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ABSTRACT. Tests based on the quantile regression process can be formulated like
the classical Kolmogorov-Smirnov and Cramer-von-Mises tests of goodness-of-fit
employing the theory of Bessel processes as in 7. However, it is frequently desirable
to formulate hypotheses involving unknown nuisance parameters, thereby jeopar-
dizing the distribution free character of these tests. We characterize this situation
as “the Durbin problem” since it was posed in 7, for parametric empirical processes.

In this paper we consider an approach to the Durbin problem involving a martin-
gale transformation of the parametric empirical process suggested by ? and show
that it can be adapted to a wide variety of inference problems involving the quan-
tile regression process. In particular, we suggest new tests of the location shift and
location-scale shift models that underlie much of classical econometric inference.

The methods are illustrated in some limited Monte-Carlo experiments and with
a reanalysis of data on unemployment durations from the Pennsylvania Reemploy-
ment Bonus Experiments. The Pennsylvania experiments, conducted in 1988-89,
were designed to test the efficacy of cash bonuses paid for early reemployment in
shortening the duration of insured unemployment spells.

1. INTRODUCTION

Quantile regression is gradually evolving into a comprehensive approach to the
statistical analysis of linear and nonlinear response models for conditional quantile
functions. Just as classical linear regression methods based on minimizing sums
of squared residuals enable one to estimate models for conditional mean functions,
quantile regression methods based on minimizing asymmetrically weighted absolute
residuals offer a mechanism for estimating models for the conditional median funec-
tion, and the full range of other conditional quantile functions. By supplementing
least squares estimation of conditional mean functions with techniques for estimating
an entire family of conditional quantile functions, quantile regression is capable of
providing a much more complete statistical analysis of the stochastic relationships
among random variables.

There is already a well-developed theory of asymptotic inference for many impor-
tant aspects of quantile regression. Rank-based inference based on the approach of
? appears particularly attractive for a wide variety of quantile regression inference
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2 INFERENCE ON THE QUANTILE REGRESSION PROCESS

problems including the construction of confidence intervals for individual quantile
regression parameter estimates. There has also been considerable attention devoted
to various resampling strategies. See e.g. 7. ?, 7 ?. In 7 some initial steps have
been taken toward a complete theory of inference based on the entire quantile regres-
sion process. These steps have clarified the close tie to classical Kolmogorov-Smirnov
goodness of fit results, and related literature on Bessel processes initiated by ?. They
have also successfully extended the applicability of certain Wald and rankscore tests
to the linear location scale model.

This paper describes some further steps in this direction. These steps depend
crucially on an ingenious suggestion by ? for dealing with tests of composite null
hypotheses based on the empirical distribution function. Khmaladze’s results have
been slow to percolate into statistics generally, but the approach has recently played
an important role in work on regression diagnostics by ? and ?. In econometrics, ?
seems to have been the first to recognize the potential importance of these methods.

Khmaladze’s martingale transformation approach provides a general strategy for
purging the effect of estimated nuisance parameters from the first order asymptotic
representation of the empirical process and thereby restoring the feasibility of “asymp-
totically distribution free” tests. The approach seems especially attractive in quantile
regression settings and is capable of greatly expanding the scope of inference methods
described in earlier work.

1.1. Quantile Treatment Effects. To motivate our results it is helpful to begin
by reconsidering the classical two-sample treatment-control problem. In the simplest
possible setting we can imagine a random sample of size, n, drawn from a homo-
geneous population and randomized into n; treatment observations, and ngy control
observations. We have a response variable, Y;, and are interested in evaluating the
effect of the treatment on this reponse.

In a typical clinical trial application, for example, the treatment would be some form
of medical procedure, and Y;, might be log survival time. In our application appearing
in Section 6, the treatment is an offer of a cash bonus for early exit from a spell of
unemployment, and Y; is the logarithm of individual #’s unemployment duration. In
the first instance we might be satisfied to know simply the mean treatment effect, that
is, the difference in means for the two groups. This we could evaluate by “running
the regression” of the observed y;’s on an indicator variable: z; = 1, if subject ¢ was
treated, x; = 0, if subject « was a control. Of course this regression would presume,
implicitly, that the variability of the two subsamples was the same; this observation
opens door to the possibility that the treatment alters other features of the response
distribution as well. Although we are accustomed to thinking about regression models
in which the covariates affect only the location of the conditional distribution of the
response — this is force of the iid error assumption — there is no compelling reason to
believe that covariates must operate in this restrictive fashion.

? introduced the following general formulation of the two sample treatment effect,
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“Suppose the treatment adds the amount A(x) when the response of the
untreated subject would be x. Then the distribution GG of the treatment
responses is that of the random variable X + A(X) where X is distributed
according to F.”

? provides a detailed axiomatic analysis of this formulation, showing that if we
define A(x) as the “horizontal distance” between F' and G at x, so

Pla) = Gz + Al))

then A(x) is uniquely defined and can be expressed as

Alz) =G Y(F(z)) — .
Changing variables, so 7 = F(x) we obtain what we will call the quantile treatment
effect,

8(r) = A(F7Hr)) = G (1) = F(7).

In the two sample setting this quantity is naturally estimable by

o(r) = Gl () = Il (7)

n1 o

where Gnl , Fno denote the empirical distribution functions of the treatment and con-
trol observations respectively, and = = inf{z|F,(z) > 7}, as usual. Since we cannot
observe subjects in both the treated and control states — and this platitude may be
regarded as the fundamental “uncertainty principle” underlying the the “causal ef-
fects” literature — it seems reasonable to regard 6(7) as a complete description of the
treatment effect. Of course, there is no way of really knowing whether the treatment
operates in the way prescribed by Lehmann. In fact, the treatment may make other-
wise weak subjects especially robust, and turn the strong to jello. All we can observe
from the experimental evidence is the difference between the two marginal survival
distributions, so it is natural to associate the treatment effect with this difference.
The quantile treatment effect provides the unexpurgated version.

Of course, it is possible that the two distributions differ only by a location shift, so
8(7) = o, or that they differ by a scale shift so §(7) = 6 F~'(7) or that they differ by
a location and scale shift so §(7) = &g + 61 F~'(7). But these hypotheses are all nicely
nested within Lehmann’s general framework. And yet, as we shall see, testing these
hypotheses against the general alternatives represented by the Lehmann- Doksum
quantile treatment effect poses some serious techical problems.

In the next section we briefly describe the nature of these problems in their canon-
ical form, the classical one-sample goodness of fit problem. Khmaladze’s martingale
decomposition strategy for dealing with these problems is then introduced. Section 3
extends the Khmaladze approach to general problems of inference based on the quan-
tile regression process. Section 4 treats some practical problems of implementing the
tests. Section 5 reports the results of a limited Monte-Carlo experiment designed to
evaluate the finite sample performance of the tests. Section 6 describes an empirical
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application to the analysis of unemployment durations. And Section 7 contains some
concluding remarks.

2. A HEURISTIC INTRODUCTION TO KHMALADZATION

Arguably the most fundamental problem of statistical inference is the classical
goodness-of-fit problem: given a random sample, {y1,... ,y,}, on a real-valued ran-
dom variable, Y, test the hypothesis that Y comes from distribution function, Fj.
Tests based on the empirical distribution function, F,(y) = n~* > I(Y; < y), like the

Kolmogorov-Smirnov statistic

K, = sup v/n|Fu(y) — Fo(y)l.

z€ER

are especially attractive because they are asymptotically distribution-free. The limit-
ing distribution of K, is the same for every continuous distribution function Fy. This
remarkable fact follows by (trivially) noting that the process, v/n(F,(y)— Fo(y)), can
be transformed to a test of uniformity, via the change of variable, y — F};'(¢), based
on

va(t) = V(F(F5 (1) — ).

It is well known that v,(t) converges weakly to a Brownian bridge process, vo(), that
is a mean-zero Gaussian process with covariance function

FEvo(t)vo(s) =t A s — st,
and thus the distribution of K,, and related functionals follows from the observation

of ? and its subsequent refinements.

