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ABSTRACT

There has been an increasing interest in hypothesis testing with inequality restric-

tions. An important example in time series econometrics is hypotheses on autoregressive

conditional heteroskedasticity (ARCH). We propose a one-sided test for ARCH using the

wavelet method, a new analytic tool developed in the last decade or so. The test is based

on a wavelet spectral density estimator at frequency zero of the square of estimated resid-

uals from a regression model. The square of an ARCH process is positively correlated at

all lags, resulting in a spectral mode at frequency zero. In particular, it has a spectral

peak at frequency zero when there exists persistent ARCH, or when ARCH e¤ect is small

at each lag but carries over a long distributional lag. Because wavelets can e¤ectively

capture spectral peaks, we expect that the wavelet test is more powerful than the kernel

counterpart when there exists persistent ARCH or when ARCH e¤ect has a long distri-

butional lag. This is con…rmed in a simulation study, which also compares a number of

important one-sided and two-sided ARCH tests.
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1. INTRODUCTION

Hypothesis testing with inequality restrictions has been important in econometrics

and statistics (e.g., Andrews 1998, Bera et al. 1998, Gourieroux et al. 1982, King and Wu

1998, Self and Liang 1987, SenGupta and Vermeire 1986, Silvapulle and Silvapulle 1995,

Wolak 1989, Wu and King 1994). An important example in time series econometrics is

hypotheses on ARCH, where parameters of interest are zero if there is no ARCH and are

nonnegative if ARCH exists.

Detection of ARCH is important from both theoretic and practical points of view.

Neglecting ARCH may lead to arbitrarily large loss in asymptotic e¢ciency of parameter

estimation (e.g., Engle, 1982); cause overrejection of conventional tests for serial correla-

tion such as those of Box and Pierce (1970) and Ljung and Box (1978) (e.g., Taylor 1984,

MilhÁj 1985, Diebold 1987); and result in overparameterization of ARMA models (e.g.,

Weiss 1984). Although the one-sided nature of ARCH has been long well-known, most

ARCH tests are two-sided. Among them are Engle (1982), McLeod and Li (1983), Bera

and Higgins (1992), Gregory (1989), Hong and Shehadeh (1999), Lee (1991), and Weiss

(1986). Brock et al.’s (1991,1996) chaotic correlation dimension test for serial dependence

also has excellent power against ARCH.

Exploration of the one-sided nature of ARCH is expected to increase power in small

samples. Engle et al. (1985) suggest using the square root of the Lagrangian Multiplier

(LM) test, with proper sign, to test …rst order ARCH. This approach, however, could

not be generalized to test higher order ARCH. Lee and King (1993,1994) are apparently

the …rst to develop one-sided tests for ARCH of general order q. They propose a locally

most mean powerful score-based test for ARCH(q), using SenGupta and Vermeire’s (1986)

approach for one-sided multiparameter hypotheses. Demos and Sentana (1998) consider

a convenient one-sided LM test for ARCH(q) in spirit similar to Kuhn-Tucker Multi-

plier tests (cf. Gourieroux et al. 1982). Lee and King (1993) and Demos and Sentana

(1998) also consider one-sided tests for GARCH(1,1), which are numerically identical to

their tests for ARCH(1) respectively. Andrews (1999) also considers one-sided testing for

GARCH(1,1). Simulation studies show that these tests outperform two-sided tests (e.g.,

Engle 1982), indicating nontrivial gains of exploring the one-sided nature of ARCH.

Hong (1997) recently proposed a one-sided ARCH test by observing that the spectral

density of the square of an estimated residual from a regression model is uniform when

there is no ARCH and is always larger than the uniform one at frequency zero whenever
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ARCH exists. Hong (1997) uses Parzen’s (1957) kernel estimator to construct the test.

The test is shown to perform well in comparison with some popular one-sided and two-

sided ARCH tests, and it requires no formulation of an alternative model (e.g., the orders

of ARCH or GARCH processes).

It is well-known that in …nite samples the kernel method tends to underestimate

the spectral density at frequencies where there is a mode, no matter whether a …nite

sample optimal bandwidth is available (cf. Priestley 1981). The kernel method is not

an ideal tool in capturing signi…cantly inhomogeneous spectral features. In the present

context, the one-sided nature of ARCH implies that the square of a linear ARCH process

is positively correlated at all lags, always resulting in a spectral mode at frequency zero.

In particular, the spectral density of the squared process exhibits a peak at frequency zero

when there exists persistent ARCH, or when ARCH e¤ect carries over a long distributional

lag, although it may be small at each individual lag. Examples are nearly integrated

GARCH processes, and fractionally integrated GARCH processes (cf. Baillie 1986). In

such situations, the kernel method cannot be expected to perform well.

The recent development of wavelet analysis provides a tool to construct a potentially

more powerful one-sided test for ARCH. Wavelet analysis is a new analytic tool developed

over the last decade or so. It is a spatially adaptive analytic tool that can e¢ciently cap-

ture signi…cantly inhomogeneous features (e.g., Donoho and Johnstone 1994,1995a,1995b,

Donoho et al. 1996, Gao 1993, Neumann 1996, Wang 1995). In this paper, we propose a

one-sided test for ARCH using a wavelet spectral density at frequency zero of the square

of estimated residuals from a regression model. Because of the nature of ARCH, the

wavelet method is expected to be more powerful than the kernel method where there ex-

ists persistent ARCH. Besides the ARCH context, spectral peaks may arise due to strong

dependence, seasonality, and business cycles. Therefore, our approach might have po-

tential applications to testing a broad range of one-sided hypotheses. The present paper

merely provides an example to illustrate how wavelets can be used to develop powerful

econometric procedures.

Wavelets have been applied to time series analysis in several directions. Gao (1993)

uses the wavelet method to estimate the spectral density of a stationary Gaussian time

series. Neumann (1996) considers wavelet estimation of the spectral density of a stationary

non-Gaussian process. Priestley (1996) explores potential applications of wavelet analysis

to nonstationary time series evolutionary spectral analysis. See also Subba Rao. In
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econometrics, Gilbert (1995) uses the wavelet method to estimate and test structural

changes. Jensen (1996) uses wavelets to estimate a long memory model via maximum

likelihood. There have been also some applications of wavelet methods to economic and

…nancial time series (e.g., Go¤e 1994, Ramsey 1998, Ramsey and Lampart 1998a,1998b,

Ramsey and Zhang 1996,1997, Ramsey et al. 1995).

We …rst describe the basic framework and hypotheses of interest in Section 2. Section

3 is an introduction to wavelet analysis and especially its application to spectral analysis.

In Section 4, we propose a test based on a wavelet spectral density estimator, and derive

its asymptotic distribution. An asymptotic local power analysis is given in Section 5. In

Section 6, we adapt the proposed test to data-dependent choice of …nest scale parameter—

the smoothing parameter in the wavelet estimation. Section 7 presents a Monte Carlo

comparison between the proposed wavelet test, three existing one-sided ARCH tests, and

Engle’s (1982) popular two-sided LM test. Section 8 concludes the paper. All proofs are

collected in the appendix. Unless indicated, all convergencies are taken as the sample

size n ! 1; A¤ denotes the complex conjugate of A; jjAjj = ftr(A0A)g 1
2 the Euclidean

norm of A; C a generic bounded constant that may di¤er from place to place; and Z =
f0;§1;§2; :::g the set of integers.

2. FRAMEWORK AND HYPOTHESES

Throughout, we consider the following data generating process:

ASSUMPTION A.1: fYtg is a stochastic time series process

Yt = g(Xt; b0) + "t; "t = »th
1
2
t ; (2.1)

where Xt is a vector consisting of exogenous variables and lagged dependent variables,

b0 is a …nite-dimensional parameter vector, and ht is a positive time-varying measurable

function with respect to the information set It¡1 available at period t¡ 1: The innovation

sequence f»tg is independent and identically distributed (i.i.d.) with E(»t) = 0; E(»
2
t ) = 1

and E(»8t ) < 1: Moreover, »t is independent of Xs for all s · t:

This is a setup often seen in the ARCH literature (e.g., Bollerslev et al. 1992). We

make no distributional assumption on innovation »t except the existence of an eighth

moment. The process f"tg is an adapted martingale di¤erence sequence with respect to

It¡1; namely E("tjIt¡1) = 0 almost surely. Its conditional variance, E("2t jIt¡1) = ht; is
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time-varying. Throughout, we consider a generalized linear ARCH process

ht = ¯0 +
1X

l=1

¯l"
2
t¡l; (2.2)

where ¯0 > 0;
P1

l=1 < 1; and ¯l ¸ 0 for all l ¸ 1 to ensure positivity of ht (cf. Nelson

and Cao 1992, Drost and Nijman 1993). One example is Engle’s (1982) ARCH(q) process

ht = ¯0 +

qX

l=1

¯l"
2
t¡l: (2.3)

Another example is Bollerslev’s (1987) GARCH(p; q)

ht = °0 +

pX

l=1

®l"
2
t¡l +

qX

l=1

°lht¡l; (2.4)

whose coe¢cient ¯l, which is a function of f®l; °lg; decays to zero exponentially as l ! 1:
The class (2.2) also includes Baillie et al.’s (1996) fractionally integrated GARCH process.

For this process, ¯j decays to zero slowly.

Under (2.2), the null hypothesis of no ARCH can be stated as

H0 : ¯j = 0 for all j = 1; 2; ::: .

The alternative hypothesis that ARCH exists is

HA : ¯j ¸ 0 for all j = 1; 2; :::; with at least one strict inequality.

