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EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS
USING THE ESTIMATED PROPENSITY SCORE

HIRANO, IMBENS AND RIDDER

ABSTRACT

We are interested in estimating the average effect of a binary treatment on a scalar
outcome. If assignment to the treatment is independent of the potential outcomes given pre-
treatment variables, biases associated with simple treatment-control average comparisons
can be removed by adjusting for differences in the pre-treatment variables. Rosenbaum and
Rubin (1983, 1984) show that adjusting solely for differences between treated and control
units in a scalar function of the pre-treatment variables, the propensity score, also removes
the entire bias associated with differences in pre-treatment variables. Thus it is possible to
obtain unbiased estimates of the treatment effect without conditioning on a possibly high-
dimensional vector of pre-treatment variables. Although adjusting for the propensity score
removes all the bias, this can come at the expense of efficiency. We show that weighting
with the inverse of a nonparametric estimate of the propensity score, rather than the true
propensity score, leads to an efficient estimate of the population average treatment effect.
This result holds whether the pre-treatment variables have discrete or continuous distribu-
tions. We provide intuition for this result in a number of ways. First we show that with
discrete covariates exact adjustment for the estimated propensity score is identical to ad-
justment for the pre-treatment variables. Second, we show that weighting by the inverse of
the estimated propensity score can be interpreted as an empirical likelihood estimator that
efficiently incorporates the information about the propensity score. Finally we connect our
results to other results on efficient estimation through weighting.



1. INTRODUCTION

Estimating the average effect of a binary treatment on a scalar outcome is a basic goal of
many empirical studies in economics. If assignment to the treatment is unconfounded, that
is, independent of the potential outcomes given pre-treatment variables, the average treat-
ment effect for the subpopulation with a given value of the pre-treatment variables can be
estimated by simply taking the difference between the treatment and control averages in that
subpopulation. The population average treatment effect can then be estimated by weighting
these subpopulation estimates by the distribution of the pre-treatment variables. If there
are many pre-treatment variables this strategy may not be desirable or even feasible. An
appealing alternative approach is based on the propensity score, the conditional probability
of receiving treatment given pre-treatment variables. Rosenbaum and Rubin (1983, 1984)
show that adjusting solely for differences in the propensity score between treated and con-
trol units removes all bias associated with differences in the pre-treatment variables. Recent

applications of these methods in economics include Dehejia and Wahba (1999), Heckman,

Ichimura and Todd (1997), Hotz, Imbens and Mortimer (1999), and Lechner (1999).

Although adjusting for the propensity score removes all bias, it may do so at the expense
of efficiency. Hahn (1998) and Heckman, Ichimura and Todd (1998) show that adjusting
only for the known propensity score can result in efficiency losses compared to adjusting
for all pre-treatment variables. However, Rubin and Thomas (1997) demonstrate that using
parametric estimates of the propensity score, rather than the true propensity score, can
avoid some of these efficiency losses. Rotnitzky and Robins (1995) make a similar point in
the context of regression models in the presence of missing data where the missing data are
missing at random (Rubin, 1976; Little and Rubin, 1987). They show that weighting by the
inverse of a parametric estimate of the selection probability is more efficient than weighting

by the inverse of the true selection probability.

In this paper we propose estimators based on the estimated propensity score that are



fully efficient for estimation of population average treatment effects. Our estimators weight
observations by the inverse of nonparametric estimates of the propensity score, rather than
the true propensity score. We use results from Newey (1994) to calculate the variances of
these semiparametric estimators, and show that they achieve the semiparametric efficiency
bounds obtained in Hahn (1998). We provide intuition for this result in a number ways.
First we show that with discrete covariates, the estimator based on weighting by the inverse
of the estimated propensity score is identical to an efficient estimator that directly controls
for all pre-treatment variables (e.g., Hahn, 1998). Second, we show in the case where the
propensity score is known, the proposed estimator can be interpreted as an empirical like-
lihood estimator (e.g., Imbens, Spady and Johnson, 1998) that efficiently incorporates the
information about the propensity score. Finally, we link our results to similar results in-
volving efficient estimation with estimated rather than population weights in other contexts

(e.g., Wooldridge, 1999).

In the next section we lay out the problem and discuss earlier work. In Section 3 we
provide some intuition for our efficiency results by examining a simplified version of the
problem. In Section 4 we give the formal conditions under which weighting by the estimated
propensity score results in an efficient estimator, in four separate cases. The first case is
the missing data case studied by Robins and Rotnitzky (1995) and Rotnitzky and Robins
(1995), with the missing data assumed to be missing at random. In the second case we focus
on efficient estimation of the population average treatment effect, one of the cases studied
by Hahn (1998). In the third case we focus on a weighted average treatment effect with a
known weight function. Finally we look at the case where the weight function is proportional
to the propensity score, and thus the parameter of interest is the average treatment effect
for the treated (Rubin, 1977; Heckman and Robb, 1985). Recent work on estimation of this
parameter includes Heckman, Ichimura and Todd (1997, 1998) and Hahn (1998).

2. THE BAsic SETuUP AND PREVIOUS RESULTS



2.1 THE MODEL

We have a random sample of size N from a large population. For each unit ¢ in the
sample, let T; indicate whether the treatment of interest was received, with T; = 1 if unit ¢
receives the treatment of interest, and T; = 0 if unit ¢ receives the control treatment. Using
the potential outcome notation, let Y;(0) denote the outcome for unit i under control and

Y;(1) the outcome under treatment.! We observe T; and Y;, where
Vi = Yi(T) = T Yi(1) + (1 - T2) - Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by X;.

We shall focus on the population average treatment effect:
T=E[Y(1)—Y(0)].

We shall also discuss estimation of conditional or weighted average treatment effects

_JEY Q) —Y(0)|X = a]g(z)dF (z)
J9(x)dF(x) ’

Tg
and the average effect for the treated:
Ttreated — E[Y(]-) - Y(O)|T = 1]

The central problem of evaluation research is that for unit ¢ we observe Y;(0) or Y;(1), but
never both. Without further restrictions, the treatment effects are not consistently estimable.
To solve the identification problem, we maintain throughout the paper the unconfounded-
ness assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that conditional
on the pre-treatment variables, the treatment indicator is independent of the potential out-

comes. Formally:

Tmplicit in this notation is the stability assumption or SUTVA (Rubin, 1978) that units are not affected
by receipt of treatment by others, and that there is only one version of the treatment.