2.1. The Durbin Problem. It is rare in practice, however, that we are willing to
specify Fy completely. More commonly, our hypothesis places F' in some parametric
family Fy with § € © C R”. For example, we may wish to test “normality”, claiming
that ¥ has distribution Fy,(y) = ®((y — p0)/00), but 8y = (o, 00) is unknown. We
are thus led to consider, following ?, the parametric empirical process,

Unly) = V(Fuly) — F; (y))-
Again changing variables, so y — Fé,;l(t), we may equivalently consider
un(t) = Vn(Ga(t) — Gy (1))
where G, () = Fn(Fegl(t)) and Gy(t) = Fén(Fegl(t)) so Glg,(t) = t. Under mild

conditions on the sequence {én} we have the linear (Bahadur) representation,

Vn(0, — o) :/0 ho(s)dv,(s) + o,(1).
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So provided the mapping  — G4 has a Fréchet derivative!, g = gy,, we may write
Gy (1) = t+ (0 = 00) T g(1) + 0,(1),
and thus obtain, with r,(t) = o0,(1),
(2.1) On(t) = Vn(Go(t) —t — (Gy (1) — 1))
= 0a1) =907 [ Bofshdoa(s) 10,

which converges weakly to the Gaussian process,
1
uo(t) = vo(t) — g(t)T/ ho(s)dvg(s).
0

The necessity of estimating 6y introduces the drift component g(¢ fo ho(s)dvg(s
Instead of the simple Brownian bridge process, vo(t), we obtain a more Comphcated
Gaussian process with covariance function

Euo(t)uo(s) =s5At—1s— (t)THO(S) — (S)THo(t) + (S)Tjog(t)

where Ho(t fo ho(s)ds and Jy = fo fo ho(t Tdtds When Gn is the mle, so
ho(s) = (EV9¢) ;/)( Y(s)) with ¢ =V, log f, the covariance function simplifies

nicely to
Eug(t)ug(s) = s At —ts — g(s) Zog(t)

where 7y denotes Fisher’s information matrix. See ? and ? for further details on this
case.

The practical consequence of the drift term involving the function ¢(?) is to invali-
date the distribution-free character of the original test. Tests based on the parametric
empirical process u,(t) require special consideration of the process ug(t) and its depen-
dence on F' in each particular case. ? discuss several leading examples. ? describes
a general numerical approach based on Fourier inversion, but also expresses doubts
about feasibility of the method when the parametric dimension, p, of § exceeds one.
Although the problem of finding a viable, general approach to inference based on the
parametric empirical process had been addressed by several previous authors, notably
?, we will, in the spirit of Stigler’s law of eponymy, ?, refer to this as “the Durbin
problem.”

2.2. Martingales and the Doob-Meyer Decomposition. Khmaladze’s general
approach to the Durbin problem can be motivated as a natural elaboration of the
Doob-Meyer decomposition for the parametric empirical process. Recall that a sto-
chastic process @ = {x(f) : t > 0} that is (i) right continuous with left limits; (ii)

'That is, sup, |Gesn(t) — Ge(t) — hT g(t)] = o(||h]|) as h — 0, see van der Vaart (1998, p 278.)
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integrable supgc,.., £|z(t)| < oo; and (iii) adapted to the filtration {F; : ¢ > 0}, is
called a submartingale if

E(z(t+ s)|F) > x(t) a.s.
and is called a martingale if
E(z(t+ s)|F) = x(1) a.s.

The Doob-Meyer decomposition asserts that for any nonnegative submartingale, z,
there exists an increasing right continuous predictable process, a(t), such that Fa(t) <
00, and a right continuous martingale m, such that

x(t) =m(t) + a(t) a.s.

A process a(t) is called predictable with respect to a filtration {F; : ¢ > 0} if, viewed
as a mapping from [0,00) X € to R it is measurable with respect to the o-algebra
generated by the filtration F;, that is the o-algebra generated by all sets of the form
(r,s]x Afor0<a<b<1land A € F,. Seeeg. 7.

Let Xi,...,X, beiid from Fy, so Y; = Fo(X;), ¢ = 1,...,n are iid uniform,
U[0,1]. The empirical distribution function

n

Galt) = Fu(Fy (1) =n™" Y _I(Y; < 1),

=1

viewed as a process, is a submartingale. We have an associated filtration F° =
{Ff» 0 <t < 1} and the order statistics Yu),...,Yn) are Markov times with
respect to F7, that is { X <t} = {F.(t) > i/n} € F.

The process G,(t) is Markov; Khmaladze notes that for At > 0,

nAG, (1) = n[GL(t+ At) — G, (1)]
~ Binomial(n(1 — G, (1)), At/(1 —1))

with G,(0) = 0, thus
1 —Ga(t)

11—t

(2.2) E(AG, (1] Fen) = At.

This suggests the decomposition

Ga(t) = /Ot %ds ma(t).
That m,,(t) is a martingale then follows from the fact that, from (2.2),
E(ma (D) F) = ma(s)
and integrability of m,(t) follows from the inequality

{
I - n
/ ﬂds < —log(1 — Yj,).
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which implies a finite mean for the compensator, or predictable component. Sub-
stituting for G,(¢) in (2.2) we have the classical Doob-Meyer decomposition of the
empirical process v,

t
valt) = wa(t) — / onls) 4o

where v,(t) = /n(G,(t) — t) and the normalized process w,(t) = \/nm,(t) con-

verges weakly to a standard Brownian motion process, wg(t), by the argument of

Khmaladze(1981, §2.6).

2.3. The Parametric Empirical Process. To extend this approach to the general
parametric empirical process, we now let ¢(t) = (£,g(1)")" = (t,1(t), ... gm ()"
be a (m 4+ 1)-vector of real-valued functions on [0,1]. Suppose that the functions

§(t) =dg(t)/dt are linearly independent in a neighborhood of 1 so

C(1) = / §(s)i(s)Tds

is non-singular, and consider the transformation

wlt) = o) = [ 37 ) [ ity (r)as.

Here, w,(t) clearly depends upon the choice of ¢, and therefore differs from w,(?)
defined above. But the abuse of notation maybe justified by noting that in the
special case ¢(t) =, we have C(s) = 1 — s, and f: gdv,(r) = —v,(s) yielding the
Doob-Meyer decomposition (2.2). In the general case, the transformation

Qui(t) = lt) — / J(s)TC(s) / §(r)do(r)ds

may be recognized as the residual from the prediction of ¢(¢) based on the recursive
least squares estimate using information from (¢, 1]. For functions in the span of g,
the prediction is exact, that is, Q),¢ = 0.

Now returning to the representation of the parametric empirical process, v,(t),
given in (2.1), using Khamaladze (1981, §4.2), we have,

Un(t) = Qy0n(1)
= Qy(va(t) — g(t)T/O ho(s)dv,(s) + ra(t))
= Qy(va(t) + ra(l))
= wo(t) + 0,(1).

The transformation of the parametric empirical process annihilates the ¢ component
of the representation and in so doing restores the feasibility of asymptotically distri-
bution free tests based on the transformed process ,,(?).
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2.4. The Parametric Empirical Quantile Process. What can be done for tests
based on the parametric empirical process can also be adapted for tests based on the
parametric empirical quantile process. In some ways the quantile domain is actu-
ally more convenient. Suppose {y1,...,y,} constitute a random sample on Y with
distribution function Fy. Consider testing the hypothesis, Fy(y) = Fo((y — po)/00),

S0,

at) = F7(t) = o+ oo P (1),

Given the empirical quantile process
a(t) = inf{a € R|Y  p-(y; — a) = min!}
=1

and known parameters 6y = (o, 09) tests may be based on
v (1) = Vn(&(t) — a(t))/oso(t) = vo(t)

where so(t) = (fo(Fy (7))~ and vo(7) is the Brownian bridge process.
To test our hypothesis when # is unknown, set £(t) = (1, F;'(¢))" and for an
estimator #,, satisfying,

Vi, = 00) = [ hofs)do(s) + o,(1)

set

Then
(2.3) On(t) =

Thus, if we take ¢g(t) = (¢,£(t)7/s(1))", we obtain,
g(t) = (L 1+ 1 (O F /)T
where f/f is evaluated at F; '(¢), so for example in the Gaussian case,
§(t) = (1=07 (), 1 =07 (t)*)".

Given the representation (2.3) and the fact that £(¢) lies in the linear span of g, we
may again apply Khmaladze’s martingale transformation to obtain,

Un(t) = Qgbn(1),
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which can then be shown to converge to the standard Brownian motion process. In
the next section we explore extending this approach to multidimensional quantile
regression.

3. QUANTILE REGRESSION INFERENCE

The classical linear regression model asserts that the conditional mean of the re-
sponse, Y, given covariates, x;, may be expressed as a linear function of the covariates.
That is, there exists a § € R* such that,

E(yilei) = 2] 5.
The linear quantile regression model asserts, analogously, that the conditional quantile
functions of y; given z; are linear in covariates,

(3.1) Fo (le) = 2 B(7)

yilwi

for 7 in some index set 7 C [0,1]. The model (3.1) will be taken to be our basic
maintained hypothesis. For convenience we will restrict attention to the case that
T = [e,1 — ¢] for some € € (0,1/2), and to faciliatate asymptotic local power analysis
we will consider sequences of models for which 3(7) = 3,(7) depends explicitly on
the sample size, n.

