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Abstract

In this paper, local relationship between per capita health care expenditure (HCE
hereafter) and GDP is investigated with local quantile regressions. The advantage of
using local quantile regressions is the assumption of homogeneity on per capita HCE
could be relaxed so the number of countries in a cross-sectional model can be enlarged.
Per capita GDP and HCE of 151 countries in 2000 and 25 %, 50 % and 75 % quantile
regressions are considered in this paper. To check significance of the relationship in
local quantile regressions, significance tests for nonparametric regressions suggested
by Racine (1997) and Ait-Sahalia et al. (2001) are implemented. The adequacy of of
these tests are investigated with Monte Carlo simulations whose primary simulation
results reveal these test are suggestive. Our empirical results show that per capita
GDP has significant effect on per capita health expenditure. The sizes of effect are
quite different among 25 %, 50 % and 75 % quantiles. Besides, the effects are found
distinct among different ranges of per capita income. In other words, the per capita
health care expenditures are heterskedastic. The conditional distribution of health
care expenditure on per capita GDP is asymmetric and skewed to the left. For low
per capita GDP countries, the effect of income on health expenditure is insignificant,
which indicates the health care is a necessity. On the contrast, the effect becomes
larger for the countries with high per capita GDPs, which implies the health care is a

luxury in these countries.



1 Introduction

Whether health care is a luxury good, i.e., income elasticity of expenditures is above or
below 1.0, has been debated for more than a decade. And the empirical results shown
in literature are confusing and conflicting as well. Regressing per capita health care
expenditure (HCE, hereafter) on per capita GDP of 13 OECD countries, Newhouse (1977)
concludes the health care is a luxury good. However, Gerdttham and Jonsson (2000)
finds the GDP elasticity of HCE is around slightly less than one from a cross-section
model using data of OECD countries. Due to the disadvantages of cross-section models
being faulted for small data sets and the implicit assumption of homogeniety of HCE
across OECD countries, time series models with panel data have been studied recently
by Gerdtham (1992), Hitiris and Posnett (1992), Gerdtham et al. (1992), Blomqvist and
Carter (1997), Gerdtham and Loéthgren (2000) and Okunade and Karakus (2001). Even
the curse of sample size of cross-section data is overcome via using panel data set, the
spurious regression could be resulted in the nonstationarity of time series data caused by
the existence of unit roots, nonlinearity (i.e., structural changes and thresholds), outliers.
Consequently, reliable empirical results from time series models are difficult to obtain.
Therefore, models allow large cross-section data are required.

Instead of studying the global relation between HCE and GDP, the local relation-
ship is investigated in this paper via using local quantile regression suggested by Yu and
Jones (1998). The advantage of using quantile regression to study the local relation be-
tween HCE and GDP is the assumption of homogeneity of HCE could be relaxed. Conse-
quently, the sample size of cross-section data under study is allowed enlarged. Thus, the
per capita GDPs and per capita HCE of 151 countries in 2000 are considered in this paper.
To check significance of the relationship in local quantile regressions, significance tests for
nonparametric regressions suggested by Racine (1997) and Ait-Sahalia et al. (2001) are
implemented. The adequacy of these tests is investigated with Monte Carlo simulations.
Based on our primary simulation results, these test are suggestive. Our empirical results
show that the per capita GDP has significant effect on per capita HCE. The sizes of effect
are quite different among 25 %, 50 % and 75 % quantiles. Besides, the effects are also

found distinct for different ranges of per capita GDP. For low per capita GDP countries,



the effect of income on health expenditure is small, which indicates health care is a neces-
sity in these countries. On the contrary, the effect becomes larger for the countries with
high per capita GDPs, which implies health care is a luxury for them.

The remains of this paper are organized as follows. The basic concept of local linear
quantile regressions are introduced in section 2. Section 3 demonstrates the significance
tests in local linear regressions. Performance of the significance tests is investigated in
section 4. An empirical study on the effect of per capita GDP on per capita HCE using
local quantile regression is presented in section 5. Conclusions and suggestions are raised

in the final section.

