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Abstract

This paper analyzes the linear regression model y = x� + � with a conditional

median assumption Med(� j z) = 0 where z is a vector of exogenous random variables.

Added complication arise due to the censoring of the outcome y. We treat the censored

model as a model with interval-observed outcomes thus obtaining an incomplete model

with inequality restrictions on conditional median regressions. This allows us to use

the estimator introduced by Manski and Tamer (2000) to analyze the information

contained in these inequality restrictions. We give identi�cation conditions in the

absence of censoring and introduce a
p
N -consistent estimator based on the minimum

distance method. We then give suÆcient conditions for global identi�cation of � with

censored y and endogenous x. In the case of interval data on y and endogenous x,

we provide a set-consistent estimator that is based on a modi�ed minimum distance

method. In the case where we have point identi�cation, we show that the estimator isp
N -normal and derive its asymptotic distribution with a feasible asymptotic variance.

A Montecarlo analysis illustrates our estimator.

�We thank Bo Honore for comments and the Econometrics Research Program at Princeton for support.
ydoubleh@princeton.edu, tamer@princeton.edu
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1 Introduction

Little attention has been paid in the literature to problems of endogeneity in nonlinear

models. This paper contributes to this area by studying inference in endogenous regression

models where the dependent variable is interval measured. The most common case of interval

measurement is the case of the classical censored regression where the dependent variable

is observed only when it is less than a �xed threshold. In particular in the linear model

y = x�+ � where realizations of ([y0; y1] ; x) are observed such that y0 = y1 = y i� x�+ � � 0

otherwise y0 = �1; y1 = 0: Given the conditional median assumption Med(�jx) = 0; we

have that

Med(y0jX) �Med(yjX) = X� �Med(y1jX)

where � 2 B a compact subset of Rk , is the true parameter of interest. We use the above

inequality based restrictions on the conditional median regression to study the problem of

inference on �: Note that both Med(y0jX) and Med(y1jX) are observed. Inference based

on inequality restrictions on regressions was introduced in Manski and Tamer (2000) (MT

henceforth) to analyze models with interval data on a regressor or outcome. In this paper,

we extend the analysis to cover cases where endogeneity is present in the regressors.

Let the population be characterized by a distribution P (y; x; z); where y is a real

valued random variable and (x; z) lies in a �nite dimensional real space X � Z. However

realization of ([y0; y1]; x; z) are observed such that y 2 [y0; y1]: Throughout this paper we

maintain the following assumptions:

Assumption 1 (Enclosure)

P (y 2 [y0; y1]) = 1

Assumption 2 (Parametric Regression) We have

y = x� + �

where � is an unobserved random variable such that

Med[�jz] = 0

The �rst assumption is an enclosure assumption similar to the one used in MT. In

the second assumption we impose a parametric structure on the conditional distribution of
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y � x�jz: We allow for the possibility that the vector x is endogenous, where one can think

of z as the vector of instruments.

In the case where no endogeneity is present , there is a range of estimators for censored

models. These estimators are comparable in terms of the assumptions they impose on the

structure above. On the one hand, starting with the fully parametric methods, Tobin (1958)

used joint maximum likelihood to estimate � by assuming that � is normally distributed with

mean zero and unknown variance �2: It is well known ( Hurd (1979), Arabmazar and Schmidt

(1982), Goldberger (1983) among others) that the Tobit estimates are highly sensitive to

the error speci�cation. In particular, as opposed to least squares estimation of the linear

model, ignoring heteroskedasticity will bias the estimates. This led to a literature that dealt

with relaxing the distributional assumptions on the �: Powell (1984), (1986) introduced the

censored LAD and the symmetrically trimmed least squares estimator, both of which use a

conditional median assumption on the distribution of �. Newey and Powell (1990) used a

weighted LAD estimator where they showed that it reached the semiparametric eÆciency

bound. Honor�e (1992) introduced a semiparametric estimator for panel data in the presence

of censoring.

In the presence of endogeneity, existing methods for inference in censored models are

based on the explicit parametrization of the endogeneity using distributional assumptions

for example Heckman (1978), Amemiya (1979), Blundell and Smith (1989), and Vella and

Verbeek (1999) in panel data models among others. In the semiparametric literature, Blun-

dell and Powell (2000) introduced an estimator for a binary response model with endogeneity

based on control functions. In panel data models, Altonji and Matzkin (1997) introduced a

semiparametric estimator for nonseparable models with endogenous regressors. Honor�e and

Hu (1998) provided regularity conditions that allows one to write down moment conditions

for censored models in panel and cross section data.

The attractiveness of the methods provided in this paper is that the estimator does not fail

in the case of non identi�cation. We take the view that the censored model is an incom-

plete model due to the inability of the researcher to obtain more precise information about

the outcome variable, and hence the estimator used here, as in MT, will converge to the

identi�ed feature of the model, the later being either a set or a point. We focus however on

the point identi�cation case and to that e�ect the paper makes three contributions. First,

in the linear model with endogeneity and no censoring, we analyze inference on � using a

conditional median assumption on the error term. We give suÆcient conditions for global

3



identi�cation and provide a semiparametric minimum distance estimator where we show that

it
p
N -consistently estimates the parameter of interest. Second and more importantly, this

paper studies inference in a model with endogeneity when interval data are available on an

outcome variable. We characterize the identi�ed feature of this incomplete model and give

suÆcient conditions for global identi�cation for the \traditional" censored model, i.e., when

the data is top-coded. We then provide an estimator that is based on a modi�ed minimum

distance approach �rst introduced in MT. We show that this estimator is consistent and

root N normal. This estimator is set consistent in the general case when interval data are

available on the dependent variable in the presence of endogeneity. In the case where the

identi�ed feature is a set, no asymptotic distribution is provided. This paper's third contri-

bution is deriving the asymptotic distribution of the modi�ed minimum distance estimator

in the case where the identi�ed feature is the true parameter vector. The techniques used

in the proofs can be used in any point identi�ed model where the information provided is in

terms of inequality restrictions on regressions (MT and Tamer (99)). A Monte Carlo study

applies the above estimators.

In section 2 below, we study the case where x = z; i.e. the censored regression model

with a conditional median assumption. We give conditions for global identi�cation of the

parameters of interest (which are identical to the condition given in Powell (1984)). We then

introduce an estimator based on the modi�ed minimum distance estimator introduced in MT.

We give conditions under which the estimator is root n consistent and asymptotically normal.

In section 3, we examine the case of an endogenous linear model with no censoring with a

conditional median assumption on the distribution of �jz. We give a condition for global

identi�cation of the parameter vector. We then introduce a minimum distance estimator

where we show that is root n consistent. In section 4 below, we examine the case of a

censored model with endogenous regressors. While conditions for local identi�cation of the

parameter � are simple, we provide suÆcient global identi�cation conditions based on the

model restrictions. We then provide an estimator for the parameter � and give the conditions

under which its large sample properties are well behaved. Section 5 provides a Monte Carlo

study that illustrates the small sample behavior of the estimator.
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2 Censored regression as an incomplete model

In this section we consider the censored model for the case where x1 = x2 = z under

assumptions (E) and (PR) above. Using the setup above, the model provides the following

Med(y0jx) � x� �Med(y1jx) (2.1)

This is an incomplete model with inequality restrictions. The incompleteness in the model

is a result of the censoring of the variable y. Incompleteness is a property of econometric

models that provide inequality restrictions on regressions. The identi�ed feature of the model

will be examined in the next section.

2.1 Identi�cation

In this section, the objective is to learn about the parameter vector � using the above

inequalities. Ultimately, we want to characterize the identi�ed features of the model. De�ne

the following set

T (b) = fxjMed(y0jx) > xb Or Med(y1jx) < xbg

The next proposition summarizes our identi�cation results of linear regressions with censored

dependent variable. This proposition is similar to proposition ? in MT.

Proposition 1 Let b 2 B. The restrictions in equation (2.1) above identify b relative to �

if and only if Px [T (b)] > 0.

As we can see, one can also de�ne the identi�ed set V (b) as the set of all b 2 B such that

Px [T (b)] = 0. Heuristically, this is the set of all b 2 B that satisfy restrictions (2.1) for all

x. In the next lemmas, we study the properties of the set V (b).

Corollary 1 The following is true,

1. The identi�ed set V (b) is non-empty and convex.

2. The identi�ed set shrinks to a point � if Px(x� > 0) > 0 and the matrix x has full

column rank. We say that the true parameter � is point identi�ed.

