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1 Introduction

The following paper addresses the question of how to model individual behavior
in the face of changes in a set of rules governing the social welfare system in
Sweden. To this end, the Swedish sickness insurance provides an excellent study
object as the system has been changed often during the past decade. As the
question employee compensation for sick leave is one the more widely discussed
aspects of Swedish social welfare legislation, it is of interest to examine how
individuals respond to changes in this legislation. It is therefore not surprising
that a number of studies have appeared in the literature. Using data for 1991,
Brostrom, Johansson and Palme (Brostrom et al., 1998) model the transition
from work to work absence and wvice versa using a proportional hazard model.
They use the models to examine to changes following the reduction in the rate
of compensation in March 1991. Their framework is a neoclassical utility max-
imizing model similar to the one presented below where working time and sick
leave time vary but leisure is given.!

In this paper we ask the question as to what extent individual response to
changes in system depend upon differences in socioeconomic and demographic
characteristics. The basic theoretical model is presented in Section 2; the data
is presented in third section. The fourth section presents the models considered;
the fifth some results from these models and the final section draws conclusions.

2 The economic model

Sick leave will be analyzed in the context of the usual neo-Classical model. This
is the approach followed by Palme—Johansson (Johansson and Palme, 1996),
Brose (Brose, 1995) and others. The basic model posits a utility function which
depends positively upon leisure time (L), consumption of the composite good,
z, as well as individual characteristics, K, which will be represented by socio—
economic variables such as marital status, number of children, education, work-
ing conditions and so on:

u=u(z, L,K) (1)

Leisure time is “purchased” by abstaining from working time z costs the going
wage rate, w. Total time, T, is the sum of leisure time and working time.

T=z+1L (2)

The budget restriction is derived from the identity that expenditure must equal
income. On the debit side we find the cost of goods — p is the aggregate price
level. On the credit side we find earned income after taxes (assumed proportional
with a rate t), w(1 — t)z, and unearned income, F'. Thus the budget equation

will be

z=w(l-t)z+F (3)

IThey divide time into ¢°, contracted working time, !, contracted leisure time, assumed
constant, and t%, time absent. These three variables seem to be measured in hours.
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Equation (3) follows from the accounting definition with the price level normal-
ized to unity.

To solve for the utility maximizing consumption, substitute (2 and(3) into
the wutility function (1) and set the derivative with respect to working time to
Zero:

du  Ou Ju

Y (I A D

dz 8xw( ) oL
When utility is maximized, assuming an interior solution, the marginal rate of
substitution between leisure time and working time will be equal to the real

0 (4)

wage rate net of tax. This of course the familial solution from a basic course
in micro economics. However, the real world differs from this approach in a
number of ways.

First of all, the individual may be unable to work because of illness. However,
because of the existing social security system in Sweden, the individual is insured
against income loss resulting from absence due to illness. This insurance system
requires that the restrictions placed on the utility function must be modified.
The time restriction must now include sick time, s.

However, working time and sick time cannot be chosen indepently. One has
a certain amount of contracted time and sick time must be deducted from this
given amount. Thus the individual chooses sick time to maximize his utility and
working time becomes a residual. If we call contracted time C, then C =z + s
then the budget equation can be written

T=z+s+L=C+1L (5)

The second adjustment concerns the budget restriction. The individual is
compensated for income loss with a percentage of income, §.2 Thus sick time
becomes a poorer paid substitute for working time. With a given amount of
contracted time, the modified budget equation is as follows:

z = w(l—t)(z+ds)+ F
w(l —=t)[C—(1—8)s]+ F (6)

As pointed out above, the individual now has a different variable under his
control: the amount of sick leave taken. Illness and its effect on the individual
is personal. There are of course cases when one is laid out and cannot work;
on the other hand, a common cold is not really a hinder if one feels that he
cannot afford the reduction in income which occurs from staying at home.?

Using equation (6),first order conditions are now

du ou ou

2This is not quite true: one is compensated with & X 100 percent of income up to 7.5 “base

0 (7)

amount” which is an inflation adjusted amount set by the government each year. However, for
those with income above this amount, there is an additional insurance paid by the employer.
Thus as a first approximation, we assume that the individual receives the same compensation
regardless of income.

3 A more personal note here would explain how my youngest daughter was infected shortly
after birth by a nurse who was working at the clinic despite a cold.
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This expression is not as familiar as (4). However, in (7) working time is a
residual. This first order conditions mean that the individual chooses sick time
until, at the margin, the rate of substitution between leisure and consumption
is equal to the net real wage decreased by what the individual “pays” for the
sick time.

For the remainder of this paper, however, we will treat contracted time —
and thus leisure time — as given as let the individual chose the time he is absent
from work due to illness.