The alternativeHA is one-sided. To test such a hypothesis, we take a frequency domain

approach. Let f (!) be the standardized spectral density of "2t ; that is,

f (!) = (2¼)¡1
1X

j=¡1
½(j)e¡ij!; ! 2 [¡¼; ¼]; (2.5)

where ½(j) is the autocorrelation function of f"2tg: Because (2.2) implies that f"2tg follows

an AR(1) process:

"2t = ¯0 +
1X

j=1

¯j"
2
t¡j + wt; (2.6)

with E(wtjIt¡1) = 0 almost surely. Under H0, f"2tg = wt is a white noise, we have

f(0) = (2¼)¡1: On the other hand, under HA; we have ½(j) ¸ 0 for all j 2 Z and

there exists at least one j such that ½(j) > 0: It follows that f(0) > (2¼)¡1 under HA:
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This forms a basis for constructing a one-sided test for H0 vs. HA: We can compare a

consistent estimator for f(0) and (2¼)¡1 and test if their di¤erence is signi…cantly larger

than zero: Note that we do not specify any particular alternative model (e.g., the orders

of GARCH(p; q)) under HA; the proposed test will be consistent (i.e., has asymptotic unit

power) against the class of general linear ARCH processes, which include ARCH, GARCH

and fractionally integrated GARCH with known or unknown orders.

Hong (1997) proposes a consistent one-sided ARCH test using a Parzen’s (1957) kernel

estimator for f (0):While the kernel estimator is consistent, it tends to underestimate f (0)

when there is a spectral mode at frequency zero (e.g., Priestley 1981). This is indeed the

case under HA; which implies that the autocorrelations of f"2tg are positive at all lags and

consequently result in a spectral mode at frequency zero. In particular, when the ¯j are

small but decay to zero slowly, there is a spectral peak at frequency zero. This is the case

with highly persistent volatility clustering. For such cases, the kernel method may not be

expected to be most powerful.

3. WAVELET METHOD

The recent development of wavelet analysis provides a potentially useful tool to test

ARCH. Wavelet analysis is a new mathematical tool. It can e¤ectively estimate inhomo-

geneous spectral density functions (e.g., Gao 1993, Neumann 1996). We now propose a

wavelet estimator for f(0); the standardized spectral density at frequency zero of f"2tg,
and use it to construct a one-sided test for ARCH.

Throughout, we use multiresolution analysis (MRA), introduced by Mallat (1989).

MRA is a mathematical method to describe a square-integrable function g(¢) 2 L2(R) at

di¤erent scales. The key of MRA is the introduction of the mother wavelet function Ã:

ASSUMPTION A.2: Ã : R ! R is an orthonormal mother wavelet such that
R1
¡1 Ã(x)dx =

0;
R1
¡1 jÃ(x)jdx <1;

R1
¡1 Ã

2(z)dz = 1 and
R
Ã(x)Ã(x¡ k) = 0 for all k 2 Z; k 6= 0:

The orthonormality of Ã implies that the doubly in…nite sequence fÃjkg constitutes

an orthonormal basis for L2(R), where

Ãjk(x) = 2
j=2Ã(2jx¡ k); j; k 2 Z: (3.1)

This sequence is obtained from a single mother wavelet Ã by dilations and translations.

The integers j and k are called the dilation and translation parameters respectively. In-

tuitively, j localizes analysis in frequency and k localizes analysis in time (or space). This
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simultaneous time-frequency localization of information is the key feature of wavelet analy-

sis, explaining why wavelets are attractive for function approximation. The dilation factor

can di¤er from 2, but “2” ensures the L2-invariance that
R1
¡1 Ãjk(x)

2dx =
R1
¡1 Ã(x)

2dx:

Often Ã(x) is well-localized (i.e., Ã(x) ! 0 su¢ciently fast as x ! 1), so Ãjk(x) is

e¤ectively nonzero only around an interval of width 2¡j centered at k=2j :

The mother wavelet Ã can have bounded support. An example is Haar wavelet:

Ã(x) =

8
>><
>>:

1 if 0 < x · 1
2
;

¡1 if ¡ 1
2

· x < 0;

0 otherwise.

(3.2)

Compact support ensures that Ã is well-localized in time domain. Daubechies (1992)

shows that for any nonnegative integerD; there exists an orthonormal compact supported

wavelet whose …rst D moments vanish. The mother wavelet Ã can also have in…nite

support, but it must decay to zero su¢ciently fast at in…nity. An example is the Littlewood

-Paley wavelet Ã(¢), which is de…ned via its Fourier transform

Ã̂(z) ´ (2¼)¡
1
2

Z
Ã(x)e¡izxdx = (2¼)¡

1
21(jzj · 2¼); z 2 R; (3.3)

where 1(¢) is the indicator function. Other wavelet examples include Franklin wavelet,

Lemarie-Meyer wavelets, and spline wavelets. See (e.g.) Hernandez and Weiss (1996) for

details.

For any g(x) 2 L2(R); we have the wavelet representation

g(x) =
X

j2Z

X

k2Z

®jkÃjk(x); (3.4)

where the wavelet coe¢cient

®jk =

Z 1

¡1
g(x)Ãjk(x)dx: (3.5)

Cf. Mallat (1989) and Daubechies (1992). The localization property of Ã ensures that

®jk basically depends on the local property of g on an interval of width 2¡j centered

at k=2j: This is fundamentally di¤erent from Fourier representation, where each Fourier

coe¢cient depends on the global property of g: An essential feature of wavelet analysis

is that wavelets, in an “automatic manner”, evaluate high frequency components of g

on small intervals, and low frequency components of g on large intervals. Consequently,
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they can e¤ectively represent signi…cantly inhomogeneous functions with a relatively small

number of wavelet coe¢cients. Wavelet coe¢cients are large where g exhibits signi…cant

inhomogeneity, and are small where g is smooth.

To represent the standardized spectral density f (!) of f"2tg; which is 2¼-periodic and

thus is not square-integrable on R; we need to periodize the wavelet basis fÃjkg via

ªjk(!) = (2¼)
¡ 1
2

1X

m=¡1
Ãjk(

!

2¼
+m); (3.6)

which is 2¼-periodic. With such periodic orthonormal bases for L2(I), where I = [¡¼; ¼];
we can represent f (!) via wavelet bases:

f (!) =
1

2¼
+

1X

j=0

2jX

k=1

®jkªjk(!); (3.7)

where the wavelet coe¢cient

®jk =

Z ¼

¡¼
f(!)ªjk(!)d!: (3.8)

See Lee and Hong (1998) and Hong and Lee (1999). Denote the Fourier transform of Ã(x)

by

Ã̂(z) = (2¼)¡
1
2

Z 1

¡1
Ã(x)e¡izxdx: (3.9)

Assumption A.2 ensures that Ã̂(z) exists and is continuous almost everywhere; with

jÃ̂(z)j · C; Ã̂(¡z) = Ã̂
¤
(z); Ã̂(0) = 0 and

R1
¡1 jÃ̂(z)j2dz = 1: By Parseval’s identity,

we can equivalently express the wavelet coe¢cient

®jk = (2¼)
¡ 1
2

1X

l=¡1
½(l)ª̂¤

jk(l) (3.10)

where ª̂jk(l) is the Fourier transform of ªjk(!); that is,

ª̂jk(l) = (2¼)
¡ 1
2

Z ¼

¡¼
ªjk(!)e

¡il!d! = e¡2¼lk=2
j

(2¼=2j)Ã̂(2¼l=2j): (3.11)

In (3.11) the second equality follows from (3.6) and a change of variable. Note that the

translation parameter k is converted into a “modulation”, i.e., the multiplication of an

exponential. This is a natural consequence of the Fourier transform of convolution.

We impose an additional assumption on Ã:

7



ASSUMPTION A.3: jÃ̂(z)j · Cminfjzjq; (1 + jzj)¡¿g for some q > 0 and ¿ > 1:

This requires that Ã̂ have some regularity (i.e. smoothness) at 0 and su¢ciently fast

decay at 1. The condition jÃ̂(z)j · Cjzjq is e¤ective as z ! 0; where q governs the

degree of smoothness of Ã̂(z) at zero. If
R 1
¡1(1 + jxjº)jÃ(x)jdx < 1 for some º > 0;

then jÃ̂(z)j · Cjzjq for q = min(º; 1); cf. Priestley 1996). When Ã has …rst D vanishing

moments (i.e.,
R1
¡1 x

rÃ(x)dx = 0 for r = 0; :::; D ¡ 1); we have jÃ̂(z)j · CjzjD as z ! 0:

On the other hand, jÃ̂(z)j · C(1 + jzj)¡¿ is e¤ective as z ! 1. It holds trivially for the

so-called band-limited wavelets, whose Ã̂’s have compact supports (cf. Hernandez and

Weiss 1996).

Most commonly used wavelets satisfy Assumptions A.2-A.3. Examples include Daubechies’

(1992) compactly supported wavelets of positive order, Franklin wavelet, Lemarie-Meyer

wavelets, Littlewood-Paley (or Shannon) wavelets, and spline wavelets. See (e.g.) Her-

nandez and Weiss (1996) for more discussions. Assumption A.3 rules out Haar wavelet,

however, because its Ã̂(z) = ¡ieiz=2 sin2(z=4)=(z=4) decays to zero at a rate of jzj¡1 only.

To obtain a feasible wavelet estimator of f(0); we use the estimated regression residual

"̂t = Yt ¡ g(Xt; b̂); (3.12)

where b̂ is a consistent estimator of b0: We impose the following assumptions on the

regression model g(Xt; b) and parameter estimator b̂:

ASSUMPTION A.4: (i) For each b 2 B; g(¢; b) is a measurable function with respect to

It¡1; (ii) g(Xt; ¢) is twice continuously di¤erentiable with respect to b in an open convex

neighborhood B0 of b0 almost surely, with limn!1fn¡1 Pn
t=1E supb2B0 jj @

@b
g(Xt; b)jj4g <

1 and limn!1fn¡1 Pn
t=1E supb2B0 jj @2

@b@b0g(Xt; b)jj2g < 1:
ASSUMPTION A.5: n

1
2 (b̂¡ b0) = OP (1):

We permit but do not require that b̂ be the ordinary least square (OLS) or quasi-

maximum likelihood estimators (e.g., Lee and Hansen 1994, Lumsdaine 1996). Any
p
n-

consistent estimator of b0 su¢ces.

