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Abstract

This paper studies cross sectional slope heterogeneity in station-
ary, exactly identified panel VARs. I show that (i) the heterogeneity
bias of standard pooled estimators is generally different from zero in
large samples, but its theoretical magnitude is not necessarily large
and depends on the moments of the cross sectional distribution of the
slope parameters and the error terms; (ii) slope heterogeneity must
be relatively high for the bias of pooled estimators to be substantial
in finite samples; (iii) the time dimension of the panel must be longer
than previously thought for the small T bias of the mean group esti-
mator to become negligible if the error terms are contemporaneously
correlated.
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1 Introduction

Vector autoregressive systems (VARSs) are a useful device to summarise and
analyse the dynamic interaction of a given set of variables of interest. When
the are several decision units to be considered (i.e., several agents, countries,
sectors, etc.), the possibility of pooling them in a single system emerges.
Pooling different decision units is attractive because it increases the number
of degree of freedom available and, potentially, the efficiency of the estimates
so obtained. On the other hand, pooling different decision units poses infer-
ential problems with regards to the representative or typical unit.

For the purpose of the analysis in this paper, we can think of a panel VAR
(PVAR) as a standard dynamic panel data model (DPM) where no regressor
is strongly exogenous. Much of the existing literature on DPMs is focused on
the problem of pooling heterogeneous units with respect to the unconditional
mean (the intercept of the regression equation), or the unconditional variance
(the variance of the error term in the regression equation), of the variables
of interest.! The problem of pooling heterogeneous units with respect to the
time series correlations of the variables of interest (the slope parameters of
the regression equation) has started to be investigated only more recently
(see Robertson and Symons [1992] and Pesaran and Smith [1995]). Pesaran
and Smith [1995], in particular, have shown that if the slope parameters of a
standard dynamic panel model differ across individual units, then a number
of commonly used pooled estimators give rise to inconsistent estimates of
the true cross sectional mean of the parameters of interest, even when both
the number of individual units and time periods are large. To solve this
problem, they propose an arithmetic average of the time series estimates of
the parameters of interest, and indeed they show that this estimator, called
mean group estimator (MGQG), is consistent. Furthermore, Pesaran, Smith
and Im [1996] give monte Carlo simulation evidence showing that the bias in
conventional estimates induced by the presence of slope heterogeneity may
be substantial in finite samples.

This paper is a first attempt at investigating slope heterogeneity in PVARs.
This issue is particularly relevant as applied works using VARs estimated
with panel data are appearing in growing numbers, while so far little atten-
tion has been devoted to the statistical problems involved in moving from a

1See Baltagi [1995], Hisiao [1986], and Matyas and Sevestre [1996] for standard results
on dynamic panel data models.



standard, dynamic heterogeneous panel specification to a VAR one.? On the
other hand, the range of statistical problems involved is wide, and therefore
the analysis carried out in this paper is necessarily limited in scope. First,
I shall restrict my attention to exactly identified VARs in time series sense.
Thus, I focus only on the reduced form estimation of the model.® Second,
I shall assume that slope parameters are constant over time, and I consider
only 1(0) systems.* Motivated by typical macro applications such as those
using the Heatson and Summers [1991] data set, I shall consider only long
panels (sometime called random fields in the literature), paying particular
attention to extremely unfavorable panel dimensions.?

Within the boundaries of these limitations, in this paper, I discuss al-
ternative strategies for estimating VARs with panel data sets, I study the
determinants of the asymptotic bias of the fized effect estimator (FE), and I
study the finite sample performance of the MG estimator by means of Monte
Carlo simulation techniques. The main findings of the paper are that, in
VAR specifications, (i) the bias introduced in pooled estimators by cross sec-
tional heterogeneity of the slope parameters is generally different from zero,
but its sign and magnitude cannot be predicted accurately; (ii) slope hetero-
geneity must be high to be a source of concern in finite samples; (iii) when
this happens, the panel must be longer than a typical macro data set for the
MG estimator to represent a viable solution to the problem.

2Applied works using VARs estimated with panel data sets include, among others,
Attanasio et al. [1998], Holtz-Eakin, Newy, and Rosen [1988] and [1989], Carroll and
Weil [1994], Mohapatra et al. [1996], Hoffmaister et al. [1997a] and [1997b], Andersen
et al. [1997], Rebucci [1998], and Ciccarelli and Rebucci [2000] . Theoretical problems
involved in moving from a standard DPM specification to a DPM one in which explanatory
variables are weakly rather than strongly exogenous are discussed, for instance, in Kiviet
[1998].

3See Hoogstrate [1998] for an analysis of identification issues in VARs estimated with
panel data. See Krishnakumar [1997] for a discussion of identification through restrictions
on the variance covariance matrix in simultaneous equation models estimated with panel
data.

*See Holtz-Eakin, Newy, and Rosen [1988] for a Classical framework for estimation and
inference in VARs with slope parameters that are constant across individual units, but
varying across time periods. See Canova and Ciccarelli [1998] for a tentative, Bayesian
framework of estimation and inference in VARs with slope parameters varying both across
time periods and individual units. See Banerjee [1999] and the references quoted therein
for a survey of the literature on testing for unit root and cointegration with panel data.

5See Judson and Owen [1999] for Monte Carlo evidence on standard DPMs estimated
with long panels.



The paper is organised as follows: section 2 spells out the model and
discusses alternative estimators; section 3 proves the consistency of the MG
estimator and studies the bias of the FE estimator; section 4 sets up the
Monte Carlo experiment and gives the finite sample results; section 5 con-
cludes. Technical appendices and the GAUSS code for the simulation exercise
follow.

2 Alternative estimators for PVARs

I consider the following heterogeneous panel of covariance stationary, mean
square ergodic VARs of order 1:°

YZtZAQYZtAWLO‘QWL&f;ta t=1,---N; t=1,---T; (1)

where Y}, is an Mzl vector of variables of interest, ¢}, is a M1 vector
of serially and sectionally uncorrelated innovations with variance-covariance
matrix (VCM) ¥; (i.e., e, ~ d(0,%;)), o} is an M1 vector of individual
specific fixed or random effects, A, is an Mz M matrix of individual specific
slope coefficients, N is the number of cross sectional units and 7' is the
number of time periods. Following Pesaran and Smith [1995], I assume that
the A matrices vary across individuals according to the following, simple
random coefficient specification:

A=A+, (2)

where A" is a Mz M constant matrix, 7, is a M x M random matrix distributed
independently of ¢}, with zero mean and constant VCM equals to 2 (i.e.,
vec(n;) ~ 1d(0,2)). Given the stationarity assumption, this specification
allows the maximum degree of heterogenity. With this specification, the dy-
namic relationship among the variables of interest can differ across sectional
units in the level of the Y’s, the variability of the Y’s, and the time series
correlation pattern among the Y’s. In other words, the PVAR in equation
(1) allows each individual unit to be diffirent in all these three dimensions.
Suppose one is interested in estimating the typical or representative prop-
agation mechanism of shocks in the sample, A’, the cross sectional mean of
A.. When T is large enough to estimate individual time series regression
separately, this can be obtained in three different ways: first, by stacking

6The analysis in the paper can be easily generalised to a VAR of any order.

4



the data and using pooled estimators such as the fixed (F'E) or random ef-
fects (RE) estimators, corrected for cross section heteroskedasticity in the
variance of the innovations ¢; , if necessary; second, by averaging data across
sectional units and estimating aggregate time series regressions (AT'S); third,
by estimating individual time series regressions and averaging these estimates
across sectional units (MG). If the panel is not only long, but also homo-
geneous in the slope parameters, i.e., 7, = 0 for all 4, then all these three
estimation procedures give rise to consistent estimates of the matrix of para-
meters of interest, A’, for large IV . In this case, the chioce among alternative
estimators ought to be dictated by efficiency considerations based on assump-
tions on the nature of the individual specific effects, o. If the panel is long
but heterogeneous in the slope parameters, as pointed out by Pesaran and
Smith [1995] for standard DPM, pooled estimators and the AT'S estimator
yield inconsistent estimates of A’, regardless of the sectional dimension of the
panel. Instead, in this case, the MG estimator yields a consistent estimate
of A’ for both N and T large.”

I shall study the asymptotic bias of the F'E estimator and prove the con-
sistency of the MG estimator under slope heterogenity in the next section of
the paper, however, in order to see why pooled estimator cannot be consistent
in this case, substitute equation 2 in 1, then the model becomes:

Y:t = AIYthl +a; + Uz{,w yz{,t = 5;,t + 77§Y¢fH- (3)

K2

It is now clear from equation 3 that the new vector of error terms, ygvt, is
correlated with the vector of regressors, Y/, ;, thus rendering pooled estima-
tors inconsistent.® Moreover, in a standard DPM specifications, as shown
by Pesaran and Smith [1995] and Pesaran, Smith and Im [1996], there are
special cases in which instrumental variables type of estimators (IV') provide
a solution to this problem, while in a PVAR specification there are no such
special cases; a point already noted implicitely by Holtz-Eakin et al. [1988].

To see why the AT'S estimator cannot be consistent under slope hetero-
geneity, simply take the arithmetic average of equation (3) accross i: the
correlation between the new aggregate disturbance terms and the regressors
in the new aggregate equations is now evident, thus rendering also ordinary
least square estimates of this equation inconsistent. This estimator however

"See Hsiao et al. [1997] and Andersen et al. [1997] for alternative, consistent estimation
procedures when the panel is short and heterogeneous in the slope parameters.
8Note the analogy with an error in variable type of model.



is unattractive also under slope homogeneity because it does not increase
the number of degree of freedom available, which is often a critical issue
in estimating VARs. For these reasons, I shall not pursue this alternative
estimation procedure further in the paper.’

Finally, note that the F'E estimator is asymptotically equivalent to the
RE estimator if the panel is homogeneous in the slope parameters and the
individual specific effects are random, but uncorrelated with the regressor;
the class of IV estimators for DPM s homogeneous in the slope parameters
is wide, ranging from the simple first difference estimator of Anderson and
Hisiao [1986] to alternative generalised method of moment estimators, but
there is no consensus yet in the literature on which is the most appropriate
choice when the panel is long.'” In the next section, therefore, I shall compare
only the asymptotic properties of the FE and the MG estimators. However, I
will consider a simple IV alternative in the Monte Carlo simulation exercise
in the third section of the paper.

3 Asymptotic properties

In order to derive the MG and FE estimators and their properties some
notation is needed. So, let us transpose equation 1 and 3 to obtain,

}/;7,5:}/;'775,1142'4‘061'4‘81'7,5, Zzl,N tzl,"'T; (4)
Yii=Y 1A+ o, + vy, Vit = Eig + Yi—17;; (5)

where Y;,t = [yz',1,t, s 7%’,1\1,1‘,]7 Y;,t—l = [yz',l,t—h s ,.%',M,t—ﬂ, Q; = [Oéi,h Tt Oéz',M],
€it = [€inty EiMt)s Vit = [Vitg, -, Viag), all of them of dimension 1z M.

