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Abstract

We generalize the cointegrated vector autoregressive model of Johansen (1988) to allow

for structural breaks. We derive the likelihood ratio test for structural breaks occurring at

…xed points in time, and show that it is asymptotically Â2 : Moreover, we show how inference

can be made when the null hypothesis is presence of structural breaks.

The estimation technique derived for this purpose can be applied to several other general-

izations of the standard model, beyond the structural breaks treated here. For example, the

new technique can be applied to estimate models with heteroskedasticity.

We apply our generalized model to US term structure data, accounting for structural

breaks that coincide with the changes in the Fed’s policy in September 1979 and October 1982.

Contrary to previous …ndings we cannot reject the long-run implications of the expectations

hypothesis.

yThis paper has bene…tted from many valuable comments from my supervisor James D. Hamilton and Søren
Johansen, Tom Engsted, Graham Elliott and David Hendry. Any errors are mine alone. Financial support from
the Danish Social Science Research Council and the Danish Research Academy is gratefully acknowledged.



1. Introduction

The modelling of structural breaks in cointegrated processes has been addressed by several authors.

In the vector autoregressive framework, Seo (1998) derived the LM test for structural breaks

in cointegration relations and adjustment coe¢cients, and Inoue (1999) derived a rank test for

cointegrated processes with a broken trend. Other approaches to modelling structural breaks in

cointegrated processes are the recursive estimation to identify structural breaks by Hansen and

Johansen (1993), the combination of cointegration and Markov switching by Krolzig (1996), the

co-breaking theory by Hendry (1995), and test for no cointegration in processes with a structural

break by Gregory and Hansen (1996).

One of the main contributions of this paper is the development of a ‡exible framework in

which structural breaks can be formulated. The most related paper is the one of Seo (1998),

who considered structural breaks in cointegration relations and adjustment coe¢cients, under

i.i.d. assumptions. The framework proposed here can handle a class of breaks in integrated

processes that are more general than previously treated. Partial structural breaks1 such as, a

structural break in a particular cointegration relation or its mean can be handled, leaving other

relations unchanged. In addition, the framework is applicable under weaker assumptions than

the i.i.d. assumption. The test statistic invoked in this paper is the LR test and it is shown

that its asymptotic distribution is standard Â2 when the break point is taken as given2 . Another

contribution of this paper is that it enables hypotheses testing under the maintained hypothesis

that the underlying process exhibits structural breaks. The asymptotic Â2 results remain valid in

this situation.

Another main contribution of this paper is the introduction of a new estimation technique,

the generalized reduced rank regression (GRRR) technique. This technique has an applicability

beyond the estimation problems that arises from structural breaks.

Estimation of the cointegrated vector autoregressive model was solved by Johansen (1988) as

an eigenvalue problem, also known as reduced rank regression. This technique is directly appli-

cable to estimation under simple linear restrictions on cointegration relations, ¯; and adjustment

coe¢cients, ®: Johansen and Juselius (1992) proposed a switching algorithm for estimation under

slightly more general restrictions. Boswijk (1995) derived a general estimation technique that can

handle any linear restriction on vec(®) and vec(¯), where vec(¢) is the vectorization operator.

1 Partial structural changes in stationary processes has been analysed by Bai and Perron (1998) and Bai (1999).
2 The case of an unknown break point leads to a non-standard asymptotic distribution. See Seo (1998) or Andrews

and Ploberger (1994). We treat this aspect in a separate paper.
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The estimation technique of Boswijk (1995) is applicable to several estimation problems we face

with structural breaks in the cointegrated VAR. The GRRR technique introduced in this paper is a

generalization of his technique in two directions. First of all, the GRRR technique allows for linear

restrictions on all parameters apart from the variance parameter, by which it achieves a generality

similar to the minimum distance approach by Elliott (1997, 1998a), since the generalization to

nonlinear restrictions expressed by functions that are “well-behaved” is straightforward. Secondly,

the GRRR technique allows for a general covariance structure and is therefore applicable to models

with heteroskedasticity.

The result of this paper is applied to the US term structure of interest rates. The results are

that the long-run implications of the expectations hypothesis cannot be rejected once structural

breaks have been accounted for.

The paper is organized as follows. Section 2 contains the statistical formulation of various

structural breaks in the cointegration model. The estimation problems are treated in Section 3,

and Section 4 contains the asymptotic analysis. Section 5 contains an empirical analysis of the

expectations hypothesis applied to the US term structure of interest rates. Section 6 concludes,

and the appendix contains proofs.

2. The Statistical Model

In this section we give some of the details of the cointegrated vector autoregressive model by

Johansen (1988). The model is generalized to allow for various structural breaks and it is shown

how these breaks can be formulated as parameter restrictions in a uni…ed framework.

2.1. The Cointegrated Vector Autoregressive Model

We take the p-dimensional vector autoregressive model Xt = ¦1Xt¡1 + ¢ ¢ ¢ + ¦kXt¡k + ©Dt + "t

as our point of origin, where "t is assumed to be independent and Gaussian distributed with mean

zero and variance ­: The variable Dt contains deterministic terms such as a constant, a linear

trend and seasonal dummies. The error correction form for the model is

¢Xt = ¦Xt¡1 +
k¡1X

i=1

¡i¢Xt¡i + ©Dt + "t ;

and it is well known that if the characteristic polynomial, here given by A(z) = I(1 ¡ z) ¡ ¦z ¡
Pk¡1

i=1 ¡i(1 ¡ z)zi ; has all its roots outside the unit-disk, then Xt is stationary. If the polynomial

has one or more unit roots, then Xt is an integrated process as de…ned by Johansen (1996). A unit
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root implies that ¦ has reduced rank r < p and if the number of unit roots equals p ¡ r; then the

process Xt is integrated of order one, denoted I(1): When ¦ has reduced rank, it can be written

as a product of two p £ r matrices ¦ = ®¯0; such that the model can be expressed in the form

¢Xt = ®¯0Xt¡1 +
k¡1X

i=1

¡i¢Xt¡i + ©Dt + "t : (2.1)

This process can be inverted to an in…nite moving average representation, also known as the

Granger representation, (see, for example Hansen and Rahbek (1999)). The representation shows

(i) how the adjustment coe¢cient, ®; relates to the common stochastic trends in the process and

(ii) that ¯ de…nes the cointegration relations.

It is convenient to rewrite the model as

Z0t = ®¯ 0Z1t + ªZ2t + "t ; (2.2)

where Z0t = ¢Xt ; Z1t = Xt¡1; Z2t = (¢X 0
t¡1; : : : ; ¢X 0

t¡k+1;D
0
t)

0 and ª = (¡1; : : : ; ¡k¡1; ©); so

we separate the regressors with reduced rank parameters from the regressors with unrestricted

parameters. In some situations we want to add variables to the cointegration space, such as

exogenous variables or simply a linear trend or a constant. We shall therefore denote the dimension

of Z1t by p1 rather than p; which denotes the dimension of Z0t: The regression problem in equation

(2.2), with no additional restrictions on the parameters, is referred to as a reduced rank regression

(RRR).

We de…ne a generalized reduced rank regression, as the following regression problem:

Z0t = AB 0Z1t + CZ2t + "t ; (2.3)

s:t: vec(A; C) = GÃ;

vec(B) = H ';

where G and H are known matrices with full column rank, and f"tg obeys the following assumption.

Assumption 2.1. f"tg is a sequence of independent p-dimensional Gaussian variables, where "t

is independent of Z1t and Z2t and has the marginal distribution N (0; ­(t)).

By this formulation the i.i.d. assumption on f"tg is relaxed, by no longer requiring an identical

distribution. We leave the exact structure of ­(t); t = 1; : : : ;T to be determined from model-

speci…c assumptions on heteroskedasticity. The assumption still implies independence of f"tg.
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Estimation and inference under a weaker assumption than Assumption 2.1 is treated in a separate

paper (See Hansen (1999)).

Obviously, the estimation problems that can be solved by a RRR can also be solved by a

GRRR, by setting G and H as identity matrices, and with ­(t) = ­:

As shown by Boswijk (1995), the following assumption is necessary for generic identi…cation

of the parameters.

Assumption 2.2. The matrices H and G in (2.3) have full column rank and are such that A

and B have full column rank for all (Ã 0; '0)0 2 Rn except on a set with Lebesque measure zero, (n

denotes the number of column in (H; G)).

Let the covariance parameters be expressed as ­(t) = ­t(µ); µ 2 £µ ; t = 1; : : : ; T : This

formulation does not necessarily impose any restrictions on the parameters.

Assumption 2.3. The parameters Ã; ' and µ are variation free, that is

(Ã; ';µ) 2 £Ã £ £' £ £µ :

This assumption is convenient for our parameter estimation. Suppose that Assumption 2.3

holds, and consider the procedure that iterates on the following three equations:

Ã (n) = arg max
Ã2£Ã

L(Ã; '(n¡1); µ(n¡1));

'(n) = arg max
'2£'

L(Ã(n); ';µ(n¡1));

µ(n) = arg max
µ2£µ

L(Ã(n); '(n); µ);

n ¸ 1 until convergence of the likelihood function L, starting from some initial values of the

parameters (Ã(0); '(0); µ(0)): This procedure has the nice property that the value of the likelihood

function is increased in every iteration; the ordering of the three parameters is irrelevant. Since

the likelihood function is bounded by its global maximum, the procedure will eventually converge.

Since …nding a stationary point of the three equations is equivalent to solving the normal equations,

a convergence point, say (Ã̂; '̂; µ̂); will satisfy the normal equations. So whenever the normal

equations uniquely de…ne the global maximum of L, maximum likelihood estimation is achieved

with this procedure.

All the models we consider in this paper satisfy Assumption 2.3. An example of a model that

does not satisfy this assumption is the GARCH model. This model has a dependence between the
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parameter space of the covariance matrix; typically denoted by Ht; and the other parameters, due

to the dependence of Ĥt on the estimated residuals such as "̂t¡1. The failure of Assumption 2.3

to hold for GARCH models is part of the explanation for why GARCH models can be di¢cult to

estimate.

We need to calculate the degrees of freedom in the parameter ®(t)¯(t)0: The following lemma,

taken from Johansen (1996), is useful for this purpose.

