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1. Introduction

    In a linear regression model, the t test is uniformly most powerful and is equivalent

to an exact likelihood ratio test.  Unfortunately,  these optimality results are not

assured when there is endogeneity of some of the regressors.  One approach which

is rather tentative is to offer a large-sample justification for conducting inference in a

fashion analogous to linear regression.  This is inadequate because it ignores the

fact that in the transition from a linear regression to a structural equation model, we

also have to contend with the different roles that exogenous and endogenous

regressors play.  Indeed, the present state of econometric practice does not

distinguish between these in the application of t-tests, whereas the logic of

identifiability seems to suggests otherwise.

    Except for the Anderson-Rubin F test whose exact power function was derived by

Revankar and Mallela (1972),  there are few known finite sample optimality results for

coefficient tests in a structural equation. The few existing results relate to the testing

of identifiability of the equation, which corresponds to tests of the coefficients of its

exogenous variables. Among optimality results and small sample optimality results in

this area are the maximal invariant for testing identifiability (see Muirhead, Theorem

10.2.1) and the finding that the likelihood ratio (LR) test statistic for identifiability is

approximately ancillary (Hosoya et al, 1989).  The two are connected in that a

maximal invariant is also ancillary if the action of transformations induced by the
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invariance group on the parameter space is transitive (see Lehmann, 1986, pp.542-

548 for full details).  Such a condition is not generally satisfied by the curved

exponential model that we are talking about.  The extent to which it is not satisfied is

in some sense the degree of curvature - a point that may be deduced from Hosoya et

al's (1989) analysis.  Thus, it is only in the case of exact identifiability that this

maximal invariant is ancillary to the problem.

    In conventional use, any approach by the F ratio must have been compelled by

connections to linear regression.  Unfortunately, when not all of the regressors

(especially those that are endogenous) vanish under the null, the fundamentally

nonlinear character of the hypothesis means that this lacks justification even from an

asymptotic standpoint.  In an environment clouded by uncertainty over the finite-

sample approach and pressed by empirical demands, the asymptotic results of

Kadane (1984) and Morimune and Tsukuda (1984) were very important in

establishing the reliability of the LR test from limited information maximum likelihood

(LIML) estimation.

    To address continuing uncertainty over the properties of the t ratio, Morimune

(1989) carries out both a Monte Carlo study of the size properties and asymptotic

analysis of the power properties for variants of the t ratio approach constructed from

ordinary least squares (OLS), two stage least squares (TSLS) and LIML as well as

the LIML-based LR test.  What is interesting to note is that the OLS-based t ratio

leads to the most extreme divergence from the nominal size, and the problem was

worse when testing the coefficients of the endogenous variables (refer to Morimune,

1989, tables II and III to see which column depicts the widest departure from the

nominal size). In terms of adherence to size, the best performers in order appear to

be the t ratio based on LIML, the t ratio based on TSLS and the LR test based on
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LIML.  In all these three cases, there is clearly a worsening in size-adherence when it

is the endogenous variable whose coefficient is being tested.  In this paper, we will

assert that the information contained in the maximal invariants for the testing problem

is most seriously distorted in the case of OLS, and preserved intact by LIML, leading

quite naturally to the results seen in these simulation results.

    If a problem is invariant under a group of transformations,  then appealing to the

principle of invariance suggests that the search for an optimal test need only be

confined to the class of tests which share the same invariant properties.  Since a

necessary and sufficient condition for a test statistic to be invariant is that it depends

on the sample space through the maximal invariant,  the class of all invariant test

procedures can be characterized if the maximal invariant is found.  By maintaining a

constant value on orbits and assigning different values to each orbit in the sample

space, the maximal invariant serves as a functional representation of the sample

space that obscures information irrelevant to the inference at hand.  The practical

interpretation of this concept for inference is that optimality criteria for maximizing

power can be applied to the distribution of the maximal invariant.  Given the

invariance group of a testing problem, a maximal invariant is specific to that group

but need not be unique.

    The invariance properties of a problem are completely described by the action of a

transformation group which leaves the problem invariant.  The group and its

corresponding action are referred to as the invariance group, and is all the

information that is necessary to defining a maximal invariant.