Then define the following variables:

Y1,1 Yl,o Via
Y = Yip |WYa=|Yir |, V=] vy |
i YN,T ] i YN,Tfl ] | YN ]

9Gee Pesaran and Smith [1995] and the references quoted therein for further details
on the inconsistency of the ATS estimator under slope heterogenity in a standard DPM
context.

10See Arellano and Alvarez [1998] on this point.
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where Y, Y_1, 7, €, and @ are all of dimension NTxM, ip denotes a Tx1
vector of ones, and ® denotes the Kronecker product. Finally, let us define
the following matrix operators:

D = Iy ®ir;
Pp =D(D'D)'D' = Iy ®ipip/T = Ix @ ir(imip) Vi
Qp = Int— Pp = Iy —D(D'D)'D’ = Iy ® Iy —ip(ifpir) i) = In @ Hr;
P = Iy ® Pp;
Q= In ®Qp;
where D is the usual matrix of individual dummies, Pp, is the usual between
operator, (Jp is the usual within operator, P and () generalise the latter

two operators to a SUR system of equations (see Cornwell et al. [1992]),
Hp = It — ip(ifpir) Y, and ipip = T, with I denoting the identity matrix.

3.1 The mean group estimator

Grouping all time observations for each individual unit ¢, the model in equa-
tion 4 becomes

Y=Y, 1A+ ®ir+5 i=1,---Nj (6)

where Y;, Y; _1, and g; are the ith, TxM dimensional elements of Y, Y_;,
and Z respectively. If we apply the vec operator to this equation, and define
y; = vec(Y;), X; = (In ® Yi_1), a; = vec(A;), and g; = vec(g;), then the
model can be represented as

yi = X;a; + a; @ ir + g, i=1,---N; (7)

where y;, (o; ® ir), and g; are of dimension TMz1, X; is of dimension
TMxzM?, and a; is of dimension M?z1. Premultiplaying this equation by
(Iy ® Hr), i.e., taking deviations from the time mean, we obtain

Ui = Xa; + &,
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where g; = (Iy ® Hr)y, Z = Iy ® Hp)X;, & = (Iny ® Hr), and (Iyy ®
HT) (Ozi (%9 ’ZT) = 0.

The ordinary least square (OLS) estimator of a; for each individual unit
1 is given by

= (X)) (XE), =N
and hence the mean group estimator (MG) of a = vec(A) is given by
1 N
ave = N ; Q.

To prove the consistency of the MG estimator, notice then that

- (TE) (%)
= (X[ (Iy ® Hr) X;)™ (X[ (I ® Hr) ;)
= ((n® 3/;,—1), (Ins @ Hr) (Iny ® Y;,—1))71
X ((Iny ® Y321)" (Ing @ Hr) y;)
= (IM ® Y;f_lHTY;,—1>_1 (]M ® YZ_1HT?JZ’>

(YzleTY;',fl)il (Y;'tleTyi,l)

.(YZIHTY;',I)I (Y;'tleTyi,J\I)
/ -1 1
(Y/_iHrYi L) (Yo Hr) g
= ai+ | :
(YY) (YioiHr) g

where y; ; and g, ; are the jth, Tx1 dimensional elements of y; and g, respec-
tively. Therefore, defining @ = % SN a;, for j =1,--- M, we also have

N (Y;f—lHTY;,—l)_l (YZ—1HT§¢,1>
aA[ =a+ % Z
- (Y;f—lHTY;,—l)_l (YZ—lHTéi,M)

Now, under usual regularity conditions for stationary dynamic models,



for fixed N and T' — oo, we have

| (Y (Vi)
pim @) = TR | N & |

(Y7 HrY, ) (Vi Hreio)

i Y, HrY; -1 li Y) o Hre g
N p 1mT—>oo T p 1mT—>oo T
1
= A+ 52
=1 : Y] _HrY, 1 : Yy _ Hrg;
plimp_  ( ==—=—=) plimp_ | ===
= a.

But as N — oo, by the low of large numbers, we also have
aPa,

as a; is iid across individuals, thus establishing the consistency of the MG
estimator!!.

3.2 The fixed effect estimator

Stacking all observations in panel format, the model in equation 5 can be
represented as
Y:Y_1A+6+ﬁ ﬁ:g—FY_lT]Z

Applying the vec operator to this equation and defining y = vec(Y), X =
(Inf ® Y1), a = vec(A), a = vec(@), v = vec(V), € = vec(€), this can be
rewritten in SUR format as

y=Xa+a+v v =¢e+ Xvec(n;); (8)

where y, o, v, and ¢ are of dimension NTMx1, X is of dimension NT MxM?,
and a and vec(n;) are of dimension M?z1. Then, applying the within operator
Q@ to the SUR system 8, i.e., taking deviations from the time means, we obtain

7= Xa+7,

"Note that this result, following Pesaran and Smith [1995], is obtained fixing N and
letting T pass to infinity and subsequently allowing N to tend to infinity. See Phillips and
Moon [1999] for alternative approaches to the asymptotic theory of random fields.

9
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where § = Qy, X = QX, 7 = Qu, and Qo = 0. Hence, the fized effect (FE)
estimate of a is given by

. =\~ (e
irp = (X'X) (X'5). (9)
Proving the inconsistency of the FE estimator is a bit more tedious. In

the appendix at the end of the paper, I show that the asymptotic bias of the
F'E estimator of a is given by the following expression:

plim (dpg —a) = (10)

N—o0,T—00

E |vec ! (I Al @ AN vecl )D
X(E[vecl(l Al e Al vec(EZ))nnD

(E {vecfl ((I — Al AT vec(Zi))}g_l
X (E {vec_l ((I — A @ A vee(S;) n@MD |

where 7, ; is the jth, Mz1 dimensional element of vec(n;), vec™! undoes the
vec operation, F denotes expectations with respect to the joint distribution
of A; and ¥;, and j = 1,--- M indexes equations. Under the stationarity
assumption, the expectations in this equation are well defined and the as-
ymptotic bias turns out to be generally different from zero.

In principle, an explicit solution for the asymptotic bias of the F'E esti-
mator can be obtained computing these expectations under suitable distri-
butional assumptions for A; and ;. In practice, even the simplest, general
V AR specification has no closed-form solution. Consider, for instance, the
following bivariate VAR with only one source of slope heterogeneity and
without heteroskedaticity:

Zit = NiZig—1 + BiTig1 + o + Uiy, (11)
Tit = "ViZigt—1 T PiTit—1 + i T Vig;

where

; X G A3 0 &
vy, o— | Rt | q = A "
i lw] Z [% p] lv p]’m lo 0]
2
r Q; r | Wi _y_ | O ¢
o = [Mi]’gi’t_[w,t]’andzl_z_lcb 72].

10



It is easily seen that

1-X AG MG

o N 1=Xp =By —Bip

I—-ARQA)=
U-dod) —Ay o =0y 1= —fip
- = —p 1=p?

It can also be shown that the inverse of this matirx given by

Yiii Y Yinfi  Yiof?
- I | Tay Yiso  YioBiy Yish

]—A,®A/ 1: ,1 4,2, 1,2M4 4,3M1 :
( ! i) Yio | Tirv Yipfiy Yipe T, 305
Tz’,ﬂQ Tz’,w Tz’,:ﬂ’ Ti,3,3

where:

Tio = (L=By—A=—p+Ap)(L=Biv+A+p+0) (Ao — By —1);
T,1 = (AﬂQ — pBy — )\) ;

Tio = —(Ap— By +1);

Tis = (Mp—Mv—p);

Tigg = (—AP:)’ + 0+ 0P8+ Mo+ By — 1) ;

Tiso = <—)\2/)2 +ABipy + 0+ N+ By — 1) ;

Tiss = (-Np+ X +X98 + o+ By —1).

Then, considering only the first equation with n;, = [ 0 & ], it is easily
seen that
vec™! ((I —Ale AT vec(Ei)> =
1 (Tina0? + 275180 + T, 26°77) (Yi1y0? + Yiood + Yiofve + YisB7?)
Yio | (Tigyo? 4+ Tipod+ TiBye + Lis077) (Tiov?0? +2Y 379 + Ti3372)
and that
vec™! ((I — A AT vec(Ei)) Nin =

L | (Yi1v0® + Tipod + Tiofyd + T 3672) &
Tio (Yiav?0? + 2T 570 + Li337°%) & ’

11



Hence, in this simple case, the asymptotic bias of the F'E estimator of
/
{ A S } in eqaution 11 is given by

: < A — A )
plim - =

N—o00,T—00 ﬁFE - ﬁ

B L | Y1102+ 27,100 + Y0072 Yi1v0? + Yio00 + YioBiyd + TisBim?
Y1702 + Yioogp + Linfliyd + YisBit® Yiov?o? + 2T 370 + Yissr?

Tio
(12)
x| B 1 (Y1702 + Tioo¢ + Tiofive + YisBim?) &
Tio (Tioy20? + 2T 579 + Li337°%) & '

But this equation cannot be simplified further without additional assump-
tions because it involves highly non-linear functions of the random variable
B;. In the case of a generic VAR specification, therefore, it is impossible
to predict the precise sign and magnitude of the asyntotic bias of the FE
estimator and to study its determinants.

An explicit solution for the asymptotic bias of the F'E estimator, however,
can be obtained (at least) in two special cases of interest: first, in order to
study the role of ¢, by assuming that v = 0 for any distribution of §; —i.e.,
assuming that z does not cause x in Granger sense and thus that z is (still)
strongly exogenous for the estimation of A\ and ; and second, in order to
see the consequences of relaxing the assumption of strong exogenity of x for
the estimation of 3, by assuming that A = p =0, ¢ = 0, and &; is uniformly
distributed.

3.2.1 Casel

Assuming v = 0 in 11, the model becomes

Zig = Mg+ Bi%ig—1 oy 4 Uy, (13)
Tit = PTiz-1+ M + Vit

’

In the appendix at the end of the paper, I show that, in this case,

~ p(lf)\p)(lf)?)w
iFE - )\ o U+
- ﬁpQ 1—)2 w+Tg

plim
Brr— 0
VAR R!D)

N—o00,T—o0

(14)

12
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where:
Uy = (07 (1-9") (1= 2p)*+ (1= Xp*)w + (1 - p*) B
Uy = —(@*/7) (1=7") (1=2%) = 20¢/7) (1= p°) (1= N
Uy = (¢/7) (1—p") (1= N°) puo.

The size of the asymptotic bias of the FE estimator, in this case, depends
not only upon the mean coefficients (\, 3, p), the variance of ; (w) and the
ratio (02/72), as in the standard DPM case analysed by Pesaran and Smith
[1995], but also on the sign and the magnitude of ¢. Moreover, it can be
shown (see appendix) that both @ g and ArE may over or underestimate the
true values of # and A\ depending on the sign of p and ¢, and the magnitude
of ¢ relative to the absolute value of (287/(1 + \)).'?