2 Local Linear Quantile Regressions

In a regression analysis, the condition mean of a variable Y on other k variables X,
E(Y|X) = Q(X), is of interest. The conditional mean can either be specified “para-
metrically” as E(Y|X) = Q(X;3) in which 8 is the parameter vector or be specified
“nonparametrically” as E(Y|X) = Q(X). In literature, parametric models are usually
classified into linear and nonlinear ones. The conditional mean is said to be a linear para-
metric model if Q(X; 3) = X3 and a nonlinear parametric model if Q(X; 3) is a nonlinear
function in B. On the other hand, a nonparametric model is the one with no parametric
functional form specified for the conditional mean Q(X). Nonparametric regression anal-
ysis has been widely discussed in literature recently. In some circumstances, conditional
quantile rather than conditional mean is of interest, such as VaR (value-at-risk) in finance.

Koenker and Bassett (1978) extend the concepts of population quantiles to the linear
quantile regression in which the 7th quantile relationship between response variable Y and

explanatory variables X at X = « is represented as
Q.(Y|X = @) = 28,.

It is ready to see

z03,
T = / fy(slx)ds

o

where fy() is the density function of Y. Then, a quantile regression model for a sample



{(y;, x}),t =1,... , T} can be written as
Y = T8, + Uy t=1,... T,

where x, is a k x 1 vector of the ¢tth sample observations of X', x,y =1, and w, is ii.d.
with distribution F. Q. (u,,|x,) = 0 follows the above definitions immediately. In light
of the fashion of sample quantile estimators, the sample point estimator BT of the linear

quantile regression parameters, 3., is obtained by solving

T
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The k-dimensional BT constructs a sequences of hyperplanes which estimate the re-
sponse variable over whole conditional distribution given different 7’s. Through the re-
gression quantiles, the combination of x; and BT, the conditional distribution of response
variable can be explored. Furthermore, the optimization mechanism specified in (2) sug-
gests a feasible way to sort the sample observations, whereas it is vague how to sort the
observations in general parametric models. Other characteristics of regression quantiles are
inherent robustness and equivariant properties, see Koenker and Bassett (1978) for more
details. The estimation for linear quantile regression is suggested by Koenker and d’Orey
(1987)and for nonlinear quantile regression is suggested by Koenker and Park (1996). The
asymptotic distribution of quantile regression estimators in linear models with i.i.d. er-
rors is derived by Koenker and Bassett (1978), with heteroskedastic errors by Koenker
and Zhao (1996) and Zhao (1997), and with strong mixing errors by Fitzenberger (1997),
respectively.

In stead of specifying the linear quantile relationship between Y and X “globally”, the
“local” linear quantile regression is considered by Yu and Jones (1998). The local linear
fit is to approximate the unknown regression function m._(z) with a linear function, i.e.,
m, (z) = m_(z) + m.(z)(z — ) = a + b(z — z), for z is a neighborhood of z. Locally

estimating m_(x) is equivalent to estimating a, and estimating m/(x) is equivalent to



estimating b. The local linear quantile estimators are obtained as

T
1 T, —
arg min - g pT(ytab(xtz))K( th ), (3)
: t=1

.
where K(-) is a kernel function and k. is the bandwidth of kernel or the smoothing
parameter. It is clear that a = . (z) is the fitted value of Y at X = z and b = /. (z)
is the first derivative of ¥ on X at X = z. It is well known that the estimations are
insensitive to the kernel function K () but very sensitive to the selection of bandwidth h.

Yu and Jones (1998) suggest the automatic bandwidth selection as:

where hyjean is the optimal bandwidth selection for regression mean estimation. Several
data-driven bandwidth selectors have been introduced in literature, e.g., cross-validation
method of Rudemo (1982) and Vieu (1995), generalized cross-validation method of Wahba (1977)
and plug-in method of Ruppert et al. (1995). Hall and Johnstone (1992) point out
that bandwidth selected by cross-validation methods may vary substantially. Jones et
al. (1996) provid a complete survey for methods of bandwidth selection. In addition,
the pre-asymptotic substitution selector proposed by Fan and Gijbels (1995) and the
empirical-bias bandwidth selector (EBBS) by Ruppert (1997), are also useful alternatives.
In regression analyzes, checking the significance of X on Y is commonly required after
estimation. To the best of our knowledge, there is not any test provided to check the
significance of X on Y in local linear quantile regressions. In the next section, we extend
the significance tests suggested by Racine (1997) and Ait-Sahalia (2001) for nonparametric

regressions to local linear quantile regressions.