    The following notational conventions are used.  Square brackets will be reserved

exclusively for enclosing the arguments of a function, as in f[•] or Q[•].  This is a
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convenient means of tracing the relations between elements (scalar, matrix or group)

as they are transformed using a (broadly defined) functional dependency on certain

arguments.  Other times, we omit the arguments in the interests of notational

economy.  Bold letters usually denote matrix statistics that are functions of the

observations,  while script lettering denotes arbitrary matrices which are usually, but

not confined to,  elements of the transformation groups.  Further, in any font: ΩU

would denote an upper-block triangular matrix from decomposing a symmetric matrix

Ω;  H would denote an element of an orthogonal group;  and TW would denote an

upper-triangular matrix from the Cholesky factorization of W.

2. Model and assumptions

    Modeling traditionally begins by postulating a behavioural equation of interest

which links endogenous and exogenous variables.  Such a relationship is written in

unnormalized form as

(1) Yβ=Z1γ1+Z2γ2+e

This is a structural equation because it is based on behavioural mechanisms in which

there is strong theoretical foundation.  Underlying (1) is a process which is thought to

generate the data, represented as

(2) Y=ZΠ+V

The sample comprises T time-series or cross-sectional observations on endogenous

and exogenous variables.  Each column of )( 21 YYY =  represents a T×1 vector of

observations on an endogenous variable, of which there are (n+1) in the model.

Each column of )( 321 ZZZZ =  is a T×1 vector of observations on an exogenous

variable,  of which there are K in total.  Of these, (K1+K2) variables are included in

the structural equation with the first K1 contained in Z1 and the next K2 in Z2.  The

remaining K3 (=K-K1-K2) columns in Z3 represent what are usually referred to as the
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excluded exogenous variables,  often used as instrumental variables in estimation.

The remaining terms in the model are random disturbances, in the T�1 vector e, and

T�(n+1) matrix V.

    Requiring that the behavioural specification in (1) be consistent with (2) implies the

parametric restrictions

(3) 11 γβ =Π , 22 γβ =Π ,

(4) 03 =Π β

and e=Vβ.  Of these, (4) is crucial and implies that a necessary and sufficient

condition for a structural form unique up to normalization to exist is the rank condition

(5) nrank =Π ][ 3 .

A test of identifiability is one of nrankH =ΠΠ ][: 30
3  versus 1][: 31

3 +=ΠΠ nrankH .  It

will be convenient to refer to various submatrices in Π by partitioning it as

(6)
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    This paper focuses on those hypotheses which specify that some of the variables

in (1) may have zero coefficients.  These tests of variable exclusions are often

described as tests of significance when the judgment is made on the basis of how

large an estimate is in absolute value compared to a measure of distributional spread

such as the estimated standard deviation.  In all of the remaining cases of testing,

the effect of the variable exclusions is to require a modified compatibility condition in

the spirit of (5) to be satisfied.
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    For the purposes of parametric inference, we need the assumption that rows of V

be a independently distributed as multivariate normal vectors,  mean 0 and

covariance matrix Ω.  Given that our main concern is with the slope coefficients in (1)

and (2), we can always transform the model so that Ω=In+1 without any loss of

generality.  To complete the specification of the model in canonical form,  we also

assume that the columns of Z are orthonormal vectors.  If the model is not yet in

canonical form,  it can be converted to one by post-multiplying Y by  and

postmultiplying Z by to give  (see Phillips (1983) details),

    The representation makes clear that the ranks of various submatrices of Π that are

involved in testing should be preserved,  given that invariance is our main concern in

this paper. This can be achieved with non-singular blocks in the diagonals of
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    Since the process generating the data takes precedence over any relationship

between Y and Z1 in (1), (2) may be regarded as the working hypothesis providing

the basis on which investigations about (1) are to be carried out.

    It is well known that the maximum likelihood estimates YZX ′=  and

YZZIYW )( ′−′=  are independent and constitute sufficient statistics for inference.
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Note that with the model in canonical form, X is matrix normal with the mean

Π=Π′= ZZX][E  and covariance matrix )1(2 +nKI .  The partitioned form of these are
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    First, we define certain functions of the sufficient statistics which play important

roles in the sequel.  Let 22)0( XXS ′= ,  33XXS ′= ,  313111 XXS ′=  and denote

12
1

11112122122 )( WWWWWW −
⋅ ′−= .  Based on our assumptions,  S(0), S and W are

independent.  A block-triangular decomposition WWUUW ′=  is specified by having
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Then define a statistic

(8) 11],[ −−′= WW SUUWXR .