3.2.2 Case 2

Suppose that A = p = 0, i.e., z does cause r in Granger sense and hence x
is only weakly exogenous for the estimation of 3. Under this hypothesis, the
model becomes:

Zig = BiTig-1+ 0+ Uiy (15)
Tit = VZig—1 T i T Vit

Substituting A = p = 0 in equation 12, further assuming without loss of
generality that 0? = 72 = 1 and simplifying the resulting expression, it is

easily seen that:
plim <XFE_)\ ) =
Bre— B

(14+4%) P _ ) (1+4°)¢&
[ B (758) £ (%) - 2 (w59) £ (5

A’ E< (1+6?) )E <Mﬁ> - B (%) B (%)

(1-82+) (1-82+?) T8

2Note that, further assuming ¢ = 0, we obtain the standard DPM result of Pesaran
and Smith [1995]; thus, that the size of the asymptotic bias of the FE estimator depends
upon: (i) on the mean coefficients A, 3, p; (ii) the variance of 3;, denoted ws o; (iii) and the

ratio (02 /72), with B rg always underestimating 4 and Arp over or underestimatimating
A depending on wether p is positive or negative.

13



where

s () (5 ()

When A = p = 0, in a standard DPM specification, the asymptotic bias of
the F'E estimator disappears, as can it be seen substituting this assumption
in equation 14 above. In a VAR specification, instead, it does not. Under
stationarity, which requires ‘\/@_vf < 1, the expectations in equation 16
are well defined and generally different from zero, unless & = 0 for all <.
Moreover, further assuming that v = 1, ¢ = 0, and that ¢ is uniformly
distributed, it can be shown (see appendix) that the bias of Apg vanishes,
while that of B g 18 always positive and increasing in the variance of §; (and
increasing in (3) for given [ (for given variance of &;), vanishing only if 5 =0
or & = 0 for all .

4 Small sample properties

This section looks at Monte Carlo simulation evidence for the special case 2
discussed at the end of the previous section. This case is particularly inter-
esting because it helps us analysing both distinguishing features of a VAR
specification, namely the contemporaneous correlation between the variables
of interest and their lagged interdependence, while mantaining full control
over the Monte Carlo experiment. Richer VAR specifications (e.g., A and
p # 0 and/or multiple sources of heterogeneity) would be more realistic, but
the validity of the Monte Carlo results would diminish because it would be
practically unworkable to control for all the features of the model potentially
affecting the outcomes of the experiment. (Cf. Hendry [1984] and Devidson
and MacKinnon [1993, Chap. 21].)

4.1 Experiment design

I consider the following particular parametrization of the model in equation
15:

Bi =B+ &;
& ~ Uniform[tw(1 — G)], 0<w<l 0<pB<I;

v =1

14



B =1{0.2;0.8};
w ={0;0.2;0.8};
(N, T) = {(50,50); (20, 50): (50, 20); (20, 20); (10, 50)} ;

Uit |1 9 i ‘
[%t 1 ~ NIID(0,%), Y= [¢ 1 ], ¢ = {0;£+0.9};

R

a; ~ NIID(1,1)
i ~ NIID(1,1) °

Following Pesaran, Smith, and Im [1996], I introduce only one source of
slope heterogeneity in the model, i.e. & ~ Uniform|[tw(1l — ()], but unlike
them I use the uniform rather then the normal distribution to characterise
the cross sectional distribution of &;. The uniform distribution allows control
of the degree of slope heterogeneity introduced in the model, through the
scale parameter w, while guaranteeing that no individual unit violates the
stationarity assumption as long as w and 3 are both less than 1.3 If & ~
Uniform[tw(1 — B)], then §; is also uniformly distributed with mean 5 and

variance ﬂllg—ﬁﬁ respectively. Therefore, w controls the dispersion of the
cross sectional distribution around a given 3, and thus the degree of slope
heterogeneity introduced in the model for given average persistence, which
is is minimal for w = 0 and maximal for w = 1, always ensuring that both
individual eigenvalues are less than 1 in absolute value.

If A = p =0, the eigenvalues of the individual VAR systems are given by
++/70;. Stationarity requires that ‘4_—\/7_@ ‘ < 1 and constraints the range of
variation of 3; for given v. Somewhat arbitrarily, I maintain v = 1 throughout
the experiment and let 3; vary in the interval [£1].

From the asymptotic analysis we know that the heterogenity bias of
pooled estimator depends on the average degree of persistence in the sam-
ple and the degree of heteorgeneity of the slope parameters. Choosing
B = {0.2;0.8}, means considering average charachteristic roots equal to

13Hsiao, Pesaran, and Tahmiscioglu [1997] use the truncated normal distribution rather
than the normal in their Monte Carlo experiment in order to avoid explosive (or unstable)
simulated series. Given that I used the uniform distribution in the asymptotic analysis,
it seems preferable to conduct the Monte Carlo experiment with the same distributional
assumption.

15



+0.45 and +0.89 respectively: a relatively low and relatively high degree
of persistence. Choosing w = {0;0.2;0.8}, means considering the homogene-
ity case, a case of relatively low slope heterogeneity, and a case of relatively
high slope heterogeneity.'*

I assume an homogeneous VCM of the error terms, and I set 0 = 72 = 1.
The choice of an homogeneous VCM is dictated by the need to asses the in-
fluence of ¢ on the finite sample bias of the estimates in insulation from the
possible role of heteroskedasticity. I set 02 = 7% = 1, so that ¢ doeas not de-
termine only the covariance between x and z, but also their correlation which
is bounded to lie between —1 and 1. Looking at ¢ = {0; £0.9}, I consider
the case of uncorrelated error terms and the cases of highly correlated error
terms, either positively or negatively, to highlight clearly the potential effects
of this feature of the model of finite sample properties of the estimates.

I examine typical dimensions of a macro panel data set (i.e., (N,T) =
{(50,50); (20, 20); (20, 50); (20,50)}) and one extreme case (i.e., (N,T) =
{(10,50)}) in order to control for situations in which there are very few
individual units likely to arise working with subgroups of individuals.

Finally, the vector of error terms, { Ui Vig }/, is generated from a bi-
variate normal distribution with VCM 3. The initial conditions are set to
zero, and a standard assumption is made to generate the individual effects
a; and p;. For each iteration, 50 + 71" observations are generated and than
only T are used to compute the estimates. Each experimental run is based
on 1000 replications and different runs start from the same seed.”

4.2 Monte Carlo results

Tables 1 through 5 report the results of the Monte Carlo experiment. The
experiment consists of 90 runs or different cases (5 panel dimensions, times
2 degrees of persistence, times 3 degrees of heterogeneity, times 3 degrees of
contemporaneous covariance). Each table reports the results for a different
panel dimension (Table 1, (N,T) = (50,50); Table 2, (N,T) = (20,50);
Table 3, (N,T) = (10,50); Table 4, (N,T) = (50,20); Table 5, (N,T) =
(20,20)). Heterogeneity increases from left to right (w = 0,0.2,0.8), and the
contemporaneous correlation of the error terms varies from top to botton
(¢ =0,0.9,—0.9). Persistence is relatively low (8 = 0.2) in the upper part of

14Gee Table 6 for a summary of the implications of these assumptions.
15Gauss code available upon request.
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the tables and is relatively high in the lower part (3 = 0.8). For each run of
the experiment, the tables report the estimated parameters (A and ), their
estimated standard errors (s.e.), the absolute value of the finite sample bias
(bias), which is equal to the estimated parameter value in the case of A, their
experimental standard deviations (s.d.), and, for 3 only, the finite sample
bias as a percentage of the true value of 3 (Fbias as % of true value). When
applicable, the asymptotic bias of § as a percentage of the true value is also
reported (Abias as % of true value).

4.2.1 Homogeneous panels

In the benchmark case of a homgeneous, large and long panel data set with
relatively low persistence and no correlation between the error terms (see
upper left corner of Table 1), the IV estimator does quite well with very small
finite sample bias and standard errors that, though considerably higher, are
of the same order of magnitude than those of the FE and the MG estimates.
The FE estimator too performs well in this benchmark case, even though,
as expected, the finite sample biases of § and A are of one and two orders
of magnitude larger than those of the IV estimator respectively. The MG
estimator, in this case, scores as well as the FE estimator in terms of efficiency
and finite sample bias of the estimate of A\, but it clearly underperforms the
FE estimator in terms of bias of : the MG underestimates the true value
of 8 by more than 14 percent even when T=>50, while the downward bias of
the FE is only about 7 percent in this case.

Decreasing N = 20 for fixed T" = 50 does not affect these results (see
Tables 2 and 3); while decreasing T = 20 for fixed N = 50 has a much larger
impact (see Table 4): the FE’s bias of 3 increases to more than 15 percent
of the true value and that of A moves from -0.02 to -0.06 in absolute value;
the MG’s bias of 3 shoots up to more than 30 percent of the true value and
that of A rises similarly from -0.03 to -0.06 in absolute value.

Somehow surprisingly, the introduction of a correlation between the error
terms in the benchmark, hogeneous case above (N, T = 50, 50) considerably
affects the MG and the FE estimates of both A and [, albeit in a different
way: the bias of A\ is smaller (larger) in absolute value than the case in
which ¢ = 0if ¢ > 0 (¢ < 0); the bias of 3 is always larger than the case
in which ¢ = 0, and even more so when ¢ < 0. The IV estimates of A
and 3 are also affected by ¢ # 0 in a similar way, but the magnitude of
this effect is much smaller and practically insignificant. Note that these are
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fairly robust results that do not change if we increase persistence (see below)
and/or change the dimension of the panel. Experimenting with larger time
dimensions everything else equal, i.e., T' = 100 and 7" = 200, it was possible
to establish that we would need at least 70-75 time observations to bring
the MG’s bias down to below 10 percent of the true value of § with ¢ = 0,
and more than 100 observations to bring it below 10 percent with ¢ = —0.9.
Only 60-70 time observations would be needed, instead, to get the bias of
the FE estimator of 5 down to below 10 percent of the true value even with
¢ = —0.9.1

Increasing persistence, rising 3 from 0.2 to 0.8 (see lower part of Table
1), reduces considerably the bias of the FE and the MG estimators without
affecting their efficiency. The standard errors of the IV estimates, instead,
increase dramatically with persistence. Decreasing N=20 for fixed T=50,
with relatively high persistence (see lower part of Table 2), does not affect
the results for FE and the MG estimators, but exacerbates the inefficiency
of the IV estimator, rendering the estimated [ insignificant; while reducing
T=20 for fixed N=>50 (see lowerr part of Table 4) pushes the biases of the FE
and MG estimators back to their benchmark values under low persistence
and renders the IV estimator not only inefficient but also as inconsistent as
the MG.