Assumption (Unconfoundedness)

T 1L (Y(0),Y(1)) | X. (1)
Let the propensity score be the probability of selection into the treatment group:

e(r) = Pr(T =1|X =x), (2)

and assume that it is is bounded away from zero and one. Define the average effect conditional

on pre-treatment variables:
T(x) = E[Y(1) =Y (0)|X = z]

Note that 7(z) is estimable under the unconfoundedness assumption, because

E[Y (1) = Y(0)|X = 1] EY(W)|T=1,X =a] — E[Y(0)|T =0, X =z

= EY|T=1X=2]-E[Y|T=0X =a].

The population average treatment effect can be obtained by averaging the 7(x) over the

distribution of X:
T = E[T(X)].

In practice, the strategy of forming cells and comparing units with exactly the same value
of X may fail if X takes on too many distinct values. To avoid having to match units by
the values of all pre-treatment variables, Rosenbaum and Rubin (1983, 1984) developed the
propensity score approach. Their key insight was that if treatment and potential outcomes
are independent conditional on all pre-treatment variables, they are also independent con-
ditional on the conditional probability of receiving treatment given pre-treatment variables,

that is, conditional on the propensity score. Formally, unconfoundedness implies

T L (Y(0),Y(1)) |e(X). (3)



(See Rosenbaum and Rubin (1983) for the proof of this result and further discussion.) Thus,
to obtain unbiased estimates of the average treatment effect, it is only necessary to match on
a scalar variable. An alternative approach, based on the Horvitz-Thompson (?) estimator,
is to reweight the observations by the inverse of their selection probabilities and take the
weighted average as an estimate of the treatment effect. This weighting estimator can be

written as

. L&ty (L—t) - ws
P ol ik A—-t)-y

N = |e(z;) 1 —e(x;)

Although adjusting for differences in the propensity score, either through weighting
or through regression adjustment, removes all bias associated with differences in the pre-
treatment variables, it does so at a price. Compared to estimators that adjust for differences

in all pre-treatment variables there may be a loss of efficiency.?
2.2 PREVIOUS RESULTS

The model set out above, and related models, have been examined by many researchers.
Hahn (1998) studies the same model as we do, calculates the efficiency bound, and proposes
an efficient estimator. His estimator imputes the missing potential outcomes given covariates,
and requires nonparametric estimation of the two conditional expectations E[Y|T =1, X =
z] and E[Y|T = 0,X = z] . Hahn also shows that the estimator for the population average
treatment effect based conditioning on the true propensity score does not in general reach the
efficiency bound, and that in fact knowledge of the propensity score does not affect the semi-
parametric efficiency bound. In addition Hahn considers inference for the average treatment
effect on the treated and concludes that for that estimand knowledge of the propensity score

is indeed informative. He also derives efficient estimators for that case.

2A separate issue is whether standard asymptotic theory provides adequate approximations to the sam-
pling distributions of estimators based on initial nonparametric estimates of conditional means, when the
dimension of the conditioning variable is high. See for example Robins and Ritov (1995) and Angrist and
Hahn (1999). We do not address this issue here.



Heckman, Ichimura and Todd (1998) focus on the average treatment effect for the sub-
population of the treated rather than the population average treatment effect. They consider
estimators based on nonparametric kernel regressions of the outcome on treatment status
and either covariates or the propensity score. They conclude that in general there is no clear
ranking of the estimators; under some conditions the estimator based on adjustment for all
covariates is superior to the estimator based on adjustment for the propensity score, and
under other conditions the second estimator is to be preferred. Lack of knowledge of the

propensity score does not alter this conclusion.

Rubin and Thomas (1997) investigate the differences between using the estimated and
the true propensity score when the propensity score belongs to a parametric family. They

conclude that there can be efficiency gains from using the estimated propensity score.

Robins and Rotnitzky (1995) and Robins, Rotnitzky and Zhao (1995) and Rotnitzky
and Robins (1995) consider a different case. They study inference for parameters in a
regression model with missing data, using essentially the missing at random (MAR, Rubin,
1976; Little and Rubin, 1987) assumption. They calculate the efficiency bound and note that
conditioning on the true selection probability, or weighting by its inverse, does not lead to an
efficient estimator. Rotnitzky and Robins (1995) show that when the selection probability
model has a parametric form, weighting by the inverse of the estimated selection probability
is more efficient than weighting by the inverse of the true selection probability, and suggest it
may be possible to achieve efficiency by allowing the dimension of the model for the selection
probability to grow with the sample size. For this case Robins and Rotnitzky (1995) propose
an estimator that achieves the efficiency bound. Their estimator, like Hahn’s estimator in a
different context, requires an initial estimate of the conditional expectation of the outcome
given pre-treatment variables, F[Y|T' = 1, X = z]. Unlike Hahn, who uses this conditional
expectation to impute the missing outcomes, Robins and Rotnitzky use it to formulate a

parametric model for the selection probabilities and estimate the parameters by a weighted



regression with the weights equal to the inverse of the estimated selection probabilities.

3. A SiMPLE EXAMPLE WITH BINARY COVARIATES

To develop some intuition for the formal results that will be presented in Section 4, we
consider the simpler problem of estimating the population average of a variable Y, 5y = E[Y],
given a random sample of size N of the triple (7}, X;, T; - ;). In other words, T; and X; are
observed for all units in the sample, but Y; is only observed if T; = 1. This can be interpreted
as a special case of the problem of estimating the population average treatment effect where
Y;(0) is known for all units. The analog to the unconfoundedness assumption here is the

assumption that the Y; are missing at random, or
T, L Y| X,.
The role of the propensity score is played here by the selection probability:
p(x) = E[T|X =z] = Pr(T = 1|X). (4)

To develop some intuition for the problem, we restrict our attention in this section to the
case with a single binary covariate. Let N, denote the number of observations with ¢; =t
and z; = z, for t,z € {0,1}, and let N., = Ny, + Ny, be the number of observations with
x; = x. Furthermore, suppose the true selection probability is constant, equal to py(x) = 1/2

for all z € {0,1}.*> The normalized variance bound for (3, is
Voouna = 2- E[V(Y[X)] + V(E[Y|X]),

which can be calculated from results in Robins and Rotnitzky (1995) or Hahn (1998).