Lemma 2.4. The function f (x; y) = xy0; where x is p £ r (r � p) and y is p1 £ r (r � p1); is

di¤erentiable at all points, with a di¤erential given by

Df (x; y) = x(dy) 0 + (dx)y0

where dy is p £ r and dx is p1 £ r: If x and y have full rank r then the tangent space at (x; y);

given by fx(dy)0 + (dx)y0 : dx 2 Rp1£r ; dy 2 Rp£rg has dimension (p + p1 ¡ r)r:

So, in the case of a reduced rank regression, with x = ® and y = ¯; the parameter space in

which ¦ = ®¯ 0 can vary has dimension (p + p1 ¡ r)r:

2.2. Structural Breaks in the Cointegrated Vector Autoregressive Model

We now show that structural breaks in model (2.1) can be viewed as a particular form of (2.3).

Without loss of generality, we can focus just on breaks in ® and ¯; because breaks in the parameters

¡1; : : : ; ¡k¡1 or © in (2.1) are easily handled by rede…ning Z2t and ª: For now we keep the

covariance matrix, ­; constant, but later we also generalize the model to allow structural breaks

in this parameter. Letting all parameters change their value is easily treated by estimating each

subsample with the RRR technique, however in most applications it is desirable to keep some

parameters …xed to avoid that the dimension of the parameter space increase too dramatically.

So, the generalization of model (2.1) that we consider is

Z0t = ®(t)¯ (t)0Z1t + ªZ2t + "t: (2.4)

We shall consider di¤erent choices of the time-dependent parameters ®(t) and ¯ (t): More specif-

ically, we consider various situations where ®(t) and ¯(t) are piecewise constant, which can be

expressed as

®(t)¯(t)0 = ®1¯
0
1I1t + ¢ ¢ ¢ + ®q¯

0
qIqt (2.5)
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where Ijt ; j = 1; : : : ; q are indicator functions that determine which ®j and ¯j are active. This

formulation does not require ®i and ®j to have the same number of columns i 6= j , as long as ®j

and ¯j have the same number of columns. So the formulation allows for changes in the number

of cointegration relations as well as scenarios where some relations are constant over several sub-

samples while other relations change.

By de…ning Z1jt = IjtZjt , j = 1; : : : ; q; and ~Z1t = (Z 0
11t ; : : : ; Z

0
1qt)

0; we obtain the regression

problem

Z0t = (®1; : : : ; ®q)

0
BBBBBBBBBBB@

¯ 1 0 ¢ ¢ ¢ 0 0

0 ¯2 0

...
. . .

...

0 ¯q¡1 0

0 0 ¢ ¢ ¢ 0 ¯q

1
CCCCCCCCCCCA

0

~Z1t + ªZ2t + "t ;

with block diagonal structure of the matrix containing the cointegration relations, denoted by B .

This structure can be expressed as a linear restriction on vec(B) = H'; and the regression is

therefore a special case of equation 2.3.

2.2.1. Structural Breaks in ® and ¯

Consider a situation with q ¡ 1 structural breaks that occur at time T1; : : : ; Tq¡1; so that ®t and

¯t can take on q di¤erent values. This can be formulated as

¯t =

8
>>>>>>><
>>>>>>>:

¯1 t = 1; : : : ; T1

¯2 t = T1 + 1; : : : ; T2

...

¯q t = Tq¡1 + 1; : : : ;T ;

and

®t =

8
>>>>>>><
>>>>>>>:

®1 t = 1; : : : ; T1

®2 t = T1 + 1; : : : ; T2

...

®q t = Tq¡1 + 1; : : : ; T :

So in this case we de…ne Z11t = Z1tI(t � T1); Z12t = Z1tI(T1 + 1 � t � T2); : : : ; Z1qt =

Z1tI(Tq¡1 +1 � t � T ) and ~Z1t = (Z 0
11t; : : : ; Z

0
1qt)

0; and obtain a model with the form of equation

(2.3). This formulation allows for a change in the number of cointegration relations. Let ri denote
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the cointegration rank in subsample i; i = 1; : : : ; q: Then the dimension of the parameter space

of ¦(t) = ®(t)¯(t)0 is by Lemma 2.4 found to be
Pq

i=1(p + p1 ¡ ri)ri where ri is the rank of

®i¯
0
i ; i = 1; : : : ;q: If the rank is constant over the entire sample, the expression for the degrees of

freedom simpli…es to q(p + p1 ¡ r)r:

2.2.2. Structural Breaks in the Adjustment Coe¢cients: ®

If the structural breaks only a¤ect the adjustment coe¢cients, ®; whereas the cointegration rela-

tions remain constant, we can express the model as

Z0t = (®1; : : : ; ®q)

0
BBBB@

¯ ¢ ¢ ¢ 0

...
. . .

...

0 ¢ ¢ ¢ ¯

1
CCCCA

0

~Z1t + ªZ2t + "t ;

where ~Z1t is as de…ned above. Since ¯ is constant over the sample, so is the cointegration rank r;

and the dimension of the parameter space for ¦(t) is simply given by (qp + p1 ¡ r)r:

2.2.3. Structural Breaks in the Cointegrating Relations: ¯

When the structural break is solely due to changes in the cointegration relations ¯(t) while ®(t)

remains constant, the model simpli…es to

Z0t = ®¯0
1I1tZ1t + ¢ ¢ ¢ + ®¯0

qIqtZ1t + ªZ2t + "t

= ®
¡
¯ 0

1; : : : ; ¯
0
q

¢
~Z1t + ªZ2t + "t;

where ~Z1t is as de…ned previously. Here we again obtain an equation of the form of (2.3), but

in this case without the additional restrictions A and B; i.e. G = Ipr ; and H = Ip1rq : In this

situation only a constant cointegration rank, r , is meaningful and the dimension of the parameter

space for ¦(t) is given by (p + qp1 ¡ r)r:

The relations between the di¤erent structural breaks are displayed in Figure 2.1, along with the

relevant asymptotic distribution and degrees of freedom. The asymptotic distribution is derived

below, and in not surprisingly found to be asymptotically Â2:
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Â2((p1 ¡ r)r) Â2((p ¡ r)r)

Â2(pr) Â2(p1r)

General structural break
Z0t = ®1¯01Z11t + ®2¯

0
2Z12t +ªZ2t + "t

Structural break in ®
Z0t = ®1¯

0Z11t + ®2¯
0Z12t +ªZ2t + "t

Structural break in ¯
Z0t = ®(¯1; ¯2)

0(Z011t ;Z
0
12t)

0 +ªZ2t + "t

Model without breaks
Z0t = ®¯0Z1t +ªZ2t + "t

Figure 2.1: The relations between the di¤erent types of structural breaks. The asymptotic dis-
tribution of the individual LR test is Â2 in all cases, with the degrees of freedom reported in the
brackets.

2.2.4. Temporary and Permanent Cointegration relations

The scenario where some cointegration relations are present in the entire sample, whereas others

are only present in a subsample can also be expressed in the form of equation (2.3). The simplest

situation is where there are r1 permanent cointegration relations, say ¯1; and for t ¸ T1 +1 there

are an additional r2 ¡ r1 temporary cointegration relations, say ¯e ; (linearly independent of ¯1).

This situation leads to two di¤erent cases – one where the adjustment coe¢cients corresponding

to ¯1 remain constant, and one where they may di¤er in the two subsamples. The latter is likely

the most relevant, since the introduction of an extra adjustment from the added cointegration

relations might a¤ect how the process adjusts to the permanent cointegration relations.

First we consider the case where ®1 remains constant. This model is formulated as

Z0t = ®1¯
0
1Z1t + ®e¯

0
eZ1tI(t>T1 ) + ªZ2t + "t
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= (®1; ®e)

0
B@

¯1 0

0 ¯e

1
CA

0 0
B@

Z1t

Z1tI(t>T1)

1
CA + ªZ2t + "t ;

and the dimension of the parameter space for ¦(t) is slightly more complicated to derive. The

degrees of freedom in ¦1 are given by (p + p1 ¡ r1)r1; and since ¦2 = ¦1 + ®e¯
0
e the additional

contribution from ¦2 is given by [p + (p1 ¡ r1) ¡ (r2 ¡ r1)](r2 ¡ r1): Adding the two terms gives

the degrees of freedom in ¦(t) to be (p + p1 ¡ r2)r2 + (r2 ¡ r1)r1:

The model where the adjustment coe¢cients to the permanent cointegration relations may

change, is formulated as

Z0t = ®11¯
0
1Z1tI(t� T1) + (®21; ®e)(¯1; ¯e)

0Z1tI(t>T1) + ªZ2t + "t

= (®11; ®12; ®e)

0
B@

¯1 0 0

0 ¯ 1 ¯e

1
CA

0 0
B@

Z1tI(t� T1)

Z1tI(t>T1)

1
CA + ªZ2t + "t ;

which is also of the form of equation (2.3), but with a more complicated structure of H; due to the

cross restrictions we have on B: The degrees of freedom are found by adding up the contributions

from ¦1; ®21¯
0
1 and ®e¯

0
e: These are given by (p+p1¡r1)r1, pr1 and [p+(p1¡r1)¡(r2¡r1)](r2¡r1)

respectively, where we used that ¯ e may be chosen orthogonal to ¯1: Adding the three terms up,

gives the dimension of ¦(t) to be (p + p1 ¡ r2)r2 + (p + r2 ¡ r1)r1:

The former model is obviously nested in the latter, and both models are nested in the model

where there are not necessarily any relations between the cointegration relations in the two samples.

This most general model has a structure as given above with r1 cointegration relations in the …rst

subsample and r2 in the second. So the model has (p +p1 ¡ r1)r1 +(p+ p1 ¡ r2)r2 free parameters

in ¦(t): The relations between these three models are displayed in Figure 2.2. Below we prove

that the likelihood ratio test for this hypothesis is asymptotically Â2 with degrees of freedom that

correspond to the di¤erence in dimensionality of ¦(t); as one would expect.

The extension to models with multiple sets of temporary cointegration relations in individual

and overlapping subsamples is straightforward, only the calculation of degrees of freedom can be

somewhat tricky.

2.2.5. Structural Breaks in the Covariance Matrix

Structural breaks in the covariance matrix also leads to a GRRR. The simplest case is a single

structural break in the covariance matrix at time T1: So var("t) = ­1 for t � T1 and var("t) = ­2
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?
Â2((p1 ¡ r2)r1)

?
Â2(pr1)

General structural break model
r1 cointegration relations for t � T1
r2 cointegration relations for t ¸ T1 +1

Z0t = ®1¯01Z11t + ®2¯
0
2Z12t +ªZ2t + "t

Permanent cointegration relations: r1

Constant adjustment coe¢cients: ¥
Temporary cointegration relations: r2 ¡ r1

Z0t = ®11¯01Z11t + (®21 ;®e)(¯1 ; ¯e)
0Z12t +ªZ2t + "t

Permanent cointegration relations: r1

Constant adjustment coe¢cients: p

Temporary cointegration relations: r2 ¡ r1

Z0t = ®1¯ 01Z1t + ®e¯
0
eZ12t +ªZ2t + "t

Figure 2.2: The relations between the di¤erent models with structural breaks and a shift in the
number of cointegration relations. The distribution of the LR test statistic between two of the
models is asymptotically Â2 with the degrees of freedom given in the …gure.

for t > T1; which implies the following structure on the covariance matrix

§ =

0
B@

IT1 ­ ­1 0

0 IT¡T1 ­ ­2

1
CA :

The combination of structural breaks in the covariance matrix as well as other parameters, will

clearly also lead to a GRRR.

