impulse responses from both strategies are very similar. Obviously,

3CEE find a sharp, immediate decline in commodity prices. The different pattern may be due to a

different measure of commodity prices used in our study.
4We have also computed impulse responses from a subset model specified with the Top-Down procedure.

These impulse responses show only minor differences to the ones in the right columns of Figures 2 and 3.
5The Full Search strategy is clearly infeasible in a large model. With 7 variables and 4 lags FS would

have to compare 228 models in each equation.
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the SC criterion leads to models with too many incorrect zero restrictions and consequently

to suboptimal forecasting properties.

The results from our empirical example can be summarized as follows: Both SER/TP and

Top-Down lead to very similar subset VAR models. Patterns of impulse responses are nearly

identical to those of the unrestricted VAR. The corresponding bootstrap confidence inter-

vals are narrower indicating that responses are estimated more precisely. This reduces the

uncertainty when interpreting the results, which are in line with results from CEE. For the

present system with 7 variables the comparison of normalized MSEs shows that SER/TP

has a slight advantage compared to the Top-Down strategy. We also conclude that using the

SC criterion leads to models with many incorrect zero restrictions that spoil forecasts and

possibly impulse responses. Thus, for impulse response analysis AIC and HQ are the better

choice, at least for the present example model.

6 Conclusions

The present study considers alternative lag selection strategies within the VAR modeling

framework. We present four different model selection procedures: Full Search (FS), Sequen-

tial Elimination of Regressors (SER), a Testing Procedure (TP), and a Top-Down (TD)

procedure. We show that using the Test Procedure with threshold values as a function of

the elimination step is equivalent to the SER strategy.

We compare the small sample properties of single equation strategies with Monte Carlo ex-

periments. One finding for a small bivariate DGP is that none of the strategies specifies

the correct model with high probability. It is particularly interesting that the computation-

ally demanding Full Search procedure offers no advantage. The overall performance of the

presented strategies strongly depends on the underlying DGP. We find that our results are

sensitive to the absolute size of the DGP parameters. Therefore, it seems risky to general-

ize our results. A comparison of the forecast precision shows that in many situations the

subset VAR models perform better than the corresponding unrestricted VAR model. From

a forecasting point of view, using either subset strategy in combination with AIC or HQ is

advantageous relative to full VAR modeling.

Although our results indicate that the presented procedures often fail to discover the true

model, a testing procedure similar to SER/TP is frequently used in applied work. Finding
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the zero coefficients is not necessarily the final modeling objective. If the researcher is

interested in forecasts or impulse response analysis, the presented subset modeling strategies

may help to improve the results. In our empirical example, a subset VAR identified from

SER/TP results in impulse response patterns that are very similar to the ones from the full

VAR. The confidence bands from the subset VAR are narrower, however, indicating that

responses are estimated more precisely.

We conclude that subset strategies can be useful for forecasting purposes and impulse re-

sponse analysis. Since they do not find all zero restrictions with high probability, we recom-

mend to use subset strategies as additional modeling tools only. To avoid misspecification a

comparison to the full VAR and the application of diagnostic tests is also advisable.
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Table 1. Threshold Values Corresponding to Model Selection Criteria

K T Criterion γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

12 50 AIC 1.25 1.26 1.28 1.29 1.31 1.32 1.34 1.36 1.37 1.38

HQ 1.46 1.48 1.50 1.52 1.53 1.55 1.57 1.59 1.61 1.62

SC 2.54 2.57 2.60 2.64 2.67 2.70 2.73 2.76 2.79 2.82

12 100 AIC 1.33 1.34 1.35 1.36 1.36 1.37 1.38 1.39 1.39 1.40

HQ 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.73

SC 2.91 2.93 2.95 2.96 2.98 3.00 3.01 3.03 3.04 3.06

12 200 AIC 1.37 1.38 1.38 1.39 1.39 1.39 1.40 1.40 1.40 1.41

HQ 1.78 1.78 1.79 1.79 1.80 1.80 1.81 1.81 1.82 1.82

SC 3.20 3.21 3.22 3.22 3.23 3.24 3.25 3.26 3.27 3.27

20 50 AIC 1.11 1.12 1.14 1.16 1.18 1.20 1.21 1.23 1.25 1.26

HQ 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48

SC 2.25 2.29 2.33 2.36 2.40 2.43 2.47 2.50 2.54 2.57

20 100 AIC 1.27 1.28 1.29 1.29 1.30 1.31 1.32 1.33 1.33 1.34

HQ 1.58 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66

SC 2.78 2.80 2.81 2.83 2.85 2.86 2.88 2.90 2.91 2.93

20 200 AIC 1.35 1.35 1.35 1.36 1.36 1.36 1.37 1.37 1.37 1.38

HQ 1.74 1.74 1.75 1.75 1.76 1.76 1.77 1.77 1.78 1.78

SC 3.13 3.14 3.15 3.16 3.16 3.17 3.18 3.19 3.20 3.21

18



Table 2. Relative frequency of correct decisions obtained from 1000 realizations of length