A leading special case is the location-scale shift model,
(3.2) Fy_l|1xl(7'|:1;2) = a+a] yF7H(T).
where [ '(7) denotes a univariate quantile function. Covariates affect both the
location and scale of the conditional distribution of y; given z; in this model, but the
covariates have no effect on the shape of the conditional distribution. Typically, the
vectors {x;} “contain an intercept” so e.g., ; = (1,z])7 and (3.2) may be seen as
arising from the linear model

yi =) ot (@]
where the “errors” {u;} areiid with distribution function Fy. Further specializing the
model, may write,
Ty =0+ 2

and the restriction, 74 = 0, then implies that the covariates affect only the location
of the y;’s. We will call this model

(3-3) Fo(rle) =2l a4+ 50 F5 (7)

the location shift model. Although this model underlies much of classical econometric
inference, it posits a very narrowly circumscribed role for the x;. In the remainder of
this section we explore ways to test the hypotheses that the general linear quantile
regression model takes either the location shift or location-scale shift form.
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We will consider a linear hypothesis of the general form,
(3.4) RB(r) —r=W(71) reT

where R denotes a ¢ x p matrix, ¢ < p,r € R% and U(7) denotes a known function
U : 7 — R? For example in the one sample setting of the previous section, we
might take R = o~ !, r = y/o and ¥(r) = ®~!(7), in order to test that the y,’s were
N(p,0?).

In the two sample model described in Section 1.1.

Fop (71D:) = Bo(7) + Bi(7) D;

yi| Ds
we might like to test that, the treatment and control distributions differ by an affine
transformation

Bo() = 0o + 0,5:(7)
or, even more simply, that they differ by a location shift,

Bo(7) = 0o + Bi(T).
In these cases we may take U(7) = 0,r = 6y, R = (1,—0;) in the former case, and
R = (1,—1) in the latter case. Of course, we could also expand these two-sample
hypotheses to consider fully specified parametric models with an explicit choice of
U(7), however, the semi-parametric form of the hypotheses expressed above seems
more plausible for most econometric applications.
We will consider tests based on the quantile regression process,

N

B(r) = argminserr > pr(y: — 27 0)

=1
where p,(u) = u(7 — I(u < 0)). Under the location-scale shift form of the quantile
regression model (3.2) we will have under mild regularity conditions,

(3.5) Vi folFg (T)QTA(B(r) = B(7)) = vo(7)

where vg(7) now denotes a p-dimensional independent Brownian bridge process,

8(r) = a+17(r),
and Q = Hy'JoHy' with Jo = limn™' Y. w2, and Hy = limn™' > 2] /47 2.
It then follows quite easily that under the null hypothesis (3.4),
on(7) = Vi fo(F5 () (RQRT) Y (RA(7) — v = W(7)) = vo(7).
So tests that were asymptotically distribution free could be readily constructed.
Indeed, ? consider tests of this type when R constitutes an exclusion restriction so

e.g., R =[0:1,],r = 0, and ¥(7) = 0. In such cases it is also shown that the nui-
sance parameters fo(F; (7)) and 2 can be replaced by consistent estimates without
jeopardizing the distribution free character of the tests.



RoGER KOENKER AND ZHIJIE XIAO 11

To formalize the foregoing discussion we introduce the following conditions, which
closely resemble the conditions employed in Koenker and Machado. We will assume
that the {y;}’s are conditional on z;, independent with linear conditional quantile
functions given by (3.1) and local, in a sense specified in A.3, to the location-scale

shift model (3.2).

A. 1. The distribution function Fy, in (3.2) has a continuous Lesbesque density, fo,
with fo(u) >0 on {u:0 < Fy(u) < 1}.
A. 2. The sequence of design matrices { X, } = {(@;)l_,} satisfy:

(i) an=1 i=1,2,...

(ii): J, = n"'X, X, — Jo, a positive definite matriz.

(iil): H, = n7'X,, ;' X,, — Hy, a positive definite matriz where , ,, = diag(y"z;).

(iv): maxi—y .. || 2 ||= O(n1/4 logn)

A. 3. There exists a fized, continuous function (1) :[0,1] — R? such that for sam-

ples of size n,
RB.(r) —r = U(r) = ((7)/v/n.

As noted in 7, conditions A.1 and A.2 are quite standard in the quantile regression
literature. Somewhat weaker conditions are employed by ? in an effort to extend the
theory further into the tails. But this isn’t required for our present purposes, so we
have reverted to conditions closer to those of ?. Condition A.3 enables us to explore
local asymptotic power of the proposed tests employing a rather general form for the
local alternatives.

We can now state our first result. Proofs of all results appear in the appendix.

Theorem 1. Let T denote the closed interval [¢,1—¢], for some e € (0,1/2). Under
conditions A.1-3
vn(T) = vo(7T) + () forT €T

where vo(7) denotes a g-variate standard Brownian bridge process and

n(r) = fo(£5 (7)) (RQRT)T((7).
Under the null hypothesis, ((1) =0, the test statistic

sup || v (7) [|= sup || vo(7) || -
T€T T€T

Typically, even if the hypothesis is fully specified, it is necessary to estimate the
matrix Q and the function ¢(¢) = fo(F;'(t)). Fortunately, these quantities can be
replaced by estimates satistying the following condition.

A. 4. There exist estimators p,(7) and Q,, satisfying

Lt sup.cr [on(7) = o) = (1)

it [|Q, — Q]| = 0,(1).

[Recall that we need to define matrix norms a la Hilbert-Schmidt.]
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Corollary 1. The conclusions of Theorem 1 remain valid if fo(Fy'(7)) and Q are
replaced by estimates satisfying condition A.4.

Theorem 1 extends slightly the results of ?, but it fails to answer our main question:
how to deal with unknown nuisance parameters in R and r? To begin to address this
question, we introduce the following condition.

A. 5. There exist estimators R,, and r,, satisfying \/n(R,— R) = O,(1) and \/n(r, —
r) = O,(1).

And we consider the parametric quantile regression process,
Bu(7) = Vo Fg (T [RAQRT)T (R B(7) = 1 — W(7)),

The next result establishes a representation for 0,,(7) analogous that provided in (2.2)
for the univariate empirical quantile process.

Theorem 2. Under conditions A.1-5, we have

(7)) = (7)) Z = vo(T) + (1)
where £(7) = fo(Fy (7)1, FyY ()T, and Z, = O,(1), with vo(7) and n(7) as speci-
fied in Theorem 1.

Corollary 2. The conclusions of Theorem 2 remain valid if fo(Fy'(7)) and Q are
replaced by estimates satisfying condition A.4.

Asin the univariate case we are faced with two options. We can accept the presence
of the 7, term, and abandon the asymptotically distribution free nature of tests based
upon 0,(7). Or we can, following Khmaladze, try to find a transformation of 0,(7)
that annihilates the Z,, contribution, and thus restores the asymptotically distribution
free nature of inference. We adopt the latter approach.

Let g(t) = (t,£(t)T)" so
g(t) = (Ly(t), () F(t))"
with ¥ (1) = f/f(F_l(t)) We will assume that ¢(t) satisfies the following condition.

A. 6. The function g(1) satisfies:

i f 1 9(0) I de < oo,
ii: {gi(t) :ie=1,...,m} are linearly independent in a neighborhood of 1.

We consider the transformed process,

3O 0= Qi) =)~ [ e [

where the recursive least squares transformation should now be interpreted as oper-
ating coordinate by coordinate on the v, process.
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Theorem 3. Under conditions A.1 - 6, we have
on(7) = wo(T) +7(7)

where wo(7) denotes a g-variate standard Brownian motion, and n(t) = Q,n(7).
Under the null hypothesis, ((1) =0,

sup || 0,(7) ||= sup || wo(7) || -

T€T T€T

[Note: Khmaladze (1981, §3.3) shows that A.6.ii implies C~(7) exists for all 7.]

Typically, in applications, the function g¢(¢) will not be specified under the null
hypothesis, but will also need to be estimated. Fortunately, only one rather mild
further condition is needed to enable us to replace ¢ by an estimate.

A. 7. There exists an estimator, g,(7), satisfying
sup || ga(7) = 9(7) ||= 0,(1).
T€T

Corollary 3. The conclusions of Theorem 3 remain valid if f(F~(7)),Q, and g are
replaced by estimates satisfying conditions A.J and A.7.

The foregoing results provide some basic machinery for a broad class of tests based
on the quantile regression process. In the next section we consider several special
cases including tests of the location shift hypothesis, and tests for the location-scale
shift hypothesis.