Proof: (1) trivial. (2) The objective is to �nd a set of x such that Med(y0jx) =Med(y1jx).
Consider an x

0 such that x0� is positive. This implies that Med(x0� + �jx0) > 0 which in
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turns implies that Med(y0jx0) = Med(y1jx0) = x
0
�. Hence if x has full rank then � is point

identi�ed. �

The point identi�cation condition above is the same as the one given by Powell (1984),

Powell (1986). For example if y = �x + � and the regressor x is always positive then the

coeÆcient � (= �1 in this case) will not be point identi�ed. What the model tells us in this

case is that the identi�ed set is V (b) = fb 2 Bj b < 0g, which means that the parameter

� is negative. The point identi�cation condition means heuristically that conditioning on

the set of x's where x� is positive, Med(y0jx) is also positive which in turns implies that

Med(y0jx) = Med(y1jx) = x�: Next we use the modi�ed minimum distance estimator of

MTto estimate the identi�ed features of the model.

2.2 Estimation of the censored model

In this section, we provide an estimator where we show that it converges almost surely

to the identi�ed feature of the model. This estimator is a special case of the modi�ed

minimum distance estimator introduced in MT where we have a median regression with

interval observation on an outcome. The MT estimator can be used to estimate the identi�ed

set V (b) under general interval observations. In this section, we analyze the estimator under

the point identi�cation condition in corollary (1) above.

Assumption 3 We have a random sample of i.i.d. observations (yi; xi) such that we observe

(y0i; y1i; xi) for i = 1; : : : ; N where y1i = yi = y0i if yi > 0, otherwise y1i = 0 and y0i = �1:

For technical reasons we write the inequalities (2.1) using conditional distributions

instead of medians. This will not result in a loss of information if the conditional density of

� given z is continuous in a neighborhood of 0. This is formalized in the assumption below.

Assumption 4 Let the conditional density f�jx be continuous a:e: x. In particular, f�jx is

uniformly bounded away from zero in a neighborhood of 0.

The above assumption implies the following equivalence,

Med(�jx) = 0, P (� � 0jx) = 1

2

which implies that since y0 � y � y1

P (y0 � x� � 0jx) � P (y � x� � 0jx) = 1

2
� P (y1 � x� � 0jx)
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The above de�nes an incomplete econometric model with inequality restrictions on condi-

tional distributions. To estimate the identi�ed features of the model, we use a version of the

modi�ed minimum distance estimator introduced in MT. Let

�0(x; b) = P (y0 � xb � 0jx)� 1

2

�1(x; b) = P (y1 � xb � 0jx)� 1

2

The estimator is based on the following lemma

Lemma 1 Let the parameter space B be compact. Let assumptions in corollary (1(2)) hold.

For every b 2 B; de�ne the following function

T (b) =

Z �
(�0(x; b))

21[�0(x; b) > 0] + (�1(x; b))
21[�1(x; b) < 0]

�
dPx

We have that T (b) � 0 for all b 2 B; and T (b) = 0 if and only if b = �:

� We require the point identi�cation condition in corollary (1(2)) above. This is not
necessary for the lemma above to hold. We can drop this assumption and hence the
function T (b) would be zero if and only if b 2 V (b), the identi�ed set of the model.

� One can use a \distance" function other than the square distance function we use. We
could de�ne W (:) to be a positive function such that W (a) = 0 if and only if a = 0
where a 2 R. In this paper we use W (a) = a

2.

The analogy principle suggests the following estimator for the parameter �,

�̂N = argmax
b2B

1

N

X
(�0(xi; b))

21[�0(xi; b) > 0] + (�1(xi; b))
21[�1(xi; b) < 0]

The estimation problem above is complicated by the fact that we do not observe the

functions �0(x) and �1(x) . However, we can replace these respectively with appropriate

consistent nonparametric estimates �̂0(x) and �̂1(x). Moreover for technical reason that has

to do with the random denominator in �̂1 and �̂2, we use the following modi�ed objective

function,

�̂N = argmax
b2B

1

N

X
(�̂0(xi; b)f̂x(xi))

21[�̂0(xi; b) > 0] + (�̂1(xi; b)f̂x(xi))
21[�̂1(xi; b) < 0]

where f̂x(xi) is an estimator for the density of x. The next theorem analyzes the asymptotic

properties of the estimator derived above. We do not provide proofs for the next theorem

since the techniques used will be very similar to the ones used in the proofs of section 4

below.
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Theorem 1 Let assumptions E, PR, and 3 hold. Let the parameter space B be compact, with

the true parameter vector � in B. Let N ! 1: Suppose supb2B (�̂i(x; b)� �i(x; b)) !a:s: 0

a:e: x for i = 0; 1. Then

�̂N !a:s: �

Moreover,

p
N(�̂ � �)! N(0; A�1
A�1)

where

A = E
�
f
2

� (0jx) xx0f 2x (x) 1 (x0� > 0)
�


 =
1

4

�
E
�
f
2

� (0jx) f 4x (x) 1[x� > 0]xx0
	�

� In the asymptotic variance formula for the estimator above, the only part of the model
that contributes to the asymptotic variance of the estimator is the region that de-
livers point identi�cation, mainly 1[x� > 0]. This gives insight into the case of set
identi�cation.

� The asymptotic variance involves the density of x due to the weighing scheme that we
used. Hence the estimator is less eÆcient than the one used by Powell (1984). If we
don't weigh by the density of x, it is easy to show that the above estimator will reach
the eÆciency bound. However, this will involve tedious trimming arguments.

3 Linear model with endogeneity

This section analyzes inference in a linear model with endogenous regressors and a condi-

tional median restriction on the error term. In particular, let the distribution P (y; x; z) be

characterized by

y = x� + � where Med(� j z) = 0

and realizations of the variables (y; x; z) are observed1. We then have,

Med(y � x�jz) = 0 (3.2)

The next proposition gives the basic �nding on identi�cation of endogenous linear

models with conditional median restrictions. These �ndings will be based on exploiting

restriction(3.2) above.

1Notice here that there is no censoring.
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Proposition 2 Let assumption PR above hold. Let b 2 B: Let

T (b) =

�
z :Med(y � xbjz) 6= 1

2

�
(3.3)

Then � is identi�ed relative to b if and only if Pz[T (b)] > 0:

De�ne the set of observationally equivalent parameter values

B� = fb 2 B jPz[T (b)] = 0g

The next corollary studies the properties of the above set. In particular, we give suÆcient

conditions for the set B� to shrink to a point, �. In this case we say that the model point

identi�es the parameter value.

Corollary 2 The following are true,

1. The set B� is non-empty.

2. The parameter vector � is point identi�ed (i.e., B� � �) if for all Æ 2 B, Æ 6= �, we

have

P [z : Pz(xÆ > 0jz) = 1] > 0

or

Pz[z : P (xÆ < 0jz) = 1] > 0

Proof: Let b 2 B be such that b 6= �. Then Med(y � xbjz) = Med (x(� � b) + �jz). Let
Z
0 be such that Pz(Z

0) > 0 and P (x(� � b) > 0(< 0)jz0) = 1 for all z0 2 Z
0. Then this

implies that Med(y� xbjz0) =Med (x(� � b) + �jz) > 0(< 0) and hence by proposition 2, �
is identi�ed relative to b. �

1. The suÆcient condition for point identi�cation is stronger than needed. The estimator
below is based on proposition (2) above. Hence, similarly to the estimator in MT,
the estimator de�ned below will converge to the set B� which represents the identi�ed
feature of the model.

2. Notice that in the absence of endogeneity, i.e. when z = x; the condition in the
corollary above reduces to the matrix x having full column rank.

3. The identi�cation conditions are possible to analyze from the data. For example, if we
have an endogenous binary regressor x and an exogenous regressor z, then condition
(3.3) above reduces to Pz(x = 1jz) > 0.

4. In the case where x = (x1; z1) where z1 is an exogenous, a suÆcient condition for point
identi�cation would be that z1 has in�nite support while x1 has bounded support.
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3.1 Estimation of the linear model with median restriction and

endogenous regressors

In this section we use a minimum distance estimator to estimate the parameter �. The

analysis is done under point identi�cation (for example the suÆcient condition of corollary

(2) above). In the case where the identi�ed feature of the model is a set, it is still possible

to use the estimator here. In this case, one has to use a notion of set convergence similar to

the one used in MT.