Now, de…ne the sample autocorrelation function of squared residuals f"̂2tg

½̂(l) = R̂(l)=R̂(0); (3.13)

where the sample autocovariance of f"̂2tg

R̂(l) = n¡1
nX

t=jlj+1
("̂2t=¾̂

2 ¡ 1)("̂2t¡jlj=¾̂2 ¡ 1); l 2 Z (3.14)
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with ¾̂2 = n¡1
Pn

t=1 "̂
2
t : A wavelet spectral estimator for f (0) can be given as

f̂(0) = (2¼)¡1 +
JX

j=0

2jX

k=1

®̂jkªjk(0); (3.15)

where the empirical wavelet coe¢cient

®̂jk =

Z ¼

¡¼
Î(!)ªjk(!)d! = (2¼)

¡ 1
2

n¡1X

l=1¡n
½̂(l)ª̂¤

jk(l); (3.16)

with Î(!) = (2¼n)¡1jPn
t=1 "̂

2
t e
i!tj2 the periodogram of f"̂2tg. There are two ways to

compute ®̂jk: For compactly supported wavelets Ã;ªjk(!) in (3.6) is a sum of …nite terms.

The …rst expression of ®̂jk in (3.16) is e¢cient to compute. For the band-limited wavelets

(whose Ã̂ has compact supports), the second expression of ®̂jk in (3.16) is convenient to

compute, as it is a sum of …nite terms.

The integer J is called the …nest scale parameter. Given n, a large J will lead to

a smaller bias but a larger variance for f̂(0): We need to choose J properly to balance

the bias and variance. In subsequent sections, we will provide proper conditions on J to

ensure that the proposed test statistic have a well-de…ned limit distribution.

4. TEST STATISTIC AND ITS DISTRIBUTION

To introduce our test statistic, we de…ne

¸(z) = 2¼Ã̂
¤
(z)

1X

m=¡1
Ã̂(z + 2¼m): (4.1)

Assumptions A.2-A.3 implies that ¸(z) is continuous almost everywhere, with ¸(0) =

0 and j¸(z)j · C. Note that the tail behavior of ¸(z) is governed by Ã̂(z); because
P1

m=¡1 Ã̂(z + 2¼m) is 2¼-periodic. For convenience, we impose a condition on ¸(z):

ASSUMPTION A.6: ¸ : R ! R is square-integrable.

Most commonly used wavelets satisfy this assumption. Because Ã̂
¤
(z) = Ã̂(¡z) given

Assumption A.2, the condition that ¸(z) is real-valued implies ¸(¡z) = ¸(z):
The test statistic for H0 vs. HA is de…ned as

Sn(J) ´ V
¡ 1
2

n (J)n
1
2¼

n
f̂(0)¡ (2¼)¡1

o
; (4.2)
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where

Vn(J) =
n¡1X

l=1

(1¡ l=n)
(

JX

j=0

¸(2¼l=2j)

)2

: (4.3)

The factor 1¡ l=n is a …nite sample correction; it could be replaced by unity.

The statistic Sn is applicable for both small J (i.e., J is …xed) and large J (i.e.,

J ´ Jn ! 1 as n ! 1): For and only for large J; we could also use the statistic

~Sn(J) ´
¡
n=2J

¢ 1
2 V

¡ 1
2

0 ¼
n
f̂(0)¡ (2¼)¡1

o
; (4.4)

where

V0 =

Z 2¼

0

j¡(z)j2 dz (4.5)

and

¡(z) =
1X

m=¡1
Ã̂(z + 2m¼): (4.6)

This statistic has the same null asymptotic distribution as Sn(J) when J is large, because

Vn(J)=2J ! V0 as J ! 1 (see Lemma A.2 in the appendix). It is simpler to compute

than Sn(J); but may have less desirable sizes in …nite samples, especially when J is small.

Theorem 1: Suppose that Assumptions A.1-A.6 hold, and 2J=n ! 0 as n ! 1: Then

under H0

Sn(J) ! N(0; 1) in distribution.

Both small and large (i.e., …xed and increasing) …nest scales J are allowed here. The

choice of J may have important impact on the behavior of Sn(J):We will use a data-driven

method to choose J in the simulation study below:

5. ASYMPTOTIC LOCAL POWER

We now study the asymptotic power of Sn(J) under the following class of generalized

linear local alternatives

Ha(an) : ht = ¾
2
0

(
1 + an

1X

j=1

¯j("
2
t¡j ¡ 1)

)
;

where ¯j ¸ 0;
P1

j=1 ¯j < 1 and an ! 0: Without loss of generality we further assume

an
P1

j=1 ¯j < 1 for all n to ensure positivity of ht:The classHa(an) describes all linear local

ARCH alternatives, which include ARCH, GARCH and fractionally integrated GARCH

of known or unknown orders.
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Theorem 2: Suppose that Assumptions A.1-A.6 hold. (i) Let J 2 Z be …xed. De…ne

¹(J) = V0(J)
¡ 1
2

1X

l=1

dJ (l)¯j;

where V0(J) =
P1

l=1 dJ(l)
2 and dJ (l) =

PJ
j=0 ¸(2¼l=2

j): Then under Ha(n¡
1
2 );

Sn(J) ! Nf¹(J); 1g in distribution.

(ii) Let J ! 1; 22J=n ! 0: De…ne ¹ = V
¡ 1
2

0

P1
j=1 ¯j: Then under Ha(2

J=2=n1=2);

Sn(J) ! N (¹; 1)in distribution.

Theorem 2(i) implies that with …xed …nest scale J; Sn(J) has nontrivial power against

Ha(an) with parametric rate an = n¡
1
2 , provided

P1
l=1 dJ(l)¯l 6= 0: It has no power when-

ever
P1

l=1 dJ(l)¯l = 0; which may occur for a …xed J; because dJ (l) is a local average,

depending on J and wavelet Ã: On the other hand, Theorem 2(ii) implies that with in-

creasing …nest scale J; Sn(J) has nontrivial power against all linear local ARCH processes

asymptotically. This follows because the noncentrality parameter ¹ > 0 whenever ARCH

exists (i.e., at least one parameter ¯j > 0): Hong’s (1997) kernel test is also consistent

for all linear local ARCH processes. The tests of Lee and King (1993) and Demos and

Sentana (1998) are not designed to test all linear local ARCH alternatives, since they are

interested in testing a parametric ARCH(q) for …xed q. Lee and King (1993) and Demos

and Sentana (1998) also consider one-sided tests for GARCH(1,1), which numerically co-

incide with their tests for ARCH(1) respectively. The extension to testing GARCH(p; q)

for p; q > 1 is more di¢cult, because some of the parameters do not lie on the boundary

of the parameter space (cf. Lee and King 1993, Demos and Sentana 1998). We note

that Andrews (1999) recently also considered one-sided testing for GARCH(1,1) using a

di¤erent approach.

The consistency of Sn(J) against all possible linear local ARCH alternatives is desirable

when no prior information about the alternative is known. This is, however, achieved at

the price that Sn(J) can detect Ha(an) with an = 2J=2=n
1
2 only. This rate is slower than

the parametric rate n¡
1
2 ; as is typical for nonparametric smoothed testing. However, it

may not be taken too literally in practice. For example, if 2J / (ln n)2; the rate of the

local alternatives is n¡
1
2 ln(n); only slightly slower than n¡

1
2 : Finally, we note that because

of the one-sided nature of the tests, it is appropriate to use upper-tailed N (0; 1) critical

values for Sn(J): For example, the upper-tailed N(0; 1) critical value at the 5% level is

1.645.
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6. ADAPTION TO DATA-DRIVEN FINEST SCALE

Theorem 2 shows that Sn(J) is consistent for all linear locally ARCH processes as J

increases. In practice, the choice of J may have important impact on the power. Because

usually no prior information on the alternative is available, it may be desirable if J can

be determined by suitable data-driven methods. To allow for such a possibility, we give

the conditions on the data-dependent …nest scale Ĵ (say) under which the randomness of

Ĵ has asymptotically negligible e¤ect on the limit distribution of Sn(J).

ASSUMPTION A.7: Ĵ is a data-driven …nest scale such that Ĵ ¡J = oP (2¡J=2); where J

is a nonstochastic integer.

For …xed J; Assumption A.7 becomes Ĵ ¡ J = oP (1):

Theorem 3: Suppose that Assumptions A.1-A.7 hold, and 2J=n ! 0: Then under H0;

Sn(Ĵ)¡ Sn(J) ! 0 in probability, and Sn(Ĵ) ! N (0; 1) in distribution.

So far there are very few data-driven methods to choose J available in the literature.

To our knowledge, only Walter (1995) proposes a data-driven J; using a mean square error

criterion. We will use it in our simulation study below.

7. MONTE CARLO EVIDENCE

We now investigate the …nite sample performance of the wavelet-based test Sn(J).

We use Franklin wavelet and the second order spline (S1 and S2; respectively). Franklin

wavelet is de…ned via its Fourier transform,

bÃ(z) = (2¼)¡1=2eiz=2 sin
4(z=4)

(z=4)2

µ
1¡ 2=3 cos2(z=4)

(1¡ 2=3 sin2(z=2))(1¡ 2=3 sin2(z=4))

¶1=2

: (7.1)

For the second order spline wavelet, its Fourier transform

bÃ(z) = ¡(2¼)¡1=2ieiz=2 sin
6(z=4)

(z=4)3

µ
P (z=4 + ¼=2)

P (z=2)P (z=4)

¶1=2

(7.2)

where P (z) = 1
30
cos2(2z) + 13

30
cos(2z) + 8

15
:

The choice of the …nest scale parameter, J; may be important. We choose a data-

driven J via Walter’s (1994) algorithm, which makes use of the fact that the change

in the integrated mean squared error (IMSE) from one scale to the next …ner scale is

proportional to the sum of squared empirical wavelet coe¢cients. The change in IMSE
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from J¡1 to J is proportional to
P2J

k=1 ®̂
2
Jk; where ®̂Jk is the empirical wavelet coe¢cient

at the scale J: One starts from the initial scale J = 0 and checks how much the error

changes from 0 to 1: The grid search is iterated until we get the scale J at which the error

increases most rapidly. Then, one obtains the …nest scale. In our simulation, we choose

the …nest scale J for which the change in error between J and J + 1 exceeds 100 %. We

note that this method is more suitable for estimation of f(!) on [¡¼; ¼] rather than at

frequency zero. Nevertheless, the simulation below shows that it works relatively well in

the present context.

