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Abstract

We study the possibility of achieving efficiency in a dynamic adverse selection market for
durable goods. The idea is to use the number of times a car has been traded (“vintage”) as a
signal of its quality. Higher-valuation consumers experiment with younger vintages.

We first exhibit an impossibility result: no choice of (re)sale prices can induce consumers to
follow this experimentation policy.

We then show that modified leasing contracts can be constructed so as to achieve efficiency
if consumers are patient.

1 Introduction

This paper investigates the possibility of overcoming adverse selection in markets for durable goods.
We study the following environment. There is a mass of perfectly durable goods (cars for

concreteness) of different qualities, and a mass of consumers who differ in their valuations for
quality. Efficiency then requires matching qualities to consumers in such a way that consumers
with higher valuations end up consuming higher-quality goods. Consumers cannot observe the
qualities of cars they have not driven (say, for at least one period); therefore, the efficient allocation
may not obtain, because of adverse selection.

Our main contribution is to exhibit a mechanism that achieves (ex-post) efficiency if consumers
are patient, despite the presence of asymmetric information. The idea is to introduce new cars
gradually over time, open markets for different “vintages,” and induce consumers to “experiment”
with the right vintage until they get the right quality. In equilibrium, the vintage of a car, i.e. the
number of times it has been tried by different consumers, serves as a signal of its quality.
∗Email: {igal, lizzeri, marciano}@princeton.edu. We would like to thank Patrick Bolton, Markus Brunner-

meier, and Jose Scheinkman.
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Specifically, consumers adopt the following policy. Assume that there are finitely many distinct
qualities. Highest-valuation consumers only experiment with cars of vintage zero, i.e., new cars.
They keep a car if and only if it is of the highest quality. Consumers in the group with second-
highest valuations experiment only with cars of vintage one, and keep only the highest quality of
this vintage, i.e. the second-highest quality; and so on.

The transactions for a particular unit thus continue until that unit finds the consumer that is
the right match for that unit. Symmetrically, a consumer continues experimenting with a particular
vintage until she gets the top quality of that vintage, and then exits the mechanism. Thus, cars
“trickle down” from consumers with high valuation to consumers with lower valuations.

A natural starting point is to ask whether an appropriate choice of (re)sale prices can induce
consumers to follow this policy. It turns out that this is impossible, except in the very special case
in which a car has only two possible qualities.

We provide an interpretation of this impossibility in terms of the cost of experimentation.
Loosely speaking, for efficiency to obtain, the costs of experimentation must become small (relative
to its long-run benefits) when consumers become patient. Otherwise, consumers who are ex-ante
indifferent between experimenting with cars of two different vintages will not be willing to continue
experimenting ex-post, if they get the second-best draw for their vintage. We show that, in general,
the costs of experimentation do not become small when consumers become patient. Thus, a resale
mechanism cannot achieve efficiency.

The mechanism we propose employs a menu of modified leasing contracts to separate experi-
mentation costs from buying costs. Consumers who lease a car of a particular vintage pay a rental
cost for trying the car one period. In addition, they get the option to buy the good if they so wish,
at a purchase (or strike) price which is set in advance, independently of the rental cost. If they
do not keep the car, the unit becomes a lower-vintage car and is rented to consumers in the next
group.

Under this mechanism, as consumers become patient, the costs of experimentation goes to zero,
and the strike prices converge to the prices that would obtain if quality was observable. Thus, an
efficient allocation can be implemented if consumers are patient. Of course, since efficient sorting
is obtained through experimentation, it takes time for the right quality to find the right consumer.
However, it turns out that the expected number of periods it takes to achieve sorting is independent
of the discount factor. Hence this time cost is negligible for patient consumers.

The process whereby cars trickle down from high- to low-valuation consumers has one delicate
feature. The flow of cars of vintage n that is available at any given date need not match the number
of consumers who are supposed to experiment with that vintage at that date. Thus, the mechanism
has to delay the experimentation of a fraction of these consumers. Furthermore, in order to prevent
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consumers from experimenting with the “wrong” vintage, the algorithm must specify that this delay
be monotonic in vintage, i.e., consumers of worse vintages face longer delays than consumers of
better vintages. However, this delay is independent of the discount factor; as consumers become
more patient, the cost it imposes on them vanishes.

We wish to emphasize that, in the mechanism that implements the efficient allocation, the
purchase prices paid by consumers approximate those that would prevail if quality were observable.

This has two important implications. First, it is not the case that the planner is subsidizing
the mechanism.

Second, it can be shown that the mechanism we construct would be approximately optimal for
a monopolist. Indeed, suppose for a moment that the monopolist is operating in a world where
quality is observable, and the monopolist chooses the distribution of quality to optimally screen
consumers à la Mussa-Rosen (1978). Now suppose that we move back to a world where quality is
initially unobservable. If the monopolist follows the mechanism that we propose and chooses the
same menu of qualities, he makes approximately the same profits as in the optimal mechanism for
the case in which quality is observable. Thus, optimal screening would obtain in spite of adverse
selection.

The paper is organized as follows. Section 2 presents the model and the definition of (approx-
imate) efficiency. Section 3.1 discusses the case of the resale mechanism and shows that efficiency
cannot be obtained in such a mechanism. Section 4 introduces the mechanism that achieves effi-
ciency. Section 5 concludes with some additional observations. Proofs of ancillary results are in
the Appendix.

1.1 Related Literature

Akerlof (1970) provided the seminal analysis of adverse selection. He showed that markets may
break down completely if there is asymmetric information. In Akerlof’s model, goods are pre-
assigned so that the world starts with the owner of a good being in possession of private information
about some variable that matters to potential buyers. In this environment it is impossible to
achieve ex-post efficiency. The essential difference with our model is that in our case, the world
starts without the goods being pre-assigned. Thus, no consumer has superior information on the
quality of the goods. This seems to be a more appropriate assumption for durable goods since no
consumer is likely to possess superior information about the quality of the new goods.

Hendel and Lizzeri (1999) study a model of adverse selection that is closer to the one in the
present paper. The main differences is that Hendel and Lizzeri (1999) study a world in which cars
depreciate and only last two periods. Their main focus is not efficiency although they exhibit an
example in which selling and re-trading can lead to efficient allocations.
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Waldman (1999) and Hendel and Lizzeri (1998) study the role of leasing contracts under adverse
selection in a similar model to the one in Hendel and Lizzeri (1999). Waldman provides an example
in which leasing contracts lead to efficient allocations. However, Hendel and Lizzeri show that this is
a special case, and that in general, in that environment, it is impossible to achieve efficiency through
leasing contracts. Hendel and Lizzeri also provide a mechanism that does achieve efficiency. This
mechanism is similar to the one described in Section 5, and suffers from the same lack of robustness
that will be discussed below.

Janssen and Roy (1999) consider a dynamic version of Akerlof’s problem in which used markets
are open at every date. They show that goods of all qualities are traded in finite time. The main
difference with our paper is that this trading does not lead to efficiency: this is unattainable when
the good is pre-assigned. Indeed, in their model the number of periods it takes for transactions to
be completed increases without bound as consumers become more patient.

2 Preliminaries

2.1 Model

Consider a discrete time, infinite horizon economy. There is a unit mass of infinitely lived consumers
who differ in their valuation for quality, and a mass y < 1 of perfectly durable goods (cars) of several
possible qualities. The environment also includes a monopolistic seller or planner, who initially owns
the cars.

Technology determines a distribution of car qualities with finite support {q0, q1, . . . , qN}; we
assume that q0 > q1 > . . . > qN

1. For each n = 0, . . . , N , the probability that the quality
of a randomly selected car is qn is denoted by λn. It is also convenient to denote by Ln the
probability that the quality of a randomly selected car is qn or lower: that is, for every n = 0, . . . , N ,
Ln =

∑N
m=n λn. For notational ease, we shall let LN+1 = 0.

Consumers differ in their valuation of car qualities; moreover, per-period utility is quasi-linear.
Specifically, we assume that each consumer is characterized by a “type” θ ∈ [θ, θ] ⊂ R+, distributed
according to the c.d.f. F , with strictly positive density. A consumer of type θ who drives a car of
quality q and effects a monetary transfer in the amount p ≥ 0 (to another consumer, to a seller,
or to the planner) for one period enjoys flow utility θ · q − p. Finally, consumers evaluate utility
streams by discounting at the common rate δ ∈ (0, 1).

1In the experimentation equilibria we construct in Sections 3 and 4, the quality of a car that has been traded n

times is qn or worse. This makes it convenient to adopt the numbering convention in the text.
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2.2 Efficiency

In the environment under consideration, the ex-post efficient allocation of cars to consumers (“ef-
ficient sorting” hereafter) can be described as follows.

First, let θ−1 := θ; next, proceeding iteratively for n = 0, . . . , N , assuming that θn−1 has been
defined, choose θn such that

∀n = 0, . . . , N, F (θn−1)− F (θn) = λny;

observe that θ−1 > θ0 > . . . > θN by construction; also, θN > θ, because y < 1.
Thus, for every n = 0, . . . , N , the mass of consumers with types θ ∈ [θn, θn−1] is equal to the

mass of cars of quality qn. We then assign all cars of quality qn to consumer types θ ∈ [θn, θn−1].
In a multi-period setting, ex-post payoff efficiency requires that the above allocation be im-

plemented in the first period. However, if efficient sorting obtains by a fixed, finite time T > 1
independent of the discount factor δ, then the cost of delay vanishes as δ → 1; in other words,
payoff efficiency obtains provided consumers are patient. We adopt this limiting notion as our
main reference point.