2.2.6. Linear Restriction on Adjustment Coe¢cients and Cointegration Relations

Combining hypotheses of structural breaks with linear restrictions on the cointegration relations

will not complicate the estimation problem, because the two parameter restrictions can jointly

be formulated as a linear restriction vec(B) = H' for a known matrix H and some parameters

': Adding linear restrictions to the adjustment coe¢cients, ®1; : : : ; ®q can be formulated as
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vec(A) = GÃ; and is therefore also a GRRR.

3. Estimation

Estimation of the cointegrated vector autoregressive model, and other models that have the struc-

ture of equation (2.2), can be explicitly solved as an eigenvalue problem by reduced rank regression

techniques. The method of reduced rank regression was developed by Anderson (1951) and applied

to the I(1) model by Johansen (1988).

The advantage of reduced rank estimation is that an explicit solution is obtained without

iterations. Fortunately this method is applicable to estimation under simple linear restrictions on

the reduced rank parameters. However, in most of the structural break models we face restrictions

that are beyond what the technique can handle. So a more general estimation technique is needed.

A few of the problems can be formulated as regression problems that can be handled by the

switching algorithm of Johansen and Juselius (1992). This algorithm is an iterative procedure that

in every iteration simpli…es the problem to a reduced rank regression by keeping a subset of the

parameters …xed. This method has the nice property that it increases the value of the likelihood

function in every iteration, but unfortunately applications have shown that convergence can be

very slow. Even more problematic is that general convergence to the global optimum cannot be

proven; indeed it is easy to construct examples where the method will not converge.

A more general estimation technique was proposed by Boswijk (1995). This method is similar

to the switching algorithm, in the sense that it increases the likelihood function in every iteration.

It is more general in that it can handle estimation problems with linear restrictions on vec(B) and

vec(A). This method is therefore su¢cient for most of the estimation problems that arise from

structural break models. Applications of the method have shown that convergence is obtained in

few iterations, and that it does converge to the global optimum.

More general yet is the minimum distances approach by Elliott (1997, 1998a), which can

estimate parameters under the general restriction g(µ) = c; where µ is the vector of parameters,

c is a constant and g is a well-behaved function. This method minimizes µ 0V̂µ̂µ subject to the

constraints g(µ) = c, where V̂µ̂ is an estimate of the asymptotic covariance matrix. This method

is asymptotically equivalent to the maximum likelihood estimation, and with suitable choice of

V̂µ̂ and if applied iteratively, (by recursive reestimation of V̂µ̂ as the estimate of µ changes), the

minimum distance methods leads to the same estimator as the maximum likelihood method.

As we shall see below, it is possible to estimate under more general restrictions than those
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considered by Boswijk (1995) and Elliott (1997, 1998a). By handling restrictions as formulated

in model (2.3) we obtain the same generality as the minimum distance method by Elliott (1997,

1998a), and can in addition estimate models with heteroskedasticity.

In the following we consider the reduced rank regression model

Z0t = AB 0Z1t + CZ2t + "t; (3.1)

with various restrictions on the parameters, under Assumptions 2.1 and 2.2. We denote the

dimension of Z0t ; Z1t and Z2t by p; p1 and p2 respectively, and for notional convenience we de…ne

the moment matrices Mij = 1
T

PT
t=1 ZitZ 0

jt ; i; j = 0; 1; 2, the residuals R0t = Z0t ¡M02M
¡1
22 Z2t ,

R1t = Z1t ¡ M12M
¡1
22 Z2t ; and the moment matrices of the residuals Sij = 1

T

PT
t=1 RitR

0
jt , i; j =

0; 1.

3.1. Reduced Rank Regression

Estimation of reduced rank regressions is described in the following theorem.

Theorem 3.1 (Reduced Rank Regression). The unrestricted estimators of Model (2.3) are

given by

B̂ = (v̂1; : : : ; v̂r)Á (3.2)

Â(B) = S01B (B 0S11B)
¡1 (3.3)

­̂ = S00 ¡ S01BA0 + AB 0S11BA0 ¡ AB0S10; (3.4)

Ĉ = M02M
¡1
22 ¡ ÂB̂ 0M12M

¡1
22 ; (3.5)

where (v̂1; : : : ; v̂r) are the eigenvectors corresponding to the r largest eigenvalues ^̧
1; : : : ; ^̧r of the

eigenvalue problem

j¸S11 ¡ S10S
¡1
00 S01j = 0;

and where Á is any r £ r full rank matrix, by which B̂ can be normalized. The maximum value of

the (conditional) likelihood function is given by

L¡2=T
max (Â; B̂; Ĉ; ­̂) = (2¼e)

p jS00j
rY

i=1

(1 ¡ ¸i).
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An algebraic proof that uncovers the structure of the problem is given in the appendix whereas

the original proof can be found in Johansen (1996).

This theorem is directly applicable to the cointegrated vector autoregressive model given by

equation 2.1. The maximum likelihood estimate is obtained by de…ning Z0t = ¢Xt ; Z1t = Xt¡1

and Z2t = (¢X 0
t¡1; : : : ; ¢X 0

t¡k+1; D
0
t)

0:

3.2. Generalized Reduced Rank Regression

Theorem 3.2. Let the parameter A; B and C be restricted by vec(A; C ) = GÃ and vec(B) = HÁ

and suppose that Assumptions 2.1, 2.2 and 2.3 hold.

The maximum likelihood estimates Â; B̂; Ĉ ; and ­̂(t) of A; B; C; and ­(t) will satisfy

vec(Â; Ĉ) = G

2
64G0

TX

t=1

2
64

0
B@

B̂ 0Z1tZ
0
1tB̂ B̂0Z1tZ

0
2t

Z2tZ 0
1tB̂ Z2tZ 0

2t

1
CA ­ ­̂(t)¡1

3
75 G

3
75

¡1

(3.6)

£G0
TX

t=1

vec
³
­̂(t)¡1Z0t(Z

0
1tB̂; Z 0

2t)
´

;

vec(B̂) = H

"
H 0

TX

t=1

h
Â0­̂(t)¡1Â ­ Z1tZ

0
1t

i
H

#¡1

(3.7)

£H 0
TX

t=1

vec
³
Z1t(Z0t ¡ ĈZ2t)

0­̂(t)¡10Â
´

and ­̂(t) = ­t(µ̂); where µ̂ is given from the (model speci…c) equation

µ̂ = arg max
µ2£µ

L(Â; B̂; Ĉ ; µ; Z0; Z1; Z2): (3.8)

The maximum value of the likelihood function is given by

Lmax(Â; B̂; Ĉ; ­̂) = (2¼)
¡ Tp

2

TY

t=1

j­̂(t)j¡ 1
2 exp

Ã
¡1

2

TX

t=1

"̂0
t­̂(t)¡1"̂t

!
;

where "̂t = Z0t ¡ ÂB̂ 0Z1t ¡ ĈZ2t :

The proof exploits that the estimation problem reduces to a GLS problem, when keeping

(A; C; ­(t)) or (B; ­(t)) …xed. The proof is given in the Appendix.

The theorem yields a procedure for parameter estimation, in the sense that the parameter

estimates can be obtained by iterating on the three equations until convergence, from some initial

values of the parameters. As described in the paragraph following Assumption 2.3, this procedure

14



will converge to parameter values that satisfy the normal equations.

We now treat situations with fewer parameter restrictions.

Corollary 3.3. Let the parameter A; B and C be restricted by vec(A; C) = GÃ and vec(B) = HÁ

and suppose that f"tg is i.i.d. Gaussian N (0; ­):

The maximum likelihood estimates of A; B; C and ­ satisfy the equations

vec(Â; Ĉ ) = G

2
64G0(

0
B@

B̂ 0M11B B̂ 0M12

M21B̂ M22

1
CA ­ ­̂¡1)G

3
75

¡1

G0vec
³
­̂¡1(M01B̂; M02)

´
;

vec(B̂) = H
h
H 0

³
Â0­̂¡1Â ­ M11

´
H

i¡1

H 0vec
³
M10 ¡ M02Ĉ

0)­̂¡1Â
´

;

­̂ = T¡1(Z0 ¡ ÂB̂ 0Z1 ¡ ĈZ2)(Z0 ¡ ÂB̂0Z1 ¡ ĈZ2)
0:

The maximum value of the likelihood function is given by

L¡2=T
max (Â; B̂; Ĉ; ­̂) = (2¼e)

p j­̂j:

If C is unrestricted we obtain the following result of Boswijk (1995).

Corollary 3.4. Let A and B be restricted by vec(A) = G³ and vec(B) = HÁ; for known matrices

G and H: Then the maximum likelihood estimates satisfy the equations

vec(B̂) = H
h
H 0

³
Â0­̂¡1A ­ S11

´
H

i¡1

H 0
³
Â0 ­ S10

´
vec

³
­̂¡1

´
(3.9)

and

Â = G
h
G0

³
B̂ 0S11B̂ ­ Ip

´
G

i¡1

G0
³
B̂ 0 ­ ­̂¡1

´
vec (S01) (3.10)

­̂ = S00 ¡ S01B̂Â0 + ÂB̂ 0S11B̂Â0 ¡ ÂB̂ 0S10

Ĉ = M02M
¡1
22 ¡ ÂB̂0M12M

¡1
22 :

The maximum value of the likelihood function is given by

L¡2=T
max (Â; B̂; Ĉ; ­̂) = (2¼e)

p j­̂j:

Corollary 3.5. Let B be restricted by vec(B) = HÁ: Then the maximum likelihood estimates
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satisfy the equations

vec(B̂(A; ­)) = H
h
H 0

³
Â0­̂¡1Â ­ S11

´
H

i¡1

H 0
³
Â0 ­ S10

´
vec

³
­̂¡1

´

Â(B) = S01B̂
³
B̂ 0S11B̂

´¡1

;

­̂(B) = S00 ¡ S01B̂
³
B̂ 0S11B̂

´¡1

B̂ 0S10;

Ĉ = M02M
¡1
22 ¡ ÂB̂ 0M12M

¡1
22 :

The maximum value of the likelihood function is given by

L¡2=T
max (Â; B̂; Ĉ; ­̂) = (2¼e)

p j­̂j:

With these results we have the tools available to estimate the parameters in the cointegrated

vector autoregressive model under all the various structural breaks considered in the previous

section. However, the theorems presented here have a broader applicability, and can be used to

estimate models with parameter restrictions that need not be related to structural breaks, for

example models with heteroskedasticity.