As we will be doing an econometric model using variants of linear models,
we would like the utility function to be of such a form that the solution to the
utility maximization problem would be linear in the relevant variables. A utility
function which meets these requirements has been derived by Hausman (Hauss-
man, 1980) and used by others in particular Johansson — Palme (Johansson
and Palme, 1996), (Cassel et al., 1996). The function is derived by Hausman by
beginning with a linear function and proceeding backwards through the indirect
utility function to the direct one. In the present context, this function would
appear as follows:

Blz+5— %)

S TiLrs Jrhq(T—L—s—%)—hﬂ(ﬂ) (8)

Substitution (6) into this utility function yields the following demand for
sick leave equation:

s=C—aw(l—1t)(1—-406)—B(F+w(l—1t)dC)+k (9)

This is essentially Johannson — Palme’s equation (4) and Hausman’s equa-
tion (2). There is, however, one essential difference. In the other two studies,
individual characteristics are seen to enter the demand equation linearly through
what is here interpreted as a constant, k, but is, with these authors, a vector
of individual characteristics. Their approach would seem to exclude interaction
terms involving wage and non—wage income as well as gender effects in the case
of Johansson—Palme. We prefer to add the individual effects through the param-
eters in (9). Secondly, we allow the constant term, k, to vary across individuals
as well. This will allow other variables to enter the equation.

s, =C; — aiwz’(l - ti)(l - 5) - ai(Fi + wi(l - ti)‘sci) +k; (10)

The parameters, in turn, will be linear combinations of other variables:

a; = agtqoq (11)
b, = By+4a,8; (12)
ki = ko+am, (13)

This specification is very general. It will allow the Johansson—Palme equa-
tion by assuming that all terms other than o, and 3, in equations (11) and
(12) are zero. In addition to the interactions involving the wage variables, equa-
tion (13) allows both other variables as well as other interactions to enter the
demand for sick leave in a linear manner.
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Income

Sick days
Figure 1: The budget line given a fixed number of working days per week. The
individual can vary the number of sick days he takes.

There is a problem with equation (10). While absence for sickness is a
positive variable, there is nothing in (10) to prevent s, from becoming negative.
We assume then that this equation is a linear approximation of the one actually
estimated. Count models assume that the regression is of the form Iny = 3
and we take (10) to be an approximation of this equation which is the one
estimated.

The budget line used in the above analysis is illustrated in Figure 1. We
have assumed that the number of working days is set contractually; therefore,
income for a person never ill is the intercept on the vertical axis. The solid line
would be income in the absence of sick insurance for an increasing number of
sick days. At some point, the number of sick days would equal the contracted
time and income would fall to zero. A full insurance would compensate for all
income loss due to illness. This was the case in Sweden in for the first year
in the study (1986).* In 1992, the system was changed. First, the level of
compensation was reduced to 75% of income for the first three sick days. This
was increased to 90% from the fourth sick day. This change is represented by
the uppermost line in the diagram, labeled 1992. Note the kink in the line after
the first three days. The second change is that sick pay for the first fortnight
became the responsibility of the employer. The national sick insurance paid out
compensation from day 15. This is the relevant budget line for the second wave
used here (with data from 1992).

From April 1993 the system changed again: now a qualifying day was added:
one got no compensation for the first sick day while the rate of compensation
remained unchanged for the second and third day of illness but was reduced
from 90% to 75% for the remainder of the first two weeks. This budget line is
labeled “1994” in the diagram and is the one relevant for the third wave used
with data from 1995.

3 HUS data

The first wave of the Swedish Household Market and Nonmarket Activities
(HUS) was completed in 1984 following a pilot study initiated by Anders Klev-

4This is note exactly true. Blue collar workers had a qualification day and 90% renumera-
tion rate. White collar workers had no qualification day and 100% compensation.
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marken in 1982. While the pilot survey was based on a random sample of three
western counties (sic)— Goteborgs- och Bohuslan, Alfsborgs lan and Varmlands
lan — the entire survey is based on a stratified random sample of individuals
in the entire Kingdom. The household to which the individual belonged was
then included in the sample. both the husband and wife in the household — as
well as the person selected if different from these two — were interviewed. In
all, 2131 houscholds and a total of 3757 individuals were selected.® Net sample
consisted of 1993 households with 3552 individuals.

The 1986 wave included all those in the previous study plus a few other
categories. The first of these was the nonresponse in 1984: those who should
have been in the study but for one reason or other were excluded. Further, those
who moved into the household after the 1984 interview were included. Here a
net of 1949 individuals were included. Finally, all members of the household
born 1966 or 1967 were included. If they had entered a new household, then
the head of that household and his (or her) partner was interview as well. this
sample, called the Supplementary sample, encompassed 528 individuals.