We are interested in approximating efficient sorting and payoff efficiency. Specifically, an allo-
cation achieves ε-efficient sorting if all but a mass ε > 0 of cars (hence, of consumers) are efficiently
sorted. If ε-efficient sorting obtains by a finite time T (ε) independent of δ, the cost of delay vanishes
as δ → 1; hence, we say that payoff ε-efficiency obtains provided consumers are patient. Finally,
we say that efficient sorting (resp. payoff efficiency) obtains asymptotically provided consumers are
patient if, for every ε > 0, ε-efficient sorting (resp. ε-payoff efficiency) obtains by a finite time T (ε)
independent of δ.

3 Experimentation and Resale

We noted in the Introduction that if consumers adopt appropriate, type-dependent experimentation
policies, efficient sorting will result. This section provides a more detailed analysis of “efficient
experimentation,” and investigates whether a planner can induce consumers to adopt them by
selling new cars and opening resale markets.

3.1 Efficient Experimentation

We begin by sketching the essential features of the efficient experimentation policy.
A consumer in the highest type bracket, [θ0, θ−1], buys a new car in every period; she keeps it

if its quality is q0, and resells it otherwise.
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Hence, high-type consumers supply vintage-1 cars, i.e. cars that have been used for one period.
Consumers in the second-highest type bracket, [θ1, θ0], purchase them and keep only cars of quality
q1.

Consumers in the type bracket [θ1, θ0] thus supply vintage-2 cars, which are purchased by
consumers in the type bracket [θ2, θ1], and so on.

Hence, if consumers conform to this experimentation policy, the quality of a car of vintage n
is qn or worse. In particular, the quality of a vintage-N car is certainly qN , so consumers in the
lowest type bracket never retrade.

Also observe that the supply of vintage-n cars is positive only for t ≥ n. Thus, in the first N
rounds of trading, some markets will be closed.

Moreover, at any time t, for arbitrary distributions of quality, the residual mass of consumers
in the n-th type bracket may exceed the mass of available vintage-n cars. In particular, this will
always be the case for vintage-N cars. However, for every integer N , there exists a generic set
of distributions for which available supply exceed available demand in all but the highest-vintage
market:

Lemma 3.1 For every N > 0, efficient experimentation will generate supply in excess of demand
for all vintages except N if and only if

λ0

L0
≥ λ1

L1
≥ . . . ≥ λN−1

LN−1

Proof: by induction, using Equation 20 in the Appendix.

Our results in Section 4 imply that the above experimentation policy will lead to asymptotically
efficient sorting for any distribution of qualities and types.

3.2 Resale Mechanisms

Implementing efficient experimentation via a mechanism based on resale presents two distinct
problems. First, as mentioned above, efficient experimentation may generate excess demand in the
market for vintages other than N . The planner must then choose prices so as to clear all markets,
but this creates incentives for some consumer types to experiment with the wrong vintages.

The second problem is more fundamental. In order to sustain efficient experimentation, prices
must induce consumers in the n-th type bracket to experiment with vintage-n cars; moreover,
prices must induce these consumers to continue experimenting if they receive a car of quality qn+1

or worse. It turns out that, in general, prices cannot achieve both objectives simultaneously.
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We analyze the latter problem first; in order to focus solely on the incentive issues, we as-
sume that the condition appearing in Lemma 3.1 applies, so that all but the oldest vintage are in
nonnegative excess supply.

3.2.1 Ex-ante and ex-post incentives are incompatible

A resale mechanism then functions as follows. At each time t = 0, 1, . . ., the planner:

1. Fixes prices pt0, . . . , p
t
N for each vintage; if the supply of some vintage is zero, the corresponding

price may be taken to be infinity (or greater than (1− δ)−1q0θ);

2. Determines the supply of new (vintage-0) cars, and, if there is excess supply in the market
for vintage n < N , clears that market by buying out all cars in excess at the current price.

On the other side of the mechanism, at each time t = 0, 1, . . ., consumers can:

1. do nothing, i.e. keep their car, if they own one, or remain without a car, if they do not own
one;

2. possibly buy a new or used car, or trade their current car for another (of equal or different
vintage).

Finally, consumers enjoy per-period utility.
As a preliminary observation, note that implementing this mechanism will be costly for the

planner, if δ < 1. Prices will decline with time (see below), so that clearing markets in excess
supply is costly for the planner. In any case, we shall propose an alternative resolution of the
market clearing problem shortly.

We now analyze the problem faced by consumers in some detail. For simplicity, we focus on
periods in which all vintages are in positive supply; the arguments may be adapted to the first N
trading rounds.

For efficient experimentation to obtain, at any time t ≥ N and for every n = 0, . . . , N , an agent
of type θ ∈ [θn, θn−1] must be willing to buy vintage n if she does not own a car; moreover, she
must be willing to retrade her vintage-n car for another car of the same vintage if its quality is less
than qn.

Denote by V t(n; θ) the value at date t of following this policy to a consumer of type θ who owns
no car; then

V t(n; θ) = −ptn +
λn
Ln

θqn
1− δ

+
Ln+1

Ln

(
E[q|q ≤ qn+1]θ + δpt+1

n+1 + δV t+1(n; θ)
)
. (1)
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That is, the consumer pays a price ptn; with probability λn
Ln

, she receives a car of quality qn, and
keeps it forever; with complementary probability, she receives a car of worse quality, so only enjoys
per-period consumption and continues to experiment. More precisely, at time t + 1 she sells her
car (whose vintage is now n+ 1) and adopts the same policy she adopted at time t.

Observe that V t(N ; θ) = θqN
1−δ − p

t
N for all t, because there is no uncertainty as to the quality of

vintage-N cars and, by assumption, consumers in the lowest type bracket never retrade.

Remark 3.1 For every θ ∈ [θ, θ], n = 0, . . . , N − 1 and t ≥ N :

V t(n; θ) = Bnθ − ptn − δ
Ln+1

Ln
Ct+1
n ,

where, for every n = 0, . . . , N − 1, Bn is a measure of the benefits from experimentation:

Bn =
(

1− δLn+1

Ln

)−1(λn
Ln

qn
1− δ

+
Ln+1

Ln
E[q|q ≤ qn+1]

)
and, for every n = 0, . . . , N − 1 and t ≥ N , Ctn measures the cost of experimentation:

Ctn =
∞∑
s=t

(
δ
Ln+1

Ln

)s−t
(psn − psn+1).

Note that (1− δ)Bn ↑ qn as δ ↑ 1, and Ctn = (ptn − ptn+1) + δLn+1
Ln

Ct+1
n .

All remarks in this section are proved in the Appendix (see Subsection 6.1).
The benefits from experimentation may be seen as a weighted average2 of the net present

value of the quality the consumer will ultimately obtain by experimenting with vintage n, qn,
and the net present value of the average quality she enjoys whenever she receives a car of inferior
quality, E[q|q ≤ qn+1]. Note that, consistently with this observation, we can define CN = 0 and
BN = (1− δ)−1qN .

We now list two necessary conditions for efficient experimentation to be optimal at and after
time t = N , given the price sequence {pt0, . . . , ptN}t≥0.

First, whenever a consumer does not own a car, she find experimentation with the “right” vin-
tage at least as attractive as any alternative policy she could adopt; that is, efficient experimentation
must be ex-ante incentive-compatible.

In particular, a consumer in the n-th type bracket must (weakly) prefer to experiment with
vintage n rather than with any other vintage. As long as Bn > Bn+1 for all vintages n = 0, . . . , N−1

2The weights are (1− δ Ln+1
Ln

)−1 λn
Ln

and (1− δ Ln+1
Ln

)−1 Ln+1
Ln

(1− δ).

8



(which can be guaranteed by choosing δ sufficiently close to 1), by standard arguments the following
condition is necessary (and sufficient) to ensure that this will be the case: for every t ≥ N ,

V t(N ; θtN ) = 0 and ∀n = 0, . . . , N − 1, V t(n; θn) = V t(n+ 1; θn). (2)

The cutoff type θtN is chosen so that F (θN−1) − F (θtN ) equals the available supply of vintage-N
cars at time t. Notice that θtN ↓ θN as t→∞.

Equation 2 pins down the entire sequence of price vectors. Also, it implies that the cost of
experimentation Ctn is time-independent.

Remark 3.2 If Equation 2 holds for every t ≥ N , then:
(i) ptN = (1− δ)−1qNθ

t
N .

Moreover, for all vintages n = 0, . . . , N − 1:
(ii) Ctn = (Bn −Bn+1)θn + δLn+2

Ln+1
Cn+1 ≡ Cn.

(iii) ptn = ptn+1 +
(

1− δLn+1
Ln

)
Cn.

Efficient experimentation must also be incentive-compatible ex-post, i.e. after a consumer has
observed the quality of the car she has bought. Specifically, whenever a consumer in the n-th type
bracket buys a car of vintage n and learns that its quality is qn+1, she must be willing to continue
experimenting. Thus, for every t ≥ N and n = 0, . . . , N − 1,

θnqn+1

1− δ
≤ ptn+1 + V t(n; θn).3 (3)

We emphasize that Equations 2 and 3 do not exhaust all necessary conditions for optimality.4

We now show that Equations 2 and 3 cannot hold simultaneously for all vintages and periods if there
are more than three qualities. This suffices to conclude that experimentation cannot be supported
in a resale mechanism; of course, the prices defined in Remark 3.2 may also fail additional necessary
conditions.