Though not explicitly used in Hillier (1987), its construction is clearly suggested.  The

matrix statistic R is itself not a maximal invariant for any of the testing problems,  but

its intrinsic appeal is already evident from the compact way in which it can be used to

define the likelihood ratio test for 2
0
βH .  Essentially, R is a symmetrized version of

SW-1 and either form can be represented in the likelihood function. It turns out to

have a fundamental role in the maximal invariants that we formulate in each of the

three cases.
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3. Invariance of the Testing Problems

    Let ),( 21 ′′′= βββ  be a partition into column vectors of (n1+1) and n2 components.

Then,  apart from identifiability,  the remaining three types of tests are of

(9) 0: 20
2 =γγH against         0: 21

2 ≠γγH ,

(10) 0: 20
2 =ββH against         0: 21

2 ≠ββH , and

(11) 0,0: 22
,

0
22 =γ=βγβH against         0,0: 22

,
1

22 ≠γ≠βγβH .

    These can also be written as rank conditions, with all three taking the general form

**0 ][: nrankH =Π  against 1][: **1 +=Π nrankH ,  where *Π  has dimensions

)1( ** +× nK  and comprises submatrices from the partition of Π (see (6)).  Implicit in

(9)-(11) is the idea that the tests are to be carried out for a model that is already

identified (even possibly over-identified).  This is an explicit requirement that (5) be

the maintained hypothesis throughout.  The preferred tests would therefore compare

a new identifiability condition with the one held under the maintained hypothesis.  If

no comparison to (5) were made, then the new rank restrictions would merely be

variants of the identifiability hypothesis with a rearrangement of the variables that are

excluded from the structural equation.

    The likelihood ratio tests from limited information maximum likelihood (LIML) offers

a well-known example where comparison to the maintained hypothesis is the key.

Here, the test statistics for (9)-(11) turn out to have the general form

2/
1

*
1 )}1/()1{( TLIML −λ+λ+ ,  where LIML

1λ  is the largest latent root ... (see Hosoya et al

(1989)).  *
1λ  is just its counterpart from the model modified to fit the variable

exclusions postulated by the null in question.
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    The action of a group of transformations T on the sample space (Z,Y) can be

described completely in terms of maps of the sufficient statistics.  The resulting maps

of the moments of the sufficient statistics that are implied has the effect of inducing

transformations in parameter space.

Definition 1.  A testing problem is said to be invariant with respect to a group T  if the

hypotheses being tested remain unchanged under the action of T.  We call T  the

invariance group for the problem.�

    It will be convenient to use 
2βT  to represent the transformation group which leaves

the problem of testing the presence of β2 in (1) unchanged.  The natures of 
2βT , (and

using the same notation) 
2γT  and 

22 ,βγT  have been extensively discussed in Hillier

(1987) and hinge on the fact that in addition to (3), another compatibility condition

implied by coefficient restrictions on (1) must be preserved. Thus, while (2) looks

outwardly like a general linear model (2), there is a change in its behaviour due to the

possibility that a linear combination, Yβ, of the endogenous variables may be

represented by a linear regression on Z1, a selection from the full regressor set. This

resulting model incorporating (1) and (2) has been characterized as a curved

exponential model (Hosoya et al (1989)).

Definition 2. A function h[X,W] on X is said to be invariant under the group T
2β  if

(12) =)],([
2

WXβth h[X,W]

for all (X,W)∈X and 
22 ββ Tt ∈ .  If h[X,W] satisfies the additional property where

],[],[ WXWX hh =°°  implies that ),(),(
2

WXWX βt=°° ,  then it is said to be

maximal invariant under T
2β .�
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    Thus,  proving maximal invariance just involves showing that such a 
2βt  exists and

can be found from information on (X,W) and (X°,W°).

    The aim is to prove that a function denoted by ],[
2

WXβh  satisfies the conditions

of being a maximal invariant for the testing problems (9)-(11).  In the following,  we

make use of the fact that elements of the group of symmetric positive definite

matrices can be related (though not always uniquely) to elements of the triangular,

block triangular or general linear group.

    Since the actions of each of the invariance groups 
2βT , 

2γT  and 
22 ,βγT  is transitive

on that part of the sample space relating to X1 (theorems 4, 5 and 6 of Hillier(1987)),

an invariance approach to the problem of testing for (endogenous and exogenous)

variable exclusions reduces the relevant sample space further, from (X,W) to

(X2,X3,W).  We can go even further.  Aside from S and W which have already been

defined, the only other function of the sufficient statistics which plays a role later is

S(1)=X2'X2.  This constitutes a further reduction in dimensionality,  from ((K2+K3)(n+1)

+ (n+1)(n+2)/2) to at least

(13a) (K2(K2+1)/2 + (n+1)(n+2)) when K2<n+1, or

(13b) 3(n+1)(n+2)/2  when K2≥n+1.