The 1988 (2291 individuals) and 1991 (2052 individuals) waves were much
more limited in scope and were really follow ups on the two previous waves
recording changes in household composition, housing and labor market condi-
tions. The main difference between these two latter waves was that the 1991
wave attempted to include new household members (those who had moved into
the household after the 1986 survey) as well as those who had recently turned
18.

The 1993 wave was a repeat of the 1986 survey. The same decision rules
for including new subjects were applies here (with, of course, the year of birth
adjusted to 1973 or 1974). There were a net total of 1811 individuals in the
panel, a net of 1643 in the supplementary survey and 733 in the nonresponse
survey.

The 1995 wave as well as the 1997 wave is again a duplication of the earlier,
larger waves. The last wave is at this writing note complete and is thus not
included in this paper® The 1995 panel includes 2963 individuals and 276 in the
Supplement.

This paper will consider a total of 8921 observations. The sample is com-
posed of the individuals who have been in the work force.” An important sub-
sample will be the 7081 who have answered the questions on their working
environment.

5The sample procedure is described in Klevmarken (Klevmarken, 1984). More detail is
found in the first volume of the Codebook (Klevmarken and Olovsson, 1993).

8This wave will be available Summer 1999 and will be included in the final report.

7As some of the questions asked were not answered by all those interviewed, there may be
a slight discrepancy between the actual number of observations used in a regression of a table
and the stated total. For example, table 5 contains information on 8817 rather than 8921
individuals.
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Table 1: The dependent variable: weeks of sick leave (s) for own illness.
Survey | Size of Number | Prop  Prop Mean Mean Mean

sample of s>0 s>0 s>0 s>0 s>0
Women | Men  Women | All Men ‘Women
All | 8921 4465 0.327 0.400 4.907 4.330 5.378

1986 | 2591 1289 0.439 0471 4.435 3.834 5.000
1993 | 3766 1928 0.307 0.391 5.465 4.485 6.199
1996 | 2564 1248 0.245 0.341 4.668 4938 4.464

4 The data, a description

To the uninitiated, the extraction of data from a database seems a simple matter.
However, this has turned out not to be the case. There are many problems
involved in finding the data in there files. One hinder is that questions referring
to the entire household are asked on to the head of the household. For example,
the question as to the type of housing — rental apartment, purchased apartment
or own home — is only asked to the head of the household. At times this value
is then also administratively given to other household members in the survey,
at times not. Then, in the panel surveys, the head of household is asked if they
have moved since the last interview. If the response is no, then the question on
housing ownership is not asked and the researcher must go backward through
all the surveys until he finds an answer to the question. Failure to do so reduces
the sample size by quite a sizable amount.

Of the almost 9000 individuals in the survey, about 50% are female. In
Table 1 we note that the proportion of both men and women who have taken
sick leave has fallen during the three samples. However, the trend is for longer
sick leave periods for men but not so for women. This latter group has increase
the number of sick weeks in the 1992 and then decreased them by about 30% in
1995. The reason for this increase could be the changing age composition of the
survey: the individuals get older and the input of younger individuals observed
as children grow up and form families of their own is not enough to offset this
trend. Table 2 shows this phenomenom especially in the transition from the
1986 to the 1993 surveys. For all three surveys, the proportion of those under
40 decreases and those over increases. And sick leave tends to increase with age.

Table 2: The age distribution of the sample.

All surveys 1986 survey 1993 survey 1996 survey
Variable | Men ‘Women | Men ‘Women | Men Women | Men ‘Women

Age < 20 | 0.020 0.012 0.066  0.039 0.000  0.000 0.002  0.002
20< Age < 30 | 0.074 0.081 0.128 0.126 0.072 0.093 0.024 0.017
30< Age< 40 | 0.188 0.181 0.197 0.184 0.198  0.205 0.165 0.140
40< Age < 50 | 0.241 0.240 0.269  0.268 0.210 0.212 0.258  0.253
50< Age < 60 | 0.231  0.239 0.210 0.238 0.248 0.235 0.229 0.247
60< Age < 65 | 0.092 0.091 0.072  0.087 0.099 0.083 0.101  0.107

Age > 65 | 0.153 0.156 0.057 0.058 0.173 0.171 0.221  0.233

Total | 4456 4465 1302 1289 1831 1920 1316 1248
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Table 3: The proportion of those in the population taking sick leave for own
illness sorted by age group and sex.