In summary, these Monte Carlo results bear out a well known conclusion
in the literature on DPMs, and help qualifying this in the case of a PVAR
specification: there is a trade-off between consistency and efficiency in es-
timating homogeneous dynamic models with panel data which suggests of
using IV type of estimators when the panel is relatively short and FE or
RE type of estimators when the panel is relatively long (e.g., T>20-30)'".
When working with a VAR specification, however, one should not disregard
the samll sample bias on the coefficients apart than that on the lagged de-
pendent variable as negligible; second, and most importantly, the number
of time observations needed to get rid of the small sample bias of the FE
or RE estimates is probably larger that generally reccommended, given that
the VCM of the error terms is unlikely to be diagonal; third, the number
of time observations required to be able to neglect the small sample bias of
these estimators appears to depend on the degree of persistance at system

16Results not reported, but available upon request.
17See Judson and Owen [1999] for a Monte Carlo study of alternative estimation proce-
dures for long, homogeneous DPMs.
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level rather than only on the average value of the coefficient of the lagged
dependent variable. By pushing up the inefficiency of IV type of estimators
and pushing down the inconsistency of FE and RE type of estimators, for
a given T, higher persistance may tilt the balance in favor of the latter and
hence reduce the minimum number of time observations needed.

4.2.2 Heterogeneous panels

Interestingly, under relatively low heterogeneity, the results are generally very
close to those under homogeneity (see the second three columns of each table).
Thus, suggesting that heterogeneity must be high to be a serious source of
concern in finite samples. Under relatively high heterogeneity, instead, as
expected, the small sample bias of pooled estimators of both A and g may
be sizable (see the last three columns of each table).

In the benchmark case of a heterogeneous, large and long panel data set
with relatively low persistence and uncorrelated error terms (see upper part of
Table 1), the IV estimator does particularly badly: its biases are larger than
those of the FE estimator and its standard errors are bigger than those of the
MG estimator. The MG estimator does quite well in this case with biases
less than half those of the FE estimator and higher standard errors than
the FE only for A. Note however that, even when the number of individual
units is small (N=20 for given T=>50), the MG estimates are precise enough
to distinguish between the significance of # and the insignificance of A (see
Table 2).The FE estimator lies between the MG and the IV estimator, with a
finite sample bias of approximately 30 percent of the true 5. The asymptotic
theory predicts a positive heterogeneity bias of 48 percent of the true 3 in
this case; while the small sample bias is only about 60 percent of the large
sample bias. This is partly because of the small T" bias which is sizable and of
opposite sign even for T=50 as we saw above. The benchmark FE estimate
of X is equal to —0.05 as compared with a theoretical heterogeneity bias equal
to zero and a finite T bias under homogeneity equal to —0.025. The presence
of slope heterogeneity, therefore, appears to exacerbate the (negative) small
T bias of the FE estimate of A and possibly (.

Similar results are obtained introducing correlation between the error
terms, with the MG estimator performing better than the FE estimator,
which in turn improves upon the IV estimator. We have no theoretical
benchmark values for the heterogeneity bias of the FE estimator when ¢ # 0,
however, it appears that introducing correlation between the error terms com-
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pounds the effects of the small T bias on both A and 3. Thus, suggesting
that the heterogeneity bias has the same (negative) sign of the small T bias
in this case.

A smaller N =20 for fixed T' = 50, as already noted, does little difference
to the performance of the MG estimator. However, a very small N (e.g.,
equal 10) does affect the efficiency of the estimates obtained considerably
(cf. Table 2 and 3). A shorter T =20 for fixed N creates more serious
problems, especially for the estimation of § (see Table 4). The small T bias
of the MG estimator is about 30 percent of the true value of 3 when ¢ = 0,
and exceeds 60 percent when ¢ = —0.90. On the other hand, when ¢ = 0,
the small T bias of the FE estimator is large enough to offset most of the
heterogeneity bias, yielding an overall small sample bias that is less than
10 percent of the true 8. The performance of the FE estimator, however,
deteriorates sharply once correlation between the error terms is introduced,
possibly because of a switch in the heterogeneity bias when ¢ # 0. The
performance of the IV estimator does not deteriorate further-as compared
with the benchmark heterogenous case—by shortening the time dimension of
the panel, with or without correlated error terms; but it does not improve
either. The IV estimator therefore is still of no help in this case. In brief,
none of the estimators considered give satisfactory results if the panel is
heterogeneous and relatively short.

All three estimation procedures show lower finite sample biases when
persistence is higher (see bottom right part of Table 1). The FE and the
MG estimators also have somewhat lower standard errors in this case; while
the efficiency of the IV estimator deteriorates further, compared to the case
of low persistence, yielding a misleading estimate of 3. Interestingly, in this
case, the FE estimator behaves slightly better than the MG estimator even in
terms of consistency. For instance, the FE bias of (3 is about 4 percent of the
true value when ¢ = 0—compared with a theoretical value of 6.2 percent, and
about 2 percent of the true value when ¢ = 0.9: roughly 40 and 80 percent
less respectively than the MG’s small T bias. This is due in part to the fact
that, when 3 = w = 0.8, the absolute value of the variance of ; is one order
magnitude smaller than that implied by § = 0.2 and w = 0.8 (see summary
table in appendix). But also to the fact that the heterogeneity bias of the
FE estimator becomes positive when [ increases from 0.2 to 0.8, and hence
offsetting rather than compounding the effect of the FE’s small T bias.

As in the case of low persistence, a smaller N=20 for fixed T=50 decreases
the efficiency of the FE and the MG estimates, but leaves their biases almost
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unchanged (see bottom right of Table 2). Decreasing T=20 for fixed N=>50
increases their small T bias enough to offset completely the (arguably posi-
tive) heterogeneity bias of the FE estimator and to push the bias of the MG
estimator well above 10 percent of true value of 3 regardless of the value of
¢ (see bottom right part of Table 4). As a result, the FE estimator does
remarkably better than the MG in this case notwithstanding the relatively
high degree of slope heterogeneity. If either of the two panel dimensions is
decreased with high persistence, the IV estimates of both A and 3 become
misleading (see bottom part of Table 2 and 4), and they turn out to be clearly
implausible if both panel dimensions are relatively small (see table 5).

In summary, IV type of estimators can yield very misleading results if the
panel is heterogeneous: they are not only inefficient, but also badly incon-
sistent. The performance of fixed and random effects estimators depend on
the time dimension of the panel, the degree of average persistence, and the
properties of the VCM of the error terms. Therefore, it is difficult to formu-
late recommendations with general validity. Nonetheless, they may produce
better estimates than the MG in some points of the parameter space, even
under relatively high heterogeneity. The MG is a safe bet when heterogeneity
is high and T is very large. However, if T is not long enough, the MG risks
solving one problem by creating another one of equal magnitude and opposite
sign. When the panel is heterogeneous and short, there is no obvious solution
to the problem posed by slope heterogeneity; a Bayesian approach to slope
heterogeneity, as pursued for instance by Hisiao, Pesaran, and Tahmiscioglu
[1997] for DPMs and Canova and Ciccarelli [1999] for PVARs, seems to be
the only way forward. Because of computational constraints, trying to cor-
rect the MG estimator for the small T bias, as done by Pesaran and Zhao
[1997] and advocated by Judson and Owen [1999], does not sound to be a
viable solution dealing with VAR specifications.

5 Conclusions

Applied researchers estimate VARs with panel data relying on known as-
ymptotic and finite sample results for DPMs. This paper shows that with a
VAR specification things are more complicated: the choice of the right esti-
mation technique to use depends crucially on the time dimension of the data
set, the dispersion of the cross sectional distribution of the slope parameters
around their mean, the average degree of persistence in the system, and the
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properties of the variance covariance matrix of the error terms.

The asymptotic analysis suggests that: (i) there are no meaningful special
cases in which the heterogeneity bias of standard pooled estimators vanishes;
(ii) the covariance of the error terms may add or subtract to the magnitude
of the heterogeneity bias depending on its own sign and magnitude. The
Monte Carlo experiment indicates that: (iii) the dispersion of the slope pa-
rameters around their sample mean must be high in absolute terms for the
heterogeneity bias of pooled estimators to be substantial in finite samples;
(iv) on the other hand, the time dimension of the panel must be longer than
generally thought for the small T bias of the mean group estimator to be
negligible when the covariance of the error terms is different from zero. The
Monte Carlo experiment has shown also that: (v) a few individual units
are sufficient to obtain relatively efficient MG estimates, and that (vi) IV
type of estimators are particularly vulnerable to slope heterogeneity and/or
high persistence (i.e., characteristic roots close to the unit circle), but they
perform very well if the panel is relatively homogeneous and persistence is
low.

These results suggest using the MG estimator only when slope hetero-
geneity is relatively high and the time dimension of the panel is very long.
However, how heterogeneous a panel data set must be to become a source of
concern, and how long the panel must be for the mean group estimator to
represent a valid solution, remain an empirical questions given that the ac-
tual size of the small sample biases will depend on the non linear interaction
of a large number of parameters.
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A Inconsistency of the fixed effect estimator

A.1 VAR: The general case

From equation 9 in the text, we know that the fized effect estimate of a is
given by

e = (YX) (¥9)
= (X'QX) ' (X'Qy),

as () is symmetric and idempotent. Substituting for y from 8 in this equation,
we obtain:

(arm —a) = (X'QX) ™ (X'Qu);
where
X/QX = (IM ® Y_ll) (IM ® QD) (IM ® Y—ll)
= <IM X Y7/1QDY71)
= (IveY' (In® Hr)Y ,)

N
= Iy® Z YZ_1HTY;,_17
i=1

with Y; _;being the ith, Tz M-dimensional element of Y, and

X'Qu = (IM®YL1> (I @Qp)v
= (IM®YL1QD)1/

4
- (IJV[ X YilQD)
Vmr
Y Qpvm Y' (I ® Hy) vpr

r N !
> i=1 Y;',leTVi,l

Y

N /
L Zizl Y;,_lHTVz’,M
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!/
with v; = { Vi1 o VTt UNGT } being the jth, NT'z1-dimensional

/
element of v and v, ; = { Vil o Viim } being the ith, T'r1-dimensional
element of v; for j =1,--- M."®". Therefore,

-1
(Zz’]\il z'fleTY;,q) ( §i1 Y;'CAHTVm)
(arp —a)=| : : (17)
-1
(Zz’]\il Y;':leTY;,fl) (Zf\il Y;'f—lHTVi,M)
In order to obtain the probability limit of the various terms in equation

17, we first group all time observations for each ¢+ = 1,--- N, as in equation
6 in the text here reported,

Y=Y, 1A+ ®ir+E, (18)

where Y;, Y; _1,and g; are the 7th -T'wM dimensional- elements of Y, Y, and
Z respectively. Given that each VAR is stationary, assuming further that the

