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Abstract. This paper derives the exact functional form of an error
contaminated regression function when the error free regression is a polynomial
function of error free covariates (discrete or continuous) which are contaminated
by normally distributed measurement error, with coe¢cients which may be arbi-
trary functions of error free covariates. The form of higher order central moment
error contaminated regressions is examined and by way of example the form of
normal measurement error induced heteroskedasticity when the error free regres-
sion is linear and homoskedastic is derived.

The results of this paper may provide at least a partial explanation of mild
non-linearity and heteroskedasticity found in applied econometric work with sur-
vey data when error contamination, e.g. of income and expenditure data, is
likely. The error contaminated regression function is completely determined by
the coe¢cients in the error free regression, the measurement error variance and
the density of the observed covariates. This density can be estimated, opening
the way to estimation of error free regression functions using only data on the
response and the error contaminated covariate, to investigation of the poten-
tial impact of measurement error on structural error free regressions and to the
development of speci…cation tests sensitive to unmodelled measurement error.

Keywords: measurement error, attenuation, non-linear regression, non-
parametric regression, heteroskedasticity.

1. Introduction

Measurement error is pervasive in micro-econometric work and it can have damaging
e¤ects on inference. It is well known that measurement error can bring attenuation
e¤ects causing behavioural responses to appear less sharp than they actually are. Less
well known is that covariate measurement error can change the shapes of regression
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functions, although this phenomenon has been understood for over 50 years - see for
example Lindley (1947) and Cochran (1972). If the regression of Y on an error free
covariate, X, (i.e. EY jX [Y jX = x]) is linear then in general the regression of Y on
Z, an error contaminated version of X, is non-linear and when the regression of Y
on X is non-linear the regression of Y on Z generally has a di¤erent non-linear form.
Since there is increasing econometric interest in non-linear modelling and increasing
use of non-parametric regression estimation methods, recognition and understanding
of this e¤ect of measurement error is important.

Econometric applications of nonparametric regression often reveal mild nonlinearity,
and in parametric regression estimation it is often found that including squared and
higher powers of covariates improves …t. An old example appears in the production
function literature where developments such as the translog production function were
motivated partly by perceived failings in simpler functional forms. Recent examples
are provided by Banks, Blundell and Lewbel (1997) and Att…eld and Bhalotra (1998)
who, providing their own evidence contained in data from respectively Great Britain
and rural Pakistan, argue for the addition to the conventional Working-Leser Engel
curve of a quadratic term in log total expenditure. Banks et al survey many other
studies which come to a similar conclusion. Since covariate measurement error gen-
erally distorts the shapes of regression functions, it is possible that such observed
non-linearities are in part due to covariate measurement error, the error free regres-
sion perhaps taking a relatively simple form.

This suggests an econometric strategy in which relatively complex relationships
among observed variates are modelled using simple structural models combined with
realistic models of the observation process. This strategy has been widely used in
modelling duration data where simple hazard function models combined with simple
models of uncontrolled across individual heterogeneity can explain complex forms of
observed hazard function duration dependence1. In situations where measurement
error may be signi…cant the same sort of strategy can be employed. To do this it is
necessary to understand how measurement error distorts perceptions of underlying
structural relationships.

The relationship between error contaminated and error free regressions is studied
in general continuously distributed measurement error models in Chesher (1991, 1997)
using small parameter asymptotic approximations. The present paper considers a
leading special case, namely that in which measurement error is normally distributed
(the response and error free covariates can be non-normal, continuous or discrete).
It provides the exact form of the error contaminated regression function when the
error free regression is a polynomial function of a scalar X2 that is observed with
error, where the coe¢cients in the polynomial are arbitrary functions of an error
free vector X1. The tools to extend the result to multivariate polynomial functions of

1The impact of response measurement error on duration models, the relationship between re-
sponse measurement error and across individual heterogeneity and speci…cation tests sensitive to
measurement error are studied in Chesher, Dumangane and Smith (1998).
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vector X2 observed with error are provided. Higher order moment regression functions
are also studied and, as an example, the exact form of measurement error induced
heteroskedasticity is obtained for the case in which the error free regression is linear
and homoskedastic. In all these cases the distortion introduced by measurement
error is determined entirely upon the parameters of the error free regression, the
measurement error variance and the conditional density of the error contaminated
covariates given the error free covariates, f(z2jz1).