The actual reductions which an invariance allows in each case will be obtained from

the specification of the maximal invariants.
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4. Maximal Invariants

4.1. Identifiability and further exclusion of exogenous variables

    Given what is said above about the requirement for compatibility between the

structural equation and the process which has given rise to the data, the requisite

condition is one of identifiability in the sense of being essential to the existence of the

behavioural equation. The problem of testing identifiability is invariant under

parameter transformations induced by the action of the group of transformations

]}1[],[:),({ 333
+∈∈== ΠΠ nK GLO QHQHtT

on the sufficient statistic defined by

QQQ,Ht WWXX ′→→Π 33:
3

.

Theorem 1 (Identifiability)

For the problem of testing 3
0
ΠH  vs 3

1
ΠH ,  the latent roots of R constitute a maximal

invariant function of the sufficient statistics.  �

PROOF.

We denote the latent roots of R by ],[ 33
WXΠh .  The latent roots of 11 −−′= SS WUUR

are equal to those of 111 −−− =′ WSUWU SS .  Under the action of the group, we get the

map 111 −−− ′′→ QQ WSWS ,  thereby proving invariance.  To prove the stronger result

of maximal invariance, let ],[],[ 33 33
WXWX ΠΠ = hh .  Here and in the sequel,  the

bar notation denotes the statistics from another sample of observations which yields

the same value of a maximal invariant.  Then,  there exists H1∈O[n+1] such that

11
1

11
1 HH −−−− ′=′′ SSSS UWUWUU

(Q.E.D.)
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    It is interesting to note that Constantine (1963) first solved this problem and

derived the exact form of the density function of the maximal invariant. The treatment

varies only in the simplifying transformation which is applied to the sufficient statistic.

Constantine’s (1963) choice maps Y to two subspaces, one spanned by the columns

of X and the other its orthogonal complement.  The latter gives rise to the centrally

distributed term.

    The exact probability density function of ],[ 33
WXΠh  is easily derived from an

existing result in Muirhead (1982, Theorem 10.4.2) and takes the form

(14)
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    As the source emphasizes, this depends only on the latent roots of M,  making it

convenient to specify one single parameter targeted by the test.  Since M is clearly

non-negative definite, the null hypothesis of identifiability says that the smallest of

these roots should be zero.  Under the alternative hypothesis, M would have full rank

and therefore only positive latent roots.  Thus, the power function is to be analyzed

based on its dependence on the smallest root of M. The remaining n larger latent

roots are 'nuisance' parameters.  It will be difficult to isolate the key parameter being

tested, in view of their entanglement in a zonal polynomial term.

    Given in this form, the maintained hypothesis can be easily incorporated into the

testing problems. The aim should be to ensure that the maintained hypothesis is

satisfied even under the alternative hypotheses considered below.
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    Testing the exclusion of exogenous variables is the most important because of its

relationship to identifiability. Since exogenous variables excluded from an equation

determine its identifiability. accepting the null 2
0
γH  would render an equation that is

already identified (by virtue the maintained hypothesis) overidentified. Should that

occur, the compatibility condition (3) would become obsolete in a sense and should

be updated to reflect the stronger claim to identifiability.

    In the case of testing 2
0
γH ,  the problem remains unchanged under maps of the

form Y→H0YQ,  1101 HH ′→ ZZ .  The maintained hypothesis also remains unchanged

under the additional maps 2202 HH ′→ ZZ .  These imply an invariance group

specified by

]}1[],[],[:),,({ 32212122
+∈∈∈== nKK GLOO QHHQHHtT γγ

Its action is defined by

),,(),,(: 322113212
QQQHQHt WXXWXX ′→γ

    The problems of testing identifiability and exogenous variable exclusions can also

be compared in terms of their invariance groups.  Thus, 
23 γΠ TT ⊆  since every

member of the former is a member of the latter.  A larger group of invariance

transformations imposes stronger restrictions on the feasible class of procedures

(which are based on the sufficient statistics).