Under assumption (4) above, the conditional median can be written in the following way

Med(y � xbjz) = 0() P (y � xb � 0jz) = 1

2

Hence, the estimator is based on the following lemma:

Lemma 2 Let assumption (PR) hold. Let the parameter space be compact. Let condition

(2) of corollary 2 hold. For every b 2 B; de�ne the following function

F (b) =

Z
[�(z; b)]

2
dPz

where �(z; b) = P (y � xb � 0jz)� 1

2
: We have that F (b) � 0 for all b 2 B; and F (b) = 0 if

and only if b = �:

The analogy principle suggest the following estimator �̂n of �

�̂n = argmin
b2B

1

N

NX
i=1

[�(zi; b)]
2

(3.4)

Since we don't observe the function �(z; b); we replace it by a consistent kernel-based non-

parametric estimator �̂(z; b),

�̂(z; b) =

"
1

N

NX
i=1

1s(yi � xi� � 0)Kh

�
z � zi

h

�#
=f̂(z)� 1

2
(3.5)

where

f̂(z) =
1

N

NX
i=1

Kh

�
z � zi

h

�
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1s(:) is a smoothed step function and Kh(:) =
1

h
K( :

h
) where K(:) is a kernel function. For

technical reasons, we use an estimator for � that is based on a density weighted version of

the above objective function, i.e.,

�̂ = argmin
b2B

1

N

NX
i=1

h
�̂(zi; b)f̂(zi)

i2
(3.6)

The next theorem analyzes the almost sure convergence of the estimator de�ned in (3.6)

above. We leave the technical details to the appendix.

Theorem 2 Let assumption PR hold. Let the identi�cation condition hold. Let the param-

eter space B be compact, with the true parameter vector � in B: Let N !1: Suppose supb

k�̂(z; b)� �(z; b)k a:s:
= 0: Then

�̂ !a:s: �

The next section studies the asymptotic distribution of the estimator de�ned in (3.6) above.

3.1.1 Asymptotic normality

In this section we derive the asymptotic distribution of the estimator derived in (3.6) above.

The strategy for obtaining the asymptotic distribution is as follows. We start by linearizing

the �rst order condition from the optimization problem above. We then obtain a third order

U-statistic where we use a projection theorem to obtain the asymptotic inuence function.

Conditions for
p
N convergence will be given in the appendix in addition to other regularity

conditions.

The parameter �̂n solves the �rst order condition,

1

N

X
2

�
�̂(zi; �̂n)f̂(zi)�

1

2
f̂(zi)

�
r�̂(zi; �̂n)f̂(zi) = 0

Using a mean value expansion around the true parameter value we get,

p
NHn(�

�)(�̂n � �) =
1

N

NX
i=1

�
�̂(zi; �)f̂(zi)�

1

2
f̂(zi)

�
r�̂(zi; �)f̂(zi) = 0

We write the rhs of the above formula as a u-statistic where we use techniques similar to the

ones used in Powell, Stock, and Stoker (1989) to derive the asymptotic distribution. All the

necessary assumptions are described in appendix B below. Here we just state the theorem.
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Theorem 3 Let

A = E
�
E [xf� (0jx; zi) jzi]E [xf� (0jx; zi) jzi]0 f 2 (zi)

�

 =

1

4
E
�
E [xf� (0jx; zi) jzi]E [xf� (0jx; zi) jzi]0 f 4(zi)

�
Then we have that

p
n

�
�̂ � �

�
d�! N

�
0; A�1
A�1

�
(3.7)

4 Endogenous censored regression model

In this section, we analyze the main case of the paper which is the censored regression model

in the presence of endogeneity. In particular, we use results from the above two sections to

study the following model:

y = x� + � where Med(� j z) = 0

x belongs to R
k and z 2 R

d such that d � k: Realizations of ([y0; y1]; x; z) are observed

such that y0 = y1 = y if and only if x� + � > 0, otherwise y0 = �1 and y1 = 0: This is

the censored regression model with endogenous regressors. The model above provides the

following inequality restrictions on median regressions

Med(y0 � x�jz) �Med(y � x�jz) = 0 �Med(y1 � x�jz) (4.8)

In the following, we will study the informational content of the above restrictions. Our

identi�cation results here will be complicated by the censoring in the dependent variable y.

We give suÆcient conditions for global point identi�cation. We then propose an estimator in

the spirit of MT and show that it strongly converges to the identi�ed features of the model.

This in general will be a set based convergence. To study the asymptotic distribution of the

estimator, we impose the identi�cation conditions to get point identi�cation , and then derive

the asymptotic distribution of the proposed estimator. We show that it is
p
N asymptotically

normal. A novel feature of the asymptotic distribution is that only those observations that

satisfy a censoring condition a�ect the asymptotic variance. This is similar for example to

the censored regression model of Powell (1984).
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4.1 Identi�cation of a censored model with endogeneity

We study identi�cation of the model based on the inequalities de�ned in (4.8) above. As in

section 2 we start by giving conditions under which Med(y0 � x�jz) =Med(y1� x�jz) = 0:

This will be summarized in the following lemma.

Lemma 3 De�ne the set

Tz = fzj P (x� > 0jz) = 1g

and let Pz(Tz) > 0: We have that

Med(y0 � x�jz0) =Med(y � x�jz0) =Med(y1 � x�jz0) = 0

if and only if z0 2 Tz:

Proof Consider for example Med (y1 � x
0
�jz0) =Med (max (�;�x0�) jz0). If x� � 0 then we

haveMed (max (�;�x0�) jz0) = 0. This is true since for x0� � 0, max (�;�x0�) > 0() � > 0

and it is assumed that P (� > 0jz0) = 1

2
. Similarly, one can show that for x� � 0, we have

Med(y0 � x� j z0) = 0. For z =2 Tz, P (x0� > 0jz) < 1, so that

P
�
y1 � x

0
� > 0jz� =P �max

�
�;�x0�� > 0; x0� > 0jz�+ P

�
max

�
�;�x0�� > 0; x0� < 0jz�

>P
�
� > 0; x0� > 0jz�+ P

�
� > 0; x0� < 0jz� = 1

2

P
�
y0 � x

0
� > 0jz� =P ��+ x

0
� > 0; � > 0

�
=P

�
� > 0; x0� > 0jz�+ P

�
�+ x

0
� > 0; � > 0; x0� < 0

�
<P

�
� > 0; x0� > 0jz�+ P

�
� > 0; x0� < 0jz� = 1

2
�

Because of the nonlinearity in the model, the condition above is suÆcient for local identi�-

cation of the parameter vector �: At the truth �,

P
�
y0 � x

0
� > 0jz� � 1

2
P
�
y1 � x

0
� > 0jz� � 1

2
8z:

Since only the two bounds y0 and y1 are observed, the general identi�cation condition is

similar to the one stated for exogenous censoring regression:

Proposition 3 � is identi�ed relative to b if and only if T (b) > 0 where

T (b) =

�
z : P

�
y0 � x

0
b > 0jz� > 1

2
or P

�
y1 � x

0
b < 0jz� < 1

2

�

In other words, either P
�
z : P (y0 � x

0
b > 0jz) > 1

2

�
> 0, or P

�
z : P (y1 � x

0
b > 0jz) < 1

2

�
> 0.
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An alternative statement of the same fact is to de�ne the identi�ed set V (b) as follows:

V (b) =

�
b 2 Bj8z; P �y0 � x

0
b > 0jz� � 1

2
and P

�
y1 � x

0
b > 0jz� � 1

2

�

There is no a priori reason to restricting identi�cation consideration to only Tz, except

that it is easier to give interpretable conditions on this set. Note that given b 2 B we have

that

P (y1 � xb > 0jz) � P
�
� > x

0
Æjz� � P (y0 � xb > 0jz)

In order to make P (y1 � x
0
b > 0jz0) < 1

2
, it is neccessary to make P (� > x

0
Æjz0) < 1

2
. On the

other hand, in order to make P (y0 � x
0
b > 0jz) > 1

2
, it is neccessary to make P (� > x

0
Æjz) > 1

2
.

A SuÆcient condition for global identi�cation in this case is stronger than the one given in

section 3 above and is summarized in the following corollary.