The assumption of normal measurement error is crucial in obtaining the exact
results reported here. However that assumption is often a quite realistic one since
in many applications a central limit theorem argument can be invoked in its favour.
I have in mind here the many situations in econometric work in which unobserved
covariates are replaced by estimates obtained from a …rst pass through the data.
Examples include the use of estimated Mills ratio terms in sample selection models
and the use of estimated regional prices in demand models. In macro-economic
contexts an aggregation argument will often lead to the same conclusion.

The results given here have a number of potential uses. First they allow explo-
ration of the potential impact of measurement error contamination of data on partic-
ular covariates. With an estimate of, or even a guess at, the variance of measurement
error and with an estimate of f(z2jz1), which could be obtained by parametric or
nonparametric methods, it is possible to gain a view of the impact of measurement
error on the shape of any posited structural error free regression function. For ex-
ample, the results imply that with one covariate and a linear error free regression,
E[Y jX = x] = a0 + a1x, the concavity of the error contaminated regression is at
each value of z precisely that of a1rz log f(z) where f(z) is the density of the error
contaminated covariate, Z = X + V and V » N(0; ¾2) independently of Y and X.
Second, and as elaborated2 in Chesher (1998), armed with an estimate of f(z2jz1)
it is possible to estimate the structural coe¢cients in the error free regression using
only data on the response and the error contaminated covariate data3 and if instru-
mental variables are available the information they contain can be incorporated to
gain improved e¢ciency. Third, the results allow construction of test statistics for
the hypothesis of no covariate measurement error. Finally, they suggest caution in
giving behavioural interpretations to all observed non-linearities in econometric re-
lationships if there is the possibility that covariates are measured with error, as of
course is often the case in microeconometric work.

2The procedure described in Chesher (1998) produces approximately consistent (in the sense that
the inconsistency is of order o(¾2)) estimators of coe¢cients in error free regressions without assuming
normality of measurement errors for a wide class of error free regressions..

3This is in contrast to the estimation procedure of Wolter and Fuller (1982) for the quadratic
error free regression model which has similar data requirements but rests on an assumption of joint
normality of the covariate measurement error and the response conditional on the error free covariates
and knowledge of their joint covariance matrix, and to the estimation procedure of Hausman, Newey
and Powell (1995) which requires instrumental variables or replicated measurements.
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2. Error free and error contaminated regressions

2.1. The exact error contaminated regression function. Let X 0 = [X 0
1
...X2]

with X2 scalar, let Z1 = X1, Z2 = X2 + ¾U where U is distributed independently
of X and Y , each of which may be continuous, discrete or mixed. The variates
V = ¾U and Z2 are to be interpreted as respectively measurement error and an error
contaminated measure of X2. Let f(z2jz1) be the conditional density of Z2 given Z1.
It is shown in Section 3 that, for Gaussian U and an error free regression which is a
Jth order polynomial in x2 with coe¢cients that may depend upon the error free x1:

E[Y jX = x] =
JX

j=0

aj(x1)x
j
2

the error contaminated regression of Y on Z is

E[Y jZ = z] =
JX

j=0

aj(z1)
1

f(z2jz1)

jX

i=0

µ
j
i

¶
(¡1)iGi(z; ¾2)zj¡i2 (1)

where the functions Gi(z; ¾2) satisfy the recurrence relation

Gi+1(z; ¾2) = ¡¾2rz2Gi(z; ¾2) + 1[i¸1]i¾2Gi¡1(z; ¾2)

G0(z; ¾2) = f(z2jz1):

2.2. Discussion. The error contaminated regression function can be expressed as
a polynomial of degree J in z2 with coe¢cients depending on the functions aj(z1), the
measurement error variance ¾2, the conditional density f(z2jz1) and its derivatives
with respect to z2 of order up to J .