We compare S1 and S2 with three one-sided ARCH tests—Hong’s (1997) kernel test

(denoted K), Lee and King’s (LK; 1993) locally most mean powerful test, and Demos

and Sentana’s (1998) one-sided LM test (DS). We also include Engle’s (1982) two-sided

LM test (LM); which is commonly used in practice. For the K test; we use Quadratic-

Spectral kernel and select a data-driven bandwidth via Andrews’ (1991) plug-in method

based on an ARCH(1,1) approximating model. For the LK test, we use the version of the

test statistic which is robust to non-normality (see Lee and King 1993, (13)). The tests

of S1; S2; K; and LK are all asymptotically one-sided N(0; 1) under H0. The DS test is

computed as the sum of the squared t-statistics of the positive coe¢cients in the regression

of "̂2t on a constant and the …rst q lags of "̂2t : This test has a nonstandard mixed chi-square

distribution, whose critical values are given in Demos and Sentana’s (1998, Table 1). The

LM test has asymptotic Â2q distribution under H0 and is computed as (n ¡ q)R2; where

R2 is the squared correlation coe¢cient in the regression of "̂2t on a constant and the …rst

q lags of "̂2t : For LK; DS and LM; the lag order q has to be chosen a priori. These tests

will attain their maximal powers when using the optimal lag order, which depends on

the alternative. When the order of the alternative is unknown, as is often the case in

practice, these tests may su¤er from power losses when using a suboptimal lag order. To

investigate the e¤ect of using di¤erent choices of q for these tests; we consider q = 1 and

12 (denoted LK(1); LK(12); DS(1); DS(12); LM(1); and LM(12)):

Consider the data generating process

Yt = X
0
tb0 + "t; "t = »th

1=2
t ; t = 1; 2; :::; n;

where Xt = (1;mt)
0; mt = 0:8mt¡1 + Àt and Àt »i.i.d. N(0; 4); »t »i.i.d. N(0; 1): Both

f»tg and fÀtg are mutually independent. We set b0 = (1; 1)0 and estimate them by OLS.

As in Engle et al. (1985), the exogenous variable mt is generated for each experiment and

held …xed from iteration to iteration. Two sample sizes, n = 100; 200; are considered. To
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reduce the possible e¤ects of the initial condition, n + 1000 observations are generated

and then the …rst 1000 ones are discarded. Also, the initial values for "t; t · 0 are set to

be zero, and ht; t · 0 is set to be 1: For each experiment, 1000 iterations are generated

using the GAUSS random number generator on a personal computer.

We …rst study the size by setting ht = 1: Table 1 reports the size at the 10 % and

5 % levels using asymptotic critical values. The tests S1; S2 and K attain reasonable

sizes, though they tend to slightly underreject. The tests LK(1) and DS(1) have best

sizes. The tests LK(12) and LM(12) show some underrejections, while DS(12) tends to

overreject slightly.

Next, we investigate the power under the following alternatives.

ARCH(1): ht = 1 + ¯"2t¡1;

ARCH(12a): ht = 1 + ¯
P12

j=1 "
2
t¡j;

ARCH(12b): ht = 1 + ¯
P12

j=1(1¡ j=13)"2t¡j;
GARCH(1,1): ht = 1 + ®"

2
t¡1 + ¯ht¡1:

For these alternatives, we choose the values of parameters (®; ¯) to ensure strictly positive

conditional variance and …nite unconditional variance. For ARCH(1), we consider ¯ =

0:3; 0:95: It does not have a sharp spectral peak at any frequency. In contrast, ARCH(12a)

and ARCH(12b) are allowed to have a relatively long distributional lag, which generates

a spectral peak at frequency zero. Linearly declining weights in ARCH(12b) were often

considered in the literature (e.g., Engle 1982, Engle et al. 1987). We consider ¯ =

0:95=12 for ARCH(12a) and ¯ = 0:95=
P12

j=1(1¡ j=13) for ARCH(12b). GARCH(1,1) is

a workhorse in modelling economic and …nancial time series (cf. Bollerslev 1986). When

® + ¯ < 1; GARCH(1,1) can be expressed as ARCH(1) with coe¢cients declining at

exponential rate. We set (®; ¯) = (0:3; 0:3); (0:3; 0:65): The latter displays relatively

persistent ARCH, which yields a spectral peak at frequency zero. Tables 2-4 report the

size-corrected power under these alternatives. The empirical critical values are obtained

from 1000 replications under H0.

Table 2 reports the power against ARCH(1). For ¯ = 0:3; LK(1) and DS(1) have

similar powers and are the most powerful. The K test has power very close to that

of LK(1) and DS(1): These three tests have better power than LM(1); which in turn

has better power than S1 and S2. Compared to the kernel test K; wavelets su¤er from

nontrivial power loss when there is no sharp spectral peak. The fact that LK(1) and

DS(1) are most powerful here is not surprising, because they use the optimal lag q = 1:
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The powers of LK(12); DS(12) and LM(12) are substantially smaller, with LK(12) the

smallest. These tests are less powerful than S1 and S2: This suggests that power loss

may be severe when one uses a suboptimal q for LM; DS and LM: Note that the power

rankings remain largely the same when ¯ = 0:95:

Table 3 reports the power under ARCH(12a) and ARCH(12b). Under ARCH(12a),

LK(12) has the best power, and dominates DS(12): These two tests use the optimal lag

order q = 12: Both S1 and S2 have power close to that of LK(12): They have better power

thanK: The S2 test is slightly better thanDS(12) and is substantially better than LM(12)

for n = 100; although the latter uses the optimal lag. This indicates that wavelets work

pretty well when ARCH e¤ect has a relatively long distributional lag. Under ARCH(12b),

S1; S2 and LK(12) have comparable power and are more powerful than DS(12); LM(12);

K; LK(1) and DS(1):

Table 4 reports the power against GARCH(1,1). When (®; ¯) = (0:3; 0:3); there

is relatively weak ARCH e¤ect. In this case K attains the best power, followed very

closely by LK(1) and DS(1); then by S1 and S2; and …nally by LM(1): Nevertheless, the

power di¤erence among these tests is marginal. The tests DS(12); LM(12) and LK(12)

su¤er from severe power losses, especially for LK(12): When (®; ¯) = (0:3; 0:65); there

is relatively persistent ARCH, Here, S1 and S2 perform the best. They outperform K;

which, in turn, is more powerful than LK(1); DS(1) and LM(1): The powers of LK(12);

DS(12) and LM(12) are smaller than those of LK(1); DS(1) and LM(1) respectively,

but the di¤erences are rather small. This suggests that the use of a long lag order may

not su¤er from severe power loss when there exists persistent ARCH. Finally, we note

that while DS(1) and LK(1) have similar power when (®;¯) = (0:3; 0:3) and (0:3; 0:65);

DS(12) has better power than LK(12) when (®;¯) = (0:3; 0:3); and similar power when

(®; ¯) = (0:3; 0:65):

In summary, we …nd:

1) The wavelet tests, S1 and S2; have similar size and power in almost all the cases.

The choice of wavelet function is not important.

2) The relative power performance of the one-sided kernel and wavelet tests depends

on the spectral shape of the squared residuals. When ARCH is of a short memory (as

in ARCH(1), GARCH(1,1) with (®;¯) = (0:3; 0:3)), the one-sided kernel test is more

powerful than the one-sided wavelet test. When there exists relatively persistent ARCH

(i.e., GARCH(1,1) with (®; ¯) = (0:3; 0:65); or when ARCH e¤ect has a long distributional
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lag (i.e., ARCH(12)), there is a spectral peak at frequency for the squared time series

process. In this case, the wavelet test outperforms the kernel test.

3) The tests LK, DS and LM attain their own maximal powers when the optimal lag

order is used, but they may su¤er severe power loss when a suboptimal lag is used. Under

each alternative, the two-sided LM test is always dominated by some one-sided tests using

the same lag order. This suggests nontrivial power gain of exploiting the one-sided nature

of the ARCH alternative.

4) None of the one-sided tests dominates the others in power for the alternatives

under study. When ARCH e¤ect has short memory (ARCH(1) and GARCH(1,1) with

(®; ¯) = (0:3; 0:3)), the one-sided kernel test has power comparable to that of LK(1) and

DS(1), which use the correct lag order and are most powerful. When ARCH e¤ect has

relatively long memory (ARCH(12a,b) and GARCH(1,1) with (®; ¯) = (0:3; 0:65)); the

one-sided wavelet test has power close to or even better than that of LK and DS with

the optimal lag orders. We note that both the kernel and wavelet tests do not require the

knowledge of the optimal lag.

The fact that the kernel test K has good power when ARCH e¤ect is weak or of

relatively short memory while the wavelet tests S1 and S2 have good power when ARCH

e¤ect is persistent suggests that a suitable Bonferoni procedure that combines the kernel

and wavelet tests may have good power against both weak and persistent ARCH. We

consider two simple Bonferoni procedures, BF1; which combines S1 and K; and BF2;

which combines S2 and K: The simple BF1 procedure works as follows: Let P1 and P2
be the smaller and larger asymptotic p-values of test statistics fS1; Kg: Then one rejects

H0 at level ® if P1 < ®=2: The same procedure applies to BF2: Table 5 reports the size

and power of BF1 and BF2 at the 10% and 5% levels. Both BF1 and BF2 show some

underrejections, which is consistent with the conservative nature of Bonferoni procedures.

In spite of this underrejection in size, however, they do have all-round good power against

all the alternatives under study. In particular, they have better power than the wavelet

tests S1 and S2 when ARCH is less persistent, and have better power than the K test

when ARCH is persistent. This suggests that BF1 and BF2 do combine the advantages

of the wavelet and kernel approaches.