18Quppose N = 2, then
H+ 0 Y, _
YO (UnwHD)Y ;= [V 4 Y5 4] [ OT HT} [ - ]
— }/l/y_lHT)/l,_l + )/QI,_lHT}/Q,—l-

YNote that Vij = €,; + Y;_11; j, where 1; ; is the jth, Mx1 dimensional element of
vec(n;), with g; = [ €141 - E145T - ENGT ]/ being the jth, NTz1-dimensional

element of ¢ and ¢; ; = [ €1 "t Ei4T ]/ being the ith, Txl-dimensional element of
gjforj=1,---M.
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process in equation 4 started a long time ago®”, one has that
Y; = (o @ ig) (I "4 Zz—:z s (19)

where g; _; are T'x M martices of observations on the sth-order lags of €;, and
thus that

}/;7,1 = (Oél®ZT) (I A +Z€l —g— 1A (20)
s=| 0

Y., = (I-A)" (u®ir) +Z VB s (21)
s=0

Then we state the following proposition that can be proven by results in
Appendix C of Pesaran and Smith (1995),

_/ —_—
<€¢,_SHT€¢,_T> Y for s=rT

T 0 for s#T (22)

plim

T—o0
Finally, we notice that

N Y!_ HyY; 1 X Y/_HrY;
plim <221 el il Z’_1> :plim—Zplim <—Z’_1 T Z’_1> (23)

N—o00,T—00 NT N—oo i—1 T—00 T

N Y Hpw, . | Y!  Hyv, .
plin(ZE ) i S gt (S22 )

N—oo N i=1 T—o0

forj=1,---M.
1n fact:
Yi = YA +o®ir+e

= (Y, 2Ai+o;Qir+e 1) Ai+o;Qip+e;
= Yi,,QA? + (Oéi [024] iT) -+ (ai [} iT) A, +e; +ei14;
Vi _3A3 + (0 @ ir) 4 (a; @ir) Ay + (0 @ ir) A? + &5 + eim1Ai + ei—2 A2

= lleL sA +(Oéz(><)lT +Z<€z —sA

§—00
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Consider first the probability limit of Y;'_, HyY; _,/T. Substituting equa-
tion 20 for Y;_; and Y; _; respectively we have

Y! [ H+Y. I—Ai_ll ; . /H ; . I—Ai_l
plim< i, 11T z,1> plim<( ) (i ®ir) Hr (o @ir) ( ) )2%)
T—o0 T T—o0 T

0 A ) He (52005 1 AT
+plim(( B 1) TT( O 1 )> (26)
T—o00
5=0

= wvec™! ((I — A A)T vec(EQ) :

=/
Ei,—s

HTEi,f'r

as (a; ® ip) Hp = 0, plimg_, < 7 > = 0fors # 7, and vec (3132, AYE, A7) =

S vec (AYY;Af), with vec™ undoing the vec operation. Consider then
the probability limit of Y/ Hrv, ;/T for j = 1,--- M. Noting that v;; =
€i;+Y; _1m; j, where n; ; is the jth, Mx1 dimensional element of vec(n;) (with
€ = [ €151 *** E14T **° EN,GT ]/ being the jth, NTx1-dimensional el-
ement of € and ¢, ; = { €ij1 "t €T }/ being the ith, T'r1-dimensional
element of ¢; for j =1,--- M ), and substituting we obtain:

Y! Hrv; s Y! Hrpe;s Y! (HrY; -
plim <—”1 v ’J> = plim <—2’ Lre ’J> + plim <— T 1) n{27)

= <Z AE AL ) g (28)
s=0

= wvec ! ((I - A ® A;)_1 vec(&)) ;.5
for j=1,--- M. In fact,

. (Yi  Hrei, (T =A)T (i @in) + T2 APE, ] Hrey
plim | =———=| = plim

T T

-1 N
(U i) )

T—o0 T—o0

T—00

3 A7 plim (g—;"s‘lHT&’j)

s=0 T—o00 T
= 0
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— B
i _s—1HTEi,j
T

1,--- M [proof on my notes named Multivariate A].
Now, substituting 25 and 27 in 23 and 24 we have

<Zf\il Y;f_lﬂTY;,_1>

because (ao; ® ip) Hr = 0 and plimT_m( = 0 for each j =

plim

N—oo,T—00

= plim — Zvec ! ( (I—A @A) vec(Zﬂ)

N—oo N

NT

Y/ _Hrv
plim <ZZ ek o e ”) = plim N quec’l ( (I—A® A)” vec(Zi)) Nij

N—o00,T—0 NT N—oo

for j = 1,--- M; and since A; and ¥; are zzd across i, by the law of large
numbers, we also have

Zf\; YZAHTY;,A
NT

plim
N—o0,T—o0
Zf\il Y;'/,leTVi,j
NT
for j = 1,--- M, where E denotes expectation with respect the joint distri-

bution of A; and ;. Thus, substituting these last two equations in 12, we
obtain equation 77 in the text.

> —E [’U@Cil ((I _ A; ® A;)fl UGC(Zi))}

plim

N—oo,T—o0

(E [vec‘1 ((I Al @ AN T vec(S) D
X (E [vec ((I Al AL~ vec(&)) 7, 1D
N_E})i;"n—x)o (Grpr—a)=|: ’
7 (E [vec ((I AL @ AN T vec(S) }
| X (E [vec ! ((I Al ® Al)~ vec(Ez) , MD

which is generally different from 0, unless 7; = 0 for all i.

A.2 VAR: Special cases
A.2.1 Casel

Suppose that v = 0 in the bivariate VAR in equation 11, then equation 12
in the text becomes

plim < Arg = A > =
N—oo,T—o0 ﬁFE - ﬁ VAR
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1 [ Y 0+ 20130 + ToB2r2 Yhod+ Y42 11\
(Plgg| Tt ) e

L | Yoo + Y5677
(ol ™ )

To = (1=XA—p+ )01+ AX+p+Ap)(Mp—1)
= —(1=M)(1-p")(1 =)

T, = (W= N);

T, = —(Ap+1)

Ty = (Mp—p);

T = (A +p"+ 1)

Tis = (=XNp+ A+ Xp—1).

with:

Substituting for these expressions, which once divided by Y} simplify con-

siderably, and defining 6 = (14_;;;%_%) we obtain

plim </A\FE_/\ > =
N—o0,T—o0 ﬁFE - ﬁ

a7 2876 278, ¢; pBiT?

-1
R R o = Ml e (e R ) ]})

PBiT; i 7;

T (=) T T =7
1 (pBiT2)&i
x| B (1 gAp) (I=Ap)(1-p%)

i

1—p2

1

Taking then expectations with respect to the distribution of ; and denoting
ws o the variance of & we also have

plim </A\FE_/\ > =
N—o00,T—00 ﬁFE - ﬁ

o} | mA(Fhenn) | asy PO
(1-A)A-Ap) (1 M)(A1=p%) © (1-Xp)

) (=)
pIBquQ + (1)7, Ti
T (=) T T-%p) =7
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pwa oT2
X | A=xp)(1-p?) | .
0

Thus we get, R
plim < Arp = A > =
N—o00,T—00 ﬁFE - ﬁ
_T'LQ_ _ pBT? )]
_ 1|7 (1,@)(1,,,? =Y
A [ _ pBT} _ o} + T78(82 twa 2 + 2)B; J
(A=2p)(1-p?%)  (1-Xp) (1-A2) (1-p?) (1=22)(1-Xp)
pwa oT2
x| (A=Xxp)(1—p?)
0
(%) (55)
I Gl ANVl )
- A _ pIBTiZ + ¢7, pr:QTiz ’
[ (1=2p)(1=p?) " (1=2p) ) \ (1=2Ap)(1—p?)
where

A = <<1 igv) " T%((lﬁ 2—;20))272) - A22A)ﬁ(g1b— AP)> <1 iz)

Pﬁﬂ'@? oi ?
B <<1 N —Ap>>

After some algebra simplifications we finally obtain

~ p(lf)\p)<1*>\2)w2,2
plim <1\FE_)‘ > = { U1+ ]

N—o0,T—00 ﬁFE - ﬁ _ﬂp2(1—/\2>w2’2+\113
W1+Vo

with:

U, = (0*/7?) (1 - p2) (1—Xp) + (1 - )\2p2) wa 2 + (1 - p2) 52
Uy = —(¢°/7°) (1-9") (1= X)) = 2(c/7) (1= 9") (1= N) B3;
\IJ3 = (gb/T) <1 — p2) (1 — )\2) pw2.2.
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A.2.2 Case 2
Substituting v = 1, ¢ = 0*' in equation BIASSVAR2, we have

plim (EFE - ﬁ)

N—oo,T—00

_ 5 em)

B (k)

&~ Uniformtw(1-p)] 0<w<l 0<f5<1

Assuming

where w is a scale parameter controlling the variance of &;, and solving the
integrals we get:

—(14+d)In(1+b+w(l-=0)-(1=-b)In(l1-b—w(l-0)
+(1+0)n(1+b—w(@l—=0)+(1-bn(1l-b+w(l-0)
)
b

In(1+b+w(l—=0)—In(1-b—w(l—-0))
—In(1+b-w(l—-0)+In(1-b+w(l—-0))

Which is plotted below.

21Both these assumptions could be relaxed and I am working on ¢ = 0.
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Table 1 - Monte Carlo Results (N,T=50,50)