We shall consider four estimators. First, consider estimating the population average by

the sample average for complete observations:

N N
Ge=Yuti /3t (5)
=1 =1

3Thus the missing data are missing completely at random (MCAR, Rubin, 1976; Little and Rubin, 1987).

7



Simple calculations show that under the MCAR assumptions, and with 50% of the observa-

tions missing on average, this estimator has normalized variance
Ve=2-E[V(Y|X)] +2- V(E[Y[X]),

strictly larger than the variance bound.

The second, “true weights” estimator weights the observed outcomes by the inverse of

the true selection probability:

A 1 oyt 1 &yt
ﬁw:_ = — . 6
¢ N;p(:@-) N; 1/2 (6)

Its large sample normalized variance is
Vi = 2+ E[V(Y|X)] + V(E[Y|X]) + E [E[Y|X]?],

even larger than the variance for Bc.

The third estimator weights the observed outcomes by the inverse of nonparametric
estimates of the selection probability. This estimator is the main focus of the paper, and it
will be discussed in Section 4 in more general settings. In the current context, the estimated
selection probability is simply the proportion of observed outcomes for a given value of
X. For units with x; = 0, the proportion of observed outcomes is Nig/N.g, and for units
with ; = 1, the proportion of observed outcomes is Ny;/N.i. Thus the estimated selection
probability is

~ . NIO/NO leL'ZO,

Then the proposed “estimated weights” estimator is:

A 1 &yt
ﬁew = X7 .

3>



The normalized variance of this estimator is equal to the variance bound:
Voo = 2- EIV(Y|X)] + V(EY|X)).

So in this simple case, not only does the weighting estimator with nonparametrically esti-
mated weights have a lower variance than the estimator using the “true” weights, but it is
fully efficient in the sense of achieving the variance bound. In the remainder of this section
we shall provide some intuition for this result that suggests why this efficiency property may

carry over to the continuous and vector-valued pre-treatment variable case.

To help understand why the estimated weights approach is efficient, it is useful to consider

a fourth estimator. Let

i(z) = > yztz/ >t

i|zi=x i|zi=x

for x € {0, 1} be the non-parametric estimator for the conditional regression function
plx) =EY|X =2,T =1].
Now consider the following, “regression-on-covariates” estimator:
R 1 XN
rc =™ N7 I Zi).
Bre = 5 ; ()
This estimator is numerically equivalent to an imputation estimator:
. 1 X
Bre = N Yoty (1 —t;) - i),
i=1

This estimator averages over all the observations, using observed values when they are avail-

able and imputing estimated values otherwise. Hahn (1998) proposed using imputation



estimators similar to this to estimate treatment effects, and showed that they are efficient in

the cases he studies.*

In the current setting we can rewrite the regression-on-covarariates estimator as

Bre = N[(zvoowm-ﬂ<o>+<Nm+Nu)-ﬂ<1>}
_~tivys by
- N N00+N10)&7N2—y (N01+N11)&j\f1—y }

vl
_ Ztyz

2 |

where

o NIO/NO leL'ZZO

L Nll/N~1 if LEZ':L
These weights are identical to p(x;), and thus the two estimators . and Bew are identi-
cal. This numerical equivalence between the nonparametric regression estimator and the
estimator with the nonparametric weights holds for any sample with discrete pre-treatment

variables. This implies that the nonparametric weights estimator is fully efficient in the

4An alternative to the Hahn estimator and the estimator proposed in the current paper is an estimator
proposed by Robins and Rotnitzky (1995). First one estimates the conditional expectation of the outcome
given pre-treatment variables, fi(x). In the second step a logistic regression model involving a single unknown
parameter 4 is estimated by maximum likelihood:

PT(T: 1‘X :.73> _ eXp<6' (/:L(I) _/SA))Z
1+exp(d- (i(x) — 7))

for a preliminary estimate of the parameter of interest B (At 6 = 0 this model reduces to the true selection
probability, equal to 1/2 in this case.) The inverse of the weights is then constructed as

el (ilw) = )
U exp(3 (i) - )

and finally, the population mean is estimated by
N

. 1 qhyit

%:N;wy

Although numerically different from the estimator with nonparametric weights in this single binary regressor
case, the Robins-Rotnizky estimator reaches the variance bound.

?

7
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discrete pre-treatment variable case, and since the formulation of the bound does not rely
on discreteness, one might expect the estimator to continue to be efficient in the continuous

pre-treatment case.

A second interpretation of the estimator that is directly suggestive of its efficiency prop-
erties is based on a generalized method of moments (GMM) representation (Hansen, 1982).
Under the assumption that the selection probability is p(z) = 1/2, we can estimate [y using

the single moment restriction E[yy (Y, X, T, Gy)] = 0, with

iy t,z, B) = y - t/p(z) — B = % )

However, the estimator based on this single moment restriction is not necessarily efficient,
because it ignores the additional information that is available in the form of knowledge of

the selection probability:
ET|X =z]|=p(z) =1/2.

We can write this in moment restriction form as
E|T—-1/2|X]=0.

With a binary pre-treatment variable this conditional moment restriction corresponds to two

marginal moment restrictions, E[¢o(Y, T, X, By)] = 0, with:

v (t—1/2)
valo, 8,2, 6) = ( (1—2)-(t—1/2) >

Estimating 3y in a generalized method of moments framework using the moments ¢ (-) and
Ps(+) leads to a fully efficient estimator.” We can implement this idea in different ways. The

standard GMM approach of Hansen (1982) estimates an optimal weight matrix and then

® Although 5(+) does not depend on the parameter of interest, 19(+) is generally correlated with 1 (-).
Thus there can be efficiency gains from using both sets of moment conditions. See, e.g., Hellerstein and
Tmbens (1999).