Theorem 2. (Test of γ2=0)

For the problem of testing (10) in the structural equation model (1) and (2),  a

maximal invariant is given by the function of the sufficient statistics defined by
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where H1 and H2 are arbitrary orthogonal matrices, representing the fact that the

latent roots of the two main diagonal blocks and the roots of the off-diagonal block

are to be preserved.  Equivalently,  a maximal invariant is given by the combined set

of latent roots of 1−WS , 1
)0(

−WS  and 1
)0( )( −+ WSS .  This set, which we denote by

],,[ 3222
WXXγγ hh = , has dimensions (K2+2n+2), or (3n+2), depending on whether

K2<n, or K2≥n respectively.  �

PROOF

It is clear that ],,[],,[ 3232 22
WXXWXX γγ hh = , using the arbitrary orthogonal

matrices as the basic device by which an member of the orthogonal group can be

found according to the definitions of the invariance group.

It should be noted that the latent roots both of 1−WS , and 1
)0(

−SS are invariant, but

that they do not form a maximal invariant set. This set has dimensions (K2+n+1), or

(2n+1), depending on whether K2<n, or K2≥n respectively.  Under the action of any

element 
2γt  of the invariance group, the following maps occur: QQ WW ′→ ,

QQ SS ′→  and QQ )0()0( SS ′→ . Under this 111 −−− ′′→ QQ WSWS , and

11
)0(

1
)0(

−−− ′′→ QQ SSSS , thus preserving the (ordered) eigenvalues in each case. To

see if these invariant statistics are maximal invariant, let there be two samples of

observations which produce the same value of the latent roots of the these matrices.

Denote these samples by ),,( 32 WXX  and ),,( 32 WXX . If 1−WS , and 1
)0(

−SS  are

maximal invariant, then it should be possible to relate the two samples of sufficient

statistics by a member of the transformation group. The transformation matrices will

be determined by these given samples.  Now, 11
1

11
1

−−−− ′=′′ UWUWUU HH  and

QQ WUWUUUW ′=′′′= −−
1

11
1 HH  by defining UU 1

1H−=Q .  This also gives

QUU 1H ′= , implying that QQ SS ′= , from which we get QH 313 XX = , for some
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arbitrary H1εO[K2].  If the latent roots are equal, then there exists some (possibly non-

unique) matrix H2εO[n+1] such that 1
)0(

1
2

1
)0(

1
2

−−−− ′=′′ USUUSU HH . This gives

UUSUUS 2
1

)0(
1

2)0( HH −−′′′= , where the r.h.s. is of the form 1)0(1 QQ S′  with some

UU 2
1

1 H−=Q . Working through, we have 12 QUU H ′= ⇒ 11 QQ SS ′= ⇒ 1323 QH XX =

for some arbitrary H2εO[K2] and note that ]1[1 +∈ nGLQ  is also uniquely determined.

(Q.E.D.)

    When K2≥n+1, the S(0) becomes non-singular, in which case the second matrix in

theorem 2 may equivalently be replaced by its inverse.  This case is simpler than

dealing 2
0
βH , as intuition would lead us to expect when only the exogenous variables

are involved. This is a reflection of the fact that the null in this case is implied by the

maintained hypothesis.  Since the rank of an augmented matrix )( 32 Π′Π′  cannot be

less than the rank of the original Π3 anyway, the relationship between the null and the

maintained hypotheses in (9)-(11) is partly an algebraic tautology and quite

independent of the dimensions involved.

4.2. Testing endogenous variables

    By virtue of its role as the data generating process, (2) captures all the sample

information as well as any inference these may supply for the structural coefficients

(β,γ). This is the reason for re-stating the above in terms of its consequences for the

parameters of (2). Provided the maintained hypothesis applies, the above may be re-

formulated as a rank testing problem of

:2
0
βH rank[Π31]=n1 against         :2

1
βH rank[Π31]=n1+1.
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That these take on the form of rank restrictions is the reason why invariant aspects

confined to the linear aspects of (2), though well known (see Muirhead (1982),

chap.10), actually throw very little light on the present problem.

    The space of the sufficient statistics (X,W) may be regarded as the sample space

re-defined, where X has the multivariate normal N(Π, IK(n+1)), W has the Wishart

distribution Wn+1(T-K, In+1), and they are independent.

    Re-formulating the hypotheses of interest as rank tests reveals the asymmetric

that the maintained hypothesis plays. The rank of a matrix is the maximum number of

linearly independent rows or columns, or alternatively, the order of its largest non-

vanishing minor. Thus, in the case where exclusion of exogenous variables is under

test, the maintained hypothesis clearly implies the null.