MG FE 1\ MG FE v FE [\
Omeg=0 Omega=0.2 Omeya=0.8
Beta=0.2
Fi=0
Lambda
S.e. 0.0196 0.0195 0.0861 0.0195 0.0193 0.0874 0.0178 0.0162 0.129
Bias -0.0246 -0.0241 0.0001 -0.0244 -0.0247 -0.0039 -0.0221 -0.04920.0827
S.d. 0.0198 0.0195 0.0351 0.0198 0.0199 0.0355 0.0183 0.0341 0.0533
Beta 0.1715 0.1866 0.1986 0.1718 0.1899 0.2017 0.1724 0.2614 0.2674
S.e 0.0142 0.0141 0.0487 0.0189 0.014 0.0496 0.0518 0.0127 0.0783
Bias -0.0285 -0.0134 -0.0014 -0.0282 -0.0101 0.0017 -0.0276 0.0614 0.0674
Fbias as % of true value -14.3% -6.7% -0.7% -14.1% -5.1% 0.9% -13.8% 30.7% 33.7%
Abias as % of true value 1.8% 48.8%
S.d. 0.0144 0.014 0.0243 0.0193 0.0196 0.0278 0.0516 0.0657 0.0658
Fi=0.9
Lambda
S.e. 0.0292 0.0291 0.0507 0.0291 0.0287 0.052 0.0265 0.0236 0.0897
Bias 0.0154 -0.0075 0.0015 0.015 0.0072 0.007 0.0076 0.19330.0635
S.d. 0.0301 0.0292 0.0325 0.0299 0.0298 0.0329 0.0275 0.0441 0.0456
Beta 0.1516 0.1794 0.1977 0.152 0.1743 0.1894 0.1564 0.1258 0.0867
S.e 0.0209 0.0211 0.0415 0.0243 0.021 0.0413 0.0534 0.0186 0.0416
Bias -0.0484 -0.0206 -0.0023 -0.048 -0.0257 -0.0106 -0.0436 -0.0742 -0.1133
Fbias as % of true value -24.2% -10.3% -1.2% -24.0% -12.9% -5.3% -21.8% -37.1% -56.7%
S.d. 0.0214 0.0209 0.0308 0.0247 0.0251 0.0337 0.0538 0.0597 0.0727
Fi=--0.9
Lambda
S.e. 0.0303 0.0299 0.3298 0.0302 0.0295 0.3239 0.0283 0.0241 0.3199
Bias -0.0741 -0.0493 -0.0018 -0.0734 -0.0658 -0.0242 -0.0624 -0.3-0.2722
S.d. 0.0301 0.0295 0.0883 0.0302 0.0302 0.0879 0.0292 0.0495 0.1084
Beta 0.1435 0.1715 0.1981 0.1437 0.1663 0.1936 0.1472 0.1134 0.1827
S.e 0.0213 0.0214 0.1776 0.0243 0.0212 0.1761 0.0523 0.0189 0.2039
Bias -0.0565 -0.0285 -0.0019 -0.0563 -0.0337 -0.0064 -0.0528 -0.0866 -0.0173
Fbias as % of true value -28.3% -14.3% -1.0% -28.2% -16.9% -3.2% -26.4% -43.3% -8.7%
S.d. 0.0212 0.0209 0.0512 0.0245 0.0249 0.0524 0.0522 0.0538 0.0665
Beta=0.8
Fi=0
Lambda
S.e. 0.0119 0.0103 0.5832 0.0119 0.0103 0.726 0.0118 0.0086 0.9041
Bias -0.0282 -0.025 0.0032 -0.0283 -0.0256 -0.0028 -0.0263 -0.01770.1019
S.d. 0.012 0.0106 0.1881 0.0121 0.0108 0.7508 0.012 0.0178 0.5751
Beta 0.7474 0.778 0.8015 0.7474 0.7798 0.7988 0.7501 0.8309 0.9428
S.e 0.0108 0.0094 0.522 0.0113 0.0093 0.6507 0.0168 0.008 0.8263
Bias -0.0526 -0.022 0.0015 -0.0526 -0.0202 -0.0012 -0.0499 0.0309 0.1428
Fbias as % of true value -6.6% -2.8% 0.2% -6.6% -2.5% -0.2% -6.2% 3.9% 17.9%
Abias as % of true value 0.3% 6.2%
S.d. 0.011 0.0096 0.1688 0.0116 0.0104 0.6722 0.0171 0.0234 0.5238
Fi=0.9
Lambda
S.e. 0.0238 0.0212 0.2685 0.0238 0.0211 0.2787 0.0235 0.0182 2.78
Bias -0.0089 -0.022 0.0022 -0.009 -0.0216 0.0008 -0.0083 -0.0071-0.1399
S.d. 0.0238 0.0207 0.0644 0.0239 0.0208 0.067 0.0237 0.0242 5.8661
Beta 0.7339 0.7773 0.7993 0.7341 0.7784 0.8004 0.7363 0.8101 0.7146
S.e 0.0216 0.0193 0.2413 0.0218 0.0192 0.2502 0.0252 0.0169 2.4414
Bias -0.0661 -0.0227 -0.0007 -0.0659 -0.0216 0.0004 -0.0637 0.0101 -0.0854
Fbias as % of true value -8.3% -2.8% -0.1% -8.2% -2.7% 0.1% -8.0% 1.3% -10.7%
S.d. 0.022 0.019 0.0594 0.0223 0.0194 0.0614 0.0256 0.0266 5.3667
Fi=--0.9
Lambda
S.e. 0.0282 0.0248 42.7986 0.0282 0.0247 43.1479 0.0269 0.0127 0.316
Bias -0.0682 -0.0462 2.1192 -0.0681 -0.0484 -1.7058 -0.0582 0.00910.0712
S.d. 0.029 0.0259 94.3066 0.029 0.0262 28.8504 0.027 0.0264 0.1303
Beta 0.7128 0.7592 2.6971 0.7131 0.7596 -0.7272 0.7239 0.8576 0.9149
S.e 0.0254 0.0224 38.2932 0.0257 0.0224 38.7169 0.0284 0.0118 0.2899
Bias -0.0872 -0.0408 1.8971 -0.0869 -0.0404 -1.5272 -0.0761 0.0576 0.1149
Fbias as % of true value -10.9% -5.1% 237.1% -10.9% -5.1% -191% -9.5% 7.2% 14.4%
S.d. 0.0261 0.0232 84.3605 0.0264 0.0237 25.8701 0.0289 0.0305 0.1166

Note - S.e.: estimated standard errors;
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda).

S.d.: finite sample bias' experimental standard deviations.

Fbias as % of true value: finite sample bias as a percentage of the true value of beta.
Abias as % of true value: asymptotic bias as a percentage of the true value.



Table 2 - Monte Carlo Results (N,T=20,50)

MG FE 1\ MG FE FE [\
Omeg=0 Omega=0.2 Omeya=0.8
Beta=0.2
Fi=0
Lambda
S.e. 0.0312 0.0309 0.1366 0.031 0.0306 0.1387 0.0283 0.0259 0.2038
Bias -0.0245 -0.0241 -0.0007 -0.0243 -0.0247 -0.0047 -0.0227 -0.0468-0.0805
S.d. 0.0308 0.0304 0.0531 0.0304 0.0312 0.053 0.0273 0.0508 0.0805
Beta 0.1731 0.1876 0.2001 0.1727 0.19 0.202 0.1713 0.2547 0.2585
S.e 0.0222 0.0223 0.0775 0.0294 0.0222 0.0788 0.0811 0.0202 0.1244
Bias -0.0269 -0.0124 0.0001 -0.0273 -0.01 0.002 -0.0287 0.0547 0.0585
Fbias as % of true value -13.5% -6.2% 0.1% -13.7% -5.0% 1.0% -14.4% 27.4% 29.3%
Abias as % of true value 1.8% 48.8%
S.d. 0.0225 0.0227 0.0365 0.0295 0.031 0.0421 0.0811 0.102 0.1042
Fi=0.9
Lambda
S.e. 0.0464 0.0459 0.0804 0.0462 0.0454 0.0825 0.0419 0.0376 0.1403
Bias 0.0134 -0.0092 -0.0007 0.0131 0.0049 0.0044 0.0053 0.1817 0.0571
S.d. 0.0444 0.0446 0.0499 0.0442 0.0449 0.0496 0.0405 0.0677 0.0658
Beta 0.1539 0.1813 0.2014 0.1536 0.1755 0.1927 0.1557 0.1267 0.0918
S.e 0.0329 0.0334 0.0661 0.0379 0.0332 0.0657 0.0836 0.0294 0.0675
Bias -0.0461 -0.0187 0.0014 -0.0464 -0.0245 -0.0073 -0.0443 -0.0733 -0.1082
Fbias as % of true value -23.1% -9.4% 0.7% -23.2% -12.3% -3.7% -22.2% -36.7% -54.1%
S.d. 0.0328 0.0336 0.0468 0.0373 0.0394 0.0514 0.0833 0.0914 0.1124
Fi=--0.9
Lambda
S.e. 0.0477 0.0472 0.5253 0.0477 0.0467 0.516 0.0446 0.0383 0.5204
Bias -0.0718 -0.0478 0.0014 -0.0714 -0.0632 -0.0214 -0.0612 -0.2837-0.2616
S.d. 0.0493 0.0489 0.1318 0.0495 0.0497 0.13 0.0463 0.0772 0.1666
Beta 0.146 0.1735 0.2015 0.1453 0.1678 0.1955 0.1465 0.1148 0.1765
S.e 0.0333 0.0338 0.2832 0.0379 0.0335 0.2808 0.082 0.0299 0.3336
Bias -0.054 -0.0265 0.0015 -0.0547 -0.0322 -0.0045 -0.0535 -0.0852 -0.0235
Fbias as % of true value -27.0% -13.3% 0.8% -27.4% -16.1% -2.3% -26.8% -42.6% -11.8%
S.d. 0.0344 0.0348 0.077 0.0387 0.04 0.0788 0.0819 0.0846 0.1086
Beta=0.8
Fi=0
Lambda
S.e. 0.0187 0.0164 1.6225 0.0187 0.0163 8.0411 0.0187 0.0139 6.0483
Bias -0.0289 -0.0261 0.0263 -0.0289 -0.0266 1.4099 -0.0269 -0.0202-0.6189
S.d. 0.019 0.0166 1.3371 0.019 0.0168 49.8178 0.019 0.0242 26.1986
Beta 0.7485 0.7782 0.8236 0.7485 0.7798 2.0226 0.7507 0.8259 0.2549
S.e 0.017 0.0148 1.452 0.0177 0.0148 7.0503 0.0263 0.0129 5.6312
Bias -0.0515 -0.0218 0.0236 -0.0515 -0.0202 1.2226 -0.0493 0.0259 -0.5451
Fbias as % of true value -6.4% -2.7% 3.0% -6.4% -2.5% 152.8% -6.2% 3.2% -68.1%
Abias as % of true value 0.3% 6.2%
S.d. 0.0172 0.0152 1.1904 0.0177 0.0161 43.2428 0.0261 0.0346 24.9263
Fi=0.9
Lambda
S.e. 0.0376 0.0336 0.4914 0.0376 0.0334 0.5352 0.0373 0.0292 6.9102
Bias -0.0115 -0.0244 0.0041 -0.0116 -0.0241 0.0038 -0.0107 -0.0105-0.7107
S.d. 0.0383 0.0327 0.1211 0.0382 0.0325 0.1628 0.0377 0.0358 30.7153
Beta 0.7361 0.7788 0.8051 0.7361 0.7797 0.8071 0.7379 0.8078 0.2452
S.e 0.0339 0.0305 0.4435 0.0343 0.0303 0.4819 0.0394 0.027 5.9619
Bias -0.0639 -0.0212 0.0051 -0.0639 -0.0203 0.0071 -0.0621 0.0078 -0.5548
Fbias as % of true value -8.0% -2.7% 0.6% -8.0% -2.5% 0.9% -7.8% 1.0% -69.4%
S.d. 0.0343 0.0298 0.1107 0.0344 0.0299 0.1486 0.0391 0.0381 26.1735
Fi=--0.9
Lambda
S.e. 0.0441 0.0394 128.8833 0.044 0.0392 124.5329 0.0417 0.0223 7.3664
Bias -0.0676 -0.0473 26.474 -0.0672 -0.0492 -26.8017 -0.0577 -0.0025-0.0769
S.d. 0.0441 0.0396 799.2592 0.0439 0.0397 849.9118 0.0415 0.0426 4.156
Beta 0.7148 0.7588 24.4217 0.7151 0.7591 -22.9458 0.725 0.8432 0.7783
S.e 0.0398 0.0356 115.0735 0.04 0.0355 110.5616 0.0441 0.0207 6.555
Bias -0.0852 -0.0412 23.6217 -0.0849 -0.0409 -23.7458 -0.075 0.0432 -0.0217
Fbias as % of true value -10.7% -5.2% 2952.7% -10.6% -5.1% -2968% -9.4% 5.4% -2.7%
S.d. 0.0403 0.0361 713.181 0.0407 0.0366 753.1006 0.045 0.0515 3.7241

Note - S.e.: estimated standard errors;

Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda).
S.d.: finite sample bias' experimental standard deviations.
Fbias as % of true value: finite sample bias as a percentage of the true value of beta.