11



minimizes a quadratic form involving the average moments. Here it is of particular interest
to consider an alternative, the empirical likelihood estimator (e.g., Qin and Lawless, 1994;
Imbens, 1997; Imbens, Spady and Johnson, 1998). The empirical likelihood estimator is
based on maximization over a nuisance parameter m = (m,...,7y) and the parameter of

interest 3, of the logarithm of the empirical likelihood function

N
L(r) =Y Inm,
i=1
subject to:
(1), the adding-up restriction >N, m; = 1;
(17), the restriction for the identifying moment v (-),

ul Yi - i o
Z“'<1/2 _ﬁ>_0’

i=1

and

(#ii), the two restrictions from knowledge of the selection probability:

N
i=1

and
N

i=1

. From the second restriction, it is clear that a solution (7, Bel) will satisfy

R N N N
B =D Ty (2t1>/zﬁ-z = 27y - .
=1 =1 i=1

Solving for 7;, we have that

P (1 N N11/]\17./14— 1/2 w5 —1/2) + N10/]\17./o4— 1/2 A=) (= 1/2)> '

12



Substituting this into the solution for 3 gives
A N A
ﬁel - ZQﬁ-Z Yl = ﬁew-
i=1

This interpretation suggests that incorporating the moment restriction E[yo(Y, T, X, B] =
0, which capture knowledge of the selection probability, and thus moving from the “true-
weights” estimator to the “estimated-weights” estimator increases efficiency in the same way
that adding moment restrictions in a generalized method of moments framework improves

efficiency.

This finding is closely related to results in Wooldridge (1999) for M-estimation under
stratified sampling. Wooldridge considers variable probability samples, in which observa-
tions are first drawn randomly from the population, and then kept in the sample with some
probability that depends on its stratum. Wooldridge shows that weighted versions of stan-
dard M-estimators, where the weighting is by the inverse of the sampling probabilities, will
lead to appropriate estimates. In addition, he shows that efficiency gains are possible by
using estimated versions of the weights, when the sampling design is such that it is possible
to estimate these weights. In our setup, the function p(z) is analogous to the vector of
strata-specific selection probabilities. However, since the selection probabilities are allowed
to depend on continuous covariates, there are potentially a continuum of “strata.”

4. EFFICIENT ESTIMATION USING ESTIMATED WEIGHTS

In this section we present the main results of the paper. We discuss four separate cases.
First, we extend the example of the previous section to allow for continuous covariates
and a missing data mechanism that can depend on the covariates. Then, we consider the
problem of estimating the population average treatment effect under the unconfoundedness
assumption, with continuous covariates. Third, we consider estimation of weighted average
treatment effects, a generalization of the population average treatment effect case. Finally,
we consider estimation of the effect of the treatment on the treated, which in our setup will

follow from the general weighted average treatment effect problem.

13



4.1 ESTIMATING POPULATION AVERAGES WITH OUTCOMES MISSING AT RANDOM

The first case we consider is a general version of the example in Section 3. We are in-
terested in estimating a population mean, when the variable of interest is missing for some
units and the missing data mechanism satisfies the MAR assumption. For each unit, in a
random sample of size N from the population of interest there is a triple (Y, 7T, X), with T
binary. We observe (7', X,T -Y). The first assumption is

Assumption 1 (Missing At Random)
T 1 Y| X
Let po(x) be the selection probability, that is, the probability of observing Y given X = z:
po(z) = E[T|X =x] = Pr(T = 1|X = x).

We use the framework of Newey (1994) for deriving the variance of the semiparametric
estimator for 3y based on an initial nonparametric estimator for po(x). We can characterize

Bp through the moment equation:

Ep(Y,T, X, Bo,po(X))] =0,

where

¢(y7ta$vﬁvp($)) = y_ - ﬁ

We are interested in estimators for § based on nonparametric estimators for the selection

probability po(-). We estimate po(-) with a series estimator. For K =1,2,..., let

*(

8 (x) = (rig(@), ro (z) ..., rrK ()

14



be a K —vector of functions. Let

/
ri = ((TK(Il), . ,rK(a:N)> :
denote the matrix obtained by evaluating % (-) at the observed values of X, and let

t=(tr,....tn),
be the vector of observed values of T'. Then

7= (r®rf)y i,

where A~ is a generalized inverse of A, is the vector of least squares estimates in a regression

K

of t on r**, and

More specifically we consider power series. Let A = (A,...,\;)" be an r-dimensional vector
of nonnegative integers (multi-indices), with norm [A[ = >%_; A;. Let = T x;\” Let
(A(k))r—, be asequence that includes all distinct multi-indices and satisfies |A(k)| < [A(k+1)].

For such a sequence A(k) we consider the series

rii(z) = 2,

Given the estimate p(x) for the selection probability po(z), we estimate the population
mean [, = E(Y) by setting the average moment evaluated at the estimated selection prob-

ability equal to zero as a function of :

N A
i=1

Given the form of the moment condition, this leads to the estimator

(x

3>

s 1 &yt
P= N LG

15



In addition to the missing at random assumption, Assumption 1, the following assump-
tions are used to derive the properties of the estimator. First, we restrict the distribution of

X and Y:

Assumption 2 (Distribution of X)
(i) the support X of the r-dimensional covariate X is a Cartesian product of compact inter-
vals, X = [T 215, Tuj],

(1), the density of X is bounded from 0 on X.

Assumption 3 (Distribution of V)
(i) E(Y?) < oo,
(11), E(Y|X = z) is continuously differentiable for all X € X.

The next assumption requires sufficient smoothness of the selection probability. Note
that in this assumption we use the maximum rather than the supremum because of the

compact support of X.

Assumption 4 (Selection Probability)
The selection probability po(x) satisfies the following conditions: For all z € X
(1) po(x) is continuously differentiable of order s > 3 -r with r the dimension of X |

(i), po(z) > p > 0.