Corollary 3 Let assumptions above hold. Let Pz(Tz) > 0: For any Æ 6= 0; de�ne the set Tz0

as follows

Tz0(Æ) = fz0jz0 2 Tz; P (xÆ > 0jz0) = 1 or P (xÆ < 0jz0) = 1g

The parameter vector � is globally identi�ed (the set V (b) � �) if for all Æ 6= 0

Pz (Tz0(Æ)) > 0 (4.9)

proof: De�ne Æ = b� �. Choose z such that z 2 Tz and P (x0Æ > 0jz) = 1. Then

P (y1 � x
0
b > 0jz) = P (max (�;�x0�0)� x

0
Æ > 0jz)

= P (max (�;�x0�0) > x
0
Æjz)

= P (� > x
0
Æjz) < 1

2

by assumption and the conditional on z. If on the other hand, 9z 2 Tz such that

P (x0Æ < 0jz) = 1, then for this z, since x0� > 0 and x
0
Æ < 0:

P
�
y0 � x

0
b > 0jz� = P

�
� > �x0�; � > x

0
Æjz� = P

�
� > max

��x0�; x0Æ� jz� > 1

2
�

Note that the identi�cation conditions stated in the above proposition are in principle possi-

ble to be veri�ed directly from the data. In what follows, we state several important special

cases in which the conditions are met.

14



Case 1: Consider �rst the case where we have a single endogenous regressor x with a

positive coeÆcient (ignoring the presence of a constant term). For this case it is suÆcient

to have Pz(Tz) > 0, where Tz = ffzj P (x > 0jz) = 1g. In particular, the condition is obvi-

ously met if x is always positive, for example when x represents the years of schooling.This

condition is suÆcient for global identi�cation because for all Æ 6= 0; either P (xÆ > 0jz) = 1

for Æ > 0 or P (xÆ < 0jz) = 1 for Æ < 0: In this case the positive coeÆcient on x can be easily

checked by verifying P (y > 0 j z) = P (� > �x0�jz) > 1

2
8z, since x0� can only either be all

positive or all negative.

Case 2: Consider the case where the only endogenous regressor x is binary zero or one, with

an intercept term. In this case a suÆcient condition for identi�cation is Pz (zjP (x = 0jz) = 1) >

0. On the other hand, if there is no constant term, then the suÆcient conditions for identi-

�cation is Pz (z : P (x = 1jz) > 0) > 0 . The same reasoning can be extended for the general

case where we have an arbitrary number of binary endogenous regressors with an intercept

term. One suÆcient condition is to have a subset of the variable z such that the binary

variables take the value of zero.

case3: Let x be such that xk is an exogenous regressor such that xk j x�k has a density with
in�nite support. One can see that the coeÆcient �k is point identi�ed.

Case 4: Consider the case where the endogenous variables x have marginally continuous

in�nite distribution over Rk. Then for � 6= Æ, either one of the sets fx0� > 0; x0Æ > 0g or

fx0� > 0; x0Æ < 0g must be nonempty. A global suÆcient condition is for any � and Æ to have

a z such that either one of these two sets of x has probability 1 conditional on z.

Although the global identi�cation conditions stated above covers a wide range of

applications, it does not cover some important situation, for example when x; z are jointly

normally distribution. Next we develop conditions for identi�cation at in�nity that will cover

these important cases too.

Lemma 4 Let � 6= 0. Assume that the density of � conditional on z; x is bounded away

from 0 in a small neighborhood of 0, uniformly in z; x, i.e., 9f > 0; c > 0 such that

infj�j�c;z;x f (�jz; x) � �f Suppose for each each Æ 6= 0, 9M > 0, such that for each � > 0, there

exists a set Z = Z(Æ; �), such that P (z 2 Z) > 0, and satis�es either

inf
z2Z

P (xÆ > 0; x� > 0 j z) > 1� � and inf
z2Z

�s

�
E
�
xx

0
; x

0
� > 0; x0Æ > 0jz�� > M or

inf
z2Z

P (xÆ < 0; x� > 0 j z) > 1� � and inf
z2Z

�s

�
E
�
xx

0
; x

0
� > 0; x0Æ < 0jz�� > M

15



where �s (�) denotes the smallest eigenvalue, then Q(b) > 0 for any b 6= �, where

Q (b) = E

0
@
"�

P (y0 � xb > 0jz)� 1

2

�+#2
+

"�
P (y1 � xb > 0jz)� 1

2

��#21A
Namely that the true parameter value � is globally point identi�able.

An important case in which the condition in the above proposition holds is the case

where (x; z) are jointly normally distributed and when Ezz is nonsigular and when Ezx
0

has full column rank, which is the same identi�cation condition in linear instrument variable

models. For this case, conditional on z, (x�; xÆ) are jointly normal: 
x
0
�

x
0
Æ

����z
!
� N

  
��xz�

�1
zz z

Æ�xz�
�1
zz z

!
;

 
�
�
�xx � �xz�

�1
zz �zx

�
� �

�
�xx ��xz�

�1
zz �zx

�
Æ

Æ
�
�xx � �xz�

�1
zz �zx

�
� Æ

0
�
�xx � �xz�

�1
zz �zx

�
Æ

!!

Since �xz has full row rank, when Æ is not proportional to �, Æ�xz�
�1
zz is not colinear with

��xz�
�1
zz , and for any two constants a and b, z can be chosen so that both equations hold:

��xz�
�1
zz
z = a; Æ�xz�

�1
zz
z = b

namely that z can be chosen so that both E(x� j z) and E(xÆ j z) tend to1. On the other

hand, when Æ is proportional to � , either both can be made tending to1, or E(x� j z)!1
but E(xÆ j z) ! �1. Since the conditional variance is constant, the small probability

condition in the assumption is easily satis�ed. Also given that E (xx0jz) > �xx ��xz�
�1
zz �zx,

as long as the later one is nonsigular, the small eigenvalue condition is also satis�ed.

4.2 Estimation of the Endogenous Censored Model

In this section, we exploit the above restrictions to provide an estimator for the parameter

�. As in section 2, this estimator will based on the minimum distance. However, we follow

MT by allowing interval measurement on the dependent variable and hence use a variant

of their modi�ed minimum distance estimator that allows for endogeneity in the regressors.

In the case of set identi�cation, the estimator is (set) consistent under mild conditions.

Moreover under conditions of point identi�cation, we derive the asymptotic distribution of

the estimator and show that it is
p
N normal.

First we derive the estimator as in section 2. In particular, the next lemma is an

immediate consequence of the identi�cation conditions given in proposition 3 and forms the

basis of the estimator. We use a familiar density weighting scheme to simplify the estimator's

asymptotic properties.
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Lemma 5 Let the identi�cation conditions (4.9) hold. For every b 2 B; de�ne the following

function

T (b) =

Z �
[�0(z; b)]

2
1[�0(z; b) > 0] + [�1(z; b)]

2
1[�1(z; b) < 0]

	
dPz

where �0(z; b) = P (y0 � xb > 0 j z) � 1

2
and �1(z; b) = P (y1 � xb > 0 j z) � 1

2
We have that

T (b) � 0 for all b 2 B, and T (b) = 0 if and only if b = �:

Since the functions �0(z; b) and �1(z; b) are not known, we replace each of them by a consistent

kernel based nonparametric estimator �̂0(z; b) and �̂1(z; b):

De�ne �̂n as

�̂n = argmin
b2B

Tn(b)

=
1

N

NX
i=1

�h
�̂0(zi; b)f̂(zi)

i2
G[
�̂0(zi; b)

h�
] +
h
�̂1(zi; b)f̂(zi)

i2
�G[
�̂1(zi; b)

h
]

� (4.10)

where

�̂0(z; b) =

 
1

nhd

nX
i=1

1s(yi0 � xib � 0)K(
zi � z

h
)

!
=f̂(zi)�

1

2

�̂1(z; b) =

 
1

nhd

nX
i=1

1s(yi1 � xib � 0)K(
zi � z

h
)

!
=f̂(zi)�

1

2

f̂(z) =
1

nhd

nX
i=1

K(
zi � z

h
)

and G(:) is a four times continuously di�erentiable function with G(y) = 0, 8y � �1 and

G(y) = 1; 8y > �1=2. Moreover, �G(x) = 1�G(x) the function that smoothly approximates

the step function in the \other" direction. The next theorem studies the almost sure con-

vergence of �̂n: Detailed explanation of the assumptions needed and the proofs are collected

in appendix C below.

Theorem 4 Let assumptions E and PR hold. Let the identi�cation condition (4.9) hold.

Let the parameter space B be compact, with the true parameter vector � in B: Let N !1.

Suppose supb k�̂i(z; b)� �i(z; b)k = 0 for i = 0; 1 a.e. z. Then

�̂N
a:s:�! �

In the case where the identi�ed feature of the model is a set, one can still use the above

estimator. Set consistency arguments similar to the ones in MT would be made.
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4.2.1 Asymptotic normality

In this section, we derive the asymptotic distribution of the estimator de�ned in (4.10) above.