All surveys 1986 survey 1993 survey 1996 survey
Variable | Men ‘Women | Men ‘Women | Men Women | Men ‘Women
Age < 20 | 0.001 0.000 0.003 0.001 0.000 0.000 0.000 0.001

20< Age < 30 | 0.023 0.030 0.055 0.057 0.015 0.030 0.001  0.002
30< Age < 40 | 0.074 0.081 0.092 0.094 0.083 0.093 0.043 0.048
40< Age < 50 | 0.085 0.097 0.115 0.112 0.085 0.099 0.055 0.081
50< Age < 60 | 0.078 0.106 0.115 0.134 0.063 0.093 0.062  0.095
60< Age < 65 | 0.031 0.043 0.036  0.052 0.029 0.038 0.030 0.041
Age > 65 | 0.036 0.043 0.022 0.021 0.032 0.038 0.055 0.073
Total | 4456 4465 1302 1289 1838 1928 1316 1248

There is a problem with the dependent variable in Table 1. The respondents
were asked if they had taken sick leave during the previous year. If the answer
was positive, then they were asked “how many weeks” were you absent from
your job. They were also asked to round off their answer to the nearest number
of weeks. Thus, if they were absent one or two days they were to answer “zero
weeks”. Thus some of those in the count who are registered as not having sick
leave have in reality been absent up to a couple of days. There are 532 in the
entire sample cases where a ‘zero’ answer is actually a rounded down answer.
This is about 9.3% of the those in the entire sample who have answered ‘zero’.
For the three waves individually, the corresponding percentages are 12.4% in
1985, 7.4% in 1992 and 9.5% in 1995. This is unfortunate but that is the way
the interview was conducted.® However, in the econometric model, we will
attempt to adjust for this problem by estimating a zero adjusted count model.

When one considers those in the sample who took sick leave we find differ-
ences between ages and sexes. Table 3 shows a reduction of the proportion of
those taking such leave in all age groups save the one for those over 65 and
still working. Especially men between 40 and 60 and women between 20 and 30
show large decreases between 1985 and 1992 (and even 1995 for that matter).
The changes in the social security system that occurred between 1986 and 1992
seem to have had a direct and lasting impact.

8The formulation used is perhaps understandable. Individuals are asked about their actions
the previous year and it is doubtful if they could recall the exact number of days they were
absent from work for sickness. By allowing the interviewee to round off to the nearest week
probably increases the accuracy of the answers.

Table 4: Weeks of sick leave (s) for care of another family member.
Survey | Size of Number | Prop  Prop Mean  Mean Mean
sample of s>0 s>0 s>0 s>0 s>0

Women | Men  Women | All Men  Women
All | 8926 4459 0.123  0.190 7.746 2570 11.122
1986 | 2597 1286 0.115 0.187 5.680  2.099 7.938
1993 | 3769 1931 0.122 0.190 10.729 2.817 15.559
1996 | 2560 1242 0.134 0.191 5431  2.659 7.489
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Table 5: Family composition. The proportion of families with children in the
indicated age groups.

Men | none <6 7-12 13-18 Total
All | 0532 0.216 0.118 0.133 4412
1986 | 0.496 0.221 0.136 0.147 1283
1993 | 0.558 0.204 0.113 0.126 1813
1996 | 0.532 0.228 0.109 0.131 1316
Women | none <6 7-12 13-18 Total
All | 0500 0.227 0.129 0.144 4405
1986 | 0.465 0.224 0.148 0.163 1252
1993 | 0.527 0.214 0.122 0.138 1905
1996 | 0.495 0.251 0.120 0.134 1248

Given the decrease in sick leave observed above, it is natural to ask whether
individuals have substituted other types of absence. As the changes in social
welfare legislation did not effect those who took sick leave to care for their
children, we ask whether the decrease noted in Table 3 is balanced by an increase
in paid absence to care for others.

In Table 4, we find a slight and trending increase in the proportion of men
that have taken sick leave to care for family members — almost surely own
children.® There is a similar increase for women but it is so small as to be
negligible. However, in 1992, the number of weeks of sick leave for care of family
members increased slightly for men and tremendously for women. This period
then fell back to previous levels in 1995 — ending up about 25% above the 1985
level for men and 5% below for women. There is another interesting item in this
table: while the proportion of those taking compensated sick leave decreased
from the 1986 to the 1993 survey, the length of the sick periods increased.

The question as to why the large increase in the average number of sick
weeks for women noted in Table 4 occurs. One suggestion would be that the
proportion of women with children less than six years old was large that year
compared to the other years. However, it turns out that there were relatively
fewer women (22.0% in 1986, 21.3% in 1993 and 24.7% in 1996) in that year.

Another suggestion is that the number of children born in the early 1990’s
exceeded the number born in the mid—1980’s. More children for the same num-

91 include here also ones partner’s children in a previous relationship.

Table 6: Average weeks of sick leave (s) for care of another family member
sorted according to family composition.
Survey | Women Men
<6 7-12 13-18 | <6 7-12  13-18
All | 13.358  2.224 4.643 | 2.765 1.306 1.714
1986 | 10.179  1.815 1.000 | 2.303 1.308 1.000
1993 | 18.152  2.939 1.667 | 3.185 1.214 2.000
1996 | 8.913 1.610 8.000 | 2.644 1.444 2150
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ber of women mean more frequent absence for caring for sick children.