Finally, we restrict the rate at which additional terms are added to the series approxi-
mation to pg(x), depending on the dimension of X and the number of derivatives of py(x).
Assumption 5 (Series Estimator)

The series estimator of po(x) is a power series estimator with K = NV for some 1/(2-«a) <

16



v <1/6 with a = s/r.

Under these conditions we can state the first result.

Theorem 1 Suppose Assumptions 1-5 hold. Then:

(i)
B~ b,
(ii),
V(B = o) == N(O,V(EY]X]) + B[V (Y]X)/po( X)),
and (i), B reaches the semiparametric efficiency bound.
Proof: see Appendix.
Remark: In Section 3, this result was shown for binary X. Theorem 1 establishes the result

for continuous X. If X has both continuous and discrete components, this can be easily dealt

with, at additional notational expense.

4.2 ESTIMATING AVERAGE TREATMENT EFFECTS

In this section we focus on efficient estimation of the average treatment effect. We
postulate for each unit the existence of a pair of potential outcomes (Y (0),Y (1)) and are

interested in the average treatment effect, 7o = E[Y (1) — Y (0)].

We modify Assumption 1 to require conditional independence of the pair of potential

outcomes and treatment assignment:

17



Assumption 1’ (Unconfounded Treatment Assignment)
T 1L (Y(0),Y(1) | X.

Assumption 3 is modified to reflect the presence of two potential outcomes:

Assumption 3’ (Distribution of Y(0), Y (1))
(i) E(Y(0)?) < oo and E(Y (1)?) < oo,
(i1), E(Y(0)|X =) and E(Y (1)|X = x) are continuously differentiable for all x € X.

Finally, Assumption 4 is modified to require the propensity score to be bounded away
from both zero and one:
Assumption 4’ (Propensity Score)
The propensity score eo(x) = Pr(T = 1|X = x) satisfies the following conditions: For all
reX
(1) eo(x) is continuously differentiable of order s > 3 -1 with r the dimension of X,

(11), 0 <e<ey(r)<e<l.

We estimate 7 by first estimating the propensity score the same way the selection prob-

ability was estimated before through series estimation. Then 7 is the solution to

N
Z ¢(y17 iy X4, T, é(xl)) = 07
i=1

where

18



The formal result is:

Theorem 2 Suppose Assumptions 1°, 2, 8°, 4, and 5 hold. Then:

(i)
(i),
VN(F — 1) 5 N(0,V),
with
V =V(EY (1) - Y(0)|X]) + E[V(Y(1)]X)/eo(X)] + E[V(Y(0)|X)/(1 = eo(X))]),
and (iii), # reaches the semiparametric efficiency bound.

Proof: see Appendix.

4.3 ESTIMATING THE AVERAGE TREATMENT EFFECT FOR SUBPOPULATIONS

We generalize the previous result to 7,, the weighted average treatment effect for a known

weighting function g(z). One motivation for considering this estimand is that by choosing

g(x) appropriately, one can define treatment effects for subpopulations defined by X. In

addition, by choosing ¢(z) appropriately, one can recover the average effect of the treatment

on the treated, as will be discussed below.

To estimate 7,, we use the following moment function:

y-t_y-(l—t)_T>
e(r) 1—e(x) 7]

Wyt 2,7, (2)) = g(a) (
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This leads to the estimator

= gl |2t - B L5 )

Similar reasoning to the previous results gives us:

Theorem 3 (i)

. P
Tg * Tg;

(ii),

VN(# = 75) 5 N(0,V),

with
— g(X)2 g(X>2
V = E l(Eg)ge()(X)v(Y(l)IX)] +E l(EgV(l —ay Y OX)
R
where
Eg = E(9(X))

Proof: See Appendix.

A semiparametric efficiency bound for 7, has not been previously calculated in the liter-

ature. The next result shows that our estimator is efficient.

Theorem 4 The semiparametric efficiency bound for estimation of 1, is

B V)| + £ | v o)

(B(Y(1)[X) - EY(0)|X) - )]
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Proof: See Appendix.

4.4 ESTIMATING THE AVERAGE TREATMENT EFFECT FOR THE TREATED

The average treatment effect for the treated (Rubin, 1977; Heckman and Robb, 1985)
is a special case of the weighted average treatment effect, corresponding to the weighting

function g(z) = eg(x) = Pr(T = 1|X = z). Thus we can use the moment equation:

00,2 T () = olo) - (25 = T ). (10)

Notice that we assume that eg(z) is a known function. However, the inverse weights
will still be estimated nonparametrically in our aproach. The next result shows that this
estimator achieves the efficiency bound calculated by Hahn (1998) for estimation of the effect

of treatment on the treated, assuming that the propensity score is known.
Theorem 5 (i)

A P

Tireated — Ttreated,
(ii),

\/N(%treated - Ttreated) $ N<Oa V)a

with
V = E [?gggwyunxﬂ +E [(Ee);(ol()_()e[)()())V(Y(0)|X)]
18| B (B (D1X) = B O1X) = T
where

Ee = E(ep(X)).
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and (1) Tyreated achieves the semiparametric efficiency bound.

Proof: See Appendix.

Thus, using the estimated propensity score again leads to a fully efficient estimator.
Our finding is different from Heckman, Ichimura, and Todd (1998); in their matching-based
approach, using the estimated propensity score may lead to worse estimates. One possible
intuition for this contrast is that if we modified our estimator to use estimated weights in

both the numerator and the denominator, so that our moment condition was

_ y-t oy (-1
¢(y7t7 X, Tireateds 6(1:)) - 6($) : <€(IL‘) - 1 _ G(IL‘) - Ttreated) .

this would lead to an inefficient estimator.

5. CONCLUSION

We have studied estimation of population means under a missing at random assumption,
and estimation of weighted average treatment effects under an ignorable treatment assign-
ment assumption. Weighting each observations by the inverse of a nonparametric estimate of
its selection probability leads to efficient estimators. These estimators are easy to implement,
especially since researchers often find estimation of the propensity score to be interesting in

its own right.
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APPENDIX

Proof of Theorem 1:

Throughout we use the sup norm for functions ||g(-)|| = sup,cy |g(x)]. We indicate
that ¥(y,t,z, 3,p(-)) is a functional, i.e. a real valued function of the function p, by de-
noting the argument as p(-) instead of p(x). The sup norm of ¢ is ||¢(y,t,z, B, p())|| =
SUPzex |¥(y, t, x, B,p(Z))|. To simplify the notation, we use C' to denote a generic constant

in a bound.