Abias as % of true value: asymptotic bias as a percentage of the true value.



Table 3 - Monte Carlo Results (N,T=10,50)

MG FE 1\ MG FE FE [\
Omeg=0 Omega=0.2 Omeya=0.8
Beta=0.2
Fi=0
Lambda
S.e. 0.0424 0.0438 0.192 0.0421 0.0433 0.1953 0.0382 0.0368 0.2945
Bias -0.0235 -0.0227 -0.0005 -0.0236 -0.0236 -0.005 -0.0221 -0.04440.0804
S.d. 0.0437 0.0434 0.0751 0.0432 0.0444 0.0756 0.0397 0.0681 0.1267
Beta 0.1719 0.1859 0.1957 0.1717 0.1882 0.1974 0.1706 0.2449 0.2414
S.e 0.031 0.0316 0.1091 0.0418 0.0314 0.1113 0.115 0.0287 0.1841
Bias -0.0281 -0.0141 -0.0043 -0.0283 -0.0118 -0.0026 -0.0294 0.0449 0.0414
Fbias as % of true value -14.1% -7.1% -2.2% -14.2% -5.9% -1.3% -14.7% 22.5% 20.7%
Abias as % of true value 1.8% 48.8%
S.d. 0.0315 0.0312 0.0535 0.0424 0.0438 0.0627 0.1158 0.1425 0.1504
Fi=0.9
Lambda
S.e. 0.0634 0.0651 0.1128 0.0629 0.0643 0.1159 0.0573 0.0534 0.1957
Bias 0.0162 -0.0047 0.0037 0.0154 0.0085 0.0087 0.0078 0.17070.0529
S.d. 0.066 0.0656 0.0721 0.0656 0.0662 0.072 0.0599 0.0926 0.0954
Beta 0.1518 0.1775 0.194 0.152 0.1722 0.1851 0.155 0.1256 0.0863
S.e 0.0457 0.0474 0.0932 0.0533 0.047 0.0929 0.1184 0.0418 0.0996
Bias -0.0482 -0.0225 -0.006 -0.048 -0.0278 -0.0149 -0.045 -0.0744 -0.1137
Fbias as % of true value -24.1% -11.3% -3.0% -24.0% -13.9% -7.5% -22.5% -37.2% -56.9%
S.d. 0.0468 0.0471 0.0683 0.0546 0.0558 0.0749 0.1193 0.131 0.1574
Fi=--0.9
Lambda
S.e. 0.0659 0.0669 0.741 0.0656 0.0661 0.7337 0.0609 0.0546 0.8846
Bias -0.0721 -0.0491 -0.01 -0.0718 -0.0647 -0.0335 -0.0617 -0.2692-0.2559
S.d. 0.0664 0.0658 0.1922 0.0661 0.0666 0.193 0.0621 0.1056 0.4019
Beta 0.1445 0.1704 0.1921 0.1442 0.1648 0.1859 0.1457 0.112 0.1624
S.e 0.0465 0.0479 0.3994 0.0534 0.0475 0.4002 0.1156 0.0426 0.5923
Bias -0.0555 -0.0296 -0.0079 -0.0558 -0.0352 -0.0141 -0.0543 -0.088 -0.0376
Fbias as % of true value -27.8% -14.8% -4.0% -27.9% -17.6% -7.1% -27.2% -44.0% -18.8%
S.d. 0.0465 0.0467 0.1135 0.0536 0.0553 0.1191 0.1165 0.122 0.3062
Beta=0.8
Fi=0
Lambda
S.e. 0.0259 0.0234 572 0.026 0.0233 3.3038 0.0257 0.0203 3.3195
Bias -0.0271 -0.0243 81.3346 -0.0271 -0.0249 0.1447 -0.0249 -0.02010.2187
S.d. 0.0277 0.0247 2577.9821 0.0276 0.025 3.6137 0.0269 0.0329 3.8278
Beta 0.7467 0.775 74.17 0.7465 0.7764 0.9271 0.7491 0.8161 1.0382
S.e 0.0238 0.0212 516.0427 0.0248 0.0211 2.9555 0.0371 0.0188 3.0166
Bias -0.0533 -0.025 73.37 -0.0535 -0.0236 0.1271 -0.0509 0.0161 0.2382
Fbias as % of true value -6.7% -3.1% 9171.3% -6.7% -3.0% 15.9% -6.4% 2.0% 29.8%
Abias as % of true value 0.3% 6.2%
S.d. 0.0249 0.022 2325.9178 0.0257 0.0233 3.2442 0.0376 0.0475 3.5335
Fi=0.9
Lambda
S.e. 0.052 0.048 1.0914 0.052 0.0477 1.6528 0.0514 0.0422 3.2541
Bias -0.005 -0.0187 0.0259 -0.005 -0.0185 0.0228 -0.004 -0.0078 0.2363
S.d. 0.0545 0.0493 0.6187 0.0543 0.0494 1.1718 0.0532 0.0513 6.361
Beta 0.7313 0.772 0.8133 0.7312 0.7728 0.8112 0.7331 0.7982 1.0633
S.e 0.0473 0.0435 0.979 0.048 0.0433 1.4716 0.0556 0.0389 2.9755
Bias -0.0687 -0.028 0.0133 -0.0688 -0.0272 0.0112 -0.0669 -0.0018 0.2633
Fbias as % of true value -8.6% -3.5% 1.7% -8.6% -3.4% 1.4% -8.4% -0.2% 32.9%
S.d. 0.0498 0.0442 0.5826 0.0499 0.0448 1.0444 0.0565 0.0571 6.3401
Fi=--0.9
Lambda
S.e. 0.0615 0.0562 21.8603 0.0614 0.0559 43.93 0.0582 0.0359 5.0536
Bias -0.0667 -0.0464 -0.2119 -0.0665 -0.0483 11.9799 -0.0571 -0.015 0.358
S.d. 0.0647 0.0574 7.0411 0.0644 0.0575 373.4841 0.0613 0.06 3.7825
Beta 0.7136 0.756 0.6051 0.7136 0.756 11.4596 0.7233 0.8221 1.1569
S.e 0.0558 0.0508 19.5658 0.0561 0.0506 39.2048 0.0619 0.0331 4.528
Bias -0.0864 -0.044 -0.1949 -0.0864 -0.044 10.6596 -0.0767 0.0221 0.3569
Fbias as % of true value -10.8% -5.5% -24.4% -10.8% -5.5% 1332% -9.6% 2.8% 44.6%
S.d. 0.0582 0.0518 6.2987 0.0583 0.0523 332.3963 0.0637 0.0714 3.3687

Note - S.e.: estimated standard errors;

Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda).
S.d.: finite sample bias' experimental standard deviations.
Fbias as % of true value: finite sample bias as a percentage of the true value of beta.

Abias as % of true value: asymptotic bias as a percentage of the true value.



Table 4 - Monte Carlo Results (N,T=50,20)

MG FE 1\ MG FE v FE [\
Omeg=0 Omega=0.2 Omeya=0.8
Beta=0.2
Fi=0

Lambda
S.e. 0.0318 0.0317 0.1369 0.0316 0.0314 0.1391 0.0293 0.0269 0.2116
Bias -0.0591 -0.0582 0.0061 -0.0585 -0.0596 0.0024 -0.0547 -0.1111-0.0837
S.d. 0.0328 0.0322 0.0629 0.0326 0.0328 0.063 0.0301 0.0493 0.1108
Beta 0.133 0.1679 0.2014 0.133 0.17 0.2041 0.133 0.2175 0.2632
S.e 0.0235 0.0228 0.0775 0.0262 0.0227 0.0788 0.0527 0.021 0.128
Bias -0.067 -0.0321 0.0014 -0.067 -0.03 0.0041 -0.067 0.0175 0.0632
Fbias as % of true value -33.5% -16.1% 0.7% -33.5% -15.0% 2.1% -33.5% 8.8% 31.6%
Abias as % of true value 1.8% 48.8%
S.d. 0.0235 0.0229 0.0434 0.0257 0.026 0.0461 0.0509 0.0665 0.0922

Fi=0.9
Lambda
S.e. 0.0473 0.0462 0.0806 0.0471 0.0457 0.0829 0.0436 0.0381 0.1459
Bias 0.0349 -0.019 0.0057 0.034 -0.0059 0.0115 0.0148 0.1367 0.0624
S.d. 0.0488 0.0474 0.0539 0.0487 0.0475 0.0539 0.0455 0.0568 0.0874
Beta 0.0858 0.1504 0.2004 0.0861 0.1444 0.1915 0.0954 0.0843 0.0853
S.e 0.0336 0.034 0.0659 0.0354 0.0338 0.0655 0.057 0.0299 0.0665
Bias -0.1142 -0.0496 0.0004 -0.1139 -0.0556 -0.0085 -0.1046 -0.1157 -0.1147
Fbias as % of true value -57.1% -24.8% 0.2% -57.0% -27.8% -4.3% -52.3% -57.9% -57.4%
S.d. 0.0338 0.0335 0.0529 0.035 0.0354 0.0545 0.055 0.0641 0.0871

Fi=--0.9
Lambda
S.e. 0.0501 0.0493 0.5291 0.0502 0.0487 0.5191 0.0496 0.0397 0.5309
Bias -0.1774 -0.1198 0.0089 -0.1763 -0.136 -0.0131 -0.1519 -0.374-0.2682
S.d. 0.0505 0.0497 0.1961 0.0505 0.0506 0.1917 0.0506 0.0707 0.2345
Beta 0.0657 0.1308 0.203 0.0653 0.1249 0.1982 0.0721 0.0614 0.1821
S.e 0.0345 0.0349 0.285 0.0361 0.0346 0.2821 0.0565 0.0309 0.3381
Bias -0.1343 -0.0692 0.003 -0.1347 -0.0751 -0.0018 -0.1279 -0.1386 -0.0179
Fbias as % of true value -67.2% -34.6% 1.5% -67.4% -37.6% -0.9% -64.0% -69.3% -9.0%
S.d. 0.0344 0.0343 0.1118 0.0355 0.0357 0.1116 0.0552 0.0548 0.1508