Table 5 does, however, give us a hint. The variable sick leave for care of
another family member includes maternity leave. The increase in the propor-
tion of individuals with children six years old or younger increases in the 1996
compared to the previous one. This could indicate an increase in the number of
births in the 1993 survey compared to the 1986. However, it could also be an
error in the data.

5 Modeling count data

The dependent variable in this study is discrete and thus a model which reflects
this should be chosen. There are a number of possible models. One of these is
the Poisson regression model. However, for this model the theoretical mean and
variance are equal, an equality that is seldom observed on actual data. There
are a number of alternatives open to the econometrician when confronted with
a Poisson model exhibiting overdispersion — that is, a variance in excess of the
mean. As this overdispersion results in biased estimates of the variances of the
estimated parameters, one alternative would be to correct these variances for
the overdispersion.

A second alternative would be to estimate a model where the variance is the-
oretically greater than the mean. There are a number of such models available.
One is the negative binomial model that in essence adds a gamma—distributed
noise term to the Poisson model. A second would be a Hurdle model which
assumes that the data are generated by two independent Poisson processes: one
that determines a zero occurrence and one that determines the non—zero level
of the count variable. A third would be a “zero—inflated” count model where a
binomial model determines whether a binary or a count process has generated
the observation. In this case, a zero count may be the result of the binomial
model or of the count model.

Below we discuss these different alternatives.

5.1 The Poisson model

The traditional model for count data is the Poisson model. It models the number
of events that take place during a given interval. The frequency function for the
process is

) e M)
Ply;=3) = =~ (14)

It is well known that the mean and the variance of this process are both equal
to ;. When this parameter is modeled using exogenous variables, it is usual to
define the log of X; as a linear combination of these variables:

InA, ==x,0 (15)

z, is a 1 by k matrix of the independent variables at observation ¢ and 3 a k
by 1 parameter vector. That the equality between the mean and the variance is
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not often observed is one of the problems with this model. I will return to this
below.

The estimation of the Poisson model is easy as the expressions for the first
and second derivatives are not at all complicated.!® The likelihood function is

InL,=-\+yz,0—Iny! (16)

The matrixes of the first and derivatives are

Oln Lpi

a5 - (yz - )‘i) "Ly (17)
Oln Lpi ,
ERELS = AT (18)

That the variance is larger than the mean is called overdispersion in the
literature. The most troubling aspect of this problem is that the standard
errors of the estimated coefficients are biased downwards. This is similar to the
problem of heteroscedasticity in the usual regression model.

Given overdispersion, there are a couple of alternatives avaliable. One is
to estimate a model which produces a variance in excess of the mean. The
is the subject of the following section. A second alternative is to correct the
standard errors in the Poisson model. Such a consistent estimate of the variance
covariance of the parameters would be

COV(B) =H '2V(y)zH* (19)

where z is the complete n by k matrix of the independent variables. V is a
diagonal matrix with

V(yz) =\ + ‘72)‘3 (20)

on the diagonal. This is made operational by replacing V (y,) by V(y,) = (y; —

A)?, by replacing A; in equation (20) with the A, estimated in the sample, and
by estimating ¢? using OLS.

5.2 Over—dispersed models

Below I present three count models where the variance is theoretically exceeds
the mean. The first of these, the Negative Binomial, extends the Poisson by
adding an error term to equation (15) and then assuming that this residual has
a Gamma distribution. The second of the three models, the Poisson Hurdle
model, assumes that the observed count is the outcome of two different Poisson
processes, one of which produces the zero result and the other the positive
counts. The final model presented, the Zero Augmented Count model, also

10 A1l of the models presented in this paper have been estimated using the Newton-Raphson
algorithm with analytical first and second derivatives. In a program such as Gauss or Matlab
— or indeed C++ or Fortran — routines for the likelihood function and the two derivatives
are simple to implement. I have programmed all four routines in Gauss and these programs
are available on request.
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assumes that the observation is generated by two processes: one a binary model
whose zero outcome is the observed zero count and whose no zero output is a
usual count processes with both zero and positive outcomes. The count model
may be either a Poisson or a Negative Binomial.