We can use Remark 3.1 to substitute for the value function in the right-hand side of Equation
3; this yields

θnqn+1

1− δ
≤ ptn+1 − ptn +Bnθn − δ

Ln+1

Ln
Cn = Bnθn − Cn (4)

where we have used the recursive decomposition of Ctn and the fact that by Remark 3.2, Ctn is
independent of t.

3Suppose that, at the end of time period t− 1, the consumer owns a car of vintage n and quality n+ 1. Then she
can either leave the market and keep the car forever, for a discounted payoff of δ θnqn+1

1−δ , or else she can reenter the
market and continue experimenting, for a discounted payoff of δptn+1 + δV t(n; θn).

4For instance, consumers must not have an incentive to delay experimentation. This implies that prices cannot
drop too quickly relative to the discount factor δ. See Subsection 4.2 for a discussion of this issue.

9



Equation 4 emphasizes the trade-offs between the costs and benefits of experimentation. How-
ever, for δ large, the costs will outweigh the benefits.

Remark 3.3 Suppose that Equation 2 holds. Then

lim
δ→1

(1− δ)CN−1 = (qN−1 − qN )θN−1 and ∀n = 0, . . . , N − 2, lim
δ→1

(1− δ)Cn > (qn − qn+1)θn.

Thus, we obtain the main result of this section.

Proposition 3.2 For every N > 2, for any distribution of qualities which satisfy the conditions in
Lemma 3.1, and for δ sufficiently close to 1, no sequence of prices can induce efficient experimen-
tation.

Proof: From Remarks 3.1 and 3.3, limδ→1(1 − δ)(Bnθn − Cn) = qnθn − limδ→1(1 − δ)Cn <
qnθn − (qn − qn+1)θn = qn+1θn. Thus, for δ sufficiently close to 1, Equation 4 must be violated.

The intuition for this result can be gleaned from Remark 3.3. Consider a consumer of type θn
who receives a car of vintage n and quality qn+1. For δ sufficiently close to 1, the benefit from
continuing experimentation is approximately (qn − qn+1)θn per period—the difference between her
payoff from the quality she will ultimately receive and the payoff she can secure now. On the other
hand, for n < N − 1, the flow cost of experimentation is higher than (qn − qn+1)θn; hence, the
consumer will prefer to stop experimenting.

In other words, experimentation costs (which are determined by prices) are such that, ex-ante,
consumers are willing to try out the appropriate vintages. However, it turns out that they are
too high to induce consumers ex-post to continue experimenting when efficiency dictates that they
do. Loosely speaking, the mechanism attempts to rely on “too few prices” to meet “too many
constraints.”

Proposition 3.2 states that, for a set of parameters of the model (determined by the quality
distribution and the discount factor) having positive Lebesgue measure, efficient experimentation
cannot be sustained in a resale mechanism. Thus, it provides an impossibility statement which
mirrors the standard results for static environments (e.g. Akerlof (1970)).

Alternatively, Proposition 3.2 may be interpreted as stating that, for a set of quality distribu-
tions of positive Lebesgue measure, efficient sorting may be achieved, but consumers have to be
sufficiently impatient.5 This implies that efficient sorting has a cost in terms of consumer payoffs,
and hence it does not imply payoff efficiency.

5On the other hand, consumers must not be too impatient: otherwise, in general, Equation 2 is not sufficent to
ensure that ex-ante incentive compatibility will hold for all consumer types (not just marginal types). In fact, we
conjecture that Proposition 3.2 can be strengthened by dropping the condition on the discount factor.
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3.2.2 Excess demand for intermediate vintages

The possibility that vintages other than the highest might be in short supply poses additional
difficulties. We view Proposition 3.2 as our main impossibility result; hence, our aim here is merely
to point to some consequences of demand-supply imbalances, which must be taken care of by
imposing additional constraints on prices.

Assume that there are at least four qualities, and choose n < N − 1. Suppose that, at date t,
the supply of vintage-n cars generated by efficient experimentation is less than the residual mass
of consumers in the n-th type bracket. For simplicity, suppose that vintages n and N are the only
ones in short supply.

Prices at dates s ≥ t should therefore be chosen so as to prevent consumers whose type θ is in
at the lower end of the interval [θn, θn−1] from experimenting with vintage n. Proceeding as we did
above to accommodate excess demand in the vintage-N market, we can find a type θtn ∈ [θn, θn−1]
such that F (θn−1)− F (θtn) equals the available supply of vintage-n cars, and choose prices so that
V t(n; θtn) = V t(n+ 1; θtn).

Ideally, consumers with types θ ∈ [θn, θtn) should be induced to “do nothing”, i.e. defer experi-
mentation (and therefore per-period consumption), until enough vintage-n cars are available.

However, in general it will not be possible to force these consumers to simply wait. Note that,
as an alternative, they can buy vintage-(n + 1) cars instead (or indeed any higher-vintage car),
and sell them as soon as enough vintage-n cars are available. That is, they may wish to buy the
“wrong” cars solely for temporary consumption.

If they are allowed to do so, some of these consumers will end up buying, say, vintage-(n + 1)
cars of quality qn+1, and eventually reselling them in the vintage-(n+ 2) market; we call these cars
tainted. It follows that some consumers in the (n+ 1)-th type bracket will not eventually receive a
car of quality qn+1, whereas some consumers in the (n+ 2)-th type bracket will receive a (tainted)
car of quality qn+1.6

To deter temporary consumption and tainting, the prices of downstream vintages must be raised.
But this prevents some consumer types from experimenting with the respective “right” vintages;
as a consequence, the same sort of consumption-motivated deviations we are trying to eliminate
might appear down the vintage hierarchy.

6It also follows that the (equilibrium) inference that a vintage-(n+ 1) car is of quality qn+1 is now unwarranted,
and this undermines the logic behind efficient experimentation as defined above. One might perhaps devise a different,
more complicated experimentation scheme, which takes this possibility into account; we prefer to take a different
approach. Also observe that, with only three qualities, tainting is not an issue. There is always excess supply of new
cars; thus, only consumers in the intermediate type bracket (other than lowest-type consumers) may face a shortage
of their designated cars. Their only profitable consumption-motivated deviation is to buy vintage-2 cars; but these
are known to be of quality q2.
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Thus, in general, temporary consumption and tainting cannot be deterred in a resale mechanism.
This introduces an additional source of inefficiency.

4 Experimentation in a Modified Leasing Mechanism

We now attempt to resolve the problems we have identified in the previous sections and construct
a mechanism which achieves asymptotic efficiency.

In preparation for the formal analysis, we first argue that, by adopting a leasing mechanism, the
incentive issues highlighted in Subsection 3.2.1 can be resolved. Next, we describe how we handle
excess demand in markets for intermediate vintages; the key idea is to allow the planner to serve
demand for different vintages at different rates, while keeping prices constant (after the initial N
periods).

We then state and prove our main result: the mechanism we construct achieves asymptotic
efficiency for all distributions of qualities—even those violating the conditions in Lemma 3.1. We
also emphasize that the revenues to the planner from the mechanism approximate, for δ sufficiently
close to one, the revenues that would accrue to him if qualities were observable.

4.1 Reconciling ex-ante and ex-post incentive compatibility

In resale mechanisms, prices have two distinct roles: they obviously represent the cost of keeping
a car forever, but they also determine the cost of experimentation. As we noted in our comments
following Proposition 3.2, this may be viewed as the main reason why resale mechanisms cannot
achieve efficiency.

Thus, it seems natural to address the problem by decoupling these costs. Specifically, we envision
a mechanism whereby consumers rent (or lease) a car from the planner for one period, and have
the right, but not the obligation, to keep it forever.

The rental price is paid at the beginning of the period; the consumer chooses whether or not
to exercise her option to keep the car she has rented at the end of the period, i.e. after learning its
quality.

If she does exercise it, she must pay a buying (or exercise) price to the planner. It is notationally
convenient to assume that the buying price is actually paid at the beginning of the subsequent
period.

If she does not exercise it, she must return the car to the planner. The vintage of a car equals
the number of times it has been rented.

Thus, the cost of experimenting with a given vintage equals the respective rental price. This is
distinct from the cost of keeping a car of that vintage forever, i.e. the buying price.
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The timing of the mechanism is as follows. At each date t, the planner fixes rental and buying
prices. Notice that no direct intervention in secondary markets is required: the planner only has
to make her stock of cars, subdivided according to vintage, available for consumers to choose from.

On the opposite side of the mechanism, consumers who have not yet purchased a car:

1. Choose which vintage to rent.

2. Learn the quality of the car they have rented and enjoy per-period utility.

3. Decide whether to exercise the option to keep the car, or return it.

It should be intuitively clear that, by introducing separate prices for experimentation and
eventual purchase, we can avoid the problems described in Subsection 3.2.1. This will be formally
established in the course of the proof of our main result, but we shall provide an informal explanation
at this stage.

An equation similar to 2 will ensure that consumers prefer to experiment with the “right” vintage
rather than with any other vintage. Note that, in a resale mechanism, Equation 2 determines all
prices, and hence the total cost of implementing the experimentation policies.

In a leasing mechanism, the counterpart to Equation 2 will still determine the total cost of these
policies, but not the split between experimentation and purchase costs.