The �rst order condition of the above problem evaluated at the true parameter � is

FOC (�) =
1

n

nX
i=1

�̂0 (zi) Ô�0 (zi)G

�
�̂0 (zi; �)

h�

�
+ �̂1 (zi) Ô�1 (zi) �G

�
�̂1 (zi; �)

h�

�

+ �̂0 (zi)
2
Ô�0 (zi)

1

h�
g

�
�̂0 (zi; �)

h�

�
� �̂1 (zi)

2
Ô�1 (zi)

1

h�
g

�
�̂1 (zi; �)

h�

�

where �̂i(z) = �̂i(z; �)f̂(z) Hence taking a mean value expansion of the above equation

around the true parameter �, we get

p
N(�̂ � �)H(��) =

p
NFOC(�)

where H(b) = @FOC(b)=@b and �
� 2 (�̂; �). The objective is to �rst �nd the asymptotic

distribution of
p
NFOC(�) and then studying the almost sure limit of the hessian matrix

H. Below we sketch the proofs and leave the details to appendix C below.

Lemmas 8, 9 and 10 show that one can approximate the
p
NFOC(�) by the following

p
NFOC(�) =

1p
n

nX
i=1

O� (zi)
1

nhd

nX
j=1

1
�
0 < yj < �x0j�; x0j� < 0

�
K

�
zj � zi

h

�
1 (zi 2 Tz)

+ op (1)

Notice here that the asymptotic linear representation of the the function FOC is only nonzero

on the set T (z). Next we trun out attention to the hessian term. The diÆculty here lies in

the fact that we need to prove almost sure convergence of h(b) uniformly in b. lemmas 11

through 15 show that

lim
b!�

H(b)
a:s:�! EO�(�)O(�)01(z 2 Tz)

The next theorem states the asymptotic distribution of the censored endogenous model under

point identi�cation.
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Theorem 5 Limit Distribution of point identi�ed parameter:

p
n

�
�̂ � �

�
d�! N

�
0; A�1
A

�
where

A = EE (xf� (0jx; zi) jzi)E (xf� (0jx; zi) jzi)0 f 2 (zi) 1 (zi 2 Tz)

= EO� (zi; �)O� (zi; �)
0
1 (zi 2 Tz)


 =
1

4
EE (xf� (0jx; zi) jzi)E (xf� (0jx; zi) jzi)0 f 4(zi)1 (zi 2 Tz)

=
1

4
Ef

2 (zi)O� (zi; �)O� (zi; �)
0
1 (zi 2 Tz)

5 Monte Carlo Simulations

In this section, we use two Monte Carlo simulations to illustrate our estimator and study its

small sample properties.

5.1 Simulation 1

In this simulation, the following designs are used:

� Design 1: � = v + x1, where x1 and v are independent, v � N (0; 0:1), x1 � N (0; 4),

x = x1 + x2 + 1, where x2 is independent N (0; 4). z = x2 + w, where w � N (0; 1).

y
� = 2 + x+ �. z is used as an instrument in estimation.

� Design 2: Same as design 1 except now we take x = 1 (x1 + x2 + 1 � 0).

We report the estimates for the IV modi�ed minimum distance estimator and for the \naive"

estimator where we ignore the presence of endogeneity by setting z = x. We use a kernel

estimator to estimate �. The window width used is h = :9n�1=5. We do not smooth the step

function, since it e�ect on simulations is minimal. We use sample sizes of 200 and 800 where

the experiments were repeated for 200 times. For each estimator we report the mean, median

standard deviation, and the inter quartile range (IQR). In design 1, 60% of the observations

were censored.

We estimate both the IV modi�ed minimum distance estimator and the naive esti-

mator ignoring endogeneity by setting x = z. Our results for the censored regression model

with endogeneity are summarized in table 1 below. Table2 summarizes the results for the

linear model with endogeneity and no censoring. We report the mean, median, standard

deviation and inter quartile range. The modi�ed minimum distance estimator appears to
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behave nicely in small samples especially as compared to the naive estimator that ignores

the presence of endogeneity. The window width used in estimating the densities is the one

obtained using the plug in method. The objective function in this problem is highly nonlin-

ear and contains many local maximums as illustrated in �gure 1 below. Figure 1 shows the

objective function (as a function of the parameters) where the left hand side �gures show

the contour plot that zero in on the optimal point. We used the simplex and the simulated

annealing methods for optimization. We found it very useful (at least in small dimensions)

to actually draw the objective function as a function of the parameter vector b. In the case

of censoring, we have that on average, 40% of the observations were censored. Table 2 below

presents results for continuous x for the estimator in section 3 above.

5.2 Simulation 2

In this section we use the simultaneous equation Tobit model used in Blundell and Smith

(1994). The model consists of the reduced form

y
�
1 = �0 + x

0
�1 + v2

y
�
2 = x

0
2�2 + v2

where (v1; v2jx) is a bivariate normal. This represents the simultaneous equation model

y
�
1 = y2Æ + x1�1 + u

0
1

where u1 = v1�v21. Obervations on (y2; y1; x1; x2) are observed such that y2 = y
�
2 and y1 =

1(y�1 > 0)y�1. The disturbances (u1; v2) are drawn from a standard bivariate normal density

with covariance �, and we introduce heteroskedasticity by setting u01 = u1 � F (x1) where x1
is a standard normal exogenous random variable. We set the dimension of x2 to 2, which

are drawn from a standard normal density each. We set the parameter vector (�0; Æ; �) =

(1; :5; 1). The experiments below were run 200 times and the results are summarized in table

3 below. As we can see, the estimator behaves well in small samples. Notice that by moving

from 200 to 800 observations, the standard error are reduced by approximately a factor of

two con�rming the
p
N rate of convergence. Moreover, notice that in the heteroskedastic

case, the standard error is smaller than the one where no heteroskedasticity is present.
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Table 1: Monte Carlo Simulations I

Censored Endogenous Model

Modi�ed Minimum Distance Estimator

�1 = 1 �0 = 2

N=200 N=800 N=200 N=800

Design 1: Min Dist

Mean 0.9528 0.9380 2.2144 2.2356

Median 0.9491 0.9463 2.2478 2.2380

Std dev 0.1452 0.0804 0.2478 0.1545

Inter Quartile 0.2041 0.1228 0.3663 0.2100

Design 1: Naive

Mean 1.4995 1.5030 1.4883 1.4996

Median 1.4933 1.5035 1.4889 1.4978

Std dev 0.0834 0.0397 0.2346 0.1154

Inter Quartile 0.1093 0.0617 0.3091 0.1546

Design 2: Min Dist

Mean 0.9909 0.9862 2.0211 2.0151

Median 0.9887 0.9861 1.9642 2.0102

Std dev 0.6704 0.3371 0.3066 0.2255

Inter Quartile 0.8427 0.4004 0.6036 0.2907

Design 2: Naive

Mean 3.2731 0.5183

Median 3.2817 0.5188

Std dev 0.5169 0.2595

Inter Quartile 0.4091 0.2759
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Figure 1: The objective function of �̂, T = 200, for design 1
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Table 2: Monte Carlo Simulations I

Endogenous Linear Model

Minimum Distance Estimator

�1 = 1 �0 = 2

N=200 N=800 N=200 N=800

Design 1: Min Dist

Mean .997 .9934 1.9688 1.9888

Median 1.0127 .992 1.9978 1.9881

Std dev .1245 .0544 .3170 .1380

Inter Quartile .1647 .0677 .4066 .1850

Design 1: Naive

Mean 1.4995 1.5003 3.0102 3.0075

Median 1.5011 1.4986 2.9962 3.0051

Std dev .0562 .0261 .1763 .0910

Inter Quartile .0761 .0317 .2460 .1166

6 Set convergence

In this section, we examine some issues about set convergence. When the identi�ed feature

of the model is a set, the estimator above is set consistent. The asymptotic behavior of set

estimators, apart from consistency, is an open area of research. The purpose of this section is

to highlight an interesting observation that the sampling behavior of an identi�ed set can be

drastically di�erent from the case where the set is a point (or point identi�cation). Consider

for example the standard linear censored regression model of Powell (1984). Suppose the

population support of x is such that supx2X x
0
� < �c for some c > 0. Recall that working

directly with the conditional median we can write our inequality based objective function as

Q (b) =
1

n

nX
i=1

�
(�̂0 (xi)� x0ib)

+
�2

+
�
(�̂1 (xi)� x0ib)