As a simple example, when the error free regression is a quadratic function of
scalar x2 measured with error and of error free vector x1 (each of which can be
continuous or discrete) with

E[Y jX = x] = x01¯ + a0 + a1x2 + a2x22

the error contaminated regression function is

E[Y jZ = z] = z01¯+(a0+a2¾2)+a1z2+a2z22+¾2(a1+2a2z2)g(1)(z)+a2¾4g(2)(z) (2)

where

g(i)(z) =
f (i)(z2jz1)
f(z2jz1)

f(z2jz1) is the conditional density of Z2 given Z1 = z1 and superscript (i) indicates
di¤erentiation i times with respect to z2.
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Consider the case of linear error free regression. Setting a2 to zero in (2) gives
the following simple result.

E[Y jZ = z] = z01¯ + a0 + a1z2 + ¾2a1g(1)(z) (3)

When g(1)(z) = @ log f(z2jz1)=@z2 is non-linear in z2, measurement error destroys
the linearity of the error free regression. This log density derivative is linear when
Z2 given Z1 is itself normal and then this shape deformation is absent con…rming a
well known property of the fully Gaussian measurement error model. Note that when
f(z2jz1) is not normal the O(¾2) term in (3) can bring non-linear functions of z1 and
z2 into the error contaminated regression function.

The conditional density f(z2jz1) can be estimated by parametric methods, for
example as a mixture of normal distributions, or by nonparametric methods, and
then estimates of its derivatives can be obtained. It is then possible to compute a
score test of the hypothesis H0 : ¾2 = 0 which in this linear error free regression case
will examine the sample covariance of residuals around the …tted error free regression,
"̂i, and the estimated log density derivatives ĝ(1)(z).

The measurement error variance and the coe¢cients in the error free regression
can be estimated by a two step procedure, plugging the log density derivatives esti-
mated in the …rst step into (3) and applying some suitable M-estimation procedure.
This is investigated further in Chesher (1998).

The next Section formally states and proves the main result concerning the exact
error contaminated regression and compares it with the small variance approximation
given in Chesher (1991). Section 4 studies two extensions; …rst the case in which many
covariates are measured with error and then the exact form of higher moment error
contaminated regressions. Section 5 concludes.

3. The exact form of normal measurement error contaminated
polynomial regressions

In this Section the exact form of the error contaminated regression is derived for
the case in which the error free regression is a polynomial function of a scalar X2
which is observed with additive normal measurement error. The coe¢cients in this
polynomial are arbitrary functions of a vector X1 observed without error. The case
in which the error free regression is a multivariate polynomial function of vector X2
observed with error di¤ers only in notational complexity and the tools required to
produce the error contaminated regression for this case are given in Section 4.1.

The form of the error contaminated regression is given in the following Theorem.
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Theorem 1. Let Y be a scalar random variable and let X 0 = [X 0
1
...X2] be a vector

random variable with X2 scalar. Let Z1 = X1, Z2 = X2 + ¾U2 where U2 » N(0; 1)
independently of X and Y . Let the conditional density of Z2 given Z1 be denoted by
f(z2jz1). Assume that there exist functions of x1, aj(x1), j = 1; : : : ; J such that the
regression of Y on X exists and takes the following form.

E[Y jX = x] =
JX

j=0

aj(x1)x
j
2

Then the regression of Y on Z is

E[Y jZ = z] =
JX

j=0

aj(z1)
1

f(z2jz1)

jX

i=0

µ
j
i

¶
(¡1)iGi(z; ¾2)zj¡i2

where the functions Gi(z; ¾2) satisfy the recurrence relation

Gi+1(z; ¾2) = ¾2 ¡
1[i¸1]iGi¡1(z; ¾2) ¡ rz2Gi(z; ¾2)

¢

G0(z; ¾2) = f(z2jz1) (4)

The proof, which is given below, involves expressing E[Y jZ = z] as a linear
function (given z1) of E[Xj2 jZ = z], obtaining the latter expectations by exploiting
the properties of the normal density under di¤erentiation. First note the following
points about the conditions of the Theorem and the result.