    The transformations groups used to define the maximal invariants for (9), (10) and

(11) are specified as follows (Hillier, 1987).  By observing that the problem of testing

2
0
βH  is invariant under the map Y→HYQ11,  HH ′→ 101 ZZ ,  HH ′→ 202 ZZ where

Q11∈GL[n1+1].  At the same time, the condition (4) must also be maintained,  which

would occur under additional maps of the form Y→H0YQ,.  Together with the

preceding,  this means that we must have 







=

22

1211

Q

QQ
Q

0
.  Thus,  the required

invariance group is

)}(),,1(

),1(),(:),({

2222112

111322

nnn

nK

GLM

GLO

∈+∈

+∈∈==

QQ

QHQHtT ββ

The group acts on the space of the sufficient statistic (X,W) in

),,(),,(: 22321231113132312
QQQHQHQHt WXXXWXX ′+→β
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Note that this implies that Q belongs to a subgroup of GL[n+1] whose elements are

upper block-triangular matrices.  In the specification of 
2βT , the four groups which

appear are also proper subgroups.  That this is a more difficult testing problem than

identifiability can now be made clear in an invariance sense.  Although every element

of the group can be uniquely decomposed as a product of elements of the

subgroups, not all of the actions of the subgroups commute.  Whereas 
3ΠT  can be

written as the direct product of its subgroups, 
2βT  cannot. The reason is that

][],1[]1[]1[ 2211 nnnnn GLMGLGL ×+×+≠+

Under the group action,  any two elements in the space X which differ only in

)( 21 XX  are always related by some member of the group.  Thus the group acts

transitively on the subspace of the sufficient statistic spanned by )( 21 XX .  On the

other hand,  the action of the group on the remaining elements of the sufficient

statistic does not give an injection in general,  so that the subspace spanned by

these elements may be divided in non-trivial orbits.

    The tests are based on identifiability first having been established.  This need not

always occur by explicitly including the original compatibility condition (5),  especially

if the null and alternative hypotheses contain updated information about identification

which supersedes it.

    Whenever transformations of a symmetric positive definite matrix to latent roots

are made using a spectral decomposition in the following,  it will be assumed that this

produces a square matrix with the roots arranged in ascending order.  The main

result is stated as the following theorem.
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Theorem 3 (Test of β2=0)

For the problem of testing (10) in the structural equation model (1) and (2),  the

maximal invariant is given by

HHh RWX ′=],[ 22β

where ],[ 2 WXHH =  has the block diagonal form

(16) 







=

2

1

H

H
H

0

0
,  H1∈O[n1+1],  H2∈O[n2],

and is chosen to transform R to a matrix where the latent roots of R11 and R22 appear

simultaneously along the principal diagonal instead.  �

PROOF

First, note that based on the specification of the invariance group,  we need to

preserve the rank of the submatrix 1
1111
−SW - but not necessarily that of 1

2222
−SW  - in

addition to the rank of 1−WS .  Therefore, we must first write the latter in a form from

which the latent roots of 1
1111
−SW  can be recovered.  Also, X1 has no bearing on the

problem because the action of 
22

TT
2β  on the subspace spanned by X1 is transitive.

The action of 
22

TT
2β  via a specific group element 

2βtt  transform (X2,W) to

(ΗΗX2ΘΘ,ΘΘ'WΘΘ).  Now, S=X'2X2 is transformed to S*=ΘΘ'SΘΘ=ΘΘ'U'UΘΘ.  Since the product

of U and ΘΘ have the same block-triangular structure, their product must have the

same.  Comparing the block-triangular decompositions of S*=(UΘΘ)'(UΘΘ) with that of S

demonstrates that

(17)
2βtt :U→Η1UΘΘ

where Η1 will be block triangular of the form (9) because it must also preserve block

equivalence. Let 1111 −−−− ′=′ UWUWUU .  Then QQQQ WW ′=  where

]1[1 +∈= − nGLUUQ .  Obviously, QQ  has the required upper block triangular
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structure.  This also immediately yields QQ],[],[ 22 WXUWXU = .  Now U is a

uniquely defined by S through a block-triangular decomposition.  At the same time,

the fact that U and QQ  have the same partitioned structure means that they belong to

the same subgroup of GL[n+1],  implying that U  also uniquely determines a block

triangular.  To complete the proof,  we must show that this leads to QQHH 22 XX =  for

some ][ 2KO∈HH .  This is clearly possible

Note: There may be concerns about whether U needs to come from a full Cholesky

decomposition or whether block triangularity would suffice.  This has a huge bearing

on the result:  mere block triangularity means that the matrix itself is a maximal

invariant,  while the former produces a stronger result in the sense that the sense

that the maximal invariant is the set of eigenvalues and therefore of lower dimension.