�
�2

where �̂0 (x) = m̂ed (y0jx) and �̂1 (x) = m̂ed (y1jx). Under suitable regularity conditions

on the distribution of �jx near 0, together with appropriate choice of kernel function and

bandwidth condition to ensure uniform convergence of the nonparametric estimate of the

conditional median, with probability converging to 1: for all x in its support, �̂0 (x) =

�1 �̂1 (x) = 0. In this case with probability converging to 1, the objective function

is identically 1

n

Pn
i=1

�
(�x0ib)�

�2
, whose optimizer is the set (b : x0ib < 0; i = 1; : : : ; n). For
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Table 3: Monte Carlo Simulations II

Simultaneous Tobit Model

Modi�ed Minimum Distance Estimator

�0 = 1 Æ = :5 � = 1

N=200 N=800 N=200 N=800 N=200 N=800

� = :9, No Heterogeneity

Mean 0.9611 1.0221 0.5730 .5220 1.0816 .9881

Median 0.9659 1.0247 0.5730 .5242 1.0782 .9801

Std dev .1320 .0783 0.1128 .0581 0.1854 .0944

Inter Quartile 0.1687 .1086 0.1410 .0837 0.2287 .1158

� = :9, with heterogeneity

Mean 1.0137 1.0184 0.4805 .4896 .9944 .9876

Median 1.0206 1.0110 0.4880 .4915 1.0008 .9797

Std dev 0.0716 .0405 0.0651 .0321 0.1059 .0475

Inter Quartile .0827 .0627 0.0847 .0474 0 .1087 .0612

� = :5, No Heterogeneity

Mean 0.9482 .9839 0.6002 .5445 1.0748 1.0257

Median 0.9609 .9980 0.5994 .5323 1.0644 1.0220

Std dev 0.1624 .0913 0.1245 .0758 0.1963 .1162

Inter Quartile 0.2057 .1328 0.144 .1054 0.2436 .1532

� = :5, With Heterogeneity

Mean 0.9828 1.0083 0.5330 .5056 1.0282 1.0066

Median 0.9864 1.0112 0.5193 .5025 1.0096 1.0094

Std dev 0.0892 .0422 0.0849 30369 0.1171 30434

Inter Quartile 0.996 .0495 0.0940 .0477 0.1486 .0555
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each b, it is not hard to see that

1
�
x
0
ib < 0; i = 1; : : : ; n

�
= 1

�
x
0
b < 0;8x 2 X

�
; w:p: �! 1

Such convergence can be made uniform over the parameter set B, hence w.p. �! 1,

1
�
x
0
ib < 0; i = 1; : : : ; n;8b 2 B

�
= 1

�
x
0
b < 0;8x 2 X;8b 2 B

�
which implies that w.p. ! 1, the objective function is 0 over (b : x0b < 08x 2 X) and strictly

positive elsewhere. This can also be seen by noting that w.p. ! 1, we can identify the fact

that infx2X P (y = 0jx) > 1=2, hence we see the set (b : x0b < 0 8x 2 X) w.p. ! 1. For

example, let y = x�+ � where x is a random variable such that x > 0. Moreover let � = �1.
Given that Med(�jx) = 0, the identi�ed set in the model is V (b) = fb 2 Bj b < 0g. Given
a random sample (y0i; y1i; xi), we use the modi�ed minimum distance method to estimate

the set V (b). The above implies that this estimator converges to V (b) with probability that

tends to one without any asymptotic distribution. This is illustrated in the following �gure

where the objective function is 0 for all b negative and is strictly positive for all b > 0. This

convergence with no asymptotics seem to be a feature of set convergence which we leave as

a topic for further research.

Figure 2: The objective function for the no asymptotics case

25



7 Conclusion

In this paper we analyze the problem of inference in linear regressions with endogenous re-

gressors when the outcome is censored. The analysis throughout the paper imposes a rather

weak conditional median assumption on the error term. We �rst treat the problem of en-

dogeneity in linear models with a median assumption and no censoring. We give suÆcient

conditions for identi�cation and produce a consistent estimator based on the minimum dis-

tance method. Then we treat the censored model as an incomplete econometric model (

Tamer (1999) and Manski and Tamer (2000)) thus obtaining interval restrictions on con-

ditional median regressions. We give conditions for global identi�cation of the parameter

vector of interest and introduce a consistent estimator based on a modi�ed minimum dis-

tance method. The large sample properties of the estimator remain to be examined. This

entails studying the asymptotic distribution theory of the minimum distance based estima-

tors introduced above.
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This appendix collects the proofs of the various results used in the paper. For the non-parametric

function, we use the sup norm on that function and its derivatives, i.e.,

kf(x)k = maxl�d supxk@lf(x)=@xlk

A Assumptions

Assumption 5 The distribution of (y; x; z) is absolutely continuous with density f(y; x; z) on Rk+d+1. This

density is di�erentiable to order m such that P (y�x� � 0jz) is also di�erentiable with respect to �. Moreover

assume that Ejy � x�j4 <1.

In this paper, we consider the following estimator for the conditional distribution

Pn(y � x� � 0jz) =
"
1

N

NX
i=1

1s(yi � xi� � 0)Kh

�
z � zi

h

�#
=f̂(z)

where

f̂(z) =
1

N

NX
i=1

Kh

�
z � zi

h

�

and the function Kh(:) =
1
hd
K(:) with K(:) a kernel function and h a bandwidth parameter. 1s is a smoothed

step function, i.e., 1s(x � a) =
R a
�1Kh(x)dx. The kernel function and the smoothing parameter satisfy the

following assumption.

Assumption 6 We have

1.
R
K(z)dz = 1,

R
z�K(z)dz = 0 for all � � m0. Moreover @�K(z)! 0 as kzk ! 1.

2. The window width parameter is such that h! 0, nhd !1 and ln(n) = o(nhd).

3. In addition, h satis�es the following Nh2d+1 !1 and
p
Nh3m ! 0.

Assumption 7 The parameter space B � R
k is compact.

It is well known that given the assumptions above, and for �̂(z; b) de�ned in (3.5) that the following

lemma is true for every b 2 B.

Lemma 6 Uniformly in z, and given the above assumptions, we have for r = 0; 1; 2

j rr[�̂(z; b)]�Err[�̂(z; b)] j = Op(n
�1=2h�r+2d+1)

j Err[�̂(z; b)]�rr�(z; b) j = Op(h
2)

Now we de�ne the conditions for the step function smoothing.

Assumption 8 We have,

1. G(:) is a four times continuously di�erentiable function such that G(y) = 0;8y � �1; G(y) = 1;8y >
�1=2. Let �G be de�ned as �G(:) = 1�G(:).

2. h� � 0. h� ! 0 as n!1. Let � be such that sup j�̂(z; �)f̂(z)� �(z; �)f(z)j = op(n
��). Moreover,

let h� = n� such that  > 1=4,  < � and 1=2� 2�+  < 0.
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B Noncensoring Case

Proof of theorem (2) We start with showing that the population objective function is maximized at the

true parameter value. This follows easily from lemma (2). To show uniform convergence, we use results from

Stute (Stute (1986)). Stute showed that for almost all z, and under the assumptions above that

sup
b

kPn(x � bjz)� P (x � bjz)k a:s:�! o

Since �n(z; b) = Pn(y � xb � 0jz)� 1
2
, we have

sup
b

"
1

N

NX
i=1

�
�2n(zi; b)� �2(zi; b)

�#
a:s:! 0

By compactness of the parameter space and continuity of the population objective function E[�(z; :)] we

have that

�̂n �! � a:s:

�

Proof of theorem (3) Consider the �rst order condition for estimating �:

FOC(b) � 1

N

X
2

�
�n(zi; b)f̂(zi)�

1

2
f̂(zi)

�
r�n(zi; b)f̂(zi)

Using A Taylor expansion around the true parameter value we get,

p
NHn(�

�)(�̂n � �) =
1p
N

NX
i=1

�
�n(zi; �)f̂(zi)�

1

2
f̂(zi)

�
r�n(zi; �)f̂(zi) = 0

=
p
NFOC (�)

(B.11)

We have

p
NFOC (�) =

1p
n

NX
i=1

0
@ 1

N

X
j

1s(�j � 0)Kh

�
zi � zj

h

�
� 1

2

X
j

Kh

�
zi � zj

h

�1A
 

1

N

X
k

xkKh(
�k

h
)Kh

�
zi � zk

h

�!