Remark 1. Leading cases of interest are those in which

1. the functions aj(x1) are all independent of x1 so that x1 is absent from the
error free regression and the error free regression is a pure polynomial model.
In this case the conditional density f(z2jz1) can be replaced by the marginal
density of Z2, f(z2), and,

2. only a0(x1) depends on x1 in which case the error free regression is a partially
polynomial model, the sum of a polynomial function of x2 and an arbitrary
function of x1.

Remark 2. The function Gi(z; ¾2) is a polynomial of degree i in ¾2 with coe¢cients
involving derivatives of order up to i with respect to z2 of f(z2jz1). The …rst four of
these functions are as follows.

G1(z; ¾2) = ¡¾2f (1)(z2jz1)
G2(z; ¾2) = ¾4f (2)(z2jz1) + ¾2fZ(z2jz1)
G3(z; ¾2) = ¡¾6f (3)(z2jz1) ¡ 3¾4f (1)(z2jz1)
G4(z; ¾2) = ¾8f (4)(z2jz1) + 6¾6f (2)(z2jz1) + 3¾4f(z2jz1)
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where f (i)(z2jz1) = @if(z2jz1)=@zi2.

Remark 3. Both Y and X can be continuous, discrete or mixed discrete continuous.
Clearly only the regression of Y on X is relevant and so the nature of the distribution
of Y is irrelevant, except of course that its regression on X must exist. Since U2 is
normal, Z2 given Z1 = z1 has a continuous density with …nite derivatives of all orders,
as is shown in the proof which follows.

Proof of Theorem 1
The possibility that the distribution of X2 given X1 is mixed discrete continuous

is allowed. Let the conditional distribution function of X2 given X1 be

P [X2 · x2jX1 = x1] =
X

j2J (x2)

p(x2j jx1) +
Z x2
¡1

p¤(wjx1)dw

where p¤(wjx1) is a nonnegative function, p(x2j jx1) is the positive probability mass
located at the mass point x2j , J (w) = fj : x2j · wg, and

X

j2J (1)

p(x2j jx1) +
Z 1

¡1
p¤(wjx1)dw = 1:

The location and number of mass points may depend upon x1 but this is not made
explicit in the notation4.

Let Á(¢) denote the standard normal density function and de…ne

Gi(z; ¾2) = E[(Z2 ¡ X2)ijZ = z] £ f(z2jz1) (5)

where

f(z2jz1) =
X

j2J (1)

p(x2j jz1)
1
¾

Á(
z2 ¡ x2j

¾
) +

Z 1

¡1
p¤(x2jz1)

1
¾

Á(
z2 ¡ x2

¾
)dx2

is the conditional density of Z2 given Z1 = z1 which, note, is continuous with bounded
derivatives with respect to z2 of all orders. Then

Gi(z; ¾2) =
X

j2J (1)

(z2¡x2j)ip(x2j jz1)
1
¾

Á(
z2 ¡ x2j

¾
)+

Z 1

¡1
(z2¡x2)ip¤(x2jz1)

1
¾

Á(
z2 ¡ x2

¾
)dx2

and di¤erentiating with respect to z2 gives

Gi+1(z; ¾2) = ¾2 ¡
1[i¸1] iGi¡1(z; ¾2) ¡ rzGi(z; ¾2)

¢

4 In the purely discrete case p¤(wjx1) = 0 for all w. In the purely continuous case the index set
J (1) is empty.
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which with G0(z; ¾2) = f(z2jz1), which is implied by the de…nition of Gi(z; ¾2) in
(5), gives the expectation of (Z2 ¡ X2)i given Z = z for all i ¸ 0.