4. IMPLEMENTATION OF THE TESTS

Given a framework for inference based on the quantile regression process, we can
now —in a somewhat more pragmatic spirit— elaborate some missing details. We will
begin by considering tests of the location scale shift hypothesis against a general
quantile regression alternative. Tests of the location shift hypothesis and several
variants of a symmetry hypothesis will then be considered. Problems associated with
estimation of nuisance parameters are treated in the final subsection.

4.1. The location-scale shift hypothesis. We would like to test
Fy_zllxz(T|x2) =al o+l F5 ()
against the sequence of linear quantile regression alternatives
P (rles) = af (7).
In the simplest case the univariate quantile function is known and we can formulate
the hypothesis in the (3.4) notation,
Ri(r) =7 = W(r)
by setting r; = a; /v, R = diag(y; "), and ¥(7) = ¢, F; (7). Obviously, there is some
difficulty if there are ~; equal to zero. In such cases, we can take +; = 1, and set the
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corresponding elements r; = «; and W;(7) = 0. How should we go about estimatng
the parameters o and 47 Under the null hypothesis,

Bi(T) :ozi—l—%FO_l(T) i=1,....p

so 1t is natural to consider linear regression. Since BZ(T) is piecewise constant with
jumps at joints J = {r,...,7,) J=1,...,J. it suffices to consider p bivariate linear
regressions of BZ'(T]‘) on {(1,F; 7)) j=1,...,J. Each of these regressions has a
known (asymptotic) Gaussian covariance structure that could be used to construct a
weighted least squares estimator, but pragmatism might lead us to opt for the simpler
unweighted estimator. In either case we have our required O(n='/2) estimators &,
and 4,.

When F;'(7) is (hypothetically) known the Khmaladzation process is relatively
painless. The function ¢(t) = (1,%0(t),vo(t)Fy ' (t))T is known and the transforma-
tion (2.3) can be carried out by recursive least squares. Again, the discretization is
based on the jumps J = {r,...,7,} of the piecewise constant B(T) process. Tests
statistics based on the transformed process, 0,(7), can then be easily computed. The
simplest of these is probably the Kolmogorov-Smirnov sup-type statistic

Ky, = sup || 9,(7) |
T€T

where 7 is typically of the form [e,1 — ¢] with ¢ € (0,1/2).

When F;'(t) isn’t assumed to be known under the null it is convenient to choose
one coordinate, typically the intercept coefficient, to play the role of numeraire. From
(3.4) we can write

(4.1) Pi(r) = pi +oibi(r)  1=2,....p
where p; = a; — aqy; /71 and o; = 7; /41, or in matrix notation as

Ro(r)=r

where W(7) =0, R =[o:— I,_,] and r = —u. Estimates of the vectors y and o are
again obtainable by regression of 5;(7) ¢=2,...,p — 1 on the intercept coordinate

(7).

Finally, we must now face the problem of estimating the function ¢g. Fortunately,
there is already a large literature on estimation of score functions. For our purposes
it is convenient to employ the adaptive kernel method described in ?. An attractive
alternative to this approach has been developed by ? and ? based on smoothing
spline methods. Given a uniformly consistent estimator, ¢,,, satisfying condition A.7,
see Portnoy and Koenker (1989, Lemma 3.2), Corollary 3 implies that under the null
hypothesis

Un(t) = Qy, 0n(t) = wol(t)
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and therefore Tests can be based on

K, =sup || o.(7) || .
T€T
as before. Note that in this case estimation of ¢ provides as a byproduct an estimator
of the function fo(F;'(#)) which is needed to compute the process v, ().

4.2. The location shift hypothesis. An important special case of the location-
scale shift model is, of course, the pure location shift model,
Pl () = a2 (7)

This is just the classical homescedastic linear regression model,
yi =z o+ yu;

where the {u;} are iid with distribution function Fy. This model underlies much of
classical econometric theory and practice. If it is found to be appropriate then it is
obviously sensible to consider estimation by alternative methods. For Fj Gaussian,
least squares would of course be optimal. For F, unknown one might consider the
Huber M-estimator, or its L-estimator counterpart,

11—«

N

Boz = (1 - 20‘)2 6(T)d7_7

see 7. In the location shift model it is also well-known from 7, that the slope param-
eters, (32, ..., 3,), are adaptively estimable provided Fy has finite Fisher information
for the location parameter. Thus, it would be reasonable to consider M-estimators
like those described in ? or the adaptive L-estimators described in ?.

The location-shift hypothesis can be expressed in standard form,

by setting R = [0:1,_,], 7 = (aa,...,a,)". It asserts simply that the quantile re-
gression slopes are constant, independent of 7. Again, the unknown parameters in
{R,r} are easily estimated so the process 0,(7) is easily constructed. The transfor-
mation is obviously somewhat simpler in this case since g(t) = (¢, ¢o(t)) has one fewer
coordinate than in the previous case.

We can continue to view tests of the location-shift hypothesis as tests against a
general quantile regression alternative represented in (A.3), or we can also consider the
behavior of the tests against a more specialized class of lcoation-scale shift alternatives

for which

(1) = GoFy (1)
for some fixed vector (, € R?™". In the latter setting we have a test for parametric
heteroscedasticity and we can compare the performance of our very general class of
tests against alternative tests designed to be more narrowly focused on heteroscedastic
alternatives. We will explore this in Section 9.z below.
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An optimal (invariant) test in the parametric setting may be based on optimal
L-estimator of scale with weight function,

d
w(r) = %(xf//fﬂx:fvo—l(f)v

see e.g. 7. Thus, for example, in the normal (Gaussian) model, Fy = ¢, we would
have, w(7) = ®7*(7), so our estimator of (5 would be,

o= [ o

and a test for heteroscedasticity could be based on the last p—1 coordinates of fn One
way to interpret such tests is to view them as smoothly weighted linear combinations
of the interquantile range tests for heteroscedasticity introduced in ?. Clearly, in the
case of the Gaussian weight function, extreme interquantile ranges get considerable
weight, so it may be prudent to consider Huberized versions of these tests that trim
the influence of the tails. Alternatively, one could consider weight functions explicitly
designed for more heavy tailed distributions like the Cauchy,

w(r) = 2sin(277)(cos(2r7) — 1).

4.3. Local Asymptotic Power Comparison. In this section we compare the het-
eroscedasticity tests proposed above in an effort to evaluate the cost of considering a
much more general class of semiparametric alternatives instead of the strictly para-
metric alternatives represented by the location scale shift model.

4.4. Estimation of Nuisance Parameters. Our proposed tests depend crucially
on estimates of the quantile density and quantile score functions: f(F (7)), and
- f(F7Y7)/f(F~(7)). Fortunately, there is a large related literature on estimat-
ing f(F~*(7)), including e.g. ?, 7. 7, and ?. Following Siddiqui, and noting that,
dF~Y(t)/dt = (f(F~(t)))~', it is natural to use the estimator,

2h
4.2 W(ETN(L) = 8
where F'~1(s) is an estimate of F~!(s) and A, is a bandwidth which tends to zero as
n — oo.
One way of estimating F'~!(s) is to use a variant of the empirical quantile function
for the linear model proposed in 7,

(4.3) F7(s) = M

o
If we use (4.3) in the formula (4.2), the density f(F~'(¢)) can be estimated by
B 2h, 0
At 4 hy) —a(t — hy)
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and thus

fo(F1 (1)) 2

(4.4) 5 A+ hy) —a(t—hy)

can be used in constructing testing statistics. Smoothed estimators based on (4.4)
may also be used.

5. MONTE CARLO RESULTS

We have conducted some limited Monte Carlo experiments to examine the fi-
nite sample performance of the proposed tests. In particular, we examine the ef-
fectiveness of the martingale transformation based on the size and power proper-
ties of the tests. The following sample sizes were considered in our experiment:
n = 100,200, 300,400, 500. These sample sizes were chosen because they represent
the most relevant range of sample sizes in empirical analyses.