5.2.1 The Negative Binomial model

One way to model overdispersion is to chose a function where the mean is
less than the variance. Such a model is the Negative Binomial 1t obtains by
assuming, in the Poisson model, that ); is generated with an error term:

InX\, =z,8+¢, (21)

The Negative Binomial obtains by assuming that ¢; follows a gamma distribu-
tion with parameters (¢;, v;) so that (Cameron and Trivide, 1986)

1005 (%) == ()% -

This leads to the frequency function for the negative binomial distribution:

PN AVESY) v\ (Y
Pi=3) = L'y +1DI(y,) (ViJF%) (Vieri) )
where
BY) = ¥ 24
Var(Y;) = ¢;+ Vlwzg (25)

Cameron and Trivedi define v, = (1/a)(exp(z;3))* and distinguish two basic
models. Type I sets k =1 and Type Il has kK = 0. Here I will work with Type
II. The former implies a constant mean—variance ratio while the latter has a
linear mean-variance ratio.!' Defining ¢, = exp(z;3), the frequency function
then becomes

L(h+1)

(ad’i)h(l + ad’i)i(Hl/a) (26)

After a bit of algebra to remove the gamma functions, the log—likelihood for
a single observation is

Yyi—1

InL, = Z In (é + m) —Iny,! + y, In(ag,) — (yZ + é) In(1+ag¢,) (27)

m=0

1 (Cameron and Trivide, 1986, p. 33)
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The first derivatives are rather easy to calculate:

Oln L, 1 ax,emiﬁ
L — T — I |t A 28
e Uil (y N a) 1 +aer? (28)
L, 1% 1 g, 1
[ _ o T i ;3
da - aQZlerJraJragln(lJrae )

" <y N l) e (29)

o) 1+ aexf

But the second derivatives are hairier:'2

?Inl, 1 ae® ,
RN PP [ — 30
08083 (szF a) (1+aemiﬁ)2xzx (30)

5?InL, 2 (%=~ 1 v;
Z T 2 - z; 8 _ Zi
EW T a8 mz::O i T m In (1 +ae ) 2

toa L+ aemf = e~ (L er)g
1 2z; 8
i (y —) ¢ (31)
a/ (14 ae™?)
?InlL, 1 1 x, e
I A 77U Ei) R A 32
9500 o? (y ' a) (1 + aews) )

5.2.2 Modified counts

It is not at all unreasonable to posit that the process returning a count value
of zero is different from the one that yields positive integers. For example,
the number of children in a marriage may well be none at all while the couple
plans a family in the future. Again, the number of bottles of beer a person has

2Routines that maximize a function using only numerical derivatives are of course an al-
ternative to the work involved in calculating and programming first and second derivatives.
However, convergence is much faster using Newton’s method and analytical firsts and seconds.
Indeed I find that the is a such a great improvement using both of these derivatives even com-
pared to routines using only analytical firsts such as the BHHH routine which approximates
the Hessian with the product of the score matrix. The back side of my assertion is that pro-
gramming these derivatives is seldom error free: on must compare results to those returned
by numerical differentiation. The Gauss package for doing maximum likelihood estimation,
MAXLIK, version 3, contained a routine that did such checking. I use it extensively.
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consumed in the past month may well be zero or any positive number within
limits. In both cases one suspects that the process where the count variable is
zero and the one where the variable is positive are in fact two different processes.
The standard reference here is Mullahy (Mullahy, 1936).

The Poisson hurdle model In this specification we study two separate pro-
cesses. The first one will determine whether the output is zero or positive; the
second will determine the positive count. Here we may hypothesize two separate
count processes: one is active when the observed count is zero and the other
when the count is a positive integer. A second alternative would be to consider
the first process a probit and the second a Poisson.

For the zero outcome, using two Poisson processes, we have

P(y; =0)=e" (33)

where 6, = exp(z; - 7).
If the zero process is specified as a Probit, we would have

Py, =0)=®(z - v) (34)

where ®, = ®(z;-v). In either case, z, is n by k, matrix of the variables working
on the zero process and -y is a conformal column vector.
For the positive outcome, 7 = 1,2, ..., we have

1—e % g i)

Ply=4)=—5—— 35
where \; = exp(z; - 3). Here x, is n by k; matrix of the variables working on
the zero process and (3 is a conformal column vector.

This model allows for both over— and underdispersion. Winkelmann and

Zimmermann show that the mean may be expressed as

L e M
BE(y;) = Z] ’ ! a2 (36)
j=1 '

where W, is the ratio of the probability that the first process is not zero to the
probability that the second process is equal to or greater than one. For (33)
the expected value is A, - (1 — exp(6;))/(1 — exp(A,;)); for (34) it is A; - (1 —
®(z;7))/(1 —exp(X;)).

The variance of the hurdle process is
Var(y,) = ¥, Ay +1) — W2A2 (37)
The log likelihood for an observation is
In(Ly;) = -r60,+(1—r)x
[In (1~ 6701‘) ~In(1- 67}“) Fy8— A —In(y)]  (38)

The first derivatives of In(L,;) are
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9In(Ly;) 0, (e % — ;)
oy 1w (39)
9In(Ly,;)

Ai
el o) (y)\ exi1) -, (10)
Here r; is an indicator variable equaling one when the observed count is zero
and zero otherwise.
As the derivative of In(L,;) with respect to 7' or 3’ does not depend upon
the other variable, the Hessian will be block diagonal. Thus

(L) | 0("(-6)—1)
0y (e — 1)
70, (1 —e % —0.e %
ol (1 e0)’ W $2i% (41)

(a2

9% In(Ly,) . A (M- N) 1) o
o500 (1-r,) [ 1) ] i (42)

Starting values could be the least squares estimates. Newton’s method will
give rapid convergence; otherwise one could use the BHHH algorithm and only
the first derivatives.