Expanding (Z2 ¡ X2)i in (5) gives

iX

j=0

µ
i
j

¶
(¡1)jzi¡j2 E[Xj2 jZ = z] = Gi(z; ¾2)=f(z2jz1)

and upon inverting

E[Xj2 jZ = z] =
1

f(z2jz1)

jX

i=0

µ
j
i

¶
(¡1)iGi(z; ¾2)zj¡i2 : (6)

Finally, because U is independent of Y ,

E[Y jZ = z] =
JX

j=0

aj(z1)E[Xj2 jZ = z]

and substituting (6) the proof is complete.¤

The conditional expectations of the …rst four powers of X2 which appear in
the error contaminated regression, expressed in terms of the functions g(i)(z) =
f (i)(z2jz1)=f(z2jz1) are5 as follows.

E[X2jZ = z] = z2 + ¾2g(1)(z)

E[X2
2 jZ = z] = z22 + 2z2¾2g(1)(z) + ¾4g(2)(z) + ¾2

E[X3
2 jZ = z] = z32 + 3z22¾2g(1)(z) + 3z2(¾4g(2)(z) + ¾2)

+¾6g(3)(z) + 3¾4g(1)(z)

E[X4
2 jZ = z] = z42 + 4z32¾

2g(1)(z) + 6z22(¾
4g(2)(z) + ¾2)

+4z(¾6g(3)(z) + 3¾4g(1)(z)) + ¾8g(4)(z) + 6¾6g(2)(z) + 3¾4

The error contaminated regression can be re-expressed as

E[Y jZ = z] =
1

f(z2jz1)
JX

j=0

zj2

ÃJ¡jX

s=0

as+j(z1)
µ

s + j
s

¶
(¡1)sGs(z; ¾2)

!

which is a polynomial function of z2 of the same degree, J , as the polynomial error
free regression with coe¢cients depending on ¾2, and the functions aj(z1) and g(j)(z),
j = 0; : : : ; J . If f(z2jz1), and hence the g(j)(z), were known then the parameters of

5For the case in which X1 is absent from the problem the …rst of these results is given in Das and
Mulder (1983).
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the error free regression could, when identi…cation permits, be estimated directly by
non-linear least squares using only realisations of the response and the error con-
taminated covariates. Since realisations of Z are available the functions g(j)(z) can
be estimated and the estimates “plugged in” prior to calculation of non-linear least
squares estimates. Of course this sort of estimation procedure cannot be implemented
when the structural parameters of the error free regression cannot be identi…ed from
knowledge of the function (1). Lack of identi…ability arises for example when the
functions g(i)(z) are polynomials in z2 ruling out the case in which Z (and therefore
X) is itself normally distributed6.

For the case in which X is continuously distributed and for a wide class of contin-
uous measurement error distributions, Chesher (1991) gives small measurement error
variance approximations to error contaminated regressions which, when there is just
one covariate measured with error, specialise to

raZ(z) = rX(z) + ¾2r(1)X (z)g(1)(z) +
¾2

2
r(2)X (z)

where rZ(z) and rX(z) are respectively the error contaminated and error free regres-
sion functions expressed as functions of z, rZ(z) = raZ(z) + o(¾2) and r(i)X (z) is the
ith derivative with respect to z2 of rX(z).

Theorem 1 shows that with normally distributed measurement error the remainder
terms for degree J = 1; 2; 3 polynomial error free regressions rX(z) =

PJ
j=0 ajxj are

as follows.

J = 1 : rZ(z) ¡ raZ(z) = 0
J = 2 : rZ(z) ¡ raZ(z) = a2¾4g(2)(z)
J = 3 : rZ(z) ¡ raZ(z) = ¾4 ¡

a2g(2)(z) + 3a3zg(2)(z) + 3a3g(1)(z)
¢

+ ¾6a3g(3)(z)

The small variance approximation is exact when the error free regression is linear.
When it is quadratic the remainder term is larger the further from zero is

g(2)(z) = r(2)
z2 log f(z2jz1) +

³
r(1)
z2 log f(z2jz1)

´2
:

In the case in which Z2 given Z1 is normally distributed with mean ¹(z1) and variance
¸2 the remainder term for this quadratic case is

rZ(z) ¡ raZ(z) = a2
³¾

¸

´4 ³
(z2 ¡ ¹(z1))2 ¡ ¸2

´

which quickly becomes negligible as the variance of the measurement error becomes
small relative to the conditional variance of Z2 given Z1.