First of all, to investigate the effectiveness of the martingale transformation on
quantile regression inference, we examine the size and power properties of the infea-
sible version tests where the true density and score functions are used in the stan-
dardization and the martingale transformation. We start with the heteroskedasticity
test. The data were generated from

(5.1) yi = o+ B + o)y,

where z; and u; are iid V'(0, 1) random variates and are mutually independent, a = 0,
and 3 = 1. o(x;) = v + 12, 70 = 1. We examined the empirical rejection rates
of the test for different choices of sample sizes and ~; values, at 5% level of signifi-
cance. In constructing the test, we used the OLS estimator for B, and the truncation
parameter value 6 = 0.05 (i.e. 7 = [0.05,0.95]). Since z; is a scalar, the limiting
null distribution of the test statistic is supggs<,<g9s |W (7). The 5% level critical
value is 2.14. For the choices of the heteroskedasticity parameter vy, we consider
v = 0,0.1,0.2,0.3,0.5,1,2,5. When ~; = 0, the model is homoskedastic and the
rejection rates give the empirical sizes. When ~; # 0, the model is heteroskedastic
and the rejection rates deliver the empirical powers. Table 1 reports the empirical
rejection rates for different values of v; and n. Other values of the truncation param-
eter 6 were also tried and quantitatively similar results were obtained. These Monte
Carlo results indicate that, given information on the density and score, the martingale
transformation brings pretty good size and power to the proposed testing procedure
in finite sample.

The remaining Monte-Carlo experiments are based on the even simpler two sample
model,

(5.2) { yii = on+ o, i =1,

Yor = g + 020, =1, ..... , Mo,
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In particular, we considered the following two sets of parameter values

(5.3) Location Shift: oy =1, =0,00 =03 =1,
(5.4) Location-Scale Shift: oy = 1,0 = 0,00 = 2,05 = 1,

where w;, v; are iid N(0,1) random variates. When the parameters take the first
set of values, (5.2) represents a pure location shift model. The null hypothesis of a
shift model can be tested by the procedure given in Section 4.2. When the data is
generated from the second set parameters, (5.2) is a location-scale shift model. The
location-scale hypothesis can be tested by the procedure given in Section 4.1. Table
2 reports the empirical size of these tests for different combinations of ny; and ny. We
can see that the test has good size properties in finite samples. These Monte Carlo
results, together with the results on the heteroskedasticity test in Table 1, confirm
the effectiveness of the martingale transformation in quantile regression inference.

The above Monte Carlo experiments use the true density and score. It is obviously
important to evaluate the effect of nonparametric nuisance parameter estimation on
the performance of the proposed tests. In our next Monte Carlo experiments, we
estimated F~'(s) using the empirical quantile function approach given by formula
(4.3). For the density function, we use procedure (4.4) as an estimator of f(F~!(s)).
The quantile score process, and thereby the function ¢, is estimated by the adaptive
kernel estimator of Portnoy and Koenker (1989).

The kernel estimation procedures for these nuisance functions are nonparamet-
ric and therefore obviously entail choices of bandwidth values. Unsuitable bandwidth
selection can produce poor estimates. However, under broad conditions on the conver-
gence rate of the bandwidth parameters, the nonparametric estimates are consistent
and testing procedures using different bandwidth choices are (first order) asymp-
totically equivalent, although the finite sample performance of these tests can vary
considerably with bandwidth choice. Extensive simulations have been conducted in
the literature to show the importance of bandwidth choice on estimation and testing
procedure that use nonparametric estimates.

It was anticipated that the estimation of f(F~'(s)) would exert important influence
on the finite sample performance of our tests. This is confirmed in the simulations. For
this reason, we pay particular attention to the bandwidth choice in density estimation.
Hall and Sheather (1988) suggested a bandwidth rule based on Edgeworth expansion

~1/3 and we denote it as hys.
~1/5

for studentized quantiles. This bandwidth is of order n
Another bandwidth selection has been proposed by Bofinger (1975) is of order n
We denote it by hg. We have considered both of these bandwidth choices for our
tests. In addition, notice that the Bofinger bandwidth is eventually much larger than
the Hall and Sheather bandwidth, we have also considered the following bandwidth
choice which takes values between hys and hp, it is denoted as hy, hg = 0hp, where
hp is the Bofinger bandwidth and 6 is a scalar. We report the results for the case
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6 = 0.6 here. The score function was estimated by the method of Portnoy and
Koenker (1989) and we simply choose the Silverman (1986) bandwidth.

Tables 3a, 3b, 3c report the Monte Carlo results for the heterskedasticity test with
different bandwidth selections and Tables 4a, 4b, 4c give the result of the location-
scale test. The Monte Carlo evidence indicates that the bandwidth choice does have
an important influence on the finite sample performance of these tests. It also shows
that, by choosing appropriate bandwidth, the proposed tests have reasonable size
and power properties. In general, we found over-rejection when the Hall-Sheather
bandwidth was used. For the other two bandwidth, ks and hp, the relative perfor-
mance depend on which test we consider. For the heteroskedasticity test, we found
under-rejection when the Bofinger bandwidth was used. In this test, at least for the
model and the nonparametric methods used here, the bandwidth choice hy provides
pretty good finite sample performance. However, for the location-scale test, hy tends
to over-reject and hp seems to be a relatively better bandwidth choice. To focus our
attention on the effect of f,(F'(s)), we have also conducted Monte Carlo experi-
ments where only the density function is estimated (and use the true score function),
the Monte Carlo results reconfirmed our findings on the three bandwidth choices.

TABLE 1: Size and Power of the Heteroskedasticity Test (Truncated, 6 = 0.05)
Size Power

n 1=0 9»1=01 117=02 =03 117=05 =1 =2 =5
100 0.006  0.134 0.377 0.729 0.974 0.981 0.990 0.999
200 0.054  0.269 0.77 0.977 0.999 1.000  1.000  1.000
300 0.052  0.383 0.931 1.000 1.000 1.000  1.000  1.000
400 0.052  0.549 0.989 1.000 1.000 1.000  1.000  1.000
500 0.052 0.616 1.000 1.000 1.000 1.000  1.000  1.000

TABLE 2: Application to The Two-Sample Models
Case 1: Location Shift Case 2: Location-Scale Shift
Oélzl,OéQZO,Ul:UQ:l 061:17062:070'1:2,0'2:1

ny N, slze Ny Ny slze  ny  ng slze  ng;  Ne  slze
100 100 0.074 100 200 0.060 100 100 0.153 100 200 0.179
150 150 0.080 100 300 0.086 150 150 0.158 100 300 0.196
200 200 0.064 150 300 0.055 200 200 0.169 150 300 0.175
250 250 0.054 200 300 0.056 250 250 0.172 200 300 0.183
TABLE 3a
(The Heteroskadasticity Test. Bandwidth in Density Estimation: hgs;
Kernel Estimation of Score with Silverman Bandwidth)
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Size Power
n =0 1n1=02 =05 =1
100 0.45 0.723 0.99 1.000
200 0.21 0.877 1.000 1.000
300 0.195 0.952 1.000 1.000
400 0.186  0.995 1.000 1.000
500 0.173  1.000 1.000 1.000

TABLE 3b

(The Heteroskadasticity Test. Bandwidth in Density Estimation: hp;
Kernel Estimation of Score with Silverman Bandwidth)

Size Power
n =0 1n1=02 =05 =1
100 0.009  0.053 0.197 0.545
200 0.013 0.109 0.772 0.949
300 0.019 0.229 0.985 0.992
400 0.023  0.412 0.997 0.998
500 0.029 0.565 1.000 1.000

TABLE 3c

(The Heteroskadasticity Test. Bandwidth in Density Estimation: hg;
Kernel Estimation of Score with Silverman Bandwidth)

Size Power
n =0 1n1=02 =05 =1
100 0.035 0.211 0.755 0.820
200 0.041  0.406 0.990 0.989
300 0.043 0.665 1.000 1.000
400 0.043  0.809 1.000 1.000
500 0.045 0.911 1.000 1.000

TABLE 4a

(Location-Scale Test. Bandwidth in Density Estimation: hps;
Kernel Estimation of Score with Silverman Bandwidth)

ny

UP)

size nyp ng slze

100 100

0.589 50 50 0.616

150 150

0.538 75 75 0.603

200 200

0.511 250 250 0.507

500 500

0.406 300 300 0.456

TABLE 4b

(Location-Scale Test. Bandwidth in Density Estimation: hp;
Kernel Estimation of Score with Silverman Bandwidth)



RoGER KOENKER AND ZHIJIE XIAO 21

ny ng slze Ny ng size

100 100 0.037 50 50 0.028
150 150 0.079 75 75 0.033
200 200 0.079 250 250 0.065
500 500 0.105 300 300 0.078

TABLE 4c
(Location-Scale Test. Bandwidth in Density Estimation: hg;
Kernel Estimation of Score with Silverman Bandwidth)

ny ng slze Ny ng size

100 100 0.097 50 50 0.063
150 150 0.112 75 75 0.086
200 200 0.123 250 250 0.126
500 500 0.145 300 300 0.135

6. A REAPPRAISAL OF THE PENNSYLVANIA REEMPLOYMENT BONUS
EXPERIMENTS

A common concern about unemployment insurance (UI) systems has been the
suggestion that the insurance benefit acts as a disincentive for job-seekers and thus
prolongs the duration of unemployment spells. During the 1980’s several controlled
experiments were conducted in the U.S. to test the incentive effects alternative com-
pensation schemes for Ul. In these experiments, Ul claimants were offered a cash
bonus if they found a job within some specified period of time and if the job was
retained for a specified duration. The question addressed by the experiments was:
would the promise of such a monetary lump-sum benefit provide a significant induce-
ment for more intensive job-seeking and thus reduce the duration of unemployment?