The result follows from Theorem 6.1 in Newey (1994). We first check the following
conditions, corresponding to Assumptions 5.4-5.6 and 6.1-6.6 in Newey (1994).

Condition 1 There are € > 0, and b(y,t,x),b(y,t,z), with E(b(Y,T,X)), E(b(Y,T,X)) <
00, and a compact subset B of | with By € B such that for all 5 € B

(1) ¥(y,t,z, B, po(+)) is continuous in [ with probability one,

(i), 1Y (y, ¢, 2,8, p0(-))I] < bly,t, z),

(i), [y, t, 2, 8,p(-) = (y, t,2, 5,po(-))]| < bly,t,2) - ||p(-) = po(-)II*.

Because (, is finite, we can choose for B any bounded and closed set that contains [j.
The first part of Condition 1 is trivially satisfied, because the moment function is linear in

(. For the second part note that

i<t
oo 2. .o < ||p0(.>H 18

<
<lyl/p+ Iggng,

where p = min, p(z) > 0. Take b(y,t,x) = |y|/p + maxgep |3 which has finite expectation.
For the third part, note that

600-8.2,8.00) = bl Bl = |t =50
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s'p%'~|rpo<->—p<~>u.

Take b(y, t, z) = |y|/p?, which is positive and has a finite expectation, and e = 1.
Condition 2 E[Y(Y,T, X, 3,po(-))] = 0 has a unique solution in B.

We have E(YT|X =2z) = E(Y|T = 1,X = 2)Pr(T = 1|X = z). Because py(z) =
Pr(T = 1|X = x) is bounded away from zero on X', E(YT/po(X)) = fo.

Comment: Conditions 1 and 2 imply that B is weakly consistent if the nonparametric

estimator p converges in probability to py in the sup norm.

Condition 3 (i) 5y is an interior point of the compact set B,
(ii), There is a neighborhood N of By and e > 0 such that for all € N and ||p(-)—po(+)|| < &,
W(y, t,x, B,p(+)) is differentiable with respect to 3 and the expected value of this derivative is

nonzero at 3 = Lo, p(-) = po(+),

(111), Condition 1 is satisfied for the derivative of the moment function with respect to 3,

(), E(||(y,t,x, Bo, po(-))|]?) < oo.

Part (i) is satisfied by an appropriate choice of B. Because the derivative is equal to —1,
part (ii) is trivially satisfied for all 8 € B and € > 0. Part (iii) is trivially satisfied for the

same reason. For part (iv) note that

E(|[¢(Y.T, X, Bo, po()II*) = EOV*T/p*) = E(Y)* < E(Y?)/p - E(Y)*
and this is finite by assumption 3.
Condition 4 E((T — po(X))?| X = x) is bounded.
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Since T' is binary and po(z) is the conditional expectation of T" given X = z, E((T —
po(X))? X = ) is the conditional variance of T', which equals po(z)(1 — po(z)) < 1 for all .

Condition 5 For each K there is a nonsingular K x K matriz Ax such that for RX(z) =
Agr®(x):

(i) the smallest eigenvalue of E[R¥ (X)RX(X)'] is bounded away from zero uniformly in K,
(ii), R¥(x) is a subvector of RE*(x) for all K,

(iii), for each K there is a nonzero K wvector y such that v'R¥(x) is a nonzero constant for

r e X.

We use the fact that the series is a power series. Together with the Assumption 2 this
implies the conditions for Lemma A.15 in Newey (1995) are satisfied. This lemma implies
for each K there is a nonsingular matrix A such that (i), for R¥(z) = Agr®(x), the
smallest eigenvalue of E[RE(X)RE(X)'] bounded away from zero uniformly in K, and (i)
RE(x) is a subvector of RE*T1(x) for all K. Hence for this modified series Conditions 5(i)
and (i7) are satisfied. Condition 5(éi7) is also satisfied since ryg(x) = 1 for all K, and thus
for any K vector 4 with a first component that is not equal to 0, ¥r%(x) = 4, # 0 for all
x € X. Because Ay is nonsingular (i) holds if we set v = (Ax')’7. Note that the linear
transformation from the series r(z) to RX(x) = Arr®(z) does not affect the estimate for
3, so we can consider estimation based on the transformed series R¥ (), as we shall do in

the sequel.

Comment: We do not consider the case where K is estimated (but K does depend on the
number of observations N). This simplifies the rate conditions (K = K in Condition 6.2 of

Newey (1994)).
Condition 6 There are constants C' and o = s/r with s as in Assumption 4 and r the

25



dimension of x such that for all K there is a K vector mx such that

lpo(-) — RE ()7l < OK~.

Condition 6 is a special case of Assumption 6.3 of Newey (1994) (set d = 0 and note that
po(+) is bounded). This condition holds by Lemma A.12 of Newey (1995) (again set d = 0).

Condition 7 There is a function D(y,t,z,p(-); 3,D(+)), linear in p(-), and b(y,t,z) such
that, if ||p(-) — po(+)|| and |5 — Bo| are sufficiently small, then

1 (v, by, B,p() =¥ (y, t,2,8,p(-)) = D (y, £, 2,p(-) = B(-); B, 5()) |
< by t,2) - llp(-) = B0,
with E[b(Y,T, X)] finite.

For Condition 7 choose

D((y, t,z,p(-); 5715(')) = _ﬁy(g;;

Note that D (y,t,x,p(-) — p(-); B,D(+)) is the linear term in the Taylor series expansion of
¥ (y,t, 2, B,p()) around p. Then

-p(z).

(o t.8.00)) = (.t 5.5)) = Do) = 50 5.50) |

=25+ 3 00 - 20
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By Assumption 3 b(Y,T, X) = |Y|/p® has a finite expected value, and thus Condition 7 is
satisfied. This is part (i) of Assumption 6.4 of Newey (1994).