To see that the less stringent form is called for, note that in order for (10) to be

possible, we need to define those playing the role of "square root matrices" or S1/2,

such as U in (17), to be non-symmetric.  With X'21X21 real, symmetric and non-

singular by assumption,  this can occur either by way of a Cholesky decomposition or

by defining the non-symmetric equivalent from a spectral decomposition.  The latter

gives SSXXS H2/12/1
2121

2/1
11 )( Λ=′= ∈GL(n1+1). The Gram-Schmidt orthogonalization

process shows that for any dimension m,  GL(m) is isomorphic to the product space

O(m)�T(m), enabling us to write Θ=Θ==ΗΗΘΘΤΤΘΘ with ΗΗΘΘ∈O(m) and ΤΤ*∈T(m) are unique to

ΘΘ. Since the inverse of ΘΘ must also satisfy a similar relationship, we have that

Θ=Θ== **11
11 QQQQQQQQ

HHTTHHTT =−−
−− . In all cases, the triangular matrices involve are the upper

triangular factors. This process of factorization of any element of the general linear

group into a product of orthogonal and triangular matrices can also be reversed.

(Q.E.D.)
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    First, note that the matrix is dependent on a more complicated function of the

parameter matrix than just its latent roots. In fact, we can write

},,{],[ 22222121111132
HHHHHHh RRRWX ′′′=β  where H1 and H2 depend of R11 and

R22 respectively because they must be selected to produce to produce a specific

ordering of their latent roots. Clearly the latent roots of  R11=W11S11
-1 and R22 are

invariant but not maximal invariant. The same is true of the latent roots alone of the

entire matrix WS-1. Separately, they capture only part of the information content of

the maximal invariant, while combined they involve superfluous components. The

definition of R is justified by the fact that it captures crucial information about the

ranks of the whole matrix WS-1 and the relevant sub-matrix W11S11
-1.

    In general, U belongs to a subgroup of ΓΘΘ, whereas ΗΗ belongs a subgroup of this

subgroup. This is because H should, in addition, be orthogonal. This makes it block-

diagonal. In the extreme, if ΘΘ and therefore U were fully triangular, H would be both

diagonal and orthogonal, of which the only possibility is the identity matrix or its

negative

COROLLARY

Let the group of transformations 
22

TT
2β  be such that its factor group GQ∈GL[n+1],

identified with the element Q, has a specific (non-symmetric) partitioned structure.

Then for a function given by ],[
2

WXβh  to be maximal invariant, the element U in its

specification must be a member of the group GQ.
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    In other words, the specification of a maximal invariant under 
2βT  depends

critically on the fact that the U must have exactly the same (non-symmetric)

partitioned structure as Q.

4.3 Joint test

    Finally, we have the following:

Theorem 4. (Test of β2=0 and γ2=0)

For the problem of testing (10) in the structural equation model (1) and (2),  a

maximal invariant is given by the function of the sufficient statistics defined by

(18) 






′′















′

′ −

4

3
3121

1
11

31

21

4

3 )(
H

H

H

H

0

0
XXW

X

X

0

0

where H3 and H4 are arbitrary orthogonal matrices, representing the fact that the

latent roots of the two main diagonal blocks and the roots of the off-diagonal block

are to be preserved.  Equivalently,  a maximal invariant is given by the combined set

of latent roots of 1
1111
−SW , 1

1111),0(
−WS  and 1

1111)0( )( −+ WSS .  This set, which we

denote by ],,[ 113121,, 2222
WXXγβγβ hh = , has dimensions (3n1+3).  �

5. Discussion

    It is now possible to clarify the precise difference between identifiability and

variable exclusions in simultaneous equations modeling in terms of inference.  Both

tests of identifiability and variable exclusions may be naturally viewed as rank tests in

the context of general linear model that serves as the DGP.  Employing concrete

representations of the invariance approach provides a useful perspective from which

to view these notions.
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    First of all, consider the three categories of hypotheses about variable exclusions

which may be tested. The first is also the most important, dealing with exclusions of

exogenous variables.  Exogenous variables which are excluded from an equation

determine its identifiability.  The importance of this is amplified when an equation is

poised on the brink of becoming unidentifiable at K3=n.  An equation that is just

identified depends critically on including one more exogenous variable.