In the first experiments conducted in Illinois a random sample of new Ul claimants
were told that they would receive a bonus of $500 if they found full-time employment
within 11 weeks after filing their initial claim, and if they retained their new job for
at least 4 months. These “treatment claimants” were then compared with a control
group of claimants who followed the usual rules of the Illinois Ul system. The Illinois
experiment provided very encouraging initial indication of the incentive effects of
such policies. They showed that bonus offers resulted in a significant reduction in the
duration of unemployment spells and consequent reduction of the regular amounts
paid by the state to Ul beneficiaries. This finding led to further “bonus experiments”
in the states of New Jersey, Pennsylvania and Washington with a variety of new
treatment options. An excellent review of the experiments, some general conclusions
about their efficacy and a critique of their policy relevance can be found in 7. In this
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section we will focus more narrowly on a reanalysis of data from the Pennsylvania
Reemployment Bonus Demonstration described in detail in ?.

The Pennsylvania experiments were conducted by the U.S. Department of Labor
between July 1988 and October 1989. During the enrollment period, claimants who
became unemployed and registered for unemployment benefits in one of the selected
local offices throughout the state were randomly assigned either to a control group
or one of six experimental treatment groups. In the control group the existing rules
of the unemployment insurance system applied. Individuals in the treatment groups
were offered a cash bonus if they became reemployed in a full-time job, working more
than 32 hours per week, within a specified qualification period. Two bonus levels and
two qualification periods were tested, but we will restrict attention to the high bonus,
long qualification period treatment which offered a cash of bonus of six times the
weekly benefit for claimants establishing reemployment within 12 weeks. A detailed
description of the characteristics of claimants under study is presented in 7 which
has information on age, race, gender, number of dependents, location in the state,
existence of recall expectations, and type of occupation.

Categorical variables related to these characteristics are used in our modeling. More
specifically these are:

Treatment: indicator variable taking the value 1 if the claimant is in the treatment
group and zero otherwise.

young: 1 if the claimant’s age is less than 35 and 0 otherwise.

old: 1 if the claimant’s age is more than 54 and 0 otherwise.

black: 1 if the claimant is black and 0 otherwise.

hispanic: 1 if the claimant is hispanic and 0 otherwise.

female: 1 if the claimant is female and 0 otherwise.

recall: 1 if the claimant answered “yes” when asked if he/she had any expectation
to be recalled to his/her prior job.

dependents: indicates the number of dependents of the claimant. Coded 0, 1, or
2 if the number of dependents is 2 or greater.

lusd: 1 if the claimant filed in Coatesville, Reading, or Lancaster and 0 otherwise.
These three sites were considered to be characterized by low unemployment rate and
therefore shorter durations of unemployment.

durable: 1 if the occupation of the claimant was in the sector of durable manu-
facturing and 0 otherwise.

Q1-Q5: five indicator variables indicating the quarter of enrollment of each claimant.

Our measure of duration is called inuidur in the final reports of the experiment.
Since a large portion of spells end in either the first or the twenty seventh week,
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it should be stressed that the definition of the first spell of Ul in the Pennsylvania
study includes a waiting week and that the maximum number of uninterruptedly
received full weekly benefits is 26. This implies that many subjects did not receive
any weekly benefit and that many other claimants received continuously their full,
entitled unemployment benefit. Again, ? contains further details.

6.1. The Model. Our basic model for analyzing the Pennsylvania experiment pre-
sumes that the logarithm of the duration (in weeks) of subjects’ spells of UI benefits
have linear conditional quantile functions of the form

Quog(r)(T|z) = 2'(7).
The choice of the log transformation is dictated primary by the desire to achieve
linearity of the parametric specification and by its ease of interpretation. Multiplica-
tive covariate effects are widely employed throughout survival analysis, and they are
certainly more plausible in the present application than the assumption of additive ef-
fects. It is perhaps worth reiterating that the role of the transformation is completely
transparent in the quantile regression setting, where

Qun(lz) = 2'(7)

implies

Qro(rlz) = b7 (2'B(r)).
In contrast, the role of transformations in models of the conditional mean function
are rather complicated since the transformation affects not only location, but scale

and shape of the conditional distribution of the response. Our (provisional) model
includes the following effects:

o Indicators for the treatment group.

Indicators for female, black and hispanic respondents.

Number of dependents, with 2 indicating two or more dependents.

Indicators for the 5 quarters of entry to the experiment.

Indicator for whether the claimant “expected to be recalled”.

Indicators for whether the respondent was “young” — less than 35, or “old” —

greater than 54.

Indicator for whether claimant was employed in the durable goods industry.

o Indicator for whether the claimant was registered in a low employment district:
Coatesville, Reading, or Lancaster.

In Figure 6.1 we present a concise visual representation of the results from the
estimation of this model. Each of the panels of the Figure illustrate one coordinate
of the vector-valued function, B(T), viewed as a function of 7 € [a,1 — a]. Here
we choose a to be .20 effectively neglecting the proportion of the sample that are
immediately reemployed in week one and those whose unemployment spell exceeds
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that insured limit of 26 weeks. The lightly shaded region in each panel of the figure
represents a 90 percent confidence band.

Before turning to interpretation of specific coefficients, we will try to offer some
brief general remarks on how to interpret these figures. The simplest case is the pure
location shift model in which we would have the classical accelerated failure time

(AFT) model,
log T; = 23 + u;

with {u;}’s iid from some F. For F' of the form F(u) = 1 — exp(— exp(u)), this is
the well known Cox proportional hazard model with Weibull baseline hazard. In this
case we would expect to see coefficients Bj(T) that oscillate around a constant value
indicating that the shift due to a change in the covariate is constant over the entire
estimated range of the distribution.

Another conventional model with linear quantile functions is the linear location-
scale model,

log T; = 23 + (zi7)u;

where again, wu; is taken to be iid. Now the covariates are allowed to influence the
scale as well as the location of the conditional distribution of durations. In this case
the “slope” coefficients 3;(7) should look just like the “intercept” coefficient up to a
location and scale shift. The intercept coefficient estimates a normalized version of
the quantile function of the u;’s and all the other coefficients are simply location and
scale shifts of this function.

No treatment effect is observed in either tail implying that the treatment had no
effect in changing the probability of immediate reemployment (in week one), or in
effecting the probability of durations beyond the 26 week maximum. The high bonus
and long qualification period treatment, yielded roughly a 15% reduction in median
duration. This effect is considerably stronger statistical significance than that seen
in the other treatments.

The randomization of the experiment was quite effective in rendering the poten-
tially confounding effects of other covariates orthogonal to the treatment indicators.
Nevertheless, it is of some interest to explore the effect of other covariates in an effort
to better understand determinants of the duration of unemployment.

Women are 5 to 15% slower than men to exit unemployment. Blacks and Hispanics
appear much quicker than whites to become reemployed. This effect is particularly
striking in the case of blacks for whom median duration is roughly half (=~ ¢™) that
of whites, and only 30% as long as controls at 7 = .33. The number of dependents
appears to exert a rather weak positive effect on unemployment durations. The
quarter-of-entry variables are inherently not very interesting, but it appears that late
entry into the experiment improved one’s chances for early reemployment. The recall
indicator is considerably more interesting; anticipated recall to one’s prior job has a
very strong and very precisely estimated detrimental effect over the entire lower tail
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FIGURE 6.1. Quantile Regression Process for Log Duration Model
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of the distribution. However, beyond quantile 7 = .6, which corresponds to about 20
weeks duration for white, male controls, the anticipated recall appears to be foresaken
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and beyond this point recall becomes a significant force for early reemployment in
the upper tail of the distribution.

Not surprisingly the young (those under 34) tend to find reemployment earlier
than their middle aged counterparts, while the old (those over 54) do significantly
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worse. In both cases the effects are highly significant throughout the entire range
of quantiles we have estimated. Prior employment in durable manufacturing has a
weakly disadvantageous effect on reemployment, but residing in a low unemployment
district is, not surprisingly, helpful in facilitating more rapid reemployment.