=
1

N2
p
N

X
i;j;k

1s(�j � 0)Kh

�
zi � zj

h

�
xkKh(

�k

h
)Kh

�
zi � zk

h

�

� 1

2
Kh

�
zi � zj

h

�
xkKh(

�k

h
)Kh

�
zi � zk

h

�

=
1

N2
p
N

X
i;j;k

m(wi; wj ; wk) � V

This is a third order V-statistic. To �nd the asymptotic distribution of V , We �rst obtain the corresponding

U-statistic U (a V statistic is equal to a U statistic plus a negligible term), and get its projection Û such

that

U =
�
Û �EU

�
+ (U � Û) +EU

= (1) + (2) + (3)
(B.12)
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Starting with the bias term (3), we have

EU =

Z
1s(�j � 0)Kh

�
zi � zj

h

�
xkKh(

�k

h
)Kh

�
zi � zk

h

�
dF

� 1

2

Z
Kh

�
zi � zj

h

�
xkKh(

�k

h
)Kh

�
zi � zk

h

�
dF

� C1

2

Z
Kh

�
zi � zj

h

�
xkKh

�
zi � zk

h

�Z
K(v)f�(vhjxk; zk)d�dF

� C2

2

Z
Kh

�
zi � zj

h

�
xkKh

�
zi � zk

h

�
hmdF

� C3

2
h3m

the �rst inequality comes from a change of variable, the second inequality results from a Taylor expansion

of the density of epsilon, and the last one a similar change of variable and another expansion. Hence we

require that
p
Nh3m to go to zero as N increases. This will be achieved using high order kernels.

The �rst term is what drives the asymptotic distribution,

(1) =
1p
n

NX
i=1

�
Pn(y � x� � 0jzi)�

1

2

�
f̂(zi)@�Pn(y � x� � 0jzi)f̂(zi)

=
1p
n

nX
i=1

�
Pn(y � x� � 0jzi)�

1

2

�
f̂(zi)@�P (y � x� � 0jzi)f(zi) + op (1)

=
1p
n

nX
i=1

�
Pn(y � x� � 0jzi)�

1

2

�
f̂(zi)E (xf� (0jx; zi) jzi) f(zi) + op (1)

=
1p
nn

nX
i;j

�
1s (yj � xj� � 0)� 1

2

�
Kh

�
zi � zj

h

�
E (xf� (0jx; zi) jzi) f(zi) + op (1)

=
1p
n

nX
i=1

�
1 (yi � xi� � 0)� 1

2

�
E (xf� (0jx; zi) jzi) f2(zi)

d�!N

�
0;
1

4
EE (xf� (0jx; zi) jzi)E (xf� (0jx; zi) jzi)0 f4(zi)

�

Using results from Powell, Stock, and Stoker (1989) the next lemma gives conditions for the second term

(2) to be negligible.

Lemma 7 Given that E[km(wi; wj ; wk) +m(wi; wk; wj) +m(wj ; wi; wk) +m(wj ; wk; wi) +m(wk ; wi; wj) +

m(wk; wj ; wi)k2] = o(N), we have (Û � U) = op(1).

Proof: Taking the squares of the above, we show �rst that

E[km(wi; wj ; wk)k2] = o(N)
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. We have

E[km(wi; wj ; wk)k2] �
Z
1s(�j � 0)K2

h

�
zi � zj

h

�
x2kK

2
h(
�k

h
)K2

h

�
zi � zk

h

�
dF (wi; wj ; wk)

+

Z
1

4
K2

h

�
zi � zj

h

�
x2
k
K2

h
(
�k

h
)K2

h

�
zi � zk

h

�
dF (wi; wj ; wk)

�
Z
1s(�j � 0)K2

h

�
zi � zj

h

�
x2
k
K2

h
(
�k

h
)K2

h

�
zi � zk

h

�
dF (wi; wj ; wk)

= (a) + (b) + (c)

(B.13)

The �rst term above is such that

(a) � C1

2h

Z
x2kK

2
h

�
zi � zj

h

�
K2

h

�
zi � zk

h

�
f�(0jxk; zk)dF

� C2

2hd+1

Z
E
�
x2f�(0jx; zi)jzi

�
K2

h

�
zi � zj

h

�
dF

� C3

2h2d+1
E
�
x2f�(0jx; z)

�
where C1, C2 and C3 are constants. The �rst inequality follows by a change of variable and using the

property that the integral of the square of the kernel function is �nite. The second and third inequalities

follow a change of variable and after a Taylor expansion of the density. Using similar calculations, the terms

(b) and (c) in (B.13) above have similar rates. (The calculations here are standard and the full proof is

omitted). Hence To satisfy the lemma we need that Nh2d+1 ! 1. If we pick the smoothing parameter h

such that the last condition is satis�ed, it will create a large bias. The way to kill this bias is to use higher

order kernels. Similarly all the terms in the lemma above can be shown to be o(N).

Next we analyze the uniform convergence of the hessian term in (B.11) above in a shrinking neigh-

borhood of the true parameter �. We have the following

Hn (b) =
1

n3

X
i;j;k

xj
1

h
K

�
yj � xjb

h

�
1

hd
K

�
zi � zj

h

�
x0
k

1

h
K

�
yk � xkb

h

�
1

hd
K

�
zi � zk

h

�
+ op(1)

It is easy to show that

lim
b!�

Hn (b) = EziE (xf� (0jx; zi) jzi)E (xf� (0jx; zi) jzi)0 f2 (zi) + op(1)

C Endogenous Censoring Case: Point Identi�ed Pa-

rameters

For simpler notation, let �̂0 (zi) � �̂0 (zi;�) f̂(zi) and �̂1 (zi) � �̂1 (zi;�) f̂(zi). Similarly denoteO�0 (zi;�) f (zi) �
O�0 (zi), with Ô�0 (zi) being the corresponding estimates, same for O�1 (zi) and Ô�1 (zi). Note that we have

de�ned the smoothing function 1s (x > 0) as G (x=h�), where G (�) is a four times continuously di�erentiable
function with G (y) = 0;8y � �1, G (y) = 1;8y > �1=2. Similarly we de�ne the smoothed 1s (x < 0) to

be 1 � G (x) � �G (x). Assume that h� = n� . Recall that we have imposed suÆcient conditions for the
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following to be true:

sup
z2Z

j�̂0 (z)� �0 (z) j = oa:s:
�
n��

�
sup
z2Z

jÔ�0 (z;�)�O�0 (z;�) j = oa:s:
�
n��

�
sup
z2Z

j�̂1 (z)� �1 (z) j = oa:s:
�
n��

�
sup
z2Z

jÔ�1 (z;�)�O�1 (z;�) j = oa:s:
�
n��

�
We have also assumed that  > 1=4, 1=2� 2� +  < 0, namely � > 1

2
 + 1

4
. One could, for example, take

 = 2
9
and � > 13

36
. By assumption 8, we have for all a 2 R

kG
� a

h�

�
� 1[a � 0]k � G

� a

h�

�
1[�h� < a < 0]! 0

and by di�erentiability of G and given that h� converges to zero slower than (�̂(x;�) � �(x;�))

kG
�
�̂(x; �)

h�

�
� 1[�(x;�) � 0]k ! 0

for all x.

Proof of theorem (4) The proof is similar to the proof of theorem (2) above except for uniform convergence

since here we have to deal with the smoothed step function. To show uniform convergence, we show that

the sample objective function is equicontinuous. We have that from (4.10) above

kTn(b1)� TN(b2)k = k 1
N

NX
i=1

�
[�̂i0(b1)]

2
G[
�̂0(zi; b1)

h�
] + [�̂i1(b2)]

2 �G[
�̂1(zi; b2)

h
]

�

�
�
[�̂i0(b2)]

2
G[
�̂0(zi; b2)

h�
] + [�̂i1(b2)]

2 �G[
�̂1(zi; b2)

h
]

�
k

�
 1N

NX
i=1

n
[�̂i0(b1)]

2
1[�̂0(zi; b1) > 0]� [�̂i0(b2)]

2
1[�̂0(zi; b2) > 0]

o
+

 1N
NX
i=1

n
[�̂i1(b1)]

2
1[�̂1(zi; b1) < 0]� [�̂i1(b2)]

2
1[�̂1(zi; b2) < 0]

o
+

 1N
NX
i=1

�
[�̂i0(b1)]

2

�
1[�̂0(zi; b1) > 0]�G[

�̂0(zi; b1)

h�
]

��
+

 1N
NX
i=1

�
[�̂i0(b2)]

2

�
1[�̂0(zi; b2) > 0]�G[

�̂0(zi; b2)

h�
]