    The compatibility requirement rank[Π3]=n cannot be maintained when testing

0: 20
2 =γγH .  That is because if the null turns out to be true,  the maintained will be

superseded, raising the danger of logical inconsistencies later on.  Indeed, these

show up as a model whose maximal invariant has no real distribution.

    In some sense, study of the maximal invariants reinforces views held in the

literature about the logical order in which to approach the issue of identifiability and

variable exclusions.

    In practice, these issues have always been dealt with along the lines of borrowed

logic.  By appealing to the notion of apparent identifiability, means have been found

to proceed more expeditiously to the actual modeling and estimation.  It is usually

after estimates have been obtained that attention to tests about possible variable

exclusions arise.  In the general linear models where this approach is used,  all the

explanatory variables play a symmetric role in terms of model determination.  In a

curved exponential model like (2) when (1) holds, however, this is not true.  Thus,

while overfitting (with regressors) may be safe in linear models, and indeed present

less peril than underfitting, this is clearly not feasible with exogenous variables in a

structural equation because of the tendency that would have of violating identifiability.
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Overfitting with endogenous variables present a problem,  not for the same reason

but for the other side of it.

    In terms of the invariance groups, note that 
23 γΠ TT ⊆  by virtue of the fact that

every member of the former is a member of the latter.  A larger group of invariance

transformations imposes more stringent restrictions on the feasible class of

procedures (which are based on the sufficient statistics), thus making identifiability

the natural prerquisite.

Concluding Remarks

    Our analysis shows that tests of identifiability and variable exclusions are closely

linked.  Indeed, the latter can be specified as extensions of the rank condition for

identifiability in cases where further exclusions of the variables are being considered.

Basing our choice on the class of invariant procedures which are functions of

maximal invariants, we showed above that the only other hypothesis distinct from

identifiability that requires testing is that of endogenous variable exclusions.  Thus,

the invariance approach confirms the general intuition about asymmetry in the roles

which are ascribed to the endogenous and exogenous variables.  Borrowing the

terminology of linear regression, this means that one should always test that the

exogenous regressors have significant coefficients before attempting to do the same

for regressors which are endogenous.

    Other implications also derive from the matricvariate nature of the inference

problem.  The most obvious difference from the linear model is that a different

maximal invariant exists for each of the three possible class of coefficient restrictions.

Although curious from the point of view of the seemingly innocuous restrictions

placed on (1),  this situation again is one that is inherent in the curved exponential
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nature of the model (2).  It actually allows for more focused inference by capturing

the essentially separate burdens placed on the endogenous and exogenous

components by the model's simultaneous structure.

    As a result of the maximal invariants being of matrix form, the inverted matrix is

also maximal invariant in each case.  This would be helpful in situations where it is

sometimes easier to deal with the distributions of the inverse such as when, for

instance, the non-centrality parameter can be conditioned out (Tan,1995).  Evidently,

this would be true only of transformations of the maximal invariant which preserve its

dimensionality.  The results demonstrate that dimension-reducing transformations

relate to closely related problems which are nonetheless distinct.

    A prominently related problem is that of testing a sequence of hypotheses, usually

in the interests of progressively refining the model.  If sequential testing were to be

necessary, then more stringent conditions must be placed on the transformation

groups which leave the testing procedures invariant.  Specifically, by iterating the

arguments put forward in the proof of theorem 3 about the conditions on ΘΘ11, it

follows that QS has to be fully triangular.  A correspondingly stronger result is then

produced for which the dimension of the maximal invariant is substantially reduced.

In the leading case of a model with only two endogenous variables, both methods

merge.  The limited permutation of available alternative models in this case offers

another way in which to view how much simplification is involved in the leading case.

    These results offer an explanation for the phenomenon found in Morimune's

(1989) simulation results.  The matrix variates defined in theorems (2), (3) and (4) are

pivot elements preserved in the LIML and LR procedures, but clearly distorted in the

case of OLS and TSLS.  In terms of k-class estimation, the criterion for optimization
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must treat the all endogenous variables symmetrically - distinguishing. all

endogenous variables (dependent or independent) from exogenous variables,  We

can go even further and conjecture that Morimune's (1989) results for the size extend

in the same way to test power performance, a fact already supported by existing

asymptotic analysis.

    Finally, we note that there is an analogy with Hillier's (1991) findings that

OLS/TSLS suffer the most distortion from arbitrary normalization while LIML suffers

the least.
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