The Zero—Inflated Count models The basic difference between the Zero—
inflated models and the Hurdle model described in section 5.2.2 is the way the
zero observation is modeled. As before, we consider two processes; but here,
one is a binary Probit model that always returns a zero with probability ®,.
However, with probability 1 — ®, the count process is the ruling one; and this
process may well return a zero count. Thus the probability of observing a zero
is

Ply; =0) =&, + (1 —®,)fy (43)
The probability of observing a positive y; is simply:

P(yi = j) = (1 - (I)z')f+z' (44)

I use f,, to represent the frequency function of the count process when h = 0.
Similarly, f,, represents the truncated at zero frequency function of the count.
Letting \; = exp(x,;3), the mean this distribution is

B(y,) = (1 @)

K3

(45)
If the count is a Poisson, the variance is

Var(y;) = A (1 — @;)(1 4+ A;®;) (46)
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If the count is negative binomial, the variance will be

Var(y,) = \(1 - @,)(1 + A,[@, + a) (47)

K3

The ZIP model exhibits overdispersion as the variance is larger than the
mean by a factor of 1+, -®,. (Greene, 1995, p. 573). Greene'? points out that
the relationship of the variance to the mean in the ZAP model is very similar
to that observed in the negative binomial model. This relationship is, for the

ZAP

Var(y;) D,
=14 ——F(y,
E(yz) + 11—, (y;)
while for the negative binomial it is
Var(y,)
Sy (G,
Bl,) o

where v is the extra parameter in the negative binomial model. Note that these

two expressions are quite similar. Testing one against the other is dicey as

the models are non—nested. However, Vuong (Voung, 1989) has proposed a test

which Greene asserts as “some power” 1% is distinguishing the overdispersion due

to the ZAP and to the negative binomial specifications. The test statistic is

Z, =nt5 (48)
Sm

where m is the mean and s,, is the standard deviation of the log of the series
formed by dividing the frequency function of, say, the ZAP with that of the

negative binomzal:
m, = In (fZAP(yz’))
fnp(w:)
The asymptotic distribution of Z, is standard normal so that a statistic in excess
of 1.96 would favor the ZIP model, one less than —1.96 would favor the negative
binomial and one between these to values would not allow one to reject the null
of no difference. However, one does have to estimate both models.

We assume now that ®, = ®(z,7), the distribution function of the standard
normal, represents the Probit process. As above, it depends on the k; variables
z; with the conformal parameter vector v. Further, f; is a Poisson process as
defined in equation (14), or a Negative binomial process defined in 23. As usual,
In(\;) = z;8. r; is as defined above.

The log likelihood function for the Zero—Inflated Count is

In(L,;) =r;In(®, + (1 - ;) fo,) + (1 — ;) In(1 — ®;) + (1 —7,) ln(f+i) (49)

The first and second derivatives for both alternatives complicated but still
rather straight forward.

dIn(L,;) 1—fo;  1—7;

Dt S/ Z A AV S C 2 50
a,yl (Tl pOi + 1 o (I)Z d)zzz ( )

dln(L, . 1-@ 0f,. 0l ;

M = 1 2 fOZ 4 n(f+z) (51)
0 por OO Bl

13(Greene, 1995, p. 573)
T5bid.
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Here I have used 6 as the vector of the count parameters. If the model is
Poisson, then 0 and 3 are identical; for the negative binomial, 8 also includes
the over—dispersion parameter a.

Greene'® notes that epically the second derivatives are rather messy and
chooses to use the BHHH algorithm which uses on the first derivatives. However,
I have found that convergence is much more rapid using Newton’s method and
analytical second derivatives. In fact, both the first and second derivatives have
been given above. All that will be new is the cross—partials.

The Zero—Inflated Count models with selection Winkelmann (Winkel-
mann, 1998, pp. 347-350) argues that ZIP models estimated assuming indepen-
dence of the selection and the count processes will result in incorrect inference
if there is indeed correlation between the two processes. Given correlation, he
suggests estimating the Poisson model as the Negative Binomial model will be
difficult to estimate as the first two moments will not be sufficient to identify
both the overdispersion and the heterogeneity parameters. As above, the model
will have both a selection and a count part.