3.3. Applicability

Example 3.6 (Structural breaks in the covariance matrix). Consider the cointegrated vec-

tor autoregressive model (equation (2.1)), with a structural break at time T1; in the sense that

®(t) = ®1, ¯(t) = ¯1 and ­(t) = ­1 for t � T1 and ®(t) = ®2, ¯ (t) = ¯2 and ­(t) = ­2 for

t ¸ T1 + 1: This estimation problem can be written in the form of Model 2.3. The maximum

likelihood estimators of ­1 and ­2 are given by

­̂1 = T ¡1
1

T1X

t=1

"̂t"̂
0
t

­̂2 = (T ¡ T1)
¡1

TX

t=T1

"̂t "̂
0
t :

So ­(t); t = 1; : : : ; T can be expressed in the functional form required by Theorem 3.2.

Example 3.7 (Heteroskedasticity). Models with the following type of heteroskedastic errors

var("t) = ­t = fµ(­t¡1; ­t¡2; : : : ; Xt¡1; Xt¡2; : : :)
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can be expressed with the functional form in Theorem 3.2.

4. Asymptotic Analysis

For simplicity, we derive the asymptotic results in the case of a single structural break at time T1;

and with the number of cointegrating relations being constant, r: However, it will be clear that

the results hold in the general situation with multiple breaks, and varying number of cointegrating

relations.

The process is described by

¢Xt = ®1¯
0
1Xt¡1I(t�T1 ) + ®2¯

0
2Xt¡1I(t>T1) +

k¡1X

i=1

¡i¢Xt¡i + "t ;

where "t is i.i.d.3 N (0; ­(t)); ­(t) = ­1 for t � T1 and ­(t) = ­2 for t > T1:

In addition, we assume that the usual I(1) assumptions hold in both subsamples. Speci…cally,

that the roots of ¯̄
¯̄
¯I(1 ¡ z) ¡ ®i¯

0
iz ¡

k¡1X

i=1

¡i(1 ¡ z)zi

¯̄
¯̄
¯ = 0

are outside the unit disc or equal to one, and that ®0
i?(I ¡ ¡1 ¡ ¢ ¢ ¢ ¡¡k¡1)¯i? has full rank p ¡ r;

i = 1; 2:

4.1. The Granger Representation for Break Processes

In order to study the process’s asymptotic properties, we need to derive the Granger representation

for this process. The individual Granger representations for each of the sub-samples are given by

Xt = C
tX

i=1

"i + C(L)"t + C(X0 ¡
k¡1X

i=1

¡iX0¡i) t = 1; : : : ; T1;

and

Xt = D
tX

i=T1+1

"i + D(L)"t + D(XT1
¡

k¡1X

i=1

¡iXT1¡i) t = T1 + 1; : : : ; T ;

where C = ¯1? (®0
1?¡¯1?)¡1 ®0

1?, D = ¯2? (®0
2?¡¯2?)¡1 ®0

2? and ¡ = I ¡ ¡1 ¡ ¢ ¢ ¢ ¡ ¡k¡1; (see

Hansen and Rahbek (1999)).

In order to get the representation in the appropriate form we need to express the second

3 The asymptotic results will hold under more general conditions, though not always with the same asymptotic
distribution. Both the Gaussian assumption and the i.i.d. assumption can be relaxed to f"tg satisfying a Functional
Central Limit Theorem, (see White (1999)).
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representation with initial values depending only on Xt ; t = 0; ¡1; : : : ; rather than D(XT1 ¡
Pk¡1

i=1 ¡iXT1¡i): This is obtained by the expression

D(XT1
¡

k¡1X

i=1

¡iXT1¡i) = D

"
C

T1X

i=1

"i + C(L)"T1
+ C(X0 ¡

k¡1X

i=1

¡iX0¡i)

¡¡1

Ã
C

T1¡1X

i=1

"i + C (L)"T1¡1 + C (X0 ¡
k¡1X

i=1

¡iX0¡i)

!

...

¡¡k¡1

Ã
C

T1¡k+1X

i=1

"i + C (L)"T1¡k+1 + C (X0 ¡
k¡1X

i=1

¡iX0¡i)

!#

= D

"
¡C

T1X

i=1

"i + C¤(L)"T1
+ ¡C(X0 ¡

k¡1X

i=1

¡iX0¡i)

#

= D¡C

T1X

i=1

"i + DC ¤(L)"T1 + D¡C (X0 ¡
k¡1X

i=1

¡iX0¡i);

where

C¤(L)"T1
= (I ¡ (I ¡ ¡1)C)"T1

+ (C1 ¡ ¡1C0)"T1¡1 + (C2 ¡ ¡1C1)"T1¡2 + ¢ ¢ ¢

is a stationary process. So altogether we have the Granger representation

Xt = C

tX

i=1

"i + C (L)"t + C (X0 ¡
k¡1X

i=1

¡iX0¡i) t = 1; : : : ; T1 (4.1)

Xt = D

tX

i=T1+1

"i + D¡C

T1X

i=1

"i + D(L)"t + DC¤(L)"T1 (4.2)

+D¡C (X0 ¡
k¡1X

i=1

¡iX0¡i) t = T1 + 1; : : : ; T :

Note that we have the stationary cointegrating relations in the second sub-sample ¯0
2Xt = ¯0

2D(L)"t ;

which is identical to what it would have been in the case of a constant process. For the …rst sub-

sample the results are trivially the same as in the standard case without breaks.

4.2. The Continuous Time Limits

In an asymptotic study of the process, we shall, as T approaches in…nity, keep the proportion of

observations in each sub-sample constant. So we de…ne ½ = T1

T
; which denotes the fraction of

observations in the …rst sub-sample.
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Donsker’s invariance principle gives

T ¡1
2

[T u]X

t=1

"t
w! W (u); u 2 [0; 1];

where W (u) is a Brownian motion with covariance matrix ­; and where
w! denotes weak conver-

gence. We can split this into two independent Brownian motions which gives us

T ¡ 1
2

0
@

T1X

t=1

"t +

[T u]X

t=T1+1

"t

1
A w! W1(½) + W2(u) ¡ W2(½); u > ½

where W1 and W2 are stochastically independent.

So the random walk element in Xt in each of the sub-samples, has the continuous time limits:

T ¡1
2 C

[T u]X

t=1

"t
w! CW1(u); u � ½

T¡ 1
2

0
@D¡C

T1X

t=1

"t + D

[Tu ]X

t=T1+1

"t

1
A w! D¡CW1(½) + D (W2(u) ¡ W2(½)) ; u > ½: (4.3)

Equation (4.3) has an important implication for unit root tests, in processes with structural

breaks. Standard Dickey-Fuller type distributions, such as
R

(dB) B0 £R BB0du
¤¡1 R

B (dB)
0 do

not de…ne the asymptotic distribution in this situation, because the Gaussian term D¡CW1(½),

that comes from the initial values, does not disappear. A unit root test based on observation after a

structural break will therefore involve a term such as
R

(dB) (B+Z)0 £R (B + Z)(B + Z)0du
¤¡1 R

(B+

Z) (dB) 0 : However, this problem does not occur if an unrestricted constant is used as regressor.

This aspect of structural breaks in cointegrated processes is treated in Hansen and Johansen

(1999).

From the Granger representation we …nd that the non-vanishing term is given by

T¡1=2

0
B@

X[T u]1(u�½)

X[T u]1(u>½)

1
CA w!

0
B@

CW1(u)1(u�½)

[D¡CW1(½) + D (W2(u) ¡ W2(½))] 1(u>½)

1
CA :

Let

B =

0
B@

¯1 0

0 ¯ 2

1
CA ;
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let B? be the orthogonal compliment to B; i.e. B0
?B = 0 and let ¹B? = B?(B0

?B?)¡1: We de…ne

G(u) =

0
B@

G1(u)

G2(u)

1
CA = ¹B 0

?

0
B@

CW1(u)1(u�½)

[D¡CW1(½) + D (W2(u) ¡ W2(½))] 1(u>½)

1
CA

and by the continuous mapping theorem we have with u = t=T that

T ¡2
TX

t=1

¹B 0
?

0
B@

X[T u]1(u�½)

X[T u]1(u>½)

1
CA

0
B@

X [Tu]1(u� ½)

X [Tu]1(u>½)

1
CA

0

¹B?
w!

Z 1

0

G(u)G(u)du

=

0
B@

R ½

0
G1(u)G1(u)du 0

0
R 1

½
G2(u)G2(u)du

1
CA :

With this notation, the asymptotic results for unrestricted parameter estimates (G = I and H = I)

of A; B , C and ­(t); say Âu; B̂u; Ĉu and ­̂u(t); follows from Johansen (1988, lemma 13.1, 13.2).

The results are that (a normalized) B̂u is super consistent, with a mixed Gaussian asymptotic

distribution, and that Âu is asymptotically normal. Further it also follows that the LR test of

some over identifying restrictions, have a Â2 asymptotic distribution.

Consistency is not a¤ected by imposing valid restrictions, and the results for the restricted

parameter estimates given by expanding the normal equations. Assume for simplicity that ­(t) is

constant, then

vec(B̂) = H

"
H 0

"
Â0­̂¡1Â ­ T ¡2

TX

t=1

Z1tZ
0
1t

#
H

#¡1

£H 0
TX

t=1

vec
³
T ¡1Z1t(AB 0Z1t + (C ¡ Ĉ)Z2t + "t)

0­¡10A
´

= vec(B) + H

"
H 0

"
Â0­̂¡1Â ­

TX

t=1

Z1tZ
0
1t

#
H

#¡1

£H 0
TX

t=1

vec
¡
Z1t"

0
t­

¡10A
¢

+ op(1);

which by the consistency of Â; Ĉ and ­̂ shows that

Tvec(B̂ ¡ B)
w! H

�
H 0

�
A0­¡1A ­ B?

Z 1

0

G(u)G0(u)duB 0
?