3 Significance Tests for Local linear Quantile Regressions

In this section, tests proposed by Racine (1997) and Ait-Sahalia (2001) for the nonpara-
metric regressions are extended to construction of the significance tests for local linear

quantile regressions.



3.1 Racine’s Test for Local quantile Regressions

Consider the local quantile regression function y = m._(z)+e€ between two random variables
X and Y, where m_(z) is the 7-th quantile conditional on X = z. That is the conditional
T-quantile of Y on X =z is Q. (Y|X = z) = m_(x). Then X is said to have no influence
on Y under the 7-th percentile of Y if m_(x) = Q.(Y) where @ (Y) is the unconditional

quantile of Y. The Racine’s significance test bases on the following intuition:

9Q,(Y]X)

Q- YX)LX & —5+

=0a.s., (4)

where | denotes “orthogonal to” or “independent to”. Then the null hypothesis can be

represented as: Hj : % =0 forallx € X against the alternative H 4 : w #+
0 forsomex € X. Due to the variability of partial derivatives, the tests must be formu-
lated to detect whether the partial derivatives equal to 0 over entire domain. Therefore, an
aggregate measure of the derivatives over it’s domain is necessary. Thus the null hypothesis

is revised as:

0Q.(Y1X)]*
Hy:\=FE/|—/—=——"72| =0
0 "I ax |
against the alternative )
[0Q,(Y]X)]
Hy:\=F/|""—2
A L 8X > 07

where ¢ denotes a unit vector. It is clear that A is an aggregation of squared derivatives
of each x on Q_ (Y|X = z). The null hypothesis is rejected when X is larger than 0
significantly. Denote m/ (z,) as the estimated first derivatives of ¥ on X at X = z,
from the sample observations {(y;,x;),t = 1,...,T}. The test statistic suggested by
Racine (1997) is

t=1
In this paper, the following bootstrapping procedures are applied to obtain the null

distribution of Ay and then the critical values at significant level 1 — a:

1 . Given original bivariate sample data, {(y,,z;),t = 1,...,T}, estimate the un-
conditional quantile of Y, that is, QT(Y). As the null hypothesis is Q. (Y]X)LX,
Q.(Y|X) = Q,(Y) is implied.



2 . Calculate the residuals &, =y, — Q. (V) for t =1,...,T.

3 . Draw a “bootstrapped residual sample” from residuals {52‘}th1 randomly with
replacement.

4 . Generate a pseudo dependent variable yf as y; = Q. (Y) +¢ef,t=1,...,T.

5 . Given the pseudo sample observations, {(z,,y;),t = 1,... ,T'}, the bootstrapped

test statistic \* is calculated.

6 . Repeat steps 3-5 for B times, the bootstrapped 5\’{, 5\3 e ,5\*3 are calculated and

then the empirical sampling distribution of the statistic under the null is obtained.

Denote Aj_,, as the empirical (1 —«)-th percentile of 5\1‘ A§, e 5\*3 and 5\T as the test
statistic calculated from the original sample observations {(x;,y,),t = 1,... ,T}. Then,

the null is rejected at significance level o when 5\T > A,

3.2 Ait-Sahalia’s Test for Local Quantile Regressions

According to Ait-Sahalia et al. (2001), the null hypothesis of regressor X has no contri-

bution to Y, that is,

Hy : Pr{m, (2) = Q,(V)] = 1
against the alternative,

H, : Prim.(z) = Q,(V)] < 1.