8. CONCLUSION

We consider a wavelet-based one-sided test for ARCH. The test statistic is based on a

wavelet spectral density estimator at frequency zero of the square of estimated residuals
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from a regression model. An essential feature of ARCH is that the squared process is

positively correlated at all lags, thus resulting in a spectral mode at frequency zero. In

particular, a spectral peak arises when there exists persistent ARCH, or when ARCH

e¤ect carries over a long distributional lag, although its e¤ect may be small at each lag.

Because the kernel method tends to underestimate modes or peaks, it may not be a

powerful tool when there exists persistent ARCH. In contrast, wavelets can e¢ciently

capture such inhomogeneous features as spectral peaks, and are expected to perform well

in these situations. This is con…rmed in a simulation study. Since there exists unknown

smoothness from the data, the wavelet-based test for ARCH is a useful complement to

the existing one-sided tests for ARCH.
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MATHEMATICAL APPENDIX

To prove Theorems 1-2, we …rst state some useful lemmas.

Lemma A.1: De…ne

dJ(l) =
JX

j=0

¸(2¼l=2j); l; J 2 Z;

where ¸(z) as in (4.1). Then

(i) dJ(0) = 0 and dJ(¡l) = dJ(l);
(ii) jdJ (l)j · C uniformly in J and l;

(iii) For any given l 2 Z; l 6= 0; dJ(l) ! 1 as J ! 1;
(iv) For r ¸ 1;

Pn¡1
l=1 jdJ(l)jr = O(2J ) as J; n! 1:

Proof of Lemma A.1: See Hong and Lee (1999, Proof of Lemma A.1).

Lemma A.2: Let Vn(J) and V0 be de…ned as in Theorem 1. Suppose J ! 1; 2J=n ! 0:

Then Vn(J)=2J ! V0 as n ! 1:
Proof of Lemma A.2: Recalling the de…nition of dJ(l); we put

~Vn(J) =
n¡1X

l=1

d2J (l) =
JX

p=¡J

JX

j=jpj

n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j);

where the second equality follows by reindexing. We shall show ~Vn(J)=2
J+1 ! V0; which,

with dominated convergence, implies Vn(J)=2J+1 ! V0: Let I = In ! 1; I=J ! 0 as

n ! 1: Decompose
~Vn(J) = ~Vn(I) +Q1n +Q2n; (A1)

where

Q1n =
IX

p=¡I

JX

j=I+1

n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j);

Q2n =
JX

jpj=I+1

JX

j=jpj

n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j):

For the second term Q1n in (A1), we have that as n! 1;

Q1n = 2J
JX

p=¡J

JX

j=I+1

2¡(J¡j)
1

2¼

(
(2¼=2j)

n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j)

)

= 2J+1
1X

p=¡1

1

2¼

Z 1

0

¸(z)¸(2jpjz)dzf1 + o(1)g

= 2JV0(1 + o(1)) (A2)
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by dominated convergence,

(2¼=2j)
n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j) !
Z 1

0

¸(z)¸(2jpjz)dz for any given p as j ! 1;

JX

j=I+1

2¡(J¡j) ! 2 as I ! 1; J=I ! 1;

and symmetry of ¸(z) given Assumption A.5: Using a similar reasoning, for the last term

in (A1), we have

Q2n = o(2
J+1): (A3)

Finally, for the …rst term in (A1), we can show

~Vn(I) ·

¯̄
¯̄
¯̄

IX

p=¡I

IX

j=jpj

n¡1X

l=1

¸(2¼l=2j)¸(2jpj2¼l=2j)

¯̄
¯̄
¯̄

·
IX

p=¡I
2¡jpj=2

IX

j=jpj
2j

(
2¡j

n¡1X

l=1

¸2(2¼l=2j)

) 1
2
(
2¡(j¡jpj)

n¡1X

l=1

¸2(2¼l=2j¡jpj)

) 1
2

· C2
1X

p=¡1
2¡jpj=2

IX

j=0

2j

· 8C22I (A4)

by Assumption A.5, where we used the fact that for any l > 0; j > 0;

2¡j
n¡1X

l=1

¸2(2¼l=2j) = 2¡j

0
@

2jX

l=1

+
n¡1X

l=2j+1

1
A¸2(2¼l=2j)

· 2¡j
2jX

l=1

C(2¼l=2j)2q + 2¡j
n¡1X

l=2j+1

C(2¼l=2j)¡2¿

· C + C

(
2¡j

nX

l=1

(1 + 2¼l=2j)¡2¿
)

· C

½
1 +

1

2¼

Z 1

0

(1 + x)¡2¿dx

¾
;

where the …rst inequality follows by Assumption A.5 and the last one follows from the

fact that (1 + x)¡2¿ is decreasing in x > 0: Note that
R1
0
(1 + x)¡2¿dx < 1 given ¿ > 1:

Collecting (A1)-(A4) and I=J ! 0 yields the desired result.
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Lemma A.3: Let ¯(l) be a sequence of autocovariances with
P1

l=1 j¯(l)j < 1; and let

dJ (l) be de…ned as in Lemma A.1 : Then
Pn¡1

l=1 dJ(l)¯(l)! P1
l=1 ¯(l) as J; n ! 1:

Proof of Lemma A.3: We write

n¡1X

l=1

dJ (l)¯(l)¡
1X

l=1

¯(l) =
n¡1X

l=1

fdJ (l)¡ 1g¯(l)¡
1X

l=n+1

¯(l): (A5)

For the second term, we have
¯̄
¯̄
¯

1X

l=n+1

¯(l)

¯̄
¯̄
¯ ·

1X

l=n+1

j¯(l)j ! 0 (A6)

as n ! 1 given
P1

l=1 j¯(l)j < 1: For the …rst term, we have

n¡1X

l=1

fdJ (l)¡ 1g ¯(l)! 0 (A7)

as J; n ! 1 by dominated convergence, dJ(l) ¡ 1 ! 0 for any l 2 Z as J ! 1; and

jdJ (l)¡ 1j · C from Lemma A.1: Collecting (A6)-(A7) yields the desired result.

Lemma A.4: Let Vn(J) be as de…ned in (4.3). Suppose Ĵ 2 Z is a data-driven integer

such that Ĵ ¡ J = oP (1); where J 2 Z is nonstochastic, then Vn(Ĵ)=Vn(J)!p 1:

Proof of Lemma A.4: By the de…nition of Vn(J) in (4.3) and the Cauchy-Schwarz

inequality; we have

¯̄
¯Vn(Ĵ)¡ Vn(J)

¯̄
¯ ·

n¡1X

l=1

fdĴ (l)¡ dJ (l)g2 + 2
(
n¡1X

l=1

[dĴ(l)¡ dJ(l)]2
) 1

2
(
n¡1X

l=1

dJ(l)
2

) 1
2

: (A8)

Now, given Assumptions A.5 and A.7, we have jdĴ(l)¡dJ (l)j · Pmax(Ĵ ;J)

j=min(Ĵ ;J)
j¸(2¼l=2j)j;

and so

n¡1X

l=1

fdĴ (l)¡ dJ (l)g2 · C2
mX

l=1

8
<
:

max(J;Ĵ)X

j=min(J;Ĵ)

(2¼l=2j)q

9
=
;

2

+ C2
n¡1X

l=m+1

8
<
:

max(J;Ĵ)X

j=min(J;Ĵ)

(2¼l=2j)¡¿

9
=
;

2

· C2(Ĵ ¡ J)22¡2qmin(J;Ĵ)m2q+1 + C2(Ĵ ¡ J)222¿ max(J;Ĵ)m1¡2¿

= (Ĵ ¡ J)2
n
2¡2qJ2¡2qmin(0;Ĵ¡J)m2q+1 + 22¿J22¿ max(0;Ĵ¡J)m1¡2¿

o

= OP f(Ĵ ¡ J)22Jg (A9)
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by choosing m = 2J and noting Ĵ ¡ J = oP (1): This, together with Vn(J) = O(2J) from

Lemma A.2; implies

jVn(Ĵ)=Vn(J)¡ 1j = Vn(J)¡1jVn(Ĵ)¡ Vn(J)j = OP (Ĵ ¡ J) = oP (1):

Proof of Theorem 1: Put ut = »2t ¡ 1: De…ne

~f (0) =
1

2¼
+

JX

j=0

2jX

k=0

~®jkªjk(0); (A10)

where ~®jk = (2¼)¡
1
2

Pn¡1
l=1¡n ~½(j)ª̂

¤
jk(l); ~½(j) = ~R(j)=R(0); ~R(l) = n¡1

Pn
t=jlj+1 utut¡jlj;

and ª̂jk(l) = (2¼)
¡ 1
2

R ¼
¡¼ªjk(!)e¡il!d! is the Fourier transform of ªjk(!):

Write f̂(0)¡ (2¼)¡1 = ff̂(0) ¡ ~f(0)g + f ~f(0)¡ 1=2¼g: We shall prove Theorem 1 by

showing Theorems A.1-A.2 below.