On the other hand, an equation similar to 3 will ensure that consumers be willing to continue
experimenting if they do not receive the best car for their designated vintage. The idea is then
to choose the split between experimentation and purchase costs so as to achieve ex-post incentive
compatibility.

We conclude this subsection by noting that prices will need to ensure that no other policy is
a profitable deviation from efficient experimentation. This includes deviations we did not need to
consider in order to establish the impossibility result in Section 3. In particular, we wish to draw
the reader’s attention to two possible deviations.

First, consumers may adopt a “pure consumption policy,” whereby, at each date, they rent a
car of some relatively inexpensive vintage, and never exercise their option.7

Second, if prices are non-stationary, consumers may delay experimentation and perhaps rent
the “wrong” vintage for temporary consumption purposes, as discussed in Subsection 3.2.2.

In order to deter the first deviation, we choose rental prices so as to ensure that, among all
possible “pure-consumption” policies, a consumer in the n-th type bracket prefers to rent vintage-n
cars indefinitely. Loosely speaking, since efficient experimentation ensures that this consumer will

7For large discount factors, this policy is not profitable in a resale mechanism, because the implied “rental cost”
of a vintage-n car, ptn − δpt+1

n+1, diverges to infinity as δ → 1.
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eventually receive a car of quality qn > E[q|q ≤ qn], for large discount factors no pure-consumption
deviation will be profitable.

Moreover, it turns out that the buying prices implicitly determined by the choice of rental prices
also satisfy the ex-post incentive constraints.

The second kind of deviation warrants a more extensive discussion, and motivates a key ingre-
dient of our modified leasing mechanism.

4.2 Market-Clearing and Stationarity with Decreasing Servicing Rates

Both resale and leasing mechanisms run into difficulties if prices are nonstationary. Temporary con-
sumption of “wrong” vintages is but one variant of the problems which stem from the opportunity
to delay experimentation.

These problems are not directly related to adverse selection. To see this, consider the market
for vintage-N cars in a resale mechanism. The rate at which the price of the worst vintage ptN
drops is driven by the distribution of qualities (which determines the supply of vintage-N cars) and
the c.d.f. F (·) (which, loosely speaking, determines residual demand). The discount factor δ does
not play any role.

Hence, for any distribution of qualities and consumer types, sufficiently patient consumers will
prefer to delay buying vintage-N cars, and this will of course break the equilibrium in the resale
market. The problem is of course not confined to the market for vintage-N cars, and afflicts leasing
mechanisms as well.8

We are thus led to consider alternative ways to tackle excess demand. Incidentally, if we assume
that the conditions in Lemma 3.1 hold, then we only need to take care of the market for vintage-N
cars. However, the mechanism we propose allows us to handle arbitrary distributions of quality.

The basic intuition is to restrict the planner to choose stationary prices after time N , but allow
her to serve demand for different vintages at different rates.

More specifically, at each date t ≥ 0, and for each vintage n = 0, . . . , N , the planner announces
a service rate for vintage n at time t. The interpretation is that, out of the total mass of consumers
who request a car of vintage n, only a (randomly selected) fraction equal to the then-prevailing
service rate for that vintage actually receives one. The planner chooses the service rate so as to
ensure that the fraction of demand served equals available supply.

8This implies that, apart from the incentive issues discussed in Subsection 3.2.1, excess demand in the lowest-
quality market will surely break a resale mechanism, if consumers are sufficiently patient. However, the methods
described in this section can be easily adapted to resale mechanisms. On the other hand, it is easy to show that the
same incentive problems will afflict modified resale mechanisms as well, which suggests that the analysis in Subsection
3.2.1 emphasizes robust consequences of adverse selection for trade in secondary markets.
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The key feature of this mechanism is that each consumer in any type bracket is equally likely to
be served. Hence, prices can be chosen so as to ensure that the marginal consumer type in each type
bracket is willing to rent the appropriate vintage. Excess demand is tackled not by excluding low
types from current consumption, but by serving an appropriate fraction of consumers, randomly
chosen irrespective of their type.

We allow the planner to choose different vectors of “service rates” at each date; however, we
shall prove that, if consumers adopt the efficient experimentation policy and service rates are chosen
appropriately as soon as markets open, these rates will be stationary. This implies that, in the
mechanism we construct, after the initial N periods, prices will be constant.

We emphasize that, while at any date t a fraction of consumers will not be served, it is still the
case that, eventually, every consumer will receive a car (of the appropriate quality).

Moreover, the service rate, hence the expected time before a consumer is served, are chosen
independently of the discount factor. Thus, loosely speaking, patient consumers will not mind
waiting. More formally, the inefficiency caused by delay vanishes in the limit as δ → 1.

One last issue must be discussed. If the conditions of Lemma 3.1 are met, then all the planner
needs to do is choose an appropriate service rate in the market for vintage N . Note that, since
all other vintages are in excess supply (so that the service rate is 1 in those markets), vintage-N
cars are unequivocally “worse” than all other cars: their quality is certainy worse, and demand is
served at a lower rate.

Then, under the conditions of Lemma 3.1, a minimally modified leasing mechanism, whereby
only demand vintage-N cars is served at a rate less than 1, may be shown to achieve asymptotic
efficiency.

However, if some intermediate market exhibits excess demand (i.e. if the conditions of Lemma
3.1 do not hold), then service rates must be chosen with some care. Specifically, setting the service
rate equal to the ratio of supply and demand in such markets leads to the following problem.

It may be the case that, for some vintages n and m such that n < m (so that cars of vintage
n are on average better than cars of vintage m), the ratio of supply to demand in market n is
lower than in market m. This may induce consumers in the n-th type bracket to temporarily rent
vintage-m cars, because the probability of receiving a unit is higher in that market, while they wait
for supply of vintage-n cars to build up. This induces tainting of vintage-m cars, as in the previous
section.

Hence, in order to achieve efficiency for all possible distributions of qualities, we explicitly ensure
that service rates be non-increasing in vintage. This implies that, if n < m, then cars of vintage n
are unequivocally “better” than cars of vintage m: their average quality is higher, and demand is
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served at a (weakly) higher rate.

4.3 Formal Analysis and Main Result

We now focus on the formal details of our proposed mechanism.
To summarize the preceding discussion, as well as to introduce the required notation, at each

time t and for every vintage n = 0, . . . , N , the planner sets a rental price rtn and a buying price ptn,
as well as a service rate etn.

The interpretation is that, if the vintage-n market is open at date t, by paying the price rtn, an
individual receives a car with probability etn; in this case, she consumes it for one period, at the
end of which she can decide whether to keep it or to return it. If she decides to keep it, then the
following period she will be required to pay the price ptn, and will exit the market.

Observe two notational conventions: first, consumers pay a rental price even if they do not
receive a car; hence, rtn can be regarded as the price of a lottery ticket. Second, exercise prices are
fixed at each time t, but paid at time t+1. Assuming that rental prices are only paid by consumers
who are served, and that date-t exercise prices are paid at the end of period t, is possible and of
no consequence for the analysis, but notationally less convenient.

In the mechanism under consideration, prices are stationary after time t = N , so we shall only
specify a time index when dealing with the first N + 1 (numbered 0 . . . N) periods.

At each time t = 0, 1, . . ., consumers observe all prices and service rates, and decide which car
to rent. Vintage is observable and verifiable, whereas quality is neither.

4.3.1 Efficient Experimentation and the Trickle-Down Algorithm

The first order of business is to analyze the evolution of demand and supply in each market under
the assumptions that:

1. Consumers follow the efficient experimentation policy;

2. The planner chooses non-increasing service rates so as to ensure that supply equals or exceeds
effectively served demand.

We refer to the law of motion of demand and supply implied by the preceding two assumptions as
the trickle-down algorithm.

Formally, denote by Stn and Dt
n the supply and demand of vintage-n cars at the beginning of

period t, for t = 0, . . . and n = . . . , N . Let S0
0 = 1, S0

n = 0 for n > 0, and D0
n = λn for all n.9

9For notational convenience, we assume that demand and supply are also defined for n = −1 and t = −1; the
respective values will be indicated as needed.
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Define Rtn = Stn
Dtn

, the fraction of demand for vintage-n cars that can be served at time t (Rtn > 1
indicates that all demand can be served). Then, for every t = 0, 1, . . ., let

et0 = min(1, Rt0) and ∀n = 1, . . . , N : etn = min(etn−1, R
t
n). (5)

In words, the planner always attempts to serve as much demand as possible, given available
supply, and given the constraint that service rates be non-increasing in vintage. Clearly, etn ≤ Rtn;
note also that service rates are zero in any market which is not (yet) open.

The quantities Dt
n and Stn can be defined inductively in terms of effective probabilities, as

follows. First, at time t − 1, ent consumers who request a vintage-n car actually receive one; of
these, λn

Ln
obtain a car of quality qn, and hence leave the market. Thus,

Dt
n = Dt−1

n (1− et−1
n

λn
Ln

) (6)

where we let D−1
n = D0

n and e−1
n = 0 for convenience. Second, at time t− 1 the supply of vintage-n

cars is diminished by et−1
n Dt−1

n , the number of successful consumers who request a vintage-n car in
that period; however, it is replenished in the amount et−1

n−1
Ln
Ln−1

Dt−1
n−1, corresponding to the number

of consumers who successfully bid for a vintage-(n − 1) car in that period, but discover that the
car they receive is of worse quality than qn−1. Hence,

Stn = St−1
n − et−1

n Dt−1
n + et−1

n−1
Ln
Ln−1

Dt−1
n−1 (7)

where, again for notational convenience, we let S−1
n = S0

n, e−1
n = 0 and Dt

−1 = 0 for all n and t

(including n = −1 and t = −1). Moreover, we also let L−1 = 1 and et−1 = 0.
It is also convenient to define

ηtn = etn
λn
Ln

, (8)

the mass of consumers leaving market n at time t.
Equations 5, 6, 7 and 8 define the trickle-down algorithm. The following result establishes the

claim made at the beginning of this section, namely that, under the trickle-down algorithm, service
rates are stationary. Moreover, the probability that a consumer leaves the market (i.e. rents a car
and finds it to be of the best possible quality) is also decreasing in vintage, although the conditional
probabilities λn

Ln
need not be ordered in any particular way. In other words, non-increasing service

rates compensate for departures from the conditions in Lemma 3.1.