Comment: The remaining conditions specify the rate at which K increases with N (As-
sumptions 6.4, part (ii) and Assumptions 6.5 and 6.6 of Newey (1994)), give a uniform
bound on the function D in Condition 7, and specify the function § that gives the effect of

estimation of the selection probability on the variance of 5.

Condition 8 For the a = s/r as in Condition 6,
G(K) - ((K/N)V2+ K=) — 0,

and
VN - G(K)? - (K/N + K7*) — 0,

where Go(K) = [|R(-)]].

By Lemma A.15 in Newey (1995) (o(K) < CK. Hence, to satisfy Condition 8, we first
show that

(K3 [N)2 — 0
and
(K°/N)'2 — 0

The second limit implies the first, and the second limit holds if K increases at a rate less

than 1/6 as in Assumption 5. In addition,

Klfoz —0

27



and
N1/2K2—2a —0

The first limit holds because Assumption 4 implies o > 3. The second holds if K increases
at a rate greater than 1/(4a —4). Assumption 5 implies that the rate exceeds 1/2a, which,
as long as a > 2 (which holds by Assumption 4), implies that the rate exceeds 1/(4a — 4).

Condition 9 There is a b(y,t,z), with Eb(Y,T,X)? finite, such that for the function
D(y,t,x,p(-); 8, p(-)) in Condition 7,

1D (y, 2,2, p(-); Bo, po( )] < by, £, ) - [[p()]]-

Set b(y,t,z) = |y|/(2p)?| so that E[b(Y,T, X)? < oo by Assumption 3. Then
D 0.0 Ol = | |5 00|
Yy,t,x,p\"); Po, Po 0 po(')2 b

< by, d,x) - |[p(-)l]-

Condition 10 For the o = s/r as in Condition 6
i 1/2
(Z ||RkK<->||2) ((B/N)2 4 K)o,
k=1

Using Lemma A.15 in Newey (1995) we have for k =1, ...
[1Bire ()] = Go(K) < CK.

Hence,

1/2

<;§1 ”RkK(')W) < CKP2,
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Thus

1/2 4

1/2
(K/N)? < C <KW> —0,

(32 It

because K increases at a rate slower than 1/4, by Assumption 5. Also,

1/2

K
(Z HRkK(-)HQ> K< R g,
k=1

for o« > 3/2, which holds by Assumption 4.

Condition 11 There is a 6(z) with E(6(X)?) < oo such that for the function D(y,t,z,p(+); 3,p(+))

i Condition 7,
E[D(Y,T,X,p(X); Bo, po(X))] = E[0(X) - p(X)],
for all p(+).

Consider the conditional expectation of D(-) given X:

B [D 1, X0 om0 ] = 5| -L L 0]
_ EYIX]
=00 p(X).
Hence, if

then by the law of iterated expectations

E[D (Y, T, X, p(X); 60,po(X))] = E [E [D (Y, T, X, p(X); Bo, po(X)) | X]]
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Moreover

B(E(Y|X)) _ E(Y?)
2 = ]_32

E(3(X)%) <
which is bounded by Assumption 3.

Condition 12 For K =1,2,..., there are K—wvectors mx and {x such that:
(i), N - E[[3(X) = &R (X)]?] - E [[po(X) — i RF(X)?] — 0,

(ii), KGo(K)' /N — 0,

(iii), Go(K)? - E [|po(X) = mie RK(X)?] — 0,

(iv) E [|6(X) = & RX(X)2] — 0,

By Lemma A.12 in Newey (1995) there is a K —vector 7wk such that for & = s/r as in
Condition 6

Ipo() — 7 R ()| < CK™,

Because the norm is the supremum over the support of X
E [|lpo(X) = wie REQOIP] < [[po(-) = mic RE (P < CE*.

Another application of Lemma A.12 gives that there is a K —vector £x such that
E[[|6(X) = &RE(X)|] < CK™8

with @ > 0 because J(-) is continuously differentiable by Assumption 3 (E(Y|X = z) is

continuously differentiable by this assumption) and hence & > 1/r > 0. Thus,

¥ E 800 ~ R COIF - B [19(06) ~ me ¥ (0] < O i
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<CONK™ 2 —0.

This holds if K increases at a rate greater than 1/(2«) and this is guaranteed by Assumption
5. This establishes (i). For part (ii) we invoke Lemma A.15 of Newey (1995). If K increases
at a rate less than 1/5 the limit holds and this is true by Assumption 5. For part (iii), we
combine the bound used in the verification of part (i), and the bound on (4(K), to show
that the limit is 0 if @ > 1 which holds by Assumption 4. The limit in part (iv) is 0 if & > 0

and this already has been established.

Given that Conditions 1-12 are satisfied, it follows that Theorem 6.1 in Newey (1994)

applies. Hence {3 is consistent for Bo, and
V(B — o) == N0, V),
for

V = Var (¥(Y, T, X, Bo, po(X)) + 6(X) - (T — po(X))

:Var(Y.T —ﬁ0> + Var (—NJ(X) -(T—po(X)>

po(X) po(X)
Y-T (X)
+2 - Cov (M — Bo, —M (T —pO(X))> .

Define 0%(X) = V(Y| X). Let

(L5 -a)]

|3 ) 3w

Vi=Fk
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_EB E <Z% _ 50> - %‘T _ 1,X] . Pr(T = 1|X)]

(Y2 T Y.-T

o [(MX)? 4 e (X) 1(X)
_E< po(X)? ‘ﬁmm)'“’(x)}

+L

| = g Bl

+ FE — B3

(T —mx»ﬂ

= 5| (g - w0025 ]

-y E l ;ﬁ;(())?) (T —pO(X))> : ;(())?) -T’T - 1,X1 . Pr(T = 1|X)]
— |1 (= () ()

- /M| - By

Finally, let

Vo= 5| (L =) - (A8 - )|

po(X)
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Then

V=Vi+Va+2-Vp

:E[

pu(X)*]
po(X) |

—2-F

(X)) = 55 +

— V(B[Y|X]) + E[V

Since this variance is also the

| +2- Bt
e[ 5]

(Y1X)/po(X)].

semiparametric efficiency bound (see Robins and Rotnitzky

(1995) and Hahn (1998)), the estimator is efficient.