��
+

 1N
NX
i=1

�
[�̂i1(b1)]

2

�
1[�̂1(zi; b1) > 0]�G[

�̂1(zi; b1)

h�
]

��
+

 1N
NX
i=1

�
[�̂i1(b2)]

2

�
1[�̂1(zi; b2) > 0]�G[

�̂1(zi; b2)

h�
]

��
We have that the �rst two terms are such that 1N

NX
i=1

n
[�̂i0(b1)]

2
1[�̂0(zi; b1) > 0]� [�̂i0(b2)]

2
1[�̂0(zi; b2) > 0]

o �
 1N

NX
i=1

n
[�̂i0(b1)]

2 � [�̂i0(b2)]
2
]
o

and  1N
NX
i=1

n
[�̂i1(b1)]

2
1[�̂1(zi; b1) > 0]� [�̂i1(b2)]

2
1[�̂0(zi; b2) > 0]

o �
 1N

NX
i=1

n
[�̂i1(b1)]

2 � [�̂i1(b2)]
2
]
o
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Hence it is easy to see that

sup
kb1�b2k!0

kTn(b1)� TN (b2)k = op(1)

by convergence of the smoothed step function and by uniform convergence of the nonparametric kernel

estimator. �

Next, we show a few lemmas that are essential for the proof of asymptotic normality. These lemmas deal

with the presence of the in�nite dimensional parameter inside the step function. We replace the step function

by a smooth function that converges to it as n increases.

We �nd the asymptotic distribution of

FOC(�) =
1

N

NX
i=1

�̂0(zi;�)f̂
2(zi)2r�̂0(zi;�)1s[�̂0(zi;�)f̂ (zi) > 0]

+ �̂1(zi;�)f̂
2(zi)2r�̂1(zi;�)1s[�̂1(zi;�)f̂ (zi) < 0]

Due to the smoothing in the �rst order condition, we correct it as

FOC (�) =
1p
n

nX
i=1

�̂0 (zi) Ô�0 (zi)G

�
�̂0 (zi)

h�

�
+ �̂1 (zi) Ô�1 (zi) �G

�
�̂1 (zi)

h�

�

+ �̂0 (zi)
2
Ô�0 (zi)

1

h�
g

�
�̂0 (zi)

h�

�
� �̂1 (zi)

2
Ô�1 (zi)

1

h�
g

�
�̂1 (zi)

h�

�

=(a) + (b) + (c) + (d)

(C.14)

Our ultimate goal is to reduce this to the managable condition:

FOC (�) =
1p
n

nX
i=1

�̂ (zi)O� (zi) 1 (zi 2 Tz) + op (1)

where � (zi) is same as �0 (zi) with yi0 replaced by yi. Same with �̂ (zi) for �̂0 (zi). We need to show that

the �rst two terms above (a) and (b) are well behaved. This will be shown in the next two lemmas. Next we

would want to show that the contribution of the smoothing, terms (c) and (d), to FOC is asymptotically

negligible. The main insight to remember that at the truth, we have for all z,

�0(z; �) � 0 � �1(z; �)

and that on T (z),

�0(z; �) = �1(z; �) = �(z; �) = 0

The next lemma shows that term (a) in (C.14) above only contributes on the set T (z). This makes sense

since we are evaluating the FOC at the truth.

Lemma 8

1p
n

nX
i=1

�̂0 (zi) Ô�0 (zi)G

�
�̂0 (zi)

h�

�
=

1p
n

nX
i=1

�̂0 (zi) Ô�0 (zi)G

�
�̂0 (zi)

h�

�
1 (�0 (zi) = 0) + op (1)

1p
n

nX
i=1

�̂1 (zi) Ô�1 (zi) �G

�
�̂1 (zi)

h�

�
= op (1)
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Proof: The di�erence between the two sides of the �rst relation is���� 1p
n

nX
i=1

�̂0 (zi)O�̂0 (zi)G

�
�̂0 (zi)

h�

�
1 (�0 (zi) < 0)

����
� 1p

n

nX
i=1

M j�̂0 (zi) j1 (�̂0 (zi) > �h�) 1 (�0 (zi) < 0) � 1p
n

nX
i=1

M j�̂0 (zi) j1
�
�h� � n�� < �0 (zi) < 0

�

� 1p
n

nX
i=1

M1
�
�h� � n�� < �0 (zi) < 0

� �
h� + n��

�
=Op

�p
n
�
h� + n��

�2�
= Op

�
n1=2�2� + n1=2�2�

�
= op (1)

For the second relation, since w.p. ! 1, infzi �̂1 (zi) > �1=2h�:���� 1p
n

nX
i=1

�̂1 (zi) Ô�1 (zi) �G

�
�̂1 (zi)

h�

� ���� � 1p
n

nX
i=1

M j�̂1 (zi) j1
�
�̂1 (zi) < �1

2
h�
�
= op (1)

�

The intuition behind why the second term (b) drops out is because of the way we de�ned �G. It remains

to deal with the presence of estimated in�nite dimensional parameters in (a) above. Heuristically, as n

increases, we should be able to replace �̂ with �. That is what we show in the next lemma.

Lemma 9 1p
n

P
n

i=1 �̂0 (zi) Ô�0 (zi)G
�
�̂0(zi)

h�

�
1 (�0 (zi) = 0) = 1p

n

P
n

i=1 �̂ (zi) Ô� (zi) 1 (zi 2 Tz) + op (1)

Proof : First of all 1 (zi 2 Tz) = 1 (�0 (zi) = 0), on which O�0 (zi) = O� (zi). On zi 2 Tz w.p. ! 1,

�̂0 (zi) > � 1
2
h�, hence

1p
n

nX
i=1

�̂0 (zi)O�̂0 (zi)G

�
�̂0 (zi)

h�

�
1 (zi 2 Tz) =

1p
n

nX
i=1

�̂0 (zi)O�̂0 (zi) 1 (zi 2 Tz) + op (1)

=
1p
n

nX
i=1

�̂0 (zi)O�0 (zi) 1 (zi 2 Tz) + op (1)
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A standard application of lemma 3.1 of Powell, Stock, and Stoker (1989) shows that with m (wi; wj) de�ned
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Hence it suÆces to show that E (m (wi; wj) jwj) = o (1) uniformly in wj , it is calculated asZ
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Finally we take care of the two negligible terms (c) and (d) in the �rst order condition (C.14).
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Proof: Note that g (x) 6= 0 only if �1 < x < � 1
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where the last equality follows by assumption (8) above. �

Next we turn attention to the Jacobian term for the asymptotic approximation. The Jacobian term can be

expanded as
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Each of these terms need to be cleared. Keep in mind that here we do not worry about the rate of convergence.

However, we have to show uniform convergence of each of the pieces in the Jacobian above to its counterpart.

This is tedious in this case due to the presence of the nonparametric nuisance parameters inside a step

function.

Lemma 11 For b
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Proof: It is straightforward to show that uniformly in b : jb� �j ! 0
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Following the same argument as in Horowitz (1998), we know from Theorem 2.37 of Pollard (1984)
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Proof: Using exactly the same argument as in the previous lemma, the lhs converges uniformly in b close to
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Proof: One can replace the lhs �rst by 1
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Proof: The argument is simplier than the previous one. First replace the lhs by 1
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To complete the proof we only need a standard application of U-statistics projects, as in lemma 3.1 of Powell,

Stock, and Stoker (1989).
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Proof: Noting that �̂0 (�) = 1
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which has a limiting normal distribution with variance matrix given by 
 in the following statement of the

theorem.

The asymptotic approximation of the sampling distribution for point identi�ed parameters is a

natural consequence of the combination of the previous lemmas.
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Lemma 17 Â
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Proof: This is an immediate consequence of lemma (11).

Lemma 18 
̂
p�! 1

4
Ef2 (zi)O� (zi;�)O� (zi;�)

0
1 (zi 2 Tz)

Proof: Up to terms of op (1), one can replace 
̂ sequentially

1

4

1

n

nX
i=1

f (zi)
2
O�0

�
�̂
�
O�0

�
�̂
�0
G

0
@�0

�
�̂
�

h�

1
A ;

1

4

1

n

nX
i=1

f (zi)
2
O�0 (�)O�0 (�)

0
G

�
�0 (�)

h�

�

1

4

1

n

nX
i=1

f (zi)
2
O�0 (�)O�0 (�)

0
1 (�0 (zi) � 0) ; Ef (zi)

2
O�0 (�)O�0 (�)

0
1 (�0 (zi) � 0)

40