In the Poisson model, with y* being the count, individual heterogeneity is
introduced as in the Negative Binomial model:

E(y*|z;, u;) = exp(z,8 + u;) (52)

In (21) above we assumed that the heterogeneity followed a gamma distri-
bution. Here we assume it to normally distributed and correlated with the error
part of the selection equation. Here we define y; according to

v e =1
YiTV 0 ife,=0

where ¢; is the latent process

G =zt g (53)

The point here is that «; and ¢; will be joint normal with zero expectations
and the covariance matrix

2
g op
cov(u, €;) = LP 1}
The variance of ¢, is normalized to unity as v can only be estimated in relation
to the variance of ¢; in any case. Defining A, = exp(z;8 + u; ), the probability
for an observation, conditional on u;, becomes (Winkelmann, 1998, p. 349)

—+oo

fulzoz)~ |

oo ! o

.
{(1 — ;)5 + @%} Lo(“)du;  (51)

154bid., p. BT9.
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Following Winkelmann I have used

V11— p?
This cannot be solved analytically but a Gauss-Hermite quadrature may be
used to evaluate the integral numerically.'®

5.3 A Poisson Random Effects model

Another way to model the individual heterogeneity is to assume that the in the
Poisson model that S\it = \;ta; where there is now both a individual index (7)
and a time index (¢). The individual effects are in the o; which are assumed to
be independent of the independent variables X ,t.

The usual specification is S\it = exp(X,tB + ;) where the indepentent vari-
ables include a constant. The individual effects a; = exp(y;) is assumed to
follow a gamma distribution (4, d) so that the expectation of a; is unity.!” With
the individual effects integrated out, the likelihood becomes

T2 [ 2] [ a0
Yl | [ 22c A +0 7 "

6 A ZIP model for the HUS data

Zt Yit

b= I0)

k3

Table 7 presents a first estimate of the model. The model reported is that with
correlation between the error terms in 54. No attempt has been made to find
interaction terms. The probit model estimates the probability that one will be
sick during the year. The additional zero in the model comes from those who
are sick but do not take sick leave.'®

During the three years studies (1986, 1992 and 1995), there have been three
different sets of rules for sick leave. In the earliest year, the blue collar but not
white collar workers had a qualification day. The renumeration rate was 90%
of ones wage. In 1992, the renumeration rate was reduced to 75% for the first
two sick days and increased to 90% for the third and following days. Finally, in
1995, the was a qualification day and the renumeration rate for the third and
following sick days was reduced to 75%.

It is therefore of interest to note the signs on the coefficients for the 1992
effect — caught by the variable Post 1991 in the Poisson part of model and the
1995 effect in the variable Post 1993 in the Probit — the selection — part.
Reducing renumeration reduces the number of sick weeks for the individuals
while the introduction of a qualifying day reduced the probability that one
would take sick leave.

16 The reader will perhaps have noted that (54 and (49) have used the binary process in
opposite meanings. Lambert uses the binary as the probability that a zero will occur whereas
Winkelmann uses the binary for the probability that a non—zero result occurs.

I7The derivation is detailed in Hausman et. al, (Hausmann et al., 1984).

18 As explained above, the data also contains an extra zero: this will be those who are sick
but have had two or less paid sick days.
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Table 7: A ZIP model with correlated processes. The independent variable is
the number of weeks absent from work with paid sick leave.

The Probit part
Variable Coef  Std.err. t—stat
Constant | 1.411 0.220 6.420
Gender | 0.525 0.131 4.004
Disp inc | -0.635 0.129 -4.927
Capt inc | -0.162 0.076 -2.143
Rural | -0.316 0.182 -1.741
Post 1993 | -0.460 0.108 -4.259
The Poisson part
Variable Coef  Std.err. t—stat
Constant | -0.510 0.119 2.028
Age | 0.330 0.064 5.283
Disp inc | 0.134 0.081 3.223
Post 1991 | -0.194 0.070 -2.759
Hectic | 0.021 0.085 -2.056
Monoton | 0.303 0.070 2.608
Uncomft | 0.221 0.058 4.841
Cust | -0.286 0.070 -2.835
Edu_voc | 0.147 0.060 2.147
Young-ch | -0.098 0.030 -2.247
The bivariate normal part
o | 1.287 0.028 46.479
p | 0.142 0.088 1.620

The gender effect is as expected: being female increases the probability that
one is sick; the age effect works through the count part of the model to increase
the time spend away from work. Income works 2 ways: both current and capital
income have a negative effect on the probability of being sick while higher current
income is associated with longer periods of absence. Finally, those living in rural
areas seem to be healthier — or at least have a lover probability of being sick
— than those in other areas.

Finally, note that those variables on the working environment which in-
crease the burden of work (a stress—filled job, a job requiring uncomfortable
movements, monotonous tasks) seem also to increase the length of sick periods.
Customer contact, which should add variety to work, decreases sick leave. 1°
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