Theorem A.1: V ¡
1
2

n n
1
2ff̂(0)¡ ~f (0)g !p 0:

Theorem A.2: V ¡
1
2

n n
1
2¼f ~f (0)¡ (2¼)¡1g !d N (0; 1):

Proof of Theorem A.1: Recall that ª̂jk(h) is the Fourier transform of ªjk(!); we have

ªjk(0) = (2¼)
¡ 1
2

1X

h=¡1
ª̂jk(h) = (2¼)

¡ 1
2

1X

h=¡1
e¡i2¼hk=2

j

(2¼=2j)
1
2 Ã̂(2¼h=2j) (A11)

given (3.11). Moreover, by (3.11) and (3.16), we have

®̂jk = (2¼)
¡ 1
2

n¡1X

l=1¡n
½̂(l)ei2¼lk=2

j

(2¼=2j)
1
2 Ã̂

¤
(2¼l=2j): (A12)

Collecting (3.15) and (A11)-(A12) with Lemma A.1 yields

f̂(0) =
1

2¼
+

JX

j=0

2jX

k=1

®̂jkªjk(0)

=
1

2¼
+
1

2¼

n¡1X

l=1¡n

8
<
:

JX

j=0

1X

h=¡1

2jX

k=1

ei2¼(l¡h)k=2
j

(2¼=2j)Ã̂
¤
(2¼l=2j)Ã̂(2¼h=2j)

9
=
; ½̂(l)

=
1

2¼
+
1

2¼

n¡1X

l=1¡n
dJ(l)½̂(l)

=
1

2¼
+
1

¼

n¡1X

l=1

dJ(l)½̂(l) (A13)
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where the third equality follows because by the change of variable l = h +m; we have

JX

j=0

1X

h=¡1

2jX

k=1

ei2¼(l¡h)k=2
j

(2¼=2j)Ã̂
¤
(2¼l=2j)Ã̂(2¼h=2j)

=
JX

j=0

2¼
1X

m=¡1

8
<
:2

¡j
2jX

k=1

ei2¼mk=2
j

9
=
; Ã̂

¤
(2¼l=2j)Ã̂f2¼(l +m)=2jg

=
JX

j=0

¸(2¼l=2j)

= dJ (l)

where we used the well-known fact that
P2j

k=1 e
i2¼mk=2j = 2j if m = 2jq; q 2 Z and

P2j

k=1 e
i2¼mk=2j = 0 otherwise (e.g., Priestley 1981, (6.19), p.392). Moreover, the last

equality in (A13) follows from ½̂(¡l) = ½̂(l); dJ(0) = 0 and dJ(¡l) = dJ (l) by Lemma A.1.

Similarly, we have

~f(0) = (2¼)¡1 + ¼¡1
n¡1X

l=1

dJ(l)~½(j): (A14)

Combining (A13)-(A14), we can write

¼
n
f̂ (0)¡ ~f(0)

o
=

n¡1X

l=1

dJ(l)f½̂(l)¡ ~½(l)g: (A15)

Because R̂(0)¡ ~R(0) = OP (n¡
1
2 ) given Assumptions A.4-A.5, it su¢ces to show

V
¡ 1
2

n (J)n
1
2

n¡1X

l=1

dJ(l)fR̂(l)¡ ~R(l)g !p 0: (A16)

We shall show (A16) for large J (i.e., J ! 1 as n ! 1); where Vn(J) = 2JV0f1 + o(1)g
by Lemma A.2: The proof for …xed J is similar, with Vn(J) ! V0(J) = O(1), where V0(J)

is as in Theorem 1(i):

Put »̂t = "̂t=¾̂ and recall ut = »2t ¡ 1: Straightforward algebra yields R̂(l) ¡ ~R(l) =

Â1(l) + Â2(l) + Â3(l); where

A1(l) = n¡1
nX

t=l+1

ut(»̂
2

t¡l ¡ »2t¡l);

Â2(l) = n¡1
nX

t=l+1

(»̂
2

t ¡ »2t )ut¡l;

Â3(l) = n¡1
nX

t=l+1

(»̂
2

t ¡ »2t )(»̂
2

t¡l ¡ »̂
2

t¡l):
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Noting »t = "t=¾0 under H0; where ¾0 = E("2t ); we have

Â1(l) = ¾̂¡2n¡1
nX

t=l+1

ut("̂
2
t¡l ¡ "2t¡l) + (¾̂¡2 ¡ ¾¡20 )n¡1

nX

t=l+1

ut"
2
t¡l

= ¾̂¡2Â11(l) + 2¾̂
¡2Â12(l) + (¾̂

¡2 ¡ ¾¡20 )Â13(l);

where

Â11(l) = n¡1
nX

t=l+1

ut("̂t¡l ¡ "t¡l)2;

Â12(l) = n¡1
nX

t=l+1

ut"t¡l("̂t¡l ¡ "t¡l);

Â13(l) = n¡1
nX

t=l+1

ut"
2
t¡l:

By the Cauchy-Schwarz inequality, the mean value theorem and Assumptions A.1 and

A.4–A.5, we have
¯̄
¯̄
¯
n¡1X

l=1

dJ (l)Â11(l)

¯̄
¯̄
¯ ·

°°°b̂¡ b0
°°°
2
(
n¡1X

l=1

jdJ (l)j
)(

n¡1
nX

t=1

u2t

) 1
2
(
n¡1

nX

t=1

sup
b2B0

jj @
@b
g(Xt; b)jj4

) 1
2

= OP (2
J=n); (A17)

where
Pn¡1

l=1 jdJ(l)j = O(2J) by Lemma A.1(iv).

Next, by a second order Taylor series expansion and Assumptions A.1 and A.4-A.5,

we have¯̄
¯̄
¯
n¡1X

l=1

dJ (l)Â12(l)

¯̄
¯̄
¯ ·

°°°b̂¡ b0
°°°
n¡1X

l=1

jdJ (l)j
°°°°°n

¡1
nX

t=1

ut"t¡l
@

@b
g(Xt; b0)

°°°°°

+
1

2

°°°b̂¡ b0
°°°
2
n¡1X

l=1

jdJ (l)j
(
n¡1

nX

t=1

jut"t¡lj sup
b2B0

jj @
2

@b@b0
g(Xt; b)jj

)

= OP (2
J=n) (A18)

by Markov’s inequality and Lemma A.1, where we have used

E

°°°°°n
¡1

nX

t=1

ut"t¡l
@

@b
g(Xt; b0)

°°°°° = O(n
¡1)

given E(utjIt¡1) = 0 a:s: Finally, we also have
¯̄
¯̄
¯
n¡1X

l=1

dJ (l)Â13(l)

¯̄
¯̄
¯ = O(2

J=n
1
2 ) (A19)
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by Markov’s’ inequality and sup0<l<nEÂ213(l) = O(n
¡1), which follows fromE(utjIt¡1) = 0

a:s: and Assumption A.2. Combining (A17)-(A19) and ¾̂2 ¡ ¾20 = OP (n¡
1
2 ); we obtain

n¡1X

l=1

dJ(l)Â1(l) = OP (2
J=n): (A20)

Similarly, we have
n¡1X

l=1

dJ(l)Â2(l) = OP (2
J=n): (A21)

Next, we consider Â3: As shown in Hong (1997, p.272),

sup
0<l<n

jÂ3(l)j · n¡1
nX

t=1

(»̂
2

t ¡ »2t )2 = OP (n¡1):

This, together with
Pn¡1

l=1 jdJ(l)j = O(2J ) from Lemma A.1(iv); implies
¯̄
¯̄
¯
n¡1X

l=1

dJ (l)Â3(l)

¯̄
¯̄
¯ · sup

0<l<n
jÂ3(l)j

(
n¡1X

l=1

jdJ(l)j
)
= OP (2

J=n): (A22)

Collecting (A20)-(A22) and Vn(J) = 2J+1V0f1 + o(1)g by Lemma A.2, we have

V
¡ 1
2

n n
1
2

n¡1X

l=1

dJ(l)fR̂(l)¡ ~R(l)g = OP (2J=2=n
1
2 ) = oP (1)

given 2J=n ! 0: This completes the proof for (A16), and thus for Theorem A.1.

Proof of Theorem A.2: Put Ŵ =
Pn¡1

l=1 dJ(l)
~R(l)=R(0): By (A14), we have

¼f ~f(0)¡ (2¼)¡1g = Ŵ + fR(0)= ~R(0)¡ 1gŴ
= Ŵ + oP (Ŵ ) (A23)

given ~R(0)¡R(0) = OP (n¡ 1
2 ) by Assumption A.1 and H0.

Write

Ŵ = n¡1
nX

t=2

Wt; (A24)

where Wt = R¡1(0)ut
Pt¡1

l=1 dJ(l)ut¡l: Observe that fWt; Itg is an adapted martingale

di¤erence sequence, we shall prove the asymptotic normality of Ŵ by the martingale

theorem (e.g. Hall and Heyde 1980, pp.10-11). First, from (A24), we have

V ar(n
1
2Ŵ ) = R¡2(0)n¡1

nX

t=2

EW 2
t =

nX

t=2

t¡1X

l=1

d2J(l)

=
nX

l=1

(1¡ l=n)d2J (l)

= Vn(J): (A25)
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By Hall and Heyde (1980, pp.10-11), V
¡ 1
2

n (J)n
1
2Ŵ !d N(0; 1) if

V ¡2n (J)n¡1
nX

t=2

W 2
t 1fjWtj > ´n

1
2V

1
2
n (J)g for any ´ > 0; (A26)

and

V ¡2n (J)n¡1
nX

t=2

fE(W 2
t jIt¡1)¡ EW 2

t g ! 0: (A27)

For sake of space, we shall show the central limit theorem for Ŵ for large J (i.e., J ! 1):
The proof for …xed J is similar and simpler because dJ (l) is …nite and summable.

Given (A25) and Lemma A.2, we shall verify condition (A26) by showing 2¡2Jn¡2
Pn

t=1EW
4
t

! 0: Put ¹4 = E(u
4
t ): By Assumption A.1, we have

EW 4
t = ¹4R

¡4(0)E

(
t¡1X

l=1

dJ(l)ut¡l

)4

= ¹4R
¡4(0)

t¡1X

l=1

d4J (l) + 6¹4R
¡2(0)

t¡1X

l=2

l¡1X

h=1

d2J (l)d
2
J (h)

· 3¹4R
¡4(0)

(
n¡1X

l=1

d2J(l)

)2

= O(V 2n (J)):

It follows that 2¡2Jn¡2
Pn

t=1EW
4
t = O(n

¡1); ensuring condition (A26).