Beta=0.8
Fi=0

Lambda
S.e. 0.0228 0.0188 3.7494 0.0228 0.0187 3.5867 0.0227 0.0166 3.9044
Bias -0.0746 -0.0679 0.1404 -0.0746 -0.0687 -0.1721 -0.0704 -0.0663-0.2768
S.d. 0.0233 0.0194 4.3626 0.0233 0.0196 5.015 0.0229 0.0249 8.2833
Beta 0.6795 0.7417 0.9232 0.6796 0.743 0.6472 0.6853 0.7864 0.5948
S.e 0.0211 0.017 3.3473 0.0213 0.0169 3.2269 0.0246 0.0153 3.5664
Bias -0.1205 -0.0583 0.1232 -0.1204 -0.057 -0.1528 -0.1147 -0.0136 -0.2052
Fbias as % of true value -15.1% -7.3% 15.4% -15.1% -7.1% -19.1% -14.3% -1.7% -25.7%
Abias as % of true value 0.3% 6.2%
S.d. 0.0207 0.0183 3.8959 0.021 0.0186 4.4779 0.0244 0.0278 7.5651

Fi=0.9
Lambda
S.e. 0.0421 0.0343 1.0586 0.0421 0.0341 3.9655 0.0418 0.03 3.4717
Bias -0.0353 -0.0615 0.0396 -0.0353 -0.0615 0.7848 -0.0324 -0.0579 0.6013
S.d. 0.042 0.0325 1.6292 0.0418 0.0325 24.2966 0.041 0.0338 17.0949
Beta 0.6531 0.7412 0.8357 0.6532 0.742 1.474 0.6574 0.7706 1.4006
S.e 0.0385 0.0312 0.9543 0.0386 0.0311 3.4341 0.0405 0.0277 3.1393
Bias -0.1469 -0.0588 0.0357 -0.1468 -0.058 0.674 -0.1426 -0.0294 0.6006
Fbias as % of true value -18.4% -7.4% 4.5% -18.4% -7.3% 84.3% -17.8% -3.7% 75.1%
S.d. 0.0376 0.0302 1.5258 0.0375 0.0302 20.8421 0.0388 0.0324 15.9502

Fi=--0.9
Lambda
S.e. 0.0583 0.0483 16.2352 0.0583 0.0482 14.7817 0.0552 0.0292 0.3055
Bias -0.1699 -0.1231 0.5404 -0.1695 -0.1259 0.5422 -0.1471 -0.0454 0.06
S.d. 0.0589 0.0498 18.0415 0.059 0.05 17.8643 0.0564 0.0487 0.1114
Beta 0.5966 0.6923 1.2844 0.5972 0.6918 1.2877 0.6216 0.8078 0.9031
S.e 0.0528 0.0436 14.5323 0.0529 0.0435 13.2459 0.0527 0.0271 0.2802
Bias -0.2034 -0.1077 0.4844 -0.2028 -0.1082 0.4877 -0.1784 0.0078 0.1031
Fbias as % of true value -25.4% -13.5% 60.6% -25.4% -13.5% 61% -22.3% 1.0% 12.9%
S.d. 0.0541 0.0456 16.1269 0.0544 0.0458 16.0029 0.0547 0.0499 0.1011

Note - S.e.: estimated standard errors;

Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda).
S.d.: finite sample bias' experimental standard deviations.

Fbias as % of true value: finite sample bias as a percentage of the true value of beta.

Abias as % of true value: asymptotic bias as a percentage of the true value.



Table 5 - Monte Carlo Results (N,T=20,20)

MG FE v MG FE v MG FE v
Omega=0 Omega=0.2 Omega=0.8
Beta=0.2
Fi=0

Lambda
Se. 00502 0.0501 0.2154 0.0499 0.0497 0.2185 0.0463 0.0428 0.3428
Bias -0.0616 -0.06 -0.0005 -0.0614 -0.0617 -0.0044 -0.0578 -0.1105 -0.0924
S.d. 00491 0.0491 0.0998 0.0487 0.0497 0.1012 0.0457 0.0729 0.191
Beta 0.1345 0.1679 0.1975 0.1345 0.1697 0.2 0.1337 0.2117 0.2481
S.e 0.0365 0.0361 0.1221 0.041 0.036 0.1241 0.083 0.0333 0.209
Bias -0.0655 -0.0321 -0.0025 -0.0655 -0.0303 0 -0.0663 0.0117 0.0481
Fbias as % of true value -32.8% -16.1% -1.3% -32.8% -15.2% 0.0% -33.2% 5.9% 24.1%
Abias as % of true value 1.80% 48.76%
S.d. 00365 0.0352 0.0676 0.0405 0.0409 0.0718 0.081 0.1015 0.1505

Fi=0.9
Lambda
S.e. 00737 0.073 0.1267 0.0734 0.0722 0.1298 0.068 0.0603 0.2248
Bias 0.0296 -0.0215 0.0021 0.0283 -0.0095 0.007 0.0093 0.1252 0.0474
S.d. 00713 0.0711 0.0832 0.0713 0.0718 0.0839 0.0674 0.0848 0.1435
Beta 0.0881 0.151 0.1967 0.0883 0.1454 0.1884 0.0962 0.0867 0.0827
S.e 0.0521 0.0538 0.1045 0.0552 0.0534 0.1039 0.0898 0.0474 0.1085
Bias -0.1119 -0.049 -0.0033 -0.1117 -0.0546 -0.0116 -0.1038 -0.1133 -0.1173
Fbias as % of true value -56.0% -24.5% -1.7% -55.9% -27.3% -5.8% -51.9% -56.7% -58.7%
S.d. 00522 0.0526 0.0802 0.0548 0.0569 0.0831 0.0882 0.1027 0.1351

Fi=--0.9
Lambda
S.e. 00791 0.0781 0.8462 0.0791 0.0771 0.83 0.0778 0.0633 0.9303
Bias -0.1788 -0.1215 -0.0066 -0.1773 -0.1371 -0.0276 -0.1534 -0.3637 -0.271
S.d. 00801 0.0785 0.3038 0.0802 0.0791 0.3051 0.0787 0.1074 0.5034
Beta 0.0675 0.1312 0.1952 0.0674 0.125 0.19 0.0732 0.0607 0.1667
S.e 0.0539 0.0552 0.4559 0.0565 0.0548 0.4512 0.0886 0.049 0.5947
Bias -0.1325 -0.0688 -0.0048 -0.1326 -0.075 -0.01 -0.1268 -0.1393 -0.0333
Fbias as % of true value -66.3% -34.4% -2.4% -66.3% -37.5% -5.0% -63.4% -69.7% -16.7%
S.d. 00549 0.0546 0.1716 0.057 0.0572 0.175 0.087 0.0873 0.3248

Beta=0.8
Fi=0

Lambda
Se. 00355 0.0299 4.7085 0.0356 0.0298 5.0015 0.0353 0.0269 56.9449
Bias -0.0757 -0.0689 0.0044 -0.0758 -0.0699 -0.4241 -0.072 -0.0702 -15.8254
S.d. 00354 0.0305 8.0247 0.0352 0.0306 9.5895 0.0344 0.036 505.1086
Beta 0.6807 0.7396 0.8012 0.6806 0.7408 0.4154 0.6853 0.7784 -13.822
S.e 0.0328 0.027 4.1968 0.0331 0.027 4.4947 0.0382 0.0248 52.6981
Bias -0.1193 -0.0604 0.0012 -0.1194 -0.0592 -0.3846 -0.1147 -0.0216 -14.622
Fbias as % of true value -14.9% -7.6% 0.2% -14.9% -7.4% -48.1% -14.3% -2.7% -1827.8%
Abias as % of true value 0.3% 6.20%
S.d. 0.034 ®277 7.0965 0.0342 0.0281 8.5703 0.0385 0.0408 467.964

Fi=0.9
Lambda
Se. 00659 0.0547 1.7056 0.066 0.0545 2.3262 0.0653 0.0485 3.9622
Bias -0.0368 -0.0617 0.0171 -0.0365 -0.0619 -0.0947 -0.034 -0.0595 0.0016
S.d. 00657 0.0502 1.5336 0.0653 0.0498 3.5297 0.0647 0.0503 4.6627
Beta 0.6541 0.7388 0.8136 0.6538 0.7396 0.6908 0.6564 0.7642 0.8488
S.e 0.0601 0.0499 1.5339 0.0603 0.0496 2.1583 0.0629 0.0447 3.296
Bias -0.1459 -0.0612 0.0136 -0.1462 -0.0604 -0.1092 -0.1436 -0.0358 0.0488
Fbias as % of true value -18.2% -1.7% 1.7% -18.3% -7.6% -13.7% -18.0% -4.5% 6.1%
S.d. 00636 0.0469 1.3586 0.0635 0.047 3.6605 0.0648 0.0514 3.5815

Fi=--0.9
Lambda
S.e. 00905 0.0770 21.6392 0.0904 0.0768 16.4314 0.0859 0.0508 1.0953
Bias -0.1724 -0.1264 -0.1505 -0.1719 -0.1293 0.7013 -0.1525 -0.0648 0.1337
S.d. 00914 0.0789 33.8497 0.0909 0.0789 23.7062 0.0868 0.0774 2.6257
Beta 0.5961 0.6882 0.6630 0.5967 0.6877 1.4318 0.6183 0.7852 0.9633
S.e 0.0820 0.0695 19.3838 0.0820 0.0694 14.7180 0.0820 0.0469 0.9944
Bias -0.2039 -0.1118 -0.1370 -0.2033 -0.1123 0.6318 -0.1817 -0.0148 0.1633
Fbias as % of true value -25.5% -14.0% -17.1% -25.4% -14.0% 79.0% -22.7% -1.9% 20.4%
S.d. 00835 0.0710 30.3672 0.0832 0.0710 21.3443 0.0819 0.0778 2.3588

Note - S.e.: estimated standard errors;
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda).
S.d.: finite sample bias' experimental standard deviations.
Fbias as % of true value: finite sample bias as a percentage of the true value of beta.
Abias as % of true value: asymptotic bias as a percentage of the true value.



The following table summarises the implications of the assumptions on (3
and w when ¢ = 0:

Table 6-Summary of Experiment Design

B=w=02 B=08w=02 B=02w=08 B=w=08

Average roots +0.4 +0.9 +0.4 +0.9
Range of f; [£0.36] [£0.84] [£0.84] [£0.96]
Range of & [40.16] [£0.04] +0.64] +0.16]
Variance of 3; 2.1 x 1073 1.3 x 1074 3.4 x 1072 2.1 x 1073
Asyn. bias* 1.8% 0.3% 48.8% 6.2%

* In percent of the true value of 3.
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