6Unless ¾2 is known or a consistent estimate of it is available.
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4. Extensions

4.1. Many covariates measured with error. Now suppose that the error free
regression is a multivariate polynomial function of a P element vector X with constant
coe¢cients

E[Y jX = x] =
MX

m=1

am
PY

p=1

xJmpp

where M is the number of terms (not necessarily distinct) in the polynomial re-
gression, am is the coe¢cient associated with the mth term, and J is a M £ P array
containing in its (m; p) position the power to which xp is raised in the mth term. Sup-
pose that X is observed with error, which potentially a¤ects all of its components.
Let the error contaminated Z be

Z = X + U

where U is NP (0;§), distributed independently of Y and X. The regression of Y on
Z is then

E[Y jZ = z] =
MX

m=1

amE

2
4
PY

p=1

XJmpp jZ = z

3
5 : (7)

The conditional expectations in this expression can be obtained using the following
result, a multivariate extension of (4). Let

Gi1;i2;:::;iP = E[
PY

p=1

(zp ¡ xp)ip jZ = z]f(z)

where f(z) is the density function of Z. These functions obey the recursion
2
6664

Gi1+1;i2;:::;iP
Gi1;i2+1;:::;iP

...
Gi1;i2;:::;iP+1

3
7775 = §diag(1[ip¸1]ip)

2
6664

Gi1¡1;i2;:::;iP
Gi1;i2¡1;:::;iP

...
Gi1;i2;:::;iP¡1

3
7775 ¡ §

2
6664

rz1Gi1;i2;:::;iP
rz2Gi1;i2;:::;iP

...
rzPGi1;i2;:::;iP

3
7775

which, together with the initial condition G0;0;:::;0 = f(z)¶P where ¶P is a P -element
vector of ones, generates E[

QP
p=1(zp¡xp)ip jZ = z] for all combinations of nonnegative

i1; : : : ; iP . From this the expectations in (7) can be obtained. The result for the case
in which some components of X are observed without error are obtained by setting
the appropriate elements of § to zero and the coe¢cients, am, can be functions of
error free covariates. As earlier it is then possible to express the error contaminated
regression in terms of the conditional density of the error contaminated covariates
given the error free covariates.
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For low order polynomial regression a direct attack is straight forward as the
following example shows.

Example 1. Let the error free regression be the following quadratic function of x.

E[Y jX = x] = ® + x0¯ + x0¡x

The marginal density function of Z is

f(z) =
Z

fZX(z; x)dx

=
Z

j§j¡1=2fX(x)(2¼)¡P=2 exp(¡1
2
(z ¡ x)§¡1(z ¡ x))dx

which has (vector) …rst and (matrix) second derivatives with respect to z

f (1)(z) = ¡
Z

§¡1(z ¡ x)fZX(z; x)dx

f (2)(z) = ¡
Z ¡

§¡1 ¡ §¡1(z ¡ x)(z ¡ x)0§¡1
¢
fZX(z; x)dx

from which it follows that

E[XjZ = z] = z + §
f (1)(z)
f(z)

E[XX 0jZ = z] = zz0 + § + §
f (1)(z)
f(z)

z0 + z
f (1)(z)0

f(z)
§ + §

f (2)(z)
f(z)

§:

Therefore the error contaminated regression is as follows.