Given Lemma A.2, it su¢ces for (A27) if 2¡2JV arfn¡1 Pn
t=2E(W

2
t jIt¡1)g ! 0; which

we now focus on: By the de…nition of Wt, we have

E(W 2
t jIt¡1) = R¡1(0)

(
t¡1X

l=1

dJ(l)ut¡l

)2

= EW 2
t +R

¡1(0)
t¡1X

l=1

dJ (l)fu2t¡l ¡R(0)g

+2R¡1(0)
t¡1X

l=2

l¡1X

h=1

dJ (l)dJ(h)ut¡lut¡h

= EW 2
t +R

¡1(0)At + 2R
¡1(0)Bt;

it follows that

n¡1
nX

t=2

fE(W 2
t jIt¡1)¡ EW 2

t g = R¡1(0)n¡1
nX

t=2

At + 2R
¡1(0)n¡1

nX

t=2

Bt

= R¡1(0)Â+ 2R¡1(0)B̂; say. (A28)
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Therefore, it su¢ces to show that 2¡2JfV ar(Â) + V ar(B̂)g ! 0: First, note that At is a

weighted sum of independent variables u2t¡j¡R(0);we haveEA2t = f¹4¡R2(0)g
Pt¡1

l=1 dJ (l)
4:

It follows by Minkowski’s inequality that

EÂ2 · 2¡2J
(
n¡1

nX

t=2

(EA2t )
1
2

)2

· f¹4 ¡R2(0)g
(
n¡1X

l=1

d4J (l)

)
= O(2J) (A29)

where
Pn¡1

l=1 d
4
J(l) = O(2

J ) by Lemma A.1(iv).

Next, we consider V ar(B̂): For all t ¸ s; we have

EBtBs = R2(0)
t¡1X

l2=2

l2¡1X

h2=1

s¡1X

l1=2

l1¡1X

h1=1

dJ (l1)d2(h1)dJ (l2)dJ (h2)±t¡h1;s¡h2±t¡l1;s¡l2

= R2(0)
t¡1X

l=2

l¡1X

h=1

dJ (t¡ s+ l)dJ (t¡ s+ h)dJ(l)dJ(h);

where, as before, ±jh = 1 if h = j and ±jh = 0 otherwise. It follows that

EB̂2 · 2n¡2
nX

t=3

tX

s=2

EBtBs · 2R2(0)n¡1
n¡1X

¿=0

n¡1X

l=2

l¡1X

h=1

jdJ (¿ + l)dJ (¿ + h)dJ(l)dJ (h)j

· 2R2(0)n¡1
(
n¡1X

¿=0

d2J(¿ )

)(
n¡1X

l=1

jdJ(l)j
)2

= O(23J=n) (A30)

where
Pn¡1

l=1 jdJ(l)jr = O(2J ) for r > 1; by Lemma A.1(iv). Collecting (A28)-(A30) yields

2¡2JfV ar(Â)+V ar(B̂)g = O(2¡J+2J=n) ! 0 given J ! 1; 2J=n ! 0 as n ! 1: Thus,

condition (A27) holds. By Hall and Heyde (1980,pp.10-11), Vn¡
1
2 (J)n

1
2Ŵ !d N(0; 1):

Proof of Theorem 2: Put

_R(l) =
nX

t=l+1

("2t =¾
2
0 ¡ 1)("2t¡l=¾20 ¡ 1) (A31)

where ¾20 = E("
2
t ) under Ha(an): Note that we have "t=¾0 6= »t under Ha: Instead, we have

"t=¾0 = »tf1 + an
1X

l=1

¯ l(»
2
t¡l ¡ 1)g2: (A32)

We now de…ne

_f(0) =
2jX

j=0

2jX

k=1

_®jkªjk(0)
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where _®jk = (2¼)¡1=2
Pn¡1

l=1¡n _½(l)ª̂
¤
jk(l) and _½(l) = _R(l)=R(0): Write f̂(0) ¡ 1=2¼ =

f̂(0)¡ _f (0) + _f(0)¡ 1=2¼: The proof of Theorem 2 consists of Theorems A.3-A.4 below.

Theorem A.3: V ¡1=2n (J)n1=2ff̂(0)¡ _f (0)g !p 0:

Theorem A.4: V ¡1=2n (J)n1=2¼f _f (0)¡ 1=2¼g !d N(¹; 1):

Proof of Theorem A.3: The proof is analogous to that for Theorem A.1 with the more

restrictive condition J ! 1; 22J=n ! 0. We omit it here for the sake of space.

Proof of Theorem A.4: We shall only show for the case where J ! 1: Because

¼f ~f (0)¡ (2¼)¡1g =Pn¡1
l=1 dJ (l)

~R(j); it su¢ces to show

V ¡1=2n (J)n1=2
n¡1X

l=1

dJ (l) _R(l)=R(0) !d N(¹; 1); (A33)

where ¹ = V
¡ 1
2

0

P1
j=1 ¯j: Recall ut = »

2
t ¡1 and put Vt = »

2
t

P
j=1 ¯jut¡j: By (A32)-(A33)

and Ha(an), we have

_R(l) = n¡1
nX

t=l+1

(»2tht=¾
2
0 ¡ 1)(»2t¡lht¡l=¾20 ¡ 1)

= n¡1
nX

t=l+1

fut + anVtg fut¡l + anVt¡lg

= n¡1
nX

t=l+1

utut¡l + ann
¡1

nX

t=l+1

Vtut¡l + ann
¡1

nX

t=l+1

utVt¡l + a
2
nn

¡1
X

t=l+1

VtVt¡l

= ~R(l) + anÂ4(l) + anÂ5(l) + a
2
nÂ6(l); (A34)

where ~R(l) = n¡1
P

t=jlj+1 utut¡jlj as before: Put Vt(l) = »
2
t

P1
j=1;j=l ¯jut¡j: For the second

term in (A34), we have

n¡1X

l=1

dJ (l)Â4(l) =
n¡1X

l=1

dJ(l)

(
n¡1

nX

t=l+1

»2t

1X

j=1

¯jut¡jut¡l

)

= R(0)
n¡1X

l=1

dJ(l)(1¡ l=n)¯ l

+
n¡1X

l=1

dJ (l)¯l

(
n¡1

nX

t=l+1

»2tfu2t¡l ¡R(0)g
)

+
n¡1X

l=1

dJ (l)¯l

(
n¡1

nX

t=l+1

Vt(l)ut¡l

)
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= R(0)
1X

l=1

¯l +OP (2
J=2=n1=2) (A35)

where
Pn¡1

l=1 dJ(l)(1¡ l=n)¯ l ! P1
l=1 ¯l < 1 as J ! 1 by Lemma A.3 and dominated

convergence, and
¯̄
¯̄
¯
nX

l=1

dJ (l)¯ l

(
n¡1

nX

t=l+1

»2tfu2t¡l ¡R(0)g
)¯̄

¯̄
¯ = OP (2

J=2=n1=2)

by the Cauchy-Schwarz inequality, Lemma A.1(iv);
P1

j=1 ¯
2
j < 1 and

E

¯̄
¯̄
¯n
¡1

nX

t=l+1

»2tfu2t¡l ¡R(0)g
¯̄
¯̄
¯

2

· Cn¡1

given Assumption A.1. Similarly, for the last term in (A34), we have
nX

l=1

dJ(l)¯l

(
n¡1

nX

t=l+1

Vt(l)ut¡l

)
= OP (2

J=2=n1=2)

given independence between Vt(l) and ut¡l: Moreover, we have
n¡1X

l=1

dJ (l)Â5(l) = OP (2
J=2=n1=2) (A36)

by the Cauchy-Schwarz inequality, Lemma A.1(iv) and EÂ24(l) · Cn¡1 given indepen-

dence between ut and Vt¡l for l > 0:

For the last term Â6(l) in (A34), we putRV (l) = Cov(Vt; Vt¡l) and ~RV (l) = n¡1
Pn

t=l+1 VtVt¡l:

Then
n¡1X

l=1

dJ(l) ~RV (l) =
n¡1X

l=1

dJ (l)RV (l) +
n¡1X

l=1

dJ (l)f ~RV (l)¡RV (l)g:

Because Vt =
P1

j=1 ¯j(»
2
tut¡j) is a linear process with

P1
j=1 j¯j j < 1 and E(»2tut¡j)

4 <

1; the cumulant condition
P1

j=¡1
P1

m=¡1
P1

l=¡1 k(0; j;m; l)j < 1; where k(0; j;m; l)

is the fourth order cumulant of VtVt+jVt+mVt+l (e.g., Hannan 1970, p.211). It follows that

sup0<l<nV arf ~RV (l)g · Cn¡1 by Hannan (1970, (5.1)): Consequently, we have
¯̄
¯̄
¯
n¡1X

l=1

dJ(l)f ~RV (l)¡RV (l)g
¯̄
¯̄
¯ ·

n¡1X

l=1

jdJ (l)j
¯̄
¯ ~RV (l)¡RV (l)

¯̄
¯ = OP (2J=2=n1=2)

by Markov’s inequality and Lemma A.1(iv): On the other hand, RV (l) is absolutely sum-

mable (i.e.,
P1

l=¡1 jRV (l)j < 1); it follows from Lemma A.3 that

n¡1X

l=1

dJ (l)RV (l) !
1X

l=1

RV (l) < 1
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as J ! 1: Therefore, Â6 = OP (1): This, with (A34)-(A36), an = (2J=n)
1
2 and 22J=n ! 0;

yields

n¡1X

l=1

dJ(l) _R(l)=R(0) =
n¡1X

l=1

dJ(l) ~R(l)=R(0) + (2
J=n)

1
2

1X

j=1

¯j + oP (2
J=2=n1=2):

Consequently, we have (A33) by Theorem 1. It follows that ~Sn !d N(¹; 1) given ~Vn(J) !
2J+1V0f1 + o(1)g and Slutsky theorem. This completes the proof.

Proof of Theorem 3: (i) We shall show for large J only; the proof for …xed J is similar.

Here we explicitly denote f̂J (0) as the spectral estimator (3.15) with the …nest scale J:

Recall the de…nition of Sn(J); we have

Sn(Ĵ)¡ Sn(J) = Vn(Ĵ)
¡ 1
2n

1
2¼ff̂Ĵ(0)¡ (2¼)¡1g ¡ Vn(J)¡

1
2n

1
2¼ff̂J (0)¡ (2¼)¡1g

= fVn(Ĵ)=Vn(J)g
1
2Vn(J)

¡ 1
2n

1
2¼ff̂Ĵ (0)¡ f̂J(0)g

+f[Vn(J)=Vn(Ĵ)]¡
1
2 ¡ 1gSn(J)

Because Sn(J) = OP (1) by Theorem 1 and Vn(Ĵ)=Vn(J) !p 1 by Lemma A.4, we have

Sn(Ĵ)¡Sn(J) !p 0 provided V
¡ 1
2

n (J)n
1
2¼ff̂Ĵ (0)¡f̂J (0)g !p 0; which we shall show below.