¸
H

¸¡1

£H 0vec

µZ
G(u)dW­¡10A

¶
;
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which is a mixed Gaussian distribution. Similarly

T 1=2vec(Â ¡ A;Ĉ ¡ C ) = G

2
64G0

2
64T ¡1

TX

t=1

0
B@

B̂ 0Z1tZ
0
1tB̂ B̂0Z1tZ

0
2t

Z2tZ
0
1tB̂ Z2tZ

0
2t

1
CA ­ ­̂¡1

3
75 G

3
75

¡1

£G0vec

Ã
­̂¡1T ¡1=2

TX

t=1

"t(Z
0
1tB̂; Z 0

2t)

!
;

which has an Gaussian asymptotic distribution. The case with a varying ­(t) leads to the same

results, although the expressions have a more complicated structure.

From these results it follows by arguments similar to the ones of Johansen (1988, Theorem

13.7, 13.9), that the likelihood ratio test has an asymptotically Â2 distribution, for hypotheses

that can be formulated as linear restrictions:

5. Empirical Analysis of the US Term Structure of Interest Rates

In this section we analyze the US term structure using the structural break model we developed

in Section 2.

5.1. The Expectations Hypothesis

A version of the term structure of interest rates is that the expected future spot rates equals the

future rate plus a time-invariant term premium. We adopt the notation from Campbell, Lo, and

Mackinlay (1997) and let pn;t denote the log of the price of a unit-par-value discount bond at date t;

with n periods to maturity. The continuously compounded yield to maturity for an n period bond

is de…ned as yn;t = ¡ 1
n
pn;t ; and the one-period future rate (at time t) earning a return from period

t + n to t+ n + 1; is given by 1 + Fn;t = Pn;t=Pn+1;t ; such that fn;t = log(1 +Fn;t) = pn;t ¡ pn+1;t :

The expectations hypothesis4 states that

fn;t = Et(y1;t+n) + ¤n;

where ¤n is the term premium. The restriction imposed by the expectations hypothesis is that

the term premium does not depend on t: From the Fischer-Hicks relation ynt = n¡1
Pn¡1

j=0 fjt ;

4 For an overview of the expectations hypothesis theory and empirical studies of interest rates, see Shiller (1990).
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n = 1;2; : : : ; and the identity Et(y1;t+j ) =
Pj

i=1 Et(¢y1;t+i) + y1;t; we obtain

ynt ¡ y1t = n¡1
n¡1X

j=1

jX

i=1

Et(¢y1;t+i) + Ln: (5.1)

where Ln = n¡1
Pn¡1

j=0 ¤j : This equation shows that if y1t is I(1), such that the terms ¢y1;t and

n¡1
Pn¡1

j=1

Pj
i=1 Et(¢y1;t+i) are stationary5 , then ynt must be integrated of order one and ynt and

y1t are cointegrated with cointegration vector (1; ¡1) as …rst analyzed by Campbell and Shiller

(1987). Since the relationship will hold for any integer n; any pair of yields to maturity will be

cointegrated with cointegration vector (1; ¡1): We shall call this implication the long-run impli-

cation of the expectations hypothesis. This is only one of several implications of the expectations

hypothesis. Equation (5.1) is the motivation for modelling interest rates as cointegrated processes,

and illustrates the convenience of using this framework to test the long-run implication.

The implications of the expectations hypothesis are commonly rejected when tested on US term

structure data; this is also the case for the long-run implication as concluded by Hall, Anderson,

and Granger (1992), Engsted and Tanggaard (1994), Johnson (1994) and Pagan, Hall, and Martin

(1996). Hall, Anderson, and Granger (1992) and Engsted and Tanggaard (1994) attributed their

rejection to the unstable period for interest rates between September 1979 and October 1982, when

the Fed did not target short interest rates directly. This period is also known as the period with the

nonborrowed reserves operating procedure. Pagan, Hall, and Martin (1996) gave another possible

explanation for the rejection. They extended the cointegration model with a parameter, °; for

the elasticity of volatility with respect to the level of the shortest interest rate. With simulations,

they showed that hypothesis tests on cointegration vectors over-reject as ° increases, and found

the e¤ect to be substantial as ° increases beyond 0:5.

Whereas the expectations hypothesis has been rejected by most studies of US data (see Shiller

(1990) for an overview), the results from studies of the term structure in other countries are mixed.

Hardouvelis (1994) rejected the expectations hypothesis in 5 of the G7 countries. Cuthbertson

(1996) found some evidence in favor of the expectations hypothesis using UK interbank rates and

Engsted and Tanggaard (1995) found the long-run implications to hold for Danish data in the

period where the central bank targeted interest rates.

5 The stationarity of Et(¢y1;t+j) does not hold in general, but will hold for time-homogeneous processes. In
particular it will hold for the vector autoregressive process we consider in this paper.
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5.2. Structural Breaks in the US Term Structure of Interest Rates

There are several studies that …nd evidence of a structural break in the US term structure of

interest rates. Hamilton (1988) applied a Markov switching model to 3- and 12-month T-bills,

and the model detected a period that precisely coincides with the period with the nonborrowed

reserves operating procedure as a separate regime. Hansen and Johansen (1993) have developed a

recursive estimation of the cointegrated vector autoregressive model to detect structural changes.

Their application to US data also indicates structural breaks around the fall of 1979 and the fall

of 1982.

Structural breaks of US interest rates have also been analyzed within the framework of contin-

uous time models. Chan, Karolyi, Longsta¤, and Sanders (1992) estimated a di¤usion process for

the short term interest rate and rejected a structural shift in October 1979, and then estimated

the elasticity of volatility to be 1:5. However Bliss and Smith (1998) found signi…cant structural

breaks when the possibility of a structural shift by the end of 1982 is included in the analysis.

They found evidence of structural breaks in both 1979 as well as in 1982 when the Fed reversed

to target the Fed funds rate. After these breaks are accounted for, an elasticity as low as 0:5 is

consistent with their data.

These studies have shown that the US term structure has had structural breaks, and it is not

surprising that these breaks a¤ect point estimates and inference.

Elliott (1998b) showed how standard inference can be misleading when there is a root close

to unity. Using this local-to-unity approach, Lanne (1999) rejected the expectation hypothesis for

US data in the period 1952:1–1991:2. However, after accounting for a structural break in 1979:10

the hypothesis could not be rejected.

In this paper, interest rates are modelled as I(1) variables: The fact that nominal interest rates

cannot be negative and other considerations are strong arguments against interest rates being

I(1) forever. Nevertheless, interest rates may very well be I(1) in a particular sample period6 .

Whenever this is the case, modelling interest rates as I(1) is equivalent to invoking asymptotic

results to …nite samples. The parallel is that the sample in which interest rates behaved as I(1)

need to be long enough for asymptotic results of the I(1) model to be valid, and that any constraint

that may prevent interest rates from being I(1) has had no relevance in the sample period analyzed.

See Pagan, Hall, and Martin (1996) for another argument on this matter.

6 Ait-Sahalia (1996) found the short interest rates to behave as an I(1) process within the band [4%; 18%] and a
theoretical model in which interest rates are similar to a random walk is given by DenHaan (1995).
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5.3. Data

The term structure data were extracted from the Bliss data7 that are interpolated by the McCul-

loch cubic-spline method. This is the same technique as the one used to create the widely used

data sets from McCulloch (1990) and McCulloch and Kwon (1993). However the Bliss data di¤ers

by not being tax adjusted.

The data used in the empirical analysis are monthly US zero-coupon yields with maturities

of 1; 3; 6; 9; 12; 60; and 84 months8 within the sample period 1970:1 – 1995:12. The yields are

stacked in the vector Xt ; ordered such that the …rst element in Xt is the 1-month interest rate at

time t: The most general model can be expressed as

¢Xt = ®(t)¯(t)0Xt¡1 +

k¡1X

i=1

¡i¢Xt¡i + ¹(t) + "t ;

where ®(t), ¯ (t) and ¹(t) are piecewise constant with two break points: in 1979:10 and in 1982:10:

To avoid a deterministic trend in the yields, the constant is restricted by ¹(t) = ®(t)½(t); so the

model can be rewritten as

¢Xt = ®(t)¯(t)¤0X¤
t¡1 +

k¡1X

i=1

¡i¢Xt¡i + "t ;

where X¤0
t = (X 0

t; 1) and ¯ ¤0 = (¯(t)0; ½(t)):

We may normalize the cointegration relations by

¯ (t)¤ =

0
BBBBBBBBBBBBBB@

¯11;t ¯12;t ¢ ¢ ¢ ¯ 1r;t

¡1 0 0

0 ¡1

...
. . .

0 ¡1

½1;t ½2;t ¢ ¢ ¢ ½r;t

1
CCCCCCCCCCCCCCA

: (5.2)

Since these relations de…ne the stationary relations, the long-run implications of the expectations

hypothesis – that the spreads yn;t ¡ y1;t are stationary – can be formulated as the parameter

restrictions ¯11;t = ¢ ¢ ¢ = ¯1r;t = 1:

7 The data were provided to me by David Marshall, (see Bekaert, Hodrick, and Marshall (1997)). Interested
parties are referred to Robert R. Bliss: rbliss@gsbalum.uchicago.edu.

8 Longer maturities were not selected because precise estimate of these are di¢cult to obtain by interpolation
techniques. See Bliss (1997)
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The individual cointegration relations in equation (5.2) can be written as

bn;ty1;t ¡ yn;t + ½n;t ; n = 3; 6; 9; 12;60; 84; (5.3)

where the maturities n = 3; 6; 9; 12; 60; 84 and bn;t correspond to i = 1; : : : ; r and ¯ 1i;t in

equation (5.2). The Granger representation shows that E(bn;ty1;t ¡ yn;t +½n;t) = 0, so ½̂n;t can be

interpreted as the estimated term premia when bn;t is set to unity.

5.4. Estimation Results

The lag length was set to two using Akaike’s and Hannan-Quinn’s information criteria. The

cointegration rank is set at six (r = 6) as predicted by the expectations hypothesis and as the

existing literature has supported. No formal test was applied for this selection.

Table 5.1 shows that the covariance matrix clearly di¤ers between the three subsamples. The

variance estimates from the three subsamples are given in Table 5.2.

¢Xt ¡ ®(t)¯¤(t)0X¤
t¡1 ¡ ¡1¢Xt¡1 » N (0; ­(t))

Model max log L(®(t); ¯¤(t);¡1; ­(t)) Degrees of freedom LR(MijM0)
(p-value)

M0: ­(t) 2009.25 295 –
M1: ­1 = ­3 1824.94 270 368:61

(0:0000)

M2: ­1 = ­2 = ­3 1631.77 239 754:96
(0:0000)

Table 5.1: The maximum value of the likelihood function for the model with changing reduced
rank parameters, and changing covariance ­t.