E[Y jZ = z] = ® + z0¯ + z0¡z +
f (1)(z)0

f(z)
§¯ + trace(¡§) + z0¡§

f (1)(z)
f(z)

+
f (1)(z)0

f(z)
§¡z + trace(§¡§

f (2)(z)
f(z)

)

4.2. Measurement error induced heteroskedasticity. When error free co-
variates are non-normal there is generally heteroskedastic variation around the error
contaminated regression even though the variation around the error free regression
may be homoskedastic. The exact form of this variation can be obtained when mea-
surement error is normal. Returning to the case in which one covariate is measured
with error, let Y have a polynomial regression on potentially error contaminated
scalar X2 with coe¢cients that are functions of error free X1 and suppose the second
and higher central moments,

E[(Y ¡
JX

j=0

aj(X1)X
j
2)
sjX = x] = ¹s;



Polynomial regression with normal covariate measurement error 12

(where ¹0 = 1, ¹1 = 0) are independent7 of X. It follows that

E[Y sjX = x] =
sX

k=0

µ
s
k

¶
¹k

0
@
JX

j=0

aj(x1)x
j
2

1
A
s¡k

:

This is a polynomial function of x2 and applying Theorem 1 gives the conditional
moments of Y given Z = z in terms of powers of z2, the coe¢cients aj(z1), the
conditional density function of Z2 given Z1 and its derivatives with respect to z2.

Example 2. Let the regression of Y on scalar X be linear (E[Y jX = x] = a0 + a1x)
with V ar[Y jX = x] = ¹2, independent of x. With Z = X + ¾U and U » N(0; 1)
independent of Y and X, the skedastic function of Y given Z is as follows.

V [Y jZ = z] = ¹2 + a21¾
2 + a21¾

4
³
g(2)Z (z) ¡ g(1)Z (z)2

´
(8)

Note that
g(2)Z (z) ¡ g(1)Z (z)2 = r(2)

z log fZ(z):

This is constant when X (and therefore Z) is normally distributed so that this result
reproduces the well known result for the fully Gaussian model, namely that in that
case measurement error does not cause heteroskedasticity. Equation (8) shows that
with non-normal error free covariates, normal measurement error and homoskedastic
linear regression on error free covariates there is always heteroskedasticity around
the error contaminated regression function, which, as shown in the small variance
approximations in Chesher (1997, 1998), is of order o(¾2).

5. Concluding remarks

This paper has derived the exact functional form of an error contaminated regression
function when the error free regression is a polynomial function of an error free covari-
ate (discrete or continuous), subject to normally distributed measurement error, with
coe¢cients which may be arbitrary functions of error free covariates. The extension
to the case in which the error free regression is a polynomial function of a vector of
potentially error contaminated covariates has been indicated. Higher order, central
moment, error contaminated regressions are easily derived and, as an example, the
exact form of heteroskedasticity induced by normal measurement error in a linear,
homoskedastic error free regression has been derived.

7The method used here could also be employed if these conditional moments were polynomial
functions of x.
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These results may provide a partial explanation of mild non-linearity and het-
eroskedasticity found in applied econometric work with survey data when error con-
tamination, e.g. of income and expenditure data, is likely. The error contaminated
regressions depend upon the density of the observed covariates which can be esti-
mated, opening the way to estimation of error free regression functions using only
data on the response and the error contaminated covariate. This provides an alterna-
tive to the instrumental variables procedure with similar data requirements for linear
error free regression models proposed by Lewbel (1997) whose procedure, unlike that
proposed here, does not readily extend to non-linear error free regressions.

Hausman, Newey and Powell (1995), in a situation in which there are replicated
measurements of error contaminated covariates, propose consistent estimation of co-
e¢cients of general non-linear regressions, E[Y jX = x] = h(x; ¯), via estimation of
the coe¢cients of the linear projection of Y onto polynomial functions of x, minimum
distance estimation producing estimators of ¯ from these estimated coe¢cients. For
the normal measurement error case, employing an estimate of the density of the error
contaminated covariates as proposed in Chesher (1998), the result of this paper sug-
gests that it is possible to dispense with the requirement of replicated measurements.
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