(The asymptotic normality of Sn(Ĵ) follows from Sn(Ĵ)¡ Sn(J) !p 0 and Theorem 1.)

Because Vn(J) = O(2J); it su¢ces to show f̂Ĵ(0)¡ f̂J(0) = oP (2J=2=n1=2): Write

¼ff̂Ĵ (0)¡ f̂J(0)g = R̂¡1(0)
n¡1X

l=1

fdĴ (l)¡ dJ (l)gfR̂(l)¡ ~R(l)g

+R̂¡1(0)
n¡1X

l=1

fdĴ (l)¡ dJ (l)g ~R(l): (A37)

Given jdĴ (l)¡ dJ(l)j · Pmax(Ĵ;J)

j=min(Ĵ;J)
j¸(2¼l=2j)j; we have, by Assumption A.5,

n¡1X

l=1

jdĴ (l) ¡ dJ(l)j
¯̄
¯ ~R(l)

¯̄
¯ · C

max(Ĵ ;J)X

j=min(Ĵ;J)

mX

l=1

(2¼l=2j)qj ~R(l)j+ C
max(Ĵ ;J)X

j=min(Ĵ;J)

n¡1X

l=m+1

(2¼l=2j)¡¿ j ~R(l)j

· 2CjĴ ¡ J j2¡Jq2qmin(0;Ĵ¡J)
(

mX

l=1

lqj ~R(l)j
)

+2CjĴ ¡ J j2¡J¿2¿ max(0;Ĵ¡J)
(

n¡1X

l=m+1

l¡¿ j ~R(l)j
)

= jĴ ¡ J j
n
2¡JqOP (m

q+1=n
1
2 ) + 2¡J¿OP (m

1¡¿n¡
1
2 )

o

= oP (2
J
2 =n

1
2 ) (A38)
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by choosing m = 2J and using Ĵ ¡ J = oP (2¡J=2); where
Pm

l=1 l
qj ~R(l)j = OP (mq+1=n

1
2 )

and
Pn¡1

l=m+1 l
¡¿ j ~R(l)j = OP (m1¡¿=n

1
2 ) by Markov’s inequality, ¿ > 1 in Assumption A.3

and Ej ~R(l)j = O(n¡ 1
2 ):

Next, following reasoning analogous to that of (A16), we can obtain

n¡1X

l=1

dĴ(l)fR̂(l)¡ ~R(l)g = oP (2J=n) (A39)

given Ĵ ¡ J = oP (1);
Pn¡1

l=1 dĴ(l) = fPn¡1
l=1 dJ(l)gf1 + oP (1)g and

Pn¡1
l=1 dJ (l) = O(2

J) by

Lemma A.1. Combining (A37)-(A39) and (A16), we obtain f̂Ĵ(0)¡ f̂J(0) = oP (2J=2=n1=2):
This completes the proof.
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Table 1: Size at the 10 % and 5 % Levels

n = 100 n = 200

10% 5% 10% 5%

S1 8.9 5.8 7.6 4.3

S2 9.0 5.4 8.1 4.2

K 8.4 4.0 7.5 3.5

LK(1) 9.8 5.0 8.5 4.0

DS(1) 9.9 5.3 8.3 4.1

LM(1) 7.8 4.0 8.0 4.3

LK(12) 6.3 2.8 6.8 3.0

DS(12) 11.6 7.3 11.5 6.7

LM(12) 6.1 1.9 7.1 3.2

1) Model: Yt = 1 +mt + "t; mt = 0:8mt¡1 + Àt;

Àt s NID(0; 4); "t = »th
1=2
t ; »t s NID(0; 1); ht = 1:

2) 1000 iterations.



Table 2: Size-adjusted Power against ARCH(1) at 10 % and 5 % Levels

¯ = 0:3 ¯ = 0:95

n = 100 n = 200 n = 100 n = 200

10% 5% 10% 5% 10% 5% 10% 5%

S1 56.4 41.7 71.1 62.3 87.5 82.5 97.6 96.5

S2 55.9 43.5 70.1 62.1 87.9 82.4 96.1 94.7

K 70.8 60.4 88.8 82.7 97.5 94.8 100 99.7

LK(1) 72.8 62.7 90.8 86.0 97.3 95.4 100 100

DS(1) 73.1 61.7 90.9 85.7 97.4 95.7 100 99.9

LM(1) 64.7 56.0 85.8 81.2 95.9 93.4 100 99.2

LK(12) 24.1 16.0 36.8 27.6 46.4 33.6 73.3 63.1

DS(12) 40.2 30.4 62.7 54.1 77.5 70.0 94.5 92.1

LM(12) 35.4 23.8 60.7 50.8 72.5 60.0 92.3 89.4

1) Model: Yt = 1+mt+"t; mt = 0:8mt¡1+Àt; Àt s NID(0; 4); "t = »th
1=2
t ; »t s NID(0; 1);

ht = 1 + ¯"2t¡1:

2) 1000 iterations.



Table 3: Size-adjusted Power against ARCH(12a) and ARCH(12b) at 10 %

and 5 % Levels

ARCH 12(a) ARCH 12(b)

n = 100 n = 200 n = 100 n = 200

10% 5% 10% 5% 10% 5% 10% 5%

S1 59.1 43.3 88.4 82.9 76.6 62.1 95.8 92.9

S2 60.1 51.2 89.3 86.4 77.2 66.6 93.0 90.8

K 39.6 32.9 65.1 59.3 57.3 49.7 81.4 76.8

LK(1) 36.8 29.2 64.6 53.9 53.5 44.6 80.7 72.4

DS(1) 36.9 28.3 65.1 53.7 53.9 43.4 80.8 72.4

LM(1) 31.3 25.4 54.1 46.7 46.7 39.0 72.2 65.8

LK(12) 65.8 59.3 93.0 89.8 72.8 65.7 94.1 92.0

DS(12) 57.1 46.5 89.8 84.1 67.1 55.6 93.2 89.0

LM(12) 49.7 41.2 87.0 81.1 60.0 50.6 91.6 88.1

1) Model: Yt = 1+mt+"t; mt = 0:8mt¡1+Àt; Àt s NID(0; 4); "t = »th
1=2
t ; »t s NID(0; 1):

2) ARCH(12a): ht = 1 + ¯
P12

j=1 "
2
t¡j; ¯ = 0:95=12:

3) ARCH(12b): ht = 1 + ¯
P12

j=1(1¡ j=13)"2t¡j ; ¯ = 0:95=
P12

j=1(1¡ j=13):
4) 1000 iterations.



Table 4: Size-adjusted Power against GARCH(1,1) at 10 % and 5 % Levels

(®; ¯) = (0:3; 0:3) (®; ¯) = (0:3; 0:65)

n = 100 n = 200 n = 100 n = 200

10% 5% 10% 5% 10% 5% 10% 5%

S1 70.7 57.5 86.9 81.0 88.6 78.1 98.5 97.8

S2 67.9 58.2 83.9 77.6 85.2 77.3 94.3 93.1

K 75.2 66.5 91.6 88.6 78.8 72.8 95.4 93.9

LK(1) 73.7 64.4 91.0 86.6 76.1 66.7 95.1 90.4

DS(1) 73.3 63.8 91.6 86.2 76.2 66.3 95.2 90.4

LM(1) 66.3 57.8 86.2 82.6 68.3 62.5 90.6 86.3

LK(12) 35.8 24.3 54.3 43.5 70.0 63.1 92.0 88.9

DS(12) 46.2 34.0 70.5 61.5 70.4 58.6 94.2 89.3

LM(12) 41.1 30.6 67.8 59.5 65.3 56.3 93.0 88.7

1) Model: Yt = 1+mt+"t; mt = 0:8mt¡1+Àt; Àt s NID(0; 4); "t = »th
1=2
t ; »t s NID(0; 1);

ht = 1 + ®"2t¡1 + ¯ht¡1:

2) 1000 iterations.



Table 5: Size and Power of Bonferroni Procedures at 10 % and 5 % Levels

n = 100 n = 200

BF1 BF 2 BF1 BF 2

10% 5% 10% 5% 10% 5% 10% 5%

Size 7.3 4.2 6.8 4.3 6.2 2.8 5.6 3.3

Power

ARCH(1): ¯ = 0:3 60.3 50.3 60.1 50.9 81.5 73.4 81.4 72.9

ARCH(1): ¯ = 0:95 93.4 89.9 93.3 90.3 99.6 98.8 99.7 98.9

ARCH 12(a) 48.2 39.7 54.5 47.9 81.7 76.9 87.3 84.7

ARCH 12(b) 67.1 59.6 70.5 65.8 92.0 88.7 94.9 93.4

GARCH(1,1): (0:3; 0:3) 69.5 61.5 69.9 63.2 89.9 85.5 89.5 85.9

GARCH(1,1): (0:3; 0:65) 83.1 76.7 84.1 78.8 97.7 96.4 98.2 97.7

Size-Adjusted Power

ARCH(1): ¯ = 0:3 66.0 54.0 67.2 55.0 87.7 79.8 86.4 79.5

ARCH(1): ¯ = 0:95 95.8 91.9 96.4 92.0 99.9 99.5 99.9 99.6

ARCH 12(a) 54.2 43.1 59.0 50.4 85.9 80.4 89.1 86.7

ARCH 12(b) 71.8 62.0 76.1 67.7 94.5 90.8 95.8 94.7

GARCH(1,1): (0:3; 0:3) 74.6 64.7 75.8 66.0 92.8 89.1 93.2 88.9

GARCH(1,1): (0:3; 0:65) 86.3 79.2 87.5 80.8 98.2 97.3 99.0 98.0

1) BF1; Bonferoni procedure combining S1 and K; BF2; Bonferoni procedure consisting of S2

and K:

2) The size-adjusted power of BF1 and BF2 is based on their empirical p-values under H0:

3) 1000 iterations.