That is, the unconstrained estimator m_(z) and the constrained estimator Q. (Y') will be
equal with probability one when the null is true, otherwise the probability will be less
than one. Denote 7. (z;) as the fitted value of ¥ given X = z, and Q,(Y) as the sample
quantile from the sample observations {(y,, z;),t = 1,... ,T}. The test statistic suggested
by Ait-Sahalia et al. (2001) is written as
R 1 R . )
Ly = T Z[mT(xt) - Q- (V).
t=1
Similarly, the following bootstrapping procedures are applied to obtain the null distri-

bution of ;- and then the critical values with significant level 1 — o



1 . Given the original data set, the unrestricted and restricted regression functions
are estimated respectively, i.e., 7, (z;) and Q. (Y). Then the test statistic ' is

calculated.

~

2 . Calculate the residuals under the null hypothesis: ¢, =y, — Q. (Y), t=1,... ,T.
Then a pseudo sample is bootstrapped through y; = QT(Y) +e, t=1,....,T,
where £* are the bootstrapped residuals drawn randomly with replacement 7" times

from the original residuals e.
3 . Estimate the statistic fT using the pseudo sample {y, :L‘t}g;l and denote as f’{

4 . Repeat steps 2 and 3 for B times, then f’{, e ,f*B are calculated and the empirical
sampling distribution of the test statistic under the null could be constructed using

ok sk
Pr,... T

Then the empirical sampling distribution of the test statistic is obtained. Since the test

statistic I'; is the squared difference between 7. () and Q. (Y), which is always positive,

thus the one-sided test is considered. Denote f"("l_a) as the (1 — «) sample percentile from
*

A’{, . ,f*B. Then a test of size a can be conducted by comparing whether fT > f(l_a).

If positive, H, is rejected, otherwise H, can’t not be rejected.

4 Simulation Studies

To the best of our knowledge, there is no literature studying the significance tests in
local quantile regressions yet. To check the adequacy of employing the tests suggested by
Racine (1997) and Ait-Sahalia et al. (2001) to local quantile regressions, their performances
are studied with simulations. In this section, linear and nonlinear DGPs are designed to
evaluate the performances of the two tests respectively.

Our simulations focus on three conditional quantiles, 25%,50%, and 75%. Besides,
the significance level is 5%, the sample size T' is 100. For each simulation, 200 bootstrap

resamplings and 200 replications are taken.



4.1 Linear DGP

In oder to evaluate the performances of these two tests under conventional linear models,

a linear DGP is specified as,
vy =2+4+z0. +e,t=1,...,T,

where z, and ¢, are i.i.d N(0,1). Under the null hypothesis, X has no contribution to Y,
thus the null DGP specified 5. = 0. Then the ratio of the null hypothesis being rejected
can be obtained, which is the size of the test. On the other hand, under the alternative,
X has significant effect on Y, 3, is specified to be 3. In our simulations, the bandwidth
h is chosen according to the practical method suggested by Yu and Jones(1998) and the
Gaussian kernel is taken in estimating local quantile regressions.

As the results showed in Table 1, two tests perform quite well under linear DGP.
The empirical sizes under three quantiles are smaller than the specified nominal size 5 %.

Besides, the empirical powers under three quantiles are all quite close to 1.

Table 1. Reject frequency of tests in DGP: y, = 2+2,6, +¢,

Size Power
Racine’s Test
T=25% 0.035 0.995
T=50% 0.040 0.995
T=7% 0.055 1.000
Ait-Sahalia’s Test
T=25% 0.055 0.940
T=50% 0.050 0.935
T=7% 0.015 0.875

4.2 Nonlinear DGP

It is well known that nonparametric methods are specified in estimating nonlinear models.
Thus it is interesting for us to design a nonlinear DGP to evaluate the performances of

these two tests. The nonlinear DGP is specified as,

Ye = 2+ sin(z,8;) + &,



where, x, and €, are i.i.d. N(0,1). The empirical sizes and powers are presented in Table 2.
Similarly, the simulated results indicate these two tests perform quite well under nonlinear
DGP.

Table 2. Reject frequency of tests in DGP:

Yp =2+ sin(z,0;) + €

Size Power
Racine’s Test
T=25% 0.020 0.990
=50 % 0.020 0.990
T=T5% 0.035 0.985
Ait-Sahalia’s Test
T=25% 0.015 0.910
T =50 % 0.025 0.935
T="T5% 0.020 0.820

To summary, significance tests suggested by Racine (1997) and Ait-Sahalia et al. (2001)

are supported by our simulations for local quantile regressions.