T = 30 of the VAR(3) process (4.1)

model relative frequency of correct decisions normalized
subset selection forecast MSE

strategy criterion A1 A2 A3 1-step 5-step

AIC


.772 .231

.929 .828





.809 .797

.701 .768





.802 .789

.778 .752


 1.293 1.315

Full Search (FS) HQ


.736 .187

.901 .808





.858 .839

.646 .824





.853 .833

.813 .803


 1.299 1.311

SC


.443 .035

.703 .723





.987 .986

.380 .956





.989 .973

.940 .965


 1.342 1.239

AIC


.787 .299

.936 .848





.770 .735

.698 .741





.763 .754

.727 .739


 1.296 1.327

SER/TP HQ


.748 .253

.912 .819





.822 .787

.650 .791





.815 .801

.777 .789


 1.306 1.320

SC


.440 .043

.717 .694





.979 .972

.402 .940





.979 .965

.919 .946


 1.355 1.234

AIC


.800 .336

.940 .876





.777 .757

.702 .745





.785 .788

.757 .769


 1.292 1.313

top-down HQ


.769 .278

.916 .864





.831 .795

.644 .803





.836 .832

.804 .821


 1.281 1.296

SC


.471 .031

.761 .849





.979 .968

.250 .974





.980 .973

.979 .978


 1.318 1.235
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Table 3. Relative frequency of correct decisions obtained from 1000 realizations of length

T = 100 of the VAR(3) process (4.1)

model relative frequency of correct decisions normalized
subset selection forecast MSE

strategy criterion A1 A2 A3 1-step 5-step

AIC


.999 .273

1.00 1.00





.826 .815

.940 .798





.826 .831

.892 .808


 1.006 1.008

Full Search (FS) HQ


.998 .169

1.00 .999





.902 .906

.896 .884





.909 .924

.953 .912


 .996 1.008

SC


.978 .009

.995 .995





.996 .995

.596 .991





.998 .998

.996 1.00


 .995 1.006

AIC


.999 .320

1.00 .999





.800 .752

.942 .799





.805 .797

.813 .811


 1.010 1.008

SER/TP HQ


.998 .218

1.00 .999





.884 .864

.897 .875





.893 .894

.911 .898


 1.001 1.007

SC


.978 .013

.995 .995





.993 .993

.570 .991





.998 .996

.993 .999


 .996 1.006

AIC


.999 .395

1.00 1.00





.816 .787

.948 .782





.835 .834

.821 .831


 1.002 1.008

top-down HQ


.999 .278

1.00 1.00





.897 .890

.904 .874





.922 .914

.913 .908


 .997 1.004

SC


.981 .015

.995 .996





.997 .997

.570 .994





.999 .998

.994 .999


 .993 1.007
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Table 4. Frequency of ‘fully correct’ and ‘not overly restricted’ models obtained from

1000 realizations of DGP (4.1)

Selection T Criterion fully correct not overly

Procedure models restricted

Full Search (FS) 30 AIC 11 75

HQ 8 48

SC 0 1

SER/TP 30 AIC 10 111

HQ 8 72

SC 0 2

top-down 30 AIC 13 142

HQ 11 94

SC 0 1

Full Search (FS) 100 AIC 72 255

HQ 80 150

SC 5 5

SER/TP 100 AIC 59 297

HQ 77 194

SC 5 9

top-down 100 AIC 87 373

HQ 111 249

SC 5 9
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Table 5. Normalized MSEs from 7-dimensional VAR

normalized

Selection forecast MSE

Procedure Criterion 1-step 5-step

SER/TP AIC 1.35 1.54

HQ 1.34 1.54

SC 1.43 1.79

top-down AIC 1.35 1.55

HQ 1.36 1.56

SC 1.50 2.07

unrestricted – 1.37 1.56
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Figure 1. Time series analyzed
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gdp

p

pcom

ff

Figure 2. Responses of gdp, p, pcom and ff to a unit shock in ff computed from

unrestricted (left) and restricted model (right)
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Figure 3. Responses of nbrd, tr and m1 to impulse in ff computed from unrestricted

(left) and restricted model (right)
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