It is not surprising that the variance of interest rates (see Table 5.2) were much higher in

the 1979–1982 subsample when the Fed did not target interest rates directly. One conclusion

from Table 5.1 is that the di¤erence between the variance of interest rates in the …rst and third

subsample is signi…cant. From Table 5.2 it can be seen that the major di¤erence between the

covariance matrix in the …rst and last subsample is the reduced volatility of the interest rates with

shorter maturities. This phenomena may be explained by the less frequent adjustments of the

Fed’s target of the Fed’s fund rate in the most recent sample, along with fact that the Fed now

publicly announces what their target is.

Six models with di¤erent parameter restrictions were estimated9 . The estimations results are

given in Tables 5.3 and 5.4.

9 The empirical analysis was performed in Gauss. Code and documentation can be obtained from
http://weber.ucsd.edu/~phansen/.
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The Estimated Covariance Matrices, ­(t)

1970:3–1979:9 ­1 =

0
BBBBBBBB@

0:30 0:28 0:25 0:22 0:14 0:10 0:09
0:28 0:27 0:25 0:22 0:15 0:11 0:10
0:25 0:25 0:25 0:23 0:17 0:12 0:11
0:22 0:22 0:23 0:23 0:17 0:13 0:11
0:14 0:15 0:17 0:17 0:15 0:12 0:11
0:10 0:11 0:12 0:13 0:12 0:10 0:09
0:09 0:10 0:11 0:11 0:11 0:09 0:08

1
CCCCCCCCA

1979:10–1982:10 ­2 =

0
BBBBBBBB@

1:75 1:68 1:51 1:28 0:92 0:63 0:54
1:68 1:70 1:58 1:33 0:97 0:68 0:59
1:51 1:58 1:50 1:30 0:97 0:69 0:61
1:28 1:33 1:30 1:18 0:90 0:65 0:57
0:92 0:97 0:97 0:90 0:72 0:54 0:48
0:63 0:68 0:69 0:65 0:54 0:43 0:39
0:54 0:59 0:61 0:57 0:48 0:39 0:35

1
CCCCCCCCA

1982:11-1995:12 ­3 =

0
BBBBBBBB@

0:10 0:09 0:08 0:07 0:07 0:06 0:05
0:09 0:09 0:09 0:09 0:09 0:08 0:07
0:08 0:09 0:10 0:11 0:11 0:10 0:09
0:07 0:09 0:11 0:12 0:12 0:11 0:11
0:07 0:09 0:11 0:12 0:13 0:13 0:12
0:06 0:08 0:10 0:11 0:13 0:13 0:13
0:05 0:07 0:09 0:11 0:12 0:13 0:12

1
CCCCCCCCA

Table 5.2: The estimated covariance matrices ­t from the most general break model.
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1: Unrestricted Break Model 2 log L #f LR p-value
®(t); ¯(t); ½(t); ­(t) 4018.49 295 – –

n 3 6 9 12 60 84
1970:3–1979:9 bn 0.9831 0.9767 0.9162 0.7473 0.6154 0.5947

½n 0.3634 0.6356 1.1666 2.4113 3.4517 3.6640
1979:10–1982:10 bn 0.9234 0.8455 0.7716 0.7378 0.7179 0.6765

½n 1.4726 2.5655 3.5156 3.8391 3.9931 4.4702
1982:11-1995:12 bn 1.0746 1.1391 1.2596 1.5328 1.7390 1.7989

½n -0.2384 -0.4607 -0.9011 -2.0401 -2.8354 -3.0585

2: Expectations Hypothesis 2 log L #f LR p-value
®(t); ¯(t) = ¯; ½(t); ­(t) 3989.58 277 28.91 0.0495

n 3 6 9 12 60 84
1970:3–1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2620 0.4935 0.6592 0.8935 1.1475 1.2357
1979:10–1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.6309 0.8628 0.9917 0.9370 0.8637 0.8800
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2106 0.3694 0.6307 1.0520 1.3919 1.5010

3: Constant ®? & Expectations Hypothesis 2 log L #f LR p-value
®(t) = ®Á(t); ¯(t) = ¯; ½(t); ­(t) 3978.44 265 40.05 0.1038

n 3 6 9 12 60 84
1970:3–1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2644 0.4999 0.6748 0.9221 1.1861 1.2753
1979:10–1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.6529 0.9089 1.0495 0.9896 0.9065 0.9281
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2123 0.3753 0.6523 1.1248 1.5229 1.6487

4: Constant ® & ¯ & EH. ½(t) may change. 2 log L #f LR p-value
®(t) = ®; ¯(t) = ¯; ½(t); ­(t) 3784.01 199 234.48 0.0000

n 3 6 9 12 60 84
1970:3–1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2701 0.5061 0.6798 0.9381 1.2343 1.3332
1979:10–1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.5850 0.8015 0.9598 1.2261 1.4309 1.5107
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2182 0.3826 0.6621 1.1599 1.5995 1.7405

Table 5.3: Estimation results: For each model we report the maximum value of the likelihood
function, the model’s degrees of freedom and the test statistic (tested against the most general
model) with the correspondings p-value. The cointegration parameters bn and term premia ½n

from the cointegration relations bny1;t ¡ yn;t + ½n are reported for each model and subsample.

27



Model 1 in Table 5.3 is the most general model, where the parameters are left unrestricted.

This model can be represented by the equation

¢Xt = ®(t) [¯(t)0Xt¡1 + ½(t)] + ¡1¢Xt¡1 + "t ; t = 1; : : : ; T ;

"t » N (0; ­(t));

where the parameters are constant within each subsample, i.e. ®(t) = ®1 for t � 1979:09; ®(t) = ®2

for 1979:10 � t � 1982:10 and ®(t) = ®3 for t ¸ 1982:11; and similarly for ¯ (t); ½(t) and ­(t):

The long-run implication of the expectations hypothesis requires bn = 1 for n = 3; 6; 9; 12; 60

and 84: The point estimates di¤er from unity by being systematically too small in the two …rst

subsamples and too large in the last subsample.

In Model 2 the long-run implication of the expectations hypothesis is imposed as the parameter

restriction bn = 1 for all n in all subsamples, whereas term premia (½n) adjustment coe¢cients

(®i, i = 1; 2; 3) as well as the covariance may di¤er across subsamples. This model can be written

as

¢Xt = ®(t)
£
¯0Xt¡1 + ½(t)

¤
+ ¡1¢Xt¡1 + "t; t = 1; : : : ; T ;

"t » N (0; ­(t));

where ¯ has the structure required by the long-run implications. The likelihood ratio test of Model

2 against Model 1, has a p-value of 4:95%: This shows that there is not strong evidence against

the long-run implication once structural breaks in the parameters are accounted for.

Model 3 is a more parsimonious model where in addition to the restrictions in Model 2; the

adjustment coe¢cients are required to span the same subspace, ®(t) = ® ¢ Á(t); where Á(t) is a full

rank r £ r matrix. This model can be written as

¢Xt = ®Á(t)
£
¯0Xt¡1 + ½(t)

¤
+ ¡1¢Xt¡1 + "t ; t = 1; : : : ; T ;

"t » N (0; ­(t)):

The restriction implies that the orthogonal compliment to ® is constant, i.e. ®?(t) = ®?: The

di¤erent strength of the adjustments between the three subsamples are expressed in terms of the

matrix Á(t):

Recall the Granger representation from equations (4.1) and (4.2), and here extended with a
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third subsample:

Xt = C
tX

i=1

"i + Op(1); t = 1; : : : ; T1;

Xt = D

tX

i=T1+1

"i + D¡C

T1X

i=1

"i + Op(1) t = T1 + 1; : : : ; T2;

Xt = E
tX

i=T2+1

"i + E¡D
T2X

i=T1+1

"i + E¡D¡C
T1X

i=1

"i + Op(1);

t = T2 + 1; : : : ; T :

An implication of the constancy of ®? and ¯ and ¡1 is that the loading matrix is constant, i.e.

C = D = E = ¯? (®0
?¡¯?)

¡1
®0

?. This simpli…es the Granger representation to a single equation

given by

Xt = C
tX

i=1

"i + Op(1); t = 1; : : : ; T ;

using the fact that C¡C = C:

The term ®0
?

Pt
i=1 "i is called the common stochastic trend in Xt ; because it describes the

random walk element of Xt ; and C¹®? de…nes how the stochastic trend is loaded into the process

Xt ; (note C ¹®?®0
? = C ): Thus the non-rejection of Model 3 (a p-value of 10:38% when tested

against Model 1) can be interpreted as follows: The long-run implications are consistent with the

data and we cannot reject that the common stochastic trend has been a constant linear combination

of "t ; and we cannot reject that the loading of the common stochastic trend has been constant.

The non-constancy of the common stochastic trend comes from the changing variance of "t :

The last model in Table 5.3, Model 4, can be expressed as

¢Xt = ®
£
¯0Xt¡1 + ½(t)

¤
+ ¡1¢Xt¡1 + "t ; t = 1; : : : ;T ;

"t » N (0; ­(t)):

In this model the adjustment coe¢cients have the same strength in the three subsamples. This is

equivalent to the additional restriction: Á(t) = Á on Model 3. This model is clearly inconsistent

with the term structure data. The fact that the strength of the adjustments are non-constant is

not puzzling, since the changes appear along with changes in volatility and term premia.

Thus, we …nd the term structure to have had structural breaks in the covariance ­(t) and the

term premia ½(t) along with changes in the strength of the adjustments to dis-equilibria in the

cointegration relations. However fundamentals such as the common stochastic trend and stable
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relationships between interest rates have remained relatively unchanged in the sample analyzed.

These …ndings are consistent with many of the suggestions that have been o¤ered to explain

the rejection of the expectations hypothesis. The monetary changes in the fall of 1979 and the fall

of 1982 had an important impact on the stochastic properties of interest rates. If the structural

breaks are not accounted for, the result can be incorrect inference, and a possible rejection of a true

hypothesis, as was suggested by Hall, Anderson, and Granger (1992) and Engsted and Tanggaard

(1994). The suggestion by Tzavalis and Wickens (1997) of a time varying term premium, is also

consistent with our results, since we …nd ½(t) to vary as the volatility of interest rates changes.

Finally, our …nding of a changing variance is likely to distort hypothesis testing if not accounted

for, which is similar to the volatility e¤ect found by Pagan, Hall, and Martin (1996).