5 Empirical Studies for Health Care Expenditure

To answer whether health care is “a necessity” or “a luxury”, most of empirical studies
are restricted to OECD countries to avoid the problem of heterogeneity in health care
data. In this paper, we study the relationship between the HCE and per capita GDP
comprehensively over 151 countries in 2000. As different local quantiles are employed
in this paper, the curse of heterogeneity in health care data can be avoided. That is, a
local quantile regression is considered to study the impact of per capita GDP on HCE.
To investigate the significance of per capita GDP on HCE, tests of Racine (1997) and
Ait-Sahalia et al. (2001) discussed above are implemented. Testing results are presented

in Table 3.



Table 3. Significance Testing Results of regressing per capita HCE on GDP

Test Statistic Critical Value Conclusion
Racine’s Test
T=25% 0.0032045494 0.00011670343 reject H
T="50% 0.0044326355 0.00042350174 reject H
T=T5% 0.0056384925 0.0042760529 reject H
Ait-Sahalia’s Test
T=25% 585309.31 26646.703 reject H
T="50% 730986.85 34605.482 reject H,,
T=175% 839407.18 202131.22 reject H

From Table 3, the relationships between per capita HCE and GDP are all significant for
quantiles 25 %, 50 % and 75 %. Therefore, we conclude there exists significant relationship
between per capita GDP and HCE.

The estimation results of local quantile regressions are plotted in Figure 1. Several
findings can be obtained from Figure 1. First, it is obvious that the effects of per capita
GDP on heath expenditure are all positive for different considered quantiles. However,
the effects are different among different quantiles. For countries with low per capita GDP,
the slopes of estimated local quantile regressions of 25 %, 50 % and 75 % are positive but
small. This indicates the impact of per capita GDP on HCE is small and the heath care is
“a necessity” in these countries. However, the slopes become larger for countries with high
per capita income, typically higher than $ 20,000. In other words, health care becomes “a
luxury” for countries with per capita GDP higher than $ 20,000. Health care is in-between
“a necessity” and “a luxury” for countries with middle level of per capital GDP. Second,
the heterogeneity is obviously observed in per capita HCE. The variance of per capita
HCE is small for countries with low per capita GDP but becomes larger for countries with
high per capita GDP. This confirms the necessity of restricting the sample observations
to OECD countries for holding the homogeneity of HCE when the conditional mean is
considered. Third, the conditional distribution of per capita HCE on GDP is skewed to
the right since the difference between 25 % and 50 % is smaller than the one between 50 %

and 75 %. Besides, the skewness is reducing as the per capita GDP getting larger.
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Figure 1: Estimated Local Quantile Regressions of HCE on GDP

6 Some Conclusions

It is debatable to conclude whether health care is “a necessity” or “a lexury”. Most of
empirical studies are restricted to OECD countries to hold the homogeneity of health care
expenditure data and to do the least square estimation for the linear conditional mean
function. In stead of taking OECD countries as sample observations and estimating condi-
tional linear conditional mean, 151 countries in 2000 are taken as our sample observations
and 25 %, 50 % and 75 % local quantile regressions are estimated. To investigate the
performance of significance tests suggested by Racine (1997) and Ait-Sahalia et al. (2001)
for local quantile regressions, simulations are conducted. Applicability of these two tests
are supported by our simulation results. To the best of our knowledge, this is the first
study on the significance test for local quantile regressions.

Three main findings are obtained from our empirical study. First, the effect of per
capita GDP on HCE is small for countries with low per capita GDP. On the other hand,

the effect becomes larger for countries with high per capita GDP. Therefore, health care is

11



“a necessity” for countries with low per capita GDP is concluded. However, it becomes “a
luxury” for countries with high per capita GDP. Second, heterogeneity does exist in the
per capita GDP data. This confirms the necessity of restricting the sample observations
for OECD countries to hold the homogeneity of HCE hold for estimating the conditional
mean. Third, the conditional distribution of per capita HCE on GDP is asymmetric and

skewed to the right. The asymmetricity is reducing as the per capita GDP getting larger.
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