The treatment effect of the bonus offer clearly does not conform to the location
shift paradigm of the conventional models. After the log transformation of durations,
a location shift would imply that the treatment exerts a constant percentage change in
all durations. In the present instance this implication is particularly unpalatable since
the entire point of the experiment was to alter the shape of the conditional duration
distribution. In the treatment panel of Figure 6.1 we have seen that the bonus
effect gradually reduces durationsfrom a null effect in the lower tail to a maximum
reduction of 15% at the median, and then gradually again returns to a null effect
in the upper tail. This finding accords perfectly with the timing imposed by the
qualification period of the experiment. It might be thought that the bonus should
not effect durations at all beyond the qualification period, but further consideration
suggests that accelerated search in an effort to meet the qualification period deadline
could easily yield “successes” that extended beyond the qualification period due to
decision delay by potential employers, or other factors.

Taken together, the results presented in Figure 6.1 do not seem to lend much
support to either the location shift, or to the location-scale shift, hypotheses of the
conventional regression model. In the former case we would expect to see plots that
appeared essentially constant in 7 while in the latter, we expect to see plots that
mimic the shape of the intercept plot. Neither of these expectations are fullfilled.
However, as we have emphasized earlier, it is crucial to to be able evaluate these
impressions by more formal statistical methods.

6.2. Inference on the Quantile Regression Process. To illustrate our proposed
inference strategy we have decomposed the test of the location scale shift hypothesis
based on the full model represented in Figure 6.1, into several intermediate steps.
In each of these steps we present results for only a subset of eight selected covariate
effects in an effort to conserve space, but all 15 covariate effects are handled in an
identical fashion. In Figure 6.2 we present, for each of our selected covariates, the
prediction of the process BZ(T) based on the regression onto the estimated “intercept
process”, 51(7') as indicated by (4.1). Each of the fitted curves is based on least
squares estimation using the 301 estimated points of the quantile regression process
for each coordinate. The solid lines in these panels are the same as those appearing
in the previous figure; the dotted lines represents the fitted curve. With the possible
exception of the recall effect, none of these fits look very compelling, but at this stage
we are already deeply mired in the Durbin problem and so it is difficult to judge the
significance of departures from the fitted relationships.

Taking the residuals from the panels of Figure 6.2, and standardizing by the
Cholesky decomposition of their (inverse) covariance matrix yields the parametric



28 INFERENCE ON THE QUANTILE REGRESSION PROCESS

FIGURE 6.2. Quantile Regression Process for Log Duration Model
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quantile regression process, 0,(7), whose coordinates are illustrated in Figure 6.3. It
is perhaps misleading to associate the coordinates of this process so closely with the
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FIGURE 6.3. Parametric Quantile Regression Process for Log Duration Model
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original labeling of the coordinates of B(T), since the matrix transformation of the
process mixes the coordinates thoroughly. Had we specified hypothetical values for
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FIGURE 6.4. Transformed Parametric Quantile Regression Process
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the coefficients rather than estimating them for Figure 6.2, we could of course treat
the resulting process in Figure 6.3 as a vector of independent Brownian bridges under
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FIGURE 6.5. Parametric Quantile Regression Process
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the null. However, the effect of the estimation is to distort the variability of the
process, as we have seen in Section 3. At this point we estimate the function ¢ and
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FIGURE 6.6. Transformed Parametric Quantile Regression Process
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perform the martingale transformation on each slope coordinate. The transformed



RoGER KOENKER AND ZHIJIE XIAO 33

TABLE 6.1. K,; Statistics for the Log Duration Model

Treatment 1.40 | Ql-Effect 3.65 | Recall Effect 1.99
Female 3.02 | Q2-Effect 0.54 | Young Effect 1.43
Black 5.97 | Q3-Effect 0.16 | Old Effect 4.16
Hispanic 3.93 | Q4-Effect 0.25 | Durable Effect  1.72
N-Dependents 0.01 | Q5-Effect 0.20 | Lusd Effect —2.23

coordinates of the process v,(7), are illustrated in Figure 6.4. Under the null hypoth-
esis the coordinates of 0,(7), Figure 6.4 are, asymptotically, independent Brownian
motions. We consider the test statistic,
Ky = sup |[0,(7) |1
T€T
which takes the value 114.78. The critical value for this test is 16.55, so the location-
scale-shift hypothesis is decisively rejected.

It is of some independent interest to investigate which of the coordinates contribute
most to the joint significance of our K, statistic. This inquiry is fraught with all the
usual objections, but we plunge ahead. In place of the joint hypothesis we can consider
univariate sub-hypotheses of the form,

Bi(1) = pi + o Bi(7)
for each “slope” coefficient. In effect this approach replaces the matrix standardiza-
tion used for the joint test by a scalar standardization. The martingale transformation
is then applied just as in the previous case. Now, because there is no matrix stan-
dardization the original labeling of the coordinates is more meaningful. In Figure
6.5 we replot the standardized residuals for our eight selected covariate effects using
this coordinatewise approach. And in Figure 6.6 we plot these processes after the
martingale transformation. In Table 6.1 we present the the test statistics,
K, = sup |1~)m(7—)|
TeT

for each of the covariates. Effects for the quarter of entry are not reported. The critical
values for these coordinatewise tests are given in Appendix B, and we see that with
the exception of the dependent effect, all the effects are quite highly significant.

What should we conclude from this exercise? The linear location shift and locatio-
scale shift models are very elegant and convenient abstractions for many statistical
purposes. However, they also clearly place very strigent restrictions on the way that
covariates are permitted to influence the conditional distribution of the response vari-
able. In the case of our unemployment duration application the location-scale shift
hypothesis may be viewed as a generalized form of the familiar accelerated failure
time model in which the scale of the response distribution responds linearly to the
covariates. This specification is decisively rejected by the data from the Pennsylvania
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experiments. Not only the treatment effect of the bonus payment, but many other
of the covariates appear to affect the conditional distribution of unemployment dura-
tion in ways that are not adequately represented by pure location and/or scale shifts.
One consequence of the proposed methods of inference, it may be hoped, would be a
greater willingness to explore more flexible models for covariate effects.

APPENDIX A.
Proof of Theorem 1 Notice that
RA(r) —r = ¥(r) = R [B(r) = 3(r)] + RA(T) = r — ¥(7),
Under Assumption A.3, R3(r) —r — ¥(7) = ((7)//n, thus

RA(r) = r = W(r) = R [B(r) = B(r)] + (7).

Under Assumptions A.1 and A.2, by Theorem 1 of Gutenbrunner and Jureckova (1992), we have,
uniformly for 7 € T,

Vi[5 = 8] = —= 7 7 ()

where vo(7) is a standardized p-dimensional Brownian bridge process, ¢(7) = f(F~1(7)). Thus

on(r) = Vp([RQRTTIRA(r) — r = W(r)]
(NIRRT R/ [3(r) = B(r)| + ¢ (1) [RQRT]™H2((7)
= vo(7T) + (7).

Proof of Corollary 1

on(r) = Vaen(N)RGRTITPRB(r) — v — (7))
= Vnp(n[RQRT]TV2[RA(r) = r — W(7)]
+ [on(7) = (DI [RQ BT 2V/a[RA(T) = r = ¥(7)]
+p(r) [[RQRT] 2 — [RQRT] /] mfwm—r—wn
Notice that
[RQ,RT]~Y2 — [RQRT]"Y/? = [RQ,RT]" 1/2{[RQRT]1/2 _ [RQnRT]l/Z} [RORT]-/2,
and [RQ,RT]Y? = RH; T,
[RQRT]M? — [RQ,RT]M? = R[H; " — HyJV? = RHSV[Hy — HolHy ' J Y2
Under Assumption A .4,

[on(7) = o(P)] [RQRTI™Y2/A[RB(r) — r — W(1)] = 0,(1),
o(1) |[[R2, RT7Y2 — [RQRT)™Y2| /[RB(T) — r — W(7)] = 0,(1),
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thus

() = Vg (RO T VIRAG) - w(r)
V(T [RQRTITV[RB(7) — v = W(7)] + 0y(1)
= wvo(r)+ n(r).

| ]
Proof of Theorem 2
Un(7) = ﬁso(f)[RnQRZ]‘”Z[RZB(T) —rp = ¥(7)]
= ()[R, QR *V/n[RA(r) — 7 — W(7)] )
FERAQRT] 2l = 1]+ p(D[Ra QRS 2Vl R = RI(T)
= (n)[RQRT)™*\/n[RA(r) — r — W(7)]
+o(T)[RQR T \/n[rn — r] + o(7)B(r)[RQRT]™/*\/n[R, — R]
+op(1)
Notice that 3(1) = a +yF~1(r),
B(r) = (N)RQRT]AV/R[RA(T) - r = U(7)]
+p(r) { [RRRT]™/* /Al — 1] + a[RORT]V/*V/a[R,, — K]}
+o(r) P~ ()7 [RQRT] /[ R, — R]
+op(1)
= on(7)+ (1) Zn + 0p(1)
where
() = (¢(r), o(r)F~H ()"
and
_ [ [RQRT]"Y2/nlr, — ]+ a[RQRT]V2/n[R, — R] | _
= | SRQRTIV /R, - ) = 0r(D):
By result of Theorem 1,
U (7) = E(T) T Zp = vo(7) + n(7).
| ]