5: No Breaks 2 logL #f LR p-value
®(t) = ®; ¯(t) = ¯; ½(t) = ½; ­(t) = ­ 2852 131 – –

n 3 6 9 12 60 84
1970:3–1995:12 bn 1.0390 1.0417 1.0520 1.0529 1.0239 1.0191

½n 0.0011 0.1680 0.2951 0.6209 1.1478 1.2875

6: No Breaks & Expectations Hypothesis 2 logL #f LR p-value
®(t) = ®; ¯(t) = HÁ; ½(t) = ½; ­(t) = ­ 2825 125 26.84 0.0002

n 3 6 9 12 60 84
1970:3–1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

½n 0.2719 0.4570 0.6561 0.9888 1.3148 1.4215

Table 5.4: Estimation results. Testing the expectations hypothesis in the cointegrated VAR with-
out structural breaks. Note that the p-value is invalid because model 5 is strongly rejected against
model 1.

The …fth and sixth models in Table 5.4 replicate previous empirical studies of the US term

structure, by having constant parameters. Model 5 is the unrestricted model (with constant

parameters) and Model 6 is the submodel in which the long-run implication of the expectations

hypothesis is imposed. A test of Model 6 against Model 5 would have lead to a weak rejection of

the expectations hypothesis, exactly as previous studies have concluded. Of course, this inference

is invalid because model 5 is inconsistent with the data. The LR test statistic of Model 5 against

Model 1 is 1166. Its distribution is asymptotically Â2 with 164 degrees of freedom, and is therefore

clearly rejected.

6. Conclusion

This paper shows how structural breaks in cointegrated processes can be formulated in a uni…ed

framework, using the familiar vector autoregressive model. It is possible to formulate and test
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various structural breaks as simple parameter restrictions in this framework. Moreover, the pa-

rameters can be estimated under these restrictions with the generalized reduced rank regression

technique we developed. This technique is also applicable to estimation problems unrelated to

structural breaks.

We derived the likelihood ratio test for structural breaks occurring at known points in time, and

showed that it is asymptotically Â2: Moreover, we showed how hypotheses can be tested, when the

maintained hypothesis is presence of structural breaks. We derived the asymptotic distributions

of the parameter estimates and likelihood ratio tests. Similar to the standard model without

structural breaks, we …nd the estimate of the cointegration relations to be super-consistent and

asymptotically mixed Gaussian, and we …nd that the LR statistic is asymptotically Â2:

This combination of cointegration and structural breaks may provide a fruitful framework for

many economic questions of interest. In this paper we analyzed the US term structure and found

evidence of structural breaks that coincide with the Fed’s policy changes in September 1979 and

October 1982. Contrary to previous studies (see Hall, Anderson, and Granger (1992), Engsted and

Tanggaard (1994) or Pagan, Hall, and Martin (1996)) we cannot reject the long-run implications

of the expectations hypothesis, once these structural breaks are accounted for. In fact, we …nd a

parsimonious model to be consistent with our data. This model has a di¤erent covariance structure

in the three monetary regimes, and along with changes in the covariance matrix, only the term

premia and the strength of adjustment coe¢cients changes.

In this paper, the cointegration rank was taken as given. Although this is reasonable when

interest rates are analyzed, this need not always be the case. A formal test to determine the rank

of cointegrated processes is currently being developed in Hansen and Johansen (1999).

A. Proofs

Before we give the proofs of Theorem 3.1 we derive some intermediate results. The following

lemma is a consequence of Poincaré’s theorem, however, a direct proof is presented here.

Lemma A.1. The function g(y) = jy0¤yj = jy0yj where y is a p £ r matrix, ¤ = diag(¸1; : : : ; ¸p )

and ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸p ¸ 0 has maximum value
Qr

i=1 ¸i which is attained with y equal to the

…rst r unit vectors, that is y = (Ir ; 0r£p¡r)
0:

Proof. Let J be an index set J ½ f1; : : : ; pg of cardinality r, and de…ne the r £ r matrices yJ

and ¤J by yJ = fyijgi2J; j=1;:::;r and ¤J = f¤ijgi;j2J : So if p = 3, r = 2 and J = f1; 2g we would
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have yJ =

0
B@

y11 y12

y21 y22

1
CA and ¤J =

0
B@

¸1 0

0 ¸2

1
CA :

Next, let Dr
p denote the set of all subsets of f1; : : : ; pg containing exactly r di¤erent elements

(cardinality r). Below, we prove that

jy0¤yj =
X

J2Dr
p

jy0
J¤JyJ j =

X

J2Dr
p

jy0
JyJ j ¦i2J i̧ =

X

J2Dr
p

jyJ j2 ¦i2J i̧ : (A.1)

So g(y) = jy0¤yj = jy0yj =
P

J2Dr
p
jyJ j2 ¦i2J ¸i=

P
J2Dr

p
jyJ j2 is a convex combination over the

elements in Dr
p with values given by ¦i2J¸i , with the largest element being

Qr
i=1 ¸i corresponding

to J = f1; : : : ; rg : This value can be obtained with ŷ = (Ir; 0r£p¡r)
0 which therefore maximized

the function g(y):

The identity (A.1) is proved as follows. The second and third equality follows trivially from

jAB j = jAj jB j for matrices of proper dimensions, whereas the …rst equality is showed by induction

below. The equality trivially holds for r = 1 or p = r: So the scheme

pnr 1 2 3 4 ¢ ¢ ¢

1 X ¡ ¡ ¡

2 X X ¡ ¡

3 X ? X ¡

4 X ? ? X
...

...
. . .

shows that we can prove the equality by showing it holds for cell (p;r) when we assume it holds

for cell (p ¡ 1; r ¡ 1), say assumption (A1), and for cell (p ¡ 1; r), say assumption (A2).

De…ne ~¤ = diag(¸1; : : : ; ¸p¡1) and consider …rst the case where the last row of y is a zero-row

(yp1; : : : ; ypr) = (0; : : : ; 0): De…ne in this case ~y = fyijgi=1;::: ;p¡1, that is y without the zero–row.

By applying assumption (A2) we have the relation

jy0¤yj = j~y0 ~¤~yj =
X

J2Dr
p¡1

jy0
J yJ j ¢ ¦i2J¸i

=
X

J2Dr
p;p =2J

jy0
J yJ j ¢ ¦i2J¸i+

X

J2Dr
p;p2J

jy0
J yJ j ¢ ¦i2J¸i

| {z }
=0

=
X

J2Dr
p

jy0
J yJ j ¢ ¦i2J¸i

which proves the lemma in this case.
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Next assume that (yp1; : : : ; ypr) 6= 0. We can then choose a full rank r £ r-matrix Q; so that

(yp1; : : : ; ypr)Q = (0; : : : ;0; 1); and we de…ne the p ¡ 1 £ r ¡ 1 matrix ~z as the …rst r ¡ 1 columns

of ~yQ: We then have

jQj2 jy0¤yj =

¯̄
¯̄
¯̄
¯
Q0 ~y0 ~¤~yQ +

0
B@

0r¡1£r¡1 0

0 ¸p

1
CA

¯̄
¯̄
¯̄
¯

=
¯̄
¯Q0 ~y0 ~¤~yQ

¯̄
¯ +

¯̄
¯~z 0 ~¤~z

¯̄
¯¸p: (A.2)

Applying assumption (A2) on the …rst term of (A.2) we …nd

¯̄
¯Q0 ~y0 ~¤~yQ

¯̄
¯ = jQj2

X

J2Dr
p¡1

j~y0
J

~¤J ~yJ j = jQj2
X

J2Dr
p;p=2J

jy0
J ¤JyJ j: (A.3)

Note that for J 2 Dr¡1
p¡1 we have that

j~zJ j =

¯̄
¯̄
¯̄
¯

0
B@

~zJ 0

0 1

1
CA

¯̄
¯̄
¯̄
¯
= jy ~JQj ; and ¸p

¯̄
¯~¤J

¯̄
¯ = j¤ ~J j

where ~J = fJ [ fpgg 2 Dr
p : So applying assumption (A1) to the second term of (A.2) we have

¯̄
¯~z 0 ~¤~z

¯̄
¯ ¸p = ¸p = jQj2

X

J2Dr¡1
p ;p2J

jy0
J ¤JyJ j : (A.4)

Combining the identities (A.2), (A.3) and (A.4) we have shown

jQj2jy0¤yj = jQj2
X

J2Dr
p;p=2J

jy0
J¤J yJ j + jQj2

X

J2Dr
p;p2J

jy0
J¤J yJ j = jQj2

X

J2Dr
p

jy0
J¤J yJ j

which completes the proof.

In the proof for Lemma A.1 we obtained a representation for jy0¤yj which we formulate as a

separate corollary.

Corollary A.2. Let ¤ be a real p £ p diagonal matrix, and y a real p £ r matrix, where r � p.

Then with the de…nitions above, we have that

jy0¤yj =
X

J2Dr
p

jy0
J¤JyJ j =

X

J2Dr
p

jy0
JyJ j ¦i2J i̧ =

X

J2Dr
p

jyJ j2 ¦i2J i̧ :
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Lemma A.3. Let x be a p £ r matrix, M and N be p £ p symmetric matrices, M positive

semi-de…nite and N positive de…nite.

The function f(x) = jx0M xj = jx0Nxj has
Qr

i=1 ¸i as its maximum with is obtained for x =

(v1; : : : ; vr) where v1; : : : ; vr are eigenvectors corresponding to the r largest eigenvalues, ¸1; : : : ; ¸r

from the eigenvalue problem j̧ N ¡ M j = 0:

Proof. The matrix
³
N¡ 1

2 MN¡ 1
2

´
is symmetric positive semi-de…nite, hence we can diagonalize

it as N¡ 1
2 MN¡ 1

2 = Q¤Q0 where QQ0 = I; ¤ = diag(¸1; : : : ;¸p) and ¸1 > ¸2 > ¢ ¢ ¢ > ¸p ¸ 0: By

de…ning V = N¡ 1
2 Q and y = V ¡1x; we have that jx0Mxj = jx0N xj = jy0¤yj = jy0yj. According to

Lemma A.1 this is maximized by ŷ = (Ir:0)0; so f (x) is maximized by x̂ = V ŷ = N¡ 1
2Qŷ:

Proof of Theorem 3.1.