Proposition 4.1 For every n = 0, . . . , N , etn = 0 and ηtn = 0 if t < n, and etn = enn ≡ en and
ηtn = ηnn ≡ ηn if t ≥ n; also, e0 = 1. Moreover, η0 ≥ η1 ≥ . . . ≥ ηN .
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Proof: See Appendix.

Note that Proposition 4.1, together with the definition of etn, implies that etn > 0 and ηtn > 0
for all n and t such that t ≥ n.

4.3.2 Value Functions for Stationary Cutoff Policies (t ≥ N)

At time t = N , the N -th market opens, so that, at t = N and at all subsequent times, all markets
are open. In particular, service rates are stationary. If prices are also stationary, the problem faced
by the consumers is relatively easy to analyze.

Hence, we now focus on dates t ≥ N , and indicate in the Appendix how to “jump-start” the
economy, i.e. choose non-stationary prices at times t = 0, . . . , N − 1 so that consumers are willing
to follow efficient experimentation and thereby implement the trickle-down algorithm in the initial
N periods as well.

In what follows, we assume that the planner has fixed constant rental and buying prices rn and
pn, as well as constant service rates en, for each vintage n = 0, . . . , N . Thus, consumers face a
stationary problem.

In order to establish the optimality of efficient experimentation, we need to analyze all possible
deviations. However, since the problem faced by the consumer at dates t ≥ N , it is sufficient to
consider stationary policies. Moreover, if a consumer is willing to buy a car of quality qm at a price
p, she is also willing to keep a car of quality q > qm at the same price. Hence, it is sufficient to
consider policies whereby exercise of the option to buy is governed by a simple cutoff rule.

Thus, consider a consumer of type θ who adopts the following stationary cutoff policy : at each
time t, she rents a car of vintage n, and keeps it iff it is of quality qm or better. Denote by Vn,m(θ)
the value of such policy and, for notational convenience, let q

n
= E[q|q ≤ qn]; then

Vn,m(θ) = −rn + en

{
q
n
θ + δ

[
m∑
`=n

λ`
Ln

(
θq`

1− δ
− pn

)
+
Lm+1

Ln
Vn,m(θ)

]}
+ (1− en)δVn,m(θ) (9)

That is, in exchange for a rental price of rn, the consumer enters a lottery in which, with
probability en, she receives a car of vintage n, hence (in equilibrium) of expected quality q

n
. She

obtains expected flow utility q
n
θ from consumption, and also has the opportunity to keep the car,

if its quality is qm or better. If the car is of worse quality than qm, or if she is unsuccessful in the
lottery, she continues pursuing the same policy.

In Equation 9, m < n implies that the sum in square brackets is over an empty set, and hence
will be taken to equal zero. This indicates that the consumer rents a car of vintage n in each period,
and never keeps it. To avoid redundancy, we indicate the value of such a “pure consumption policy”
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by Vn,−1(θ):

Vn,−1(θ) =
enqnθ − rn

1− δ
. (10)

Now Equation 9 may be rewritten as follows:

Vn,m(θ) = wn,mVn,−1(θ) + (1− wn,m)
m∑
`=n

λ`
Ln − Lm+1

(
θq`

1− δ
− pn

)
(11)

where
wn,m =

1− δ
(1− δ) + δen

Ln−Lm+1
Ln

, (12)

which emphasizes that Vn,m(θ) is a weighted average of the expected payoff from repeated rental
and the long-run expected payoff after purchasing the car. Also note:

Remark 4.1 dVN,N (θ)
dθ = qN

1−δ and, for 0 ≤ n < N and m ≥ n,

dVn,−1(θ)
dθ

=
enqn
1− δ

<
dVn,m(θ)

dθ
=

1
1− δ

[
wn,menqn + (1− wn)

m∑
`=n

λ`
Ln − Lm+1

q`

]
<

qn
1− δ

.

Remark 4.2 For every n = 0, . . . , N − 1, wn,n can be rewritten as follows:

wn,n =
1− δ

(1− δ) + δηn
(13)

Thus, wn,n ≤ wn+1,n+1, and moreover limδ→1wn,n = 0.

4.3.3 Prices

We now fix prices which induce efficient experimentation. First, as mentioned above, we ensure
that, if an individual takes only per-period consumption into account, then she prefers to rent a
car of the appropriate vintage. Hence, we set

rN = eNqNθN and rn such that enqnθn − rn = en+1qn+1θn − rn+1; (14)

observe that rental prices are thus independent of δ.
The following remark follows from standard arguments, together with the observation that

service rates are non-increasing in vintage.

Remark 4.3 If rental prices are defined by Equation 14, for any type θ ∈ [θn, θn−1], the (unique,
if θ 6= θn) best “pure consumption” policy involves renting vintage-n cars. Moreover, r0 > r1 >

. . . > rN .
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Next, having defined rental prices rn, n = 0, . . . , N , we define buying prices via the equivalent
of Equation 2 in Section 3:

pN =
θNqN
1− δ

and ∀n = 0, . . . , N − 1, Vn,n(θn) = Vn+1,n+1(θn). (15)

Remark 4.4 If buying prices are defined by Equation 15, then p0 > p1 > . . . > pN .

Proof: Rewrite Equation 15 for n < N as follows:

wn,nVn,−1(θn) + (1− wn,n)
(
θnqn
1− δ

− pn
)

= wn+1,n+1Vn,−1(θn) + (1− wn+1,n+1)
(
θnqn+1

1− δ
− pn+1

)
(16)

using Equation 14 to rewrite the pure-consumption parts.
Suppose that pn ≤ pn+1. Since qn > qn+1, θnqn

1−δ − pn >
θnqn+1

1−δ − pn+1. Thus, since 1 − wn,n ≥
1 − wn+1,n+1 by Remark 4.2, we must necessarily have Vn,n(θn) > Vn+1,n+1(θn), i.e. Equation 16
cannot hold.10

Now define the following rental prices:

rLN = θNqN and ∀n = 0, . . . , N − 1, θnqn − rLn = θnqn+1 − rLn+1. (17)

These are the one-period rental prices that would achieve efficient sorting if qualities were observ-
able. Our next result states that, if consumers are patient, buying prices approximate the net
present value of rental prices under observable quality.

Lemma 4.2 For every n = 0, . . . , N , limδ→1(1 − δ)pn = rLn and therefore, for every m ≥ N ,
limδ→1(1− δ)Vn,m(θ) =

∑m
`=n

λ`
Ln−Lm+1

θqn − rLn .

Proof: Note that (1− δ)pN = rLN for any value of δ. Now, from Equation 16,

pn =
θnqn
1− δ

− 1− wn+1,n+1

1− wn,n

(
θnqn+1

1− δ
− pn+1

)
+
wn,n − wn+1,n+1

1− wn,n
Vn,−1(θn) (18)

Arguing by induction, suppose that limδ→1(1 − δ)pn+1 = rLn+1; then Equation 18 shows that
limδ→1(1− δ)pn = θnqn − θnqn+1 + rLn+1 = rLn , because (1− δ)Vn,−1(θn) = enqnθn − rn (recall that
rn is independent of δ) and wn,n, wn+1,n+1 → 0 from Remark 4.2. The second claim follows directly
from Equation 11.

10Vn,n(θn) places more weight on the long-run payoff than Vn+1,n+1(θn) does, and moreover the long-run payoff in
the former is strictly higher than in the latter.

20



4.3.4 Optimality of Efficient Experimentation (t ≥ N)

Apart from indicating that buying prices are approximately what they should be in an environment
where efficiency is attainable, the preceding result implies that, if consumers are patient, they will
be unwilling to follow an experimentation policy which prescribes buying a car other than the best
possible given the vintage. In other words, the prices defined by Equations 14 and 15 make efficient
experimentation ex-post incentive compatible.

Remark 4.5 There exists δN < 1 such that δ > δN implies that, for every type θ, the best
stationary cutoff policy involving vintage n entails buying the car iff its quality is qn.

Proof: As δ → 1, (1 − δ)Vm,m(θ) → θqm − rLm < θqm − rLn whenever n > m. Hence, we can find
δN < 1 such that, for δ > δN , θqm

1−δ − pn < Vm,m(θ), i.e. the maximal type θ prefers to continue
experimenting rather than keeping qm for a price pn; but by Remark 4.1, lowering θ from θ to
any other θ ∈ [θN , θ) decreases the right-hand side by less than the left-hand side, so that strict
inequality holds for all types.

The reason for the subscript “N” in δN will become clear shortly. Coupled with Equation
15, Remarks 4.3 and 4.5 indicate that the optimal policy for a type θn ∈ [θn, θn−1] is either to
rent vintage n repeatedly for pure consumption purposes, or else to continue experimenting with
vintage-n cars until a car of quality qn is obtained. Thus, it remains to be shown that the latter
policy is better.