O

Proof of Theorem 2:

The proof follows the same argument as the previous proof, and is therefore omitted here.

The key step involves choosing

D(y,t,z,p(-),7.p() = —

t

)2

y .

A Gl
plx

(1 —p(x))?

33

( )-#to)



and

____#1($) _ fio()
)= =) T-m(@)

The normalized variance of the estimator is then:
V=Vi+V,+2:Vpy,

where

Vi = E [¥(Y, T, X, 70, p0())’]

-5 | (0 )]

_E :V(;;EQI)X)] B K(:(ii!j{f))] 24 E [E[Y(l)IXP] R [E[Y(O)!X]W

Vs = E[(8(X) - (T = po(X))*]

o [((-8- 725) o)

(1 — po(X))E[Y (1)]X]? po(X)E[Y (0)|X]?
Po(X) ] *E[ T po(X)

] + 2B [E[Y (0)|X]E[Y (1)|X]],
and

Vie = E[Y(Y, T, X, 70, po(-)) - (6(X) - (T = po(X))]

e (R )

C[EYQIXE- (- p(X)] L [EYOLXE - plX)
- E[ Po(X) ] El T po(X) ]
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—2- E[E[Y(1)|X]- E[Y (0)[X]].

This adds up to

V =V(EY (1) = Y(0)|X]) + E[VY(1)[X)/po(X)] + E[V(Y(0)|X)/(1 = po(X))]),

which is equal to the semiparametric efficiency bound for estimation of 7.
O

Proof of Theorem 3:

We choose

Dyt 2,p(). 7. 5()) = —g(a) [

=
8
S~—
[N}
—
|
=
S
S~—
S~—
[N}

and

() po()
5($) = _g(:l:) lp0($) + 1 —po(IE)]

The normalized variance of the estimator is
V=M"'QM"

where

aw(}/ﬂ T7 XJ Ty, pO)
T,

M=E = —E(9(X)) = -3,
Q=Var[p(Y,T,X,7,,p0) + 0(X)(T — po(X))].

We can write

Q= Q) +Qy + 20,
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where
Q = B[V, T, X,75,p)"],
Q= B [(6(X)(T —po(X)))]

and
iy = E[Y(Y.T, X, 75, po)0(X)(T — po(X))].

Straightforward calculations show that

0 = E[]g)é@jv[y(l)pﬂ]+E[1€<;ZEX)V[Y<O)’X]]
7B [9(0)°] =27, [g(X)? (11 (X) = ol X))

(
[y + 2 [p 2]

9(X>2(1 _pO(X))Ml(XP] LB lg(X>2po(X>#o(X)2]
po(X)

%5

Oy = —F [Q(X)Q(l —p0<X))/vb1(X)2] B [Q(X)QPO(X)/JO(X)Q

po(X)

Combining these results gives

- C
V==~r lggp[)(X)V(Y(l)lX)] +E lgg(l _p0<X))V(Y(0)|X)]
+E lg(;g) (E(Y(1)|X) - BE(Y(0)|X) — 79)2]

O

Proof of Theorem 5: Apply Theorem 3 with g(x) = po(x), and compare to the variance
bound calculated in Hahn (1998).
O
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Proof of Theorem 4: The derivation of the efficiency bound follows the proof in Hahn
(1998). The density of (Y (0),Y (1),7, X) with respect to some o—finite measure is

q(y(0),y(1), t, ) = f(y(0), y(Dz)e(2) (1 — e(x))' " f(x).
The density of the observed data (y,t,x) is
a(y,t.2) = [fi(yl)e(@)] [folyl) (L —e(@)] " f(2),

where fi(-[z) = [ f(y(0),[2)dy(0), and fo(-|z) = [ f(-,y(1)|z)dy(1). Consider a regular

parametric submodel with density

[fi(ylz, 0)e(@)]) [folylz, 0)(1 — e(x))]' f(x,0),
which equals q(y, t, x) for = 6. The score is given by

S<y7t7x’9) =t Sl(y|‘r79) + (1 - t) ' SO(ZU’:U,G) + 533(;67 9)7

where
d
syl 0) = Z5log flyla, 0),
d
syl 0) = 25108 folyla, 0),
d
533<x79) - @logf<x79)

The tangent space of the model is the set of functions
S={t-si(yle) + (1 —1) - so(ylr) + s-()}
for sy, s, and s, satisfying
[ s1(wle)fi(gla)dy =0,V

[ sowle) fo(yla)dy = 0,va
/sz(a:)f(a:)da: = 0.
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We are interested in estimating

_ _ LS 9@y hiyl2) f(z)dydz — | [ 9(2)yfolyle) f(2)dyde
T [ 9(z)f(z)dz

So for the parametric submodel indexed by @,

_ S 9@)yfilylz,0)f(z,0)dydx — [ [ g(x)y folylz,0) f (x, 0)dydx
B J9(@)f(z,0)dx

We need to find a function F;(y,t,z) such that for all regular parametric submodels,

74(0)

2500 _ 1y, )s(v, T, X|60)
First we calculate 8—75(5’—9). Let Eg = [ g(z)f(x)dx. Then
87'9(90) _
00

Eig [/ [ 9@ywsi iz, 00) iy, 00) (2, 0)dyda — [ [ g(a)ysolyle, ) folvl, 60) (0o dyda

+iﬂﬂﬁﬂﬂﬂD—ﬂWX:ﬂ—M%Q%V@%ME

The following choice for F. satisfies the condition:

T g(X)

FEYTX) =5 e

(Y — E[Y(D[X]) -

) () - YO)IX] - 7).

Hence 7, is pathwise differentiable. The variance bound is the expected square of the pro-

jection of F.(Y,T,X) on S. Since F, € S, the variance bound is

9(X)?
(Eg)2(1 — eo(X))

(B(Y(1)X) — E(Y(0)|X) - >]

EIF(Y,T,X)*| = E

V(Y(1)|X)] +F l

9(X)
(Eg)?

v<Y<o>rX>]

[\

v
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