The likelihood function is given by

L(®; ¯; ª; ­) =

TY

t=1

((2¼)
p j­j)¡1

2

£ exp

µ
¡1

2
(Z0t ¡ ®¯0Z1t ¡ ªZ2t)

0­¡1(Z0t ¡ ®¯0Z1t ¡ ªZ2t)

¶

The estimate of the parameters are found by maximization of the likelihood function, or equiv-

alently by maximization of the logarithm of the likelihood function

log L(®; ¯; ª; ­) = ¡T

2
j­j ¡ T

2
log(2¼)p

¡ 1

2

TX

t=1

(Z0t ¡ ®¯0Z1t ¡ ªZ2t)
0­¡1(Z0t ¡ ®¯0Z1t ¡ ªZ2t):

The maximization is done in three steps. First, we maximize with respect to ª taking ® and

¯ as given, then with respect to ® and ­ taking ¯ as given, and …nally with respect to ¯.

The estimate of ª, given ® and ¯; is found by regressing (Z0t ¡ ®¯0Z1t) on Z2t ; with the

Gaussian error term, the estimate is found by OLS

Ĉ(®; ¯) = M02M
¡1
22 ¡ ®¯0M12M

¡1
22 ; (A.5)

where Mij = T¡1
PT

t=1 ZitZ
0
jt: The concentrated likelihood function is given by

log L(®; ¯; ­) = ¡T

2
j­j ¡ T

2
log(2¼)p ¡ 1

2

TX

t=1

(R0t ¡ ®¯0R1t)
0­¡1(R0t ¡ ®¯ 0R1t);
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where the auxiliary residuals (Z0t and Z1t corrected for Z2t) are given by R0t = Z0t ¡M02M
¡1
22 Z2t

and R1t = Z1t ¡ M12M
¡1
22 Z2t :

Taking ¯ as given, the estimates of ® and ­ are given by

®̂(¯) = S01¯(¯0S11¯)¡1 (A.6)

­̂(¯) = S00 ¡ S01¯(¯0S11¯)¡1¯0S10; (A.7)

again using that the errors are Gaussian.

What remains is to maximize the concentrated likelihood function with respect to ¯: Since

T¡1

TX

t=1

(R0t ¡ ®̂(¯)¯ 0R1t)
0 (­(¯ ))

¡1
(R0t ¡ ®̂(¯)¯0R1t) = I;

the concentrated likelihood is given by

L(¯ ) =
³
(2¼)p j­̂(¯ )j

´¡ T
2

exp

µ
¡1

2
Tp

¶
=

³
(2¼e)p

¯̄
¯­̂(¯)

¯̄
¯
´¡ T

2
:

So maximizing the likelihood function is equivalent to minimizing

j­̂(¯)j = jS00 ¡ S01¯ (¯0S11¯)¡1¯0S10j = jS00j
j¯0(S11 ¡ S10S

¡1
00 S01)¯ j

j¯0S11¯j ;

which is solved by choosing the r smallest eigenvalues of jS11½ ¡(S11 ¡S10S
¡1
00 S01)j; or be de…ning

¸ = 1 ¡ ½; choosing the r largest eigenvalues of jS11½ ¡ S10S
¡1
00 S01j, which is identical to solve

max
j¯0(S10S

¡1
00 S01)¯ j

j¯0S11¯ j : By Lemma A.3 the estimator is given by

^̄ = (v̂1; : : : ; v̂r);

where i̧ and v̂i are the eigenvalues and eigenvectors to the problem

j¸S11 ¡ S10S
¡1
00 S01j = 0;

ordered such that ¸1 ¸ ¸2 ¸ : : : ¸ ¸p, and we …nd

j­̂(^̄ )j = jS00j
rY

i=1

(1 ¡ i̧):
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Since the eigenvectors are normalized by (v̂1; : : : ; v̂p)
0S11(v̂1; : : : ; v̂p) = I , we have ^̄ 0

S11
^̄ = I;

such that (A.6) and (A.7) reduces to (3.3) and (3.4). By inserting these estimates into (A.5) we

…nd (3.5).

A.1. Algebraic Treatment of the Generalized Reduced Rank Regression

Before we can formulate the general estimation result we need some additional notation. De…ne

Z0 = (Z01; : : : ; Z0T ), Z1 = (Z11; : : : ; Z1T ); Z2 = (Z21; : : : ; Z2T ); and E = ("1; : : : ; "T ); so that

Model 2.3 can be expressed as

Z0 = AB 0Z1 + CZ2 + E: (A.8)

Next de…ne

Z1B2 = ((Z 0
1B; Z 0

2) ­ Ip ));

Z1A = (Z 0
1 ­ A)Kp1 ;r ;

where Kp1;r is the commutation matrix, uniquely de…ned by Kp1 ;rvec(B) ´ vec(B 0) for any p1 £ r

matrix B . Thus Kp1;r is a p1r £ p1r matrix consisting of zeros and ones.

Finally let

§ = var(vec("1; : : : ; "T ));

which is block diagonal under Assumption 2.1. The block diagonal matrices of § are given by

­(t); t = 1; : : : ; T ; i.e. §p(t¡1)+i;p(t¡1)+j = ­i;j(t) for i; j = 1; : : : ; p and t = 1; : : : ; T : Hence §¡1

is a block diagonal matrix with ­(t)¡1 as diagonal matrices, t = 1; : : : ; T :

Lemma A.4. With the de…nitions above, we have the relations:

Z0
1A§¡1Z1A =

TX

t=1

£
A0­(t)¡1A ­ Z1tZ

0
1t

¤
; (A.9)

Z0
1A§¡1vec(Z0 ¡ CZ2) =

TX

t=1

vec
¡
Z1t(Z0t ¡ CZ2t)

0­(t)¡10A
¢

; (A.10)

Z0
1B2§

¡1Z1B2 =

TX

t=1

2
64

0
B@

B0Z1tZ 0
1tB B 0Z1tZ 0

2t

Z2tZ
0
1tB Z2tZ

0
2t

1
CA ­ ­(t)¡1

3
75 ; (A.11)

Z0
1B2§

¡1vec (Z0) =

TX

t=1

vec
¡
­(t)¡1Z0¿(Z

0
1tB; Z 0

2t)
¢

; (A.12)
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If f"tg is i.i.d. Gaussian with covariance matrix ­; the expressions simplify to:

Z0
1A§¡1Z1A = T

£
A0­¡1A ­ M11

¤
;

Z0
1A§¡1vec(Z0 ¡ CZ2) = Tvec

¡
M10 ¡ M02C

0)­¡1A
¢
;

Z0
1B2§

¡1Z1B2 = T

2
64

0
B@

B 0M11B B 0M12

M21B M22

1
CA ­ ­¡1

3
75 ;

Z0
1B2§

¡1vec (Z0) = Tvec
¡
­¡1(M01B; M02)

¢
:

Proof. The identity

Z0
1A§¡1Z1A = K 0

p1;r(Z1 ­ A0)§¡1(Z 0
1 ­ A)Kp1;r

= Kr;p1

TX

t=1

(Z1t ­ A0)­(t)¡1(Z 0
1t ­ A)Kp1;r

= Kr;p1

TX

t=1

(Z1t ­ A0­(t)¡1)(Z 0
1t ­ A)Kp1;r

= Kr;p1

TX

t=1

(Z1tZ
0
1t ­ A0­(t)¡1A)Kp1;r

=
TX

t=1

(A0­(t)¡1A ­ Z1tZ
0
1t):

which proves (A.9).

Next consider

Z0
1A§¡1vec(Z0 ¡ CZ2) = Kr;p1

TX

t=1

(Z1t ­ A0)­(t)¡1(Z0t ¡ CZ2t)

= Kr;p1

TX

t;¿=1

(Z1t ­ A0­(t)¡1)vec(Z0t ¡ CZ2t)

= Kr;p1

TX

t;¿=1

vec(A0­(t)¡1 (Z0t ¡ CZ2t)Z 0
1t)

=

TX

t=1

vec
¡
Z1t(Z0t ¡ CZ2t)

0­(t)¡1A
¢
:

which proves (A.10). Equations (A.11) and (A.12) are proven similarly.

In the situation where f"tg is i.i.d., we have ­(t)¡1 = ­¡1, which proves the last four

equations.
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Proof of Theorem 3.2. Applying the vec operation to equation (A.8) yields the equation

vec(Z0) = (Z 0
1B ­ Ip)vec(A) + (Z 0

2 ­ Ip)vec(C ) + "

= [(Z 0
1B; Z 0

2) ­ Ip )] vec(A; C ) + "

= Z1B2GÃ + ":

For …xed values of B and § this is a restricted GLS problem with the well-known solution given

by

vec(Â; Ĉ) = G
£
G0Z0

1B2§
¡1Z1B2G

¤¡1
G0Z0

1B2§
¡1vec (Z0) ;

which by Lemma A.4 simpli…es to (3.6).

Similarly for …xed A; C; and §; we have the equation

vec(Z0 ¡ CZ2) = vec(AB 0Z1) + "

= (Z 0
1 ­ A)vec(B0) + "

= (Z 0
1 ­ A)Kp1;rvec(B) + "

= Z1Avec(B) + ":

This is also a restricted GLS problem, with the solution given by

vec(B̂) = H
£
H 0Z0

1A§¡1Z1AH
¤¡1

H 0Z0
1A§¡1vec(Z0 ¡ CZ2);

which by Lemma A.4 reduces to (3.7).

Proof of Corollary 3.3. Follows from Theorem 3.2 and Lemma A.4.

Proof of Corollary 3.4. From Theorem 3.1, we obtain the equations for Ĉ and ­̂: Rather that

handling the remaining estimation for A and B as a GLS problem we can obtain the likelihood

equations directly. The concentrated log-likelihood function is (apart from a constant) given by

log L(A; B) = ¡T

2
tr

©
­¡1(S00 ¡ AB 0S10 + AB 0S11BA0 ¡ S01BA0)

ª

holding ­ …xed. So the derivatives of A and B in the directions a and b are given by

DA log L(A; B)(a) = T tr
©
­¡1 (S01 ¡ AB 0S11)Ba0ª

= T
£
tr

©
­¡1S01Ba0ª ¡ trfIpA(B 0S11B)a0g

¤
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= T vec(a) 0 £¡B 0 ­ ­¡1
¢
vec (S01) ¡ (B 0S11B ­ Ip) vec(A)

¤
;

and

DB log L(A; B)(b) = T tr
©
­¡1 (S01 ¡ AB 0S11) bA0ª

= T tr
©
A0­¡1 (S01 ¡ AB 0S11) b

ª

= T vec(b)0 £(A0 ­ S10) vec
¡
­¡1

¢
¡

¡
A0­¡1A ­ S11

¢
vec(B)

¤
;

using Theorem 3 from Magnus and Neudecker (1988, Chapter 2). So equations (3.9) and (3.10)

are the …rst order conditions.

Proof of Corollary 3.5. The result follows directly from Theorem 3.1 and Corollary 3.4.
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