Proposition 4.3 For t ≥ N , there exists δN < 1 such that, for δ > δN , the optimal (continuation)
policy for type θn ∈ [θn, θn−1] involves experimenting with cars of vintage n, and buying a car iff it
is of quality qn.

Proof: We first compare Vn,−1(θn) and the long-run payoff θnqn
1−δ −pn. Observe that, by construction,

VN,−1(θN ) = 0 = θN qN
1−δ − pN . Also, consumers in the lowest type bracket are indifferent between

pure-consumption and experimentation. Next, suppose that

Vn+1,−1(θn+1) =
en+1qn+1θn+1 − rn+1

1− δ
≤ θn+1qn+1

1− δ
− pn+1;

then, by raising θ from θn+1 to θn, the left-hand side increases by
en+1qn+1

1−δ , whereas the left-hand
side increases by qn+1

1−δ , so we get

en+1qn+1θn − rn+1

1− δ
= Vn,−1(θn) <

θnqn+1

1− δ
− pn+1
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where the equality follows from Equation 14.11 Now observe that Vn+1,n+1(θn) is a weighted av-
erage of Vn,−1(θn) and θnqn+1

1−δ − pn+1, with strictly positive weights; it follows that Vn+1,n+1(θn) >
Vn,−1(θn), which, since Vn+1,n+1(θn) = Vn,n(θn) by our choice of buying prices, implies that
also Vn,n(θn) > Vn,−1(θn). Hence, ex-ante, the experimentation policy is better than the pure-
consumption policy. Observe that, by Remark 4.1, the inequality is preserved for θ > θn.

Moreover, Vn,n(θn) is a weighted average of Vn,−1(θn) and θnqn
1−δ − pn, with strictly positive

weights; hence, it must be the case that θnqn
1−δ − pn > Vn,−1(θn). That is, ex-post, after observing a

car of quality qn, type θn strictly prefers to keep it rather than continue experimenting. Again, the
inequality is clearly preserved for θ > θn. This completes the inductive step.

Together with the results in the Appendix (see Subsection 6.3), we obtain the main result of
this paper.

Proposition 4.4 There exists δ∗ < 1 such that, for δ > δ∗, the optimal policy for each consumer
of type θ ∈ [θn, θn−1] involves experimenting with vintage n at each time period, for n = 0, . . . , N .
Under this policy, for every ε > 0 there exists T (ε) <∞, independent of δ, such that a mass 1− ε
of consumers receives a car of its designated quality by time T (ε).

5 Comments

As promised in the Introduction, the modified leasing mechanism analyzed in Section 4 achieves
asymptotic payoff efficiency, as well as efficient sorting, for any distribution of qualities.

We have argued that the mechanism we propose deviates from a simple resale mechanism
precisely as mandated by incentive-compatibility issues: it incorporates just enough prices to ensure
that efficient experimentation is optimal both ex-ante and ex-post, and deals with the possibility
that intermediate vintages might be in short supply.

Moreover, the mechanism relies on anonymous information generated by payoff-relevant trans-
actions, as is the case in the resale mechanism we consider in Section 3.

We also note that, apart from marginal types, consumers have strict incentives to follow the
efficient experimentation policy. That is, the mechanism implements efficient sorting (and achieves
asymptotic efficiency) as a strict (Nash or competitive) equilibrium.

This makes it robust to perturbations in the assumptions of the model. For instance, it can be
shown that efficient experimentation remains optimal if simply driving a car for one period does

11The inequality is clearly strict for n < N = 1. Moreover, it must also be strict for n = N , because eN < 1. To
see that the latter inequality must hold, note that Equation 20 implies that RNN = eN−1

λN−1
LN−1

LN
λN

= eN−1
λN−1
LN−1

< 1,
regardless of eN−1.
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not perfectly reveal its quality, and additional, costly effort must be expended to learn it.
More precisely, suppose that, at each date t, a car of quality qn yields per-period utility (q+εtn)θ

to a consumer of type θ, for some collection of mean-zero i.i.d. random variables {εtn}. Assume
that, by driving the car for one period, a consumer observes qn + εtn but not qn. Finally, assume
that, at a small cost c > 0, the consumer can learn qn (perhaps by inspecting the engine, the tires,
and so on).

Then it is possible to construct an equilibrium of the modified leasing mechanism in which
consumers always expend the extra effort required to learn the quality of the car; the intuition is
that buying prices can be fixed so as to reflect the actual quality of a car, whereas rental prices can
be adjusted to compensate for the additional cost c. If a consumer does not exert the extra effort,
and if the perceived quality qn + εtn of the car she rents is higher than the true quality qn, she may
end up buying a car at a price that is too high for its actual quality. Conversely, she may end up
not buying a car that is actually of high quality (for its vintage) because its perceived quality is
low.

Clearly, a positive cost c of learning qualities generates an inefficiency; however, the argument
shows that the equilibrium we construct in Section 4 is the limit of equilibria in environments with
positive but vanishing costs of learning qualities, even if the distribution of the noise terms εtn
remains fixed as c→ 0.

It is possible to construct alternative mechanisms which achieve asymptotic efficiency in the
setting under consideration. For instance, the planner might rent or simply lend a car to an
arbitrary subset of consumers for one period, then ask them to report the quality of the car they
have received. After receiving all reports, the planner can set the price of each car as if its reported
quality was the actual one. In particular, the planner will sell a car of reported quality qn at the
price (1− δ)rLn (see Equation 17).12 Consumers then self-select based on prices.

If learning the quality of a car is costless, then it is a Nash equilibrium for consumers to report
truthfully, because they will (almost) surely not receive the car they have rented in the first period.

This mechanism is simple to describe, but, loosely speaking, it relies on “soft information”—the
reports elicited from the consumers. In particular, consumers would have no incentive to provide
meaningful reports, if this was costly to them.

For instance, the mechanism just described is not robust to the kind of perturbation we have
mentioned above. If learning the true quality is costly, consumers will at best report the perceived
quality qn + ε0n. The planner may of course obtain more than one report, but this implies that
efficient sorting will only obtain in the limit as infinitely many reports are collected.

12If the distribution of reports does not match the distribution of qualities, the planner repeats the procedure, until
the distributions do match.
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Thus, in the presence of costs of learning qualities, the alternative mechanism is arguably no
simpler than the modified leasing mechanism we propose. Moreover, it still fails to provide strong
incentives to report truthfully.

6 Appendix

6.1 Proof of key results in Section 3

6.1.1 Remark 3.1

Rewrite Equation 1 as follows:

ptn + V t(n; θ) =
(
λn
Ln

qn
1− δ

+
Ln+1

Ln
q
n+1

)
θ + δ

Ln+1

Ln

(
pt+1
n+1 + V t+1(n; θ)

)
=

=
(
λn
Ln

qn
1− δ

+
Ln+1

Ln
q
n+1

)
θ + δ

Ln+1

Ln

(
pt+1
n+1 − p

t+1
n

)
+

+ δ
Ln+1

Ln

(
pt+1
n + V t+1(n; θ)

)
.

Thus,

ptn + V t(n; θ) =
∞∑
s=t

(
δ
Ln+1

Ln

)s−t(λn
Ln

qn
1− δ

+
Ln+1

Ln
q
n+1

)
θ +

+ δ
Ln+1

Ln

∞∑
s=t+1

(
δ
Ln+1

Ln

)s−(t+1) (
psn+1 − psn

)
and Remark 3.1 follows.

6.1.2 Remark 3.2

Item (i) follows immediately from the first part of Equation 2. We prove (ii) by induction. First,
for n = N − 1, Equation 2 may be written as follows, using Remark 3.1:

BN−1θN−1 − ptN−1 − δ
LN
LN−1

Ct+1
N−1 = BNθN−1 − ptN

where BN = qN . Rearranging terms, we get

(BN−1 −BN )θN−1 = ptN−1 − ptN + δ
LN
LN−1

Ct+1
N−1 = CtN−1

and the left-hand side is independent of t. Proceeding by induction, Equation 2 implies that

Bnθn − ptn − δ
Ln+1

Ln
Ct+1
n = Bn+1θn − ptn+1 − δ

Ln+2

Ln+1
Cn+1;
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rearranging terms,

(Bn −Bn+1)θn + δ
Ln+2

Ln+1
Cn+1 = ptn − ptn+1 + δ

Ln+1

Ln
Ct+1
n = Ctn

and (ii) follows. Now (iii) is immediate from the recursive decomposition of Cn.

6.1.3 Remark 3.3

Note first that, for all n = 0, . . . , N − 1, limδ→1(1 − δ)Bn = qn. The first claim is proved by
induction, using Remark 3.2, Part (ii): for n = N − 1, we have limδ→1(1 − δ)CN−1 = limδ→1(1 −
δ)(BN−1 −BN )θN−1 = (qN−1 − qN )θN−1 > 0. For n < N − 1, limδ→1(1− δ)Cn = (qn − qn+1)θn +
Ln+2
Ln+1

limδ→1(1− δ)Cn+1 > (qn − qn+1)θn, and the induction is complete.