Proof of Corollary 2

Similar to that of Corollary 1. [ |
Proof of Theorem 3

By the result of Theorem 2,

O (7) = vo(7) + E(T) T Zpy + (1) + op(1).
Denote the transformation based on ¢ as
T 1
Q) == [ s [ ianen)] as
0 s
Then, noticing that @, is a linear operator, we have

Un(7) = Qqn(7) = Quuo(7) + Qué(7) T Zn + Qyn(7) + 0p(1).
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By construction, Q,(¢(7)) = 0, and by Khmaladze (1981), Q,vo(7) = wo(7), where wy is a standard
Brownian motion. Thus

Un(7) = wo(T) +17(7).
Under the null hypothesis,

sup ||vn (7)[| = sup [Jwo(7)||-
T€T T€T

Proof of Corollary 3
We denote the transformation based on ¢, as

) =00 = [ im0 | 1 in(r)0 ()] .
Noticing that

B (7) = Vo (1) RaQn Ry ] [RaB(7) = v = W(T)] = vn(7) + & (1) Zn + 0p(1)

where Z, is an O,(1) quantity independent of 7, by construction, @, (¢,) = 0. Thus we have
T 1
Up(T) —/ [g'n(s)TCn(s)_l/ g'n(r)dﬁn(r)] ds
0 s
T 1
= wuu(7) —/ [g'n(s)TCn(s)_l/ g'n(r)dvn(r)] ds+ o,(1).
0 s

Because §,(r) is a consistent estimator of §(r) uniformly on » € 7 = [¢,1 —¢], we have, for all s € T
1
[ it
1—¢

-1

-1 -1

< < 00,

v Jee = [ ssoral

and

(A.2) [Ca(s)™| = / g'n(v)g'n(v)Tdv]

IN

[ a7 a]

L/ 1—¢

= [/ i al

L/ 1—¢

-1

+0,(1) < 0.

By assumption A.7, (A.1), and (A.2), we have
/OT [g'n(s)TCn(s)‘1 /sl [4 () = 4(r)] dvn(r)] ds = oy(1),
/OT [[g'n(s)T — ()T C(s)? /51 g'(r)dvn(r)] ds

Also notice that, under Assumption A.7, for all s € 7 |

Il
%Q
—

—_
~—

(A3 C(s) = Cols) = [ [30)d)T = ()i ()] v = 0y (1),
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thus, by (A.3), (A.1), and (A.2),

gn

(
[ [g'"“)T Coter =) [ 1g‘<r>dvn<r>] s

= /OT[ (S)TC"(S)_l[C(S)_Cn(s)]C(S)_l/slg'(r)dvn(r)] ds
0p(1).

Thus

and the result of Corollary 3 follows immediately. ]

APPENDIX B. AsyMPTOTIC CRITICAL VALUES

Like many other Kolmogorov-Smirnov type tests (see, e.g. 7, the limiting distribution sup_ o, [[wo(7)]]
is dependent on the norm || - ||, the pre-specified 7 and the dimension parameter q. Notice that
the transformation is generally unstable in the extreme right tails, and the uniform convergency of
existing estimators of the density and score (f(F'~1(s)) and f'/f(F~1(s))) usually requires that 7
be bounded away from zero and one, we consider a subset of [0, 1] whose closure lies in (0, 1).

We calculated the 1%, 5%, and 10% critical values for the test statistic sup,c ||vn(7)|| based
on simulations where the Brownian motion was approximated by a Gaussian random walk, using

a sample size n = 2000 and 20,000 replications. For the norm ||-||, we use the £; norm for a ¢-
dimensional vector z, ||z|| = 25:1 |;]. Table 1 covers 7 = [¢,1—¢] for ¢ = 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, and ¢ = 1,2, ...... ,20. Although conventionally we consider symmetric intervals 7 = [e,1 — ¢]

for some small numbers ¢, a much wider range of intervals 7 may be considered for the proposed
tests. Critical values based other choices of the interval 7 and the dimension parameter ¢ can be
similarly calculated. Gauss programs are available from the authors upon request.

Asymptotic Critical Values
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6=0.05 6=0.1 6 =0.15

1% 5% 10% 1% 5% 10% 1% 5% 10%

2.721 2140 1.872 2640 2.102 1.833 2.573 2.048 1.772

4.119  3.393  3.011 4.034 3.287 2.946 3.908 3.199  2.866

5.350  4.523  4.091 5.267 4.384 3.984 5.074 4.269 3.871

6.548 5560 5.104 6.340 5.430 4.971 6.148 5284  4.838

7.644 6.642 6.089 7.421 6.465 5.931 7.247  6.264  5.758

8.736 7.624 7.047 8559 7.412 6.852 8.355 T.A97 6.673

9.876 8578 7.950 9.573 8368 7.770 9.335 8125  7.536

10.79  9.552 8890 10.63 9.287 8.662 10.35 9.044 8412

RIS |RSs|=|=
l
OO ~I| O OY | W N —

11.81 10,53  9.820 11.65 10.26 9.571 11.22  9.963  9.303

p=10 1291 1146 10.72 1254 11.17 1043 12.19 1085 10.14

p=11 14.03 1241 11.59 1358 12.10 11.29 13.27 11.77 10.98

p=12 15.00 1334 1252 14.65 13.00 12.20 14.26 12.61 11.86

p=13 1593 1432 13.37 1559 1390 13.03 15.22 1348 12.69

p=14 16.92 1514 14.28 16.52 14.73 13.89 16.12 1434 13.48

p=15 1793 16.11 15.19 1753 1567 1476 17.01 1524 14.36

p=16 1885 1698 16.06 1846 16.56 15.65 17.88 16.06 15.22

p=17 19.68 1790 16.97 19.24 1744 1653 18.78 16.93 16.02

p=18 20.63 1883 17.84 20.21 1832 17.38 19.70 1780  16.86

p=19 2159 19.72 18.73 21.06 19.24 18.24 20.53 1868 17.70

p=20 2254 2058 19.62 22.02 20.11 19.11 21.42 1952  18.52

6 =02 6 =10.25 6=0.3

1% 5% 10% 1% 5% 10% 1% 5% 10%

2483 1986 1.730 2.420 1.923 1.664 2.320 1.849 1.602

3.742  3.100 2.781 3.633  3.000 2.693 3.529 2904 2.602

4.893 4.133 3.749 4737 4018 3.632 4.599 3.883 3.529

6.023 5.091 4.684 5818 4.948 4.525 5.599 4.807 4.365

6.985 6.070 5.594 6.791 5853 5406 6.577 5.6564 5.217

8.147 6.985 6.464 7.922 6.760 6.241 7.579 6.539 6.024

9.094 7887 7.299 8856 7.611 7.064 8542 7.357 6.832

10.03 8775 8169 9.685 8510 7.894 9413 8211 7.633

10.90  9.672 9.018 10.61  9.346  8.737 10.27 9.007 8.400

11.89 10.52 9.843 11.48  10.17  9.517 11.15 9832 9.192

12.85 11.35 10.66 1248 10.99 10.28 12.06 10.62 9.929

13.95 12.22 1148 1354 11.82 11.11 1296 11.43 10.74

T s |k s s ke e e e |
[
ol 2| 5] | oo 1| o ot ua| eo| no| =

14.86 13.09 1231 1434 1266 11.93 13.82 12.24 11.51

p=14 1569 13.92 13.11 15.26 1346 12.67 14.64 13.03 12.28

16.55 1477 13.91 16.00 1433 13.47 1546 13.85 13.05

3
l

17.41 15.58 14.74 16.81 15.09 14.26 16.25 14.61 13.78

3
l

18.19 16.43 15.58 17569 1595 15.06 17.04 15.39 14.54

3
l

19.05 17.30 16.37 1849 16.78 15.83 17.85 16.14 15.30

19.96  18.09 17.17 1940 1750 16.64 18.78 16.94 16.05

3
l

20.81 1895 17.97 20.14 1830 17.38 1948 17.74 16.79

=3

Il
2| = = =] =] =
O| O Co| 1| Oy Ot

p
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