6.2 Proposition 4.1

Proof: First, note that, by Equation 6,

Dt
n = λn

t−1∏
s=n

(1− ηsn) (19)

where the product of an empty set of factors (i.e. t < n) is taken to be equal to 1, as is customary.
We use a double induction argument. First, consider n = 0 and t = 0: R0

0 = 1
λ0

> 1, so
e0

0 = 1. Assume that the first claim is true for s = 0, . . . , t− 1 for n = 0. Then, from Equation 19,
Dt

0 = λ0(1 − η0)t. Note also that η0 = λ0. Now, from Equation 7, using the induction hypothesis
for n = 0 and s = 0, . . . , t− 1,

Stn = 1− λ0

t−1∑
s=0

(1− λ0)s = (1− λ0)t

so that Rt0 = 1
λ0
> 1, and indeed et0 = 1 = e0. Thus, the claim holds for n = 0 and every t ≥ 0.

Now assume that the first and second claims are true for all m = 0, . . . , n − 1, and, for every
such m, for every s = 0, 1, . . .. Clearly, Rtn = 0 for t < n; thus, consider t = n. From Equation 7,

Snn = en−1
n−1

Ln
Ln−1

Dn−1
n−1 = en−1

Ln

Ln−1
λn−1 = ηn−1Ln

whereas Dn
n = λn. Thus,

Rnn =
Ln
λn
ηn−1. (20)

Now, if Rnn > en−1, or equivalently if ηn−1 > en−1
λn
Ln

, then en ≡ enn = enn−1 = en−1, where the last
equality follows from the inductive hypothesis; in this case, ηn = λn

Ln
en = λn

Ln
en−1 < ηn−1. If instead
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Rnn ≤ en−1, then en ≡ enn = Rnn ≤ en−1
n−1 = en−1, and in this case ηn = en

λn
Ln

= Rnn
λn
Ln

= ηn−1, where
the last equality follows from Equation 20.

We conclude that Rnn > en−1 implies ηn < ηn−1, and Rnn ≤ en implies ηn = ηn−1; thus, the
second claim is established.

We now claim that, for t ≥ n,

Rtn =
Rnn
ηn−1

[
1− (1− ηn−1)

(
1− ηn−1

1− ηn

)t−n]
. (21)

Observe that, for any t ≥ n for which the claim is true, Rtn = Rnn if Rnn ≤ en−1, and Rtn ≥ Rnn (with
equality only for t = n) if Rnn > en−1; in either case, since by the induction hypothesis etn−1 = en−1,
this implies that etn = en and hence ηtn = ηn.

The claim is true for t = n. Thus, assume that it is true for t− 1. From Equations 7 and 19,

Rtn =
Rt−1
n

1− ηt−1
n
−

Ln
λn
ηt−1
n

1− ηt−1
n

+
Lnηn−1(1− ηn−1)t−n

λn
∏t−1
s=n(1− ηsn)

where we have used the induction assumption that ηtn−1 = ηn−1, and substituted for et−1
n and en−1

using the definitions of ηt−1
n and ηn−1. Now, assuming that the claim is true for s = n, . . . , t − 1,

we can rewrite this as

Rtn =
Rt−1
n

1− ηn
−

Ln
λn
ηn

1− ηn
+
Lnηn−1(1− ηn−1)t−n

λn(1− ηn)t−n
=

Rt−1
n

1− ηn
+

Rnn
ηn−1

[
− ηn

1− ηn
+ ηn−1

(
1− ηn−1

1− ηn

)t−n]

where the second equality uses Equation 20 to substitute for Ln
λn

. We can now use the induction
hypothesis to substitute for Rt−1

n :

Rtn =
Rnn
ηn−1

[
1

1− ηn
− 1− ηn−1

1− ηn

(
1− ηn−1

1− ηn

)t−1−n
− ηn

1− ηn
+ ηn−1

(
1− ηn−1

1− ηn

)t−n]
=

=
Rnn
ηn−1

[
1− (1− ηn−1)

(
1− ηn−1

1− ηn

)t−n]

as required.

6.3 “Jump-Starting” the economy

At any time t < N , only markets 0 . . . t are open, according to the trickle-down algorithm. If
we maintained the same rental prices as above, consumers who are intended to experiment with
vintages that are not yet available might have an incentive to rent better (lower) vintages for
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consumption purposes. To prevent this from happening, prices at time t = 0, . . . , N − 1 are
determined according to

rtt = etqtθt and rn such that enqnθn − r
t
n = en+1qn+1θn − r

t
n+1, n = 0, . . . , t− 1; (22)

that is, n = t takes the place of N in Equation 14. In particular, type θt is left with zero surplus,
so lower types have no incentive to rent any one of the available vintages.

We define buying prices as a function of rental prices as per Equation 22, under the assumptions
that (1) the marginal type θt is indifferent between experimenting at time t and waiting until
time t + 1 to begin experimentation, and (2) each type θn, n < t, is indifferent between the
experimentation policies involving vintage n and vintage n+ 1.

Formally, as in Equation 9, we define the value at time t of following the experimentation policy
which entails renting a car of vintage n and keeping it iff it is of quality qm or better, V t

n,m(θ), by
V N
n,m(θ) = Vn,m(θ) and, for t < N ,

V t
n,m(θ) = enqnθ−r

t
n+δen

Ln − Lm+1

Lm

m∑
`=n

λ`
Ln − Lm+1

(
θq`

1− δ
− ptn

)
+δ
(

1− en
Ln − Lm+1

Ln

)
V t+1
n,m (θ)

(23)
In particular, according to the conventions maintained thus far, V t

n,−1(θ) = enqnθ − rtn +
δV t+1

n,−1(θ). Observe that Equation 22 implies that V t
n,−1(θn) = V t

n+1,−1(θn).

Since the first term in the right-hand side of Equation 23 equals (1− δ) enqnθ−r
t
n

1−δ , V t
n,m(θ) may

also be viewed as a weighted average of a pure-consumption payoff, an expected consumption payoff
after buying the car, and a continuation payoff. However, note that the pure-consumption payoff
is not equal to V t

n,−1(θ) (because rental prices change.)

Remark 6.1 For t = 0, . . . , N − 1, and for 0 ≤ n ≤ t and m ≥ n,

dVn,−1(θ)
dθ

=
dV t

n,−1(θ)
dθ

=
enqn
1− δ

<
dVn,m(θ)

dθ
=
dV t

n,m(θ)
dθ

<
qn

1− δ
.

Proof: Recall that, by Remark 4.1, dVn,m(θ)
dθ = (1− δ)−1[wn,menqn+ (1−wn,m)q

n,m
] < (1− δ)−1qn;

we write q
n,m

= E[q|qm ≤ q ≤ qn]. On the other hand, dV N−1
n,m (θ)
dθ = (1 − δ)−1[(1 − δ)enqn +

δen
Ln−Lm+1

Ln
q
n,m

+ δ(1− en Ln−Lm+1
Ln

)wn,menqn + δ(1− en Ln−Lm+1
Ln

)(1−wn,m)q
n,m

]. From Equation

12, (1− δ)+ δ(1−en Ln−Lm+1
Ln

)wn,m = wn,m, and δen
Ln−Lm+1

Ln
+(1−wn,m) = 1−wn,m, so the result

holds for t = N − 1. The proof is completed by induction.

We now define prices via the following conditions: for every t = 0, . . . , N − 1, and for every
n = 0, . . . , t,

V t
t,t(θt) = δV t+1

t,t (θt); ∀n < t, V t
n,n(θn) = V t

n+1,n+1(θn). (24)

27



Note that Equation 24, together with Remark 6.1, implies that V t
t,t(θ) > δV t+1

t,t (θ) for θ > θt, and
hence V t

n,n(θn) > δV t+1
n,n (θn) for n < t. That is, every consumer type other than θt will strictly

prefer to begin experimenting with her designated vintage immediately rather than in the next
period.

It is convenient to also define pNn = pn, n = 0, . . . , N .

Proposition 6.1 If buying prices at times t = 0, . . . , N are defined as above, then there exists δ
such that, for δ > δ, and for every t = 0, . . . , N :

(1) pt0 > . . . > ptt.
(2) θtqt

1−δ − p
t
t = V t+1

t,t (θt).
(3) If t < N , then for every n = 0, . . . , t, ptn > pt+1

n ; thus, V t
n,m(θ) < V t+1

n,m (θ) for all θ ∈ [θt, θ]
and t ≥ m ≥ n.

(4) For every n = 0, . . . , t, and θ ∈ [θn, θn−1], V t+1
n,n (θn) < θnqn

1−δ − p
t
n; also, V t

n,n(θn) ≥ V t
n,−1(θn),

with equality only for n = t = N .
(5) For every n = 0, . . . , t, θ ∈ [θt, θ] and m ∈ {n, . . . , t}, limδ→1(1− δ)ptn = rLn and limδ→1(1−

δ)V t
n,m(θ) = θ

∑m
`=n

λ`
Ln−Lm+1

q`θ − rLn .
(6) For every n = 0, . . . , t− 1, θ ∈ [θt, θ] and m ∈ {n+ 1, t}, qmθ

1−δ − p
t
n < V t+1

m,m(θ).

Proof: For t = N , (1), (4), (5) and (6) restate results in the previous subsection; with the obvious
convention that V N+1

N,N = VN,N , (2) holds because both sides of the equation are zero; finally, (3)
does not apply. It will be crucial to note that prices and values become at and after time t = N .

Now suppose the result is true for some t + 1, t < N . Note that V t
n,n(θn) = V t

n+1,n+1(θn) is
equivalent to

ηn

(
θnqn
1− δ

− ptn − V t+1
n,n (θn)

)
= ηn+1

(
θnqn+1

1− δ
− ptn+1 − V t+1

n+1,n+1(θn)
)

(25)

for n < t, where we used Equation 22 to eliminate the per-period consumption terms, and Equation
24 for time t + 1 to reduce the weights multiplying the continuation value terms to δηn and δn+1

respectively. As in the previous subsection, V t+1
n,n (θn) = V t+1

n+1,n+1(θn) and ηn ≥ ηn+1 imply that
ptn > ptn+1, so (1) follows.

To prove (2), note that V t
t,t(θt) = δV t+1

t,t (θt) reduces to

etqtθt − r
t
t + δηt

(
θtqt

1− δ
− ptt

)
+ δ(1− ηt)V t+1

t,t (θt) = δV t+1
t,t (θt).

Now etqt − r
t
t = 0 by construction, and we can subtract δV t+1

t,t (θt) from both sides. Since ηt > 0,
(2) follows.
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We now prove (3) by induction on n. For n = t, note that, by (2), θtqt
1−δ − ptt = V t+1

t,t (θt);
moreover, by the induction hypothesis on t, (3) and (4) hold at time t+1, so in particular V t+1

t,t (θt) ≤
V t+2
t,t (θt) < θtqt

1−δ − p
t+1
t (the first inequality is weak only if t = N − 1). This implies ptt > pt+1

t .
Now suppose that ptn+1 > pt+1

n+1 for some n < t. Note that, at time t + 1, an equation corre-
sponding to 25 must hold. Hence, it must be the case that

ηn[(ptn − pt+1
n ) + (V t+1

n,n (θn)− V t+2
n,n (θn))] = ηn+1[(ptn+1 − pt+1

n+1) + (V t+1
n+1,n+1(θn)− V t+2

n+1,n+1(θn))]

so that, since V τ
n,n(θn) = V τ

n+1,n+1(θn) for τ = t+ 1, t = 2 by Equation 24,

ptn − pt+1
n =

ηn+1

ηn
(ptn+1 − pt+1

n+1) +
(

1− ηn+1

ηn

)
[V t+2
n,n (θn)− V t+1

n,n (θn)];

also recall that ηn ≥ ηn+1. Now, if t = N − 1, the second term in the above weighted average is
zero; otherwise, by the induction hypothesis, it is positive, because (3) holds at time t + 1. Thus,
in any case, ptn+1 > pt+1

n+1 implies ptn > pt+1
n , so the induction on n is completed. Finally, since,

at time t, rtn > rt+1
n and ptn > pt+1

n for all n = 0, . . . , t, Equation 23 and the induction hypothesis
imply that V t

n,m(θ) < V t+1
n,m (θ) for all types θ and t ≥ m ≥ n. Thus, (3) holds at time t.

To prove (4), we again apply induction on n. For n = t, we have V t
t,t(θt) = δV t+1

t,t (θt) and, since
etqtθt − r

t
t = 0, V t

t,−1(θt) = δV t+1
t,−1(θt). Hence, the induction hypothesis on t implies that (4) holds

at time t+ 1, which in turn yields V t
t,t(θt) > V t

t,−1(θt).
Now assume that V t

n+1,n+1(θn+1) > V t
n+1,−1(θn+1) for some n < t. By Remark 6.1, this implies

that V t
n+1,n+1(θn) > V t

n+1,−1(θn) = V t
n,−1(θn), so also V t

n,n(θn) > V t
n,−1(θn).

To prove the remaining inequalities, recall that, as was noted in the text, V t
n,n(θn) > δV t+1

n,n (θn).
This reduces to

enqnθn − r
t
n + δηn

(
θnqn
1− δ

− ptn
)
> δηnV

t+1
n,n (θn).

By the induction hypothesis on t, V t+1
n,n (θn) > V t+1

n,−1(θn) > V t
n,−1(θn); thus, there exists δ1

such that, for δ > δ1, δηnV t
n,n(θn) > enqnθn − r

t
n, and hence δηnV t+1

n,n (θn) > enqnθn − r
t
n. If, by

contradiction, V t+1
n,n (θn) ≥ θnqn

1−δ − p
t
n, then for δ > δ1 the above inequality is violated. Hence, for

δ > δ1, we must have V t+1
n,n (θn) > θnqn

1−δ − p
t
n.

To prove (5), by (2) and the induction hypothesis on t, limδ→1(1 − δ)ptt = θtqt − limδ→1(1 −
δ)V t+1

t,t (θt) = θtqt − (θtqt − rLt ) = rLt , as needed. Now assume that the claim is true at time t for
m = n+ 1, . . . , t; multiplying both sides of Equation 25 by (1− δ) and taking limits yields

ηn[θnqn − lim
δ→1

(1− δ)ptn − (θnqn − rtn)] = ηn+1[θnqn+1 − rLn+1 − (θnqn+1 − rLn )] = 0
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which, since ηn > 0, implies the required result. Now, from Equation 23, by the induction hypothesis
on t,

lim
δ→1

V t
n,m(θ) = en

Ln − Lm+1

Lm

m∑
`=n

λ`
Ln − Lm+1

(θq`−rLn )+
(

1− en
Ln − Lm+1

Ln

)( m∑
`=n

λ`
Ln − Lm+1

θq` − rLn

)

so the result follows.
Finally, to see that (6) holds, note that, by (5), qmθ− limδ→1(1−δ)ptn = qmθ−rLn < qmθ−rLm =

limδ→1(1− δ)V t+1
m,m(θ). Hence, it is possible to choose δt < 1 such that, for δ > δt implies that, for

all n and m as in the claim, qmθ
1−δ − p

t
n < V t+1

m,m(θ); the claim now follows from Remark 6.1.
To complete the proof, let δ = min{δ0, . . . , δN}.

We now show, by backward induction on t, that the experimentation policy involving vintage
n is optimal for each type θ ∈ [θn, θn−1]. The previous subsection shows that this is the case for
t = N . Now suppose that it is also the case at time t+ 1 ≤ N , and consider the problem faced by
a type θ ∈ [θn, θn−1] at time t.

By the induction hypothesis, if the agent does not leave the market at time t (i.e. if she does not
buy a car), her continuation strategy at time t+1 may be assumed to be the experimentation policy
involving vintage n. By Proposition 6.1, (6), for δ > δ a consumer who has rented a vintage-m car
at time t will only keep it if it is of quality qm. Moreover, Equation 22 ensures that a consumer
of type θ ∈ [θn, θn−1] who is only interested in time-t consumption will rent a car of vintage n.
Thus, the optimal continuation policy at time t is necessarily one of the following: (P1) rent a car
of vintage n at t, do not buy it regardless of its quality, and experiment with vintage n beginning
with time t+ 1; (P2) rent a car of vintage m 6= n at t, keep it iff it is of quality qm, and experiment
with vintage n beginning with time t+ 1; (P3) experiment with vintage n beginning with time t.

Now Proposition 6.1, (4) shows that, for δ > δ, if a consumer of type θ ∈ [θn, θn−1] rents a car
of vintage n which turns out to be of quality qn, then she strictly prefers to buy it rather than
experiment with vintage n beginning with time t + 1; hence, (P1) above cannot be the optimal
policy.

Next, suppose that a consumer of type θ ∈ [θn, θn−1] rents a car of vintage m which turns out to
be of quality qm, with m 6= n. By Proposition 6.1, (5), θqm − limδ→1 p

t
m = θqm − rLm ≤ θqn − rLn =

limδ→1(1 − δ)V t+1
n,n (θ), with equality only for type θn and for m = n − 1. However, note that,

since V t+1
n+1,n+1(θn) = V t+1

n,n (θn), the value to type θn of experimenting with vintage n+ 1 at time t,
keeping the car iff it is of quality qn+1, and then experimenting with vintage n forever after, is

en+1qn+1θn + δηn+1

(
qn+1θn
1− δ

− ptn+1

)
+ δ(1− ηn+1)V t+1

n,n (θn) =
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= en+1qn+1θn + δηn+1

(
qn+1θn
1− δ

− ptn+1

)
+ δ(1− ηn+1)V t+1

n+1,n+1(θn) =

= V t
n+1,n+1(θn) = V t

n,n(θn)

for type θn, and strictly less than V t
n,n(θn) for any type θ ∈ (θn, θn−1].13 Hence, we can disregard

this particular policy at time t.
For any other vintage m 6∈ {n, n+ 1}, we can find δ∗t,n,m such that, for δ > δ∗t,n,m:
(1) if qm > wn,nenqn + (1 − wn,n)qn, qmθn−1

1−δ − ptm < V t+1
n,n (θn−1); by Remark 6.1, the same

inequality will hold for all lower types θ ∈ [θn, θn−1);
(2) if qm ≤ wn,nenqn + (1 − wn,n)qn, qmθn

1−δ − p
t
m < V t+1

n,n (θn); again by Remark 6.1, the same
inequality will hold for all higher types θ ∈ (θn, θn−1].

Thus, for δ > δ∗t = max{δ∗t,n,m : n = 0, . . . , N, m 6∈ {n, n + 1}}, no policy of type (P2) can be
optimal at time t. Hence, the optimal policy at time t involves experimenting with vintage n, and
the induction is complete.

Taking δ∗ = max{δ, δ∗0, . . . , δ∗N−1}, we get Proposition 4.4.
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δ(1−ηn+1)(1−δ) dV
t+1
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(see the proof of Remark 6.1).

31


