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Abstract

In this paper I use the proportion of turning points located in
the sample path to of time series data to describe that data. I show
that the proportion of turning points can be directly related to the
data generating process and therefore provides a methodology for es-
timation and testing of models. This methodology has two main ad-
vantages. First, it has direct links back to the visual intuition that
practitioners obtain from the inspection of graphs. Second, it turns
out to be very robust as the methodology developed here does not
require that any of the moments of the series Yt exist.
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When we behold one of the familiar graphs of economic time se-
ries .... we undoubtedly have, ... , the impression of an irregular
regularity of fluctuations. Our first and foremost task is to mea-
sure them and to describe their mechanism. Schumpeter (1939)

1 Introduction

Many of the stylized facts and much of the intuition that economists develop
about macroeconomic phenomena such as business cycles comes from the
inspection of graphs of time series; Jugular’s (1862) table-graph of credit
cycles and Jevons (1862) graphs in his Study of Periodic Commercial Fluc-
tuations provide early examples of such visual intuition. Today, it remains
natural to start an empirical economic inquiry by viewing the graph of some
economic time series such as that of ln(US GDP) shown in Figure 1.

Figure 1: Time series of Ln(US GDP), its first and second differences
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When one looks at Figure 1 the human eye is drawn to certain features
of the sample path. The first of these is the pattern of rises and falls in
the level of the series – the absence of any such patterns would mark the
series as unusual in economics and in the applied sciences. If a time series
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is generally moving upwards or downwards then, the eye notices periods in
which the trend is temporarily reversed after that it might notice whether the
growth rate is above or below trend and then perhaps the eye might locate
slowdowns and pick ups in the growth rate and changes in volatility such as
that which is evident after the mid 1980s in US GDP.

Typically, the eye cannot discern all of this information from a graph
of the original series, particularly if it has a pronounced trend. But, as is
illustrated in Figure 1, a viewing of graphs of higher differences of the series
reveals some further information – for example, periods when ∆yt < 0 are
periods in which the trend is temporarily reversed while those where∆2yt < 0
are periods where the growth rate is declining. Such visual features of the
data are often mentioned in discussion of time series but it is rare for practi-
tioners to connect the visual features seen in the data with other summaries
of the data such as the sample moments or estimates of the parameters of
the data generating process (DGP). The result is often a feeling of some dis-
satisfaction regarding the connection made between the data description and
the more formal modelling and testing parts of applied papers.

One source of this feeling of dissatisfaction is the fact that the human
brain is highly adapted for the processing of visual intuition. Oomes (1980,
Chapter 2 p. 12), for example, estimates that more than 50 per cent of the
human brain is occupied with optically related processing. In recognition of
the prodigious visual processing power of the human mind there has been
an increase in interest in the visual analysis of time series data in computer
science and statistics; see for example Berndt and Clifford (1996), Card,
Mackinlay and Shneiderman (1999), Carlis and Konstan (1998), Silva and
Catarci (2000). Motivated by that literature, this paper is based on the
view that practitioners might find use for an econometric technology that
develops the connection between the patterns that the eye sees and the DGP.
My objective in this paper is to develop that econometric technology and to
apply it to some interesting questions related to the investigation of economic
time series.

Perhaps, the most well known of these visual methods relates to Burns
and Mitchell’s procedures for locating turning points in the sample path
of ln(Yt). Section 2 explores how to generalize this method to investigate
turning points in first and higher differences of the logarithm of the series.
Harding (2003) shows that these turning points in higher order differences in
log(Yt) are based on successively weaker notions of what constitutes decisive
change.
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The discussion above of the patterns that the eye discerns focused on the
peaks and troughs in either the levels, deviation from trend or difference
of the series. One could, with equal justification, focus on the patterns
formed when the series crossed the trend, or when the differences of the
series crossed zero. It turns out that there is a close relationship between
such crossing points and turning points and there is a mathematics literature
on the former. These relationships are explored in section 3.

The focus of interest in this paper is in using counts and proportions of
turning points to construct statistics that can be used to study economic
time series. Section 4 explores the main properties of counts and proportions
of turning points. The latter always exists and is bounded above by one
and below by zero. This means that we can always compare two series
by comparing the proportion of turning points, something that one cannot
always do with moments since some or all of the population moments of the
series may not be finite. Section 4 shows that the proportion of turning points
has a mononicity property that can be used to formalize the visual intuition
that a decreasing amount of information about a dynamic process is obtained
as one successively differences the series. Asymptotic theory and procedures
to obtain robust standard errors for the proportion of turning points are
developed thereby providing the foundation for hypythesis testing.

Constructing visually based summaries of economic time series is useful,
but in the econometric literature interest focuses on linking the statistics
used to describe the features of the series to the DGP. Section 5 discusses
the relationship between counts of the number of turning points and the
data generating process for yt. Analytic results are presented for the case
where the DGP comes from the class of elliptically symmetric distributions
– simulation methods can be used if the DGP falls outside of this class of
distributions.1

Applications of the methodology are given in section 6. Conclusions are
presented in section 7.

2 A formal definition of calculus rule turning
points

Using the notation that ∧t and ∨t represent a peak at t and trough at t
respectively the procedure that Harding and Pagan (2001) labeled as the

1Appendix A sets out the relevant properties of the class of elliptically symmetric
distributions.
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calculus rule for identifying turning points in ∆ryt, is written formally as
follows,2

∧rt = 1 (∆ryt > Max{∆ryt−1,∆ryt+1}) (1)

∨rt = 1 (∆ryt < Min{∆ryt−1,∆ryt+1}) (2)

By varying r one can implement various definitions of decisive change.
When r = 0 in equations (1) and (2) the notion of decisive change being
used is that the series changes direction so that turning points are local
maxima or minima in the level of the series. Such turning points are said
to be from the classical cycle that was studied by Burns and Mitchell.3

The last date before yt shows a sustained decline (rise) is referred to as the
classical cycle peak (trough).

It is useful to note that equations (1) and (2) can also be expressed as,

∧rt = 1
¡
0 > Max{−∆r+1yt,∆

r+1yt+1}
¢

(3)

∨rt = 1
¡
0 < Min{−∆r+1yt,∆

r+1yt+1}
¢

(4)

Thus, all of the information that is needed to study turning points in ∆ryt
resides in the DGP of ∆r+1yt.

2.1 Higher order turning points

Higher order turning points involve successively weaker notions of decisive
change and are associated with values of r ≥ 1 in equations (1) and (2). The
case where r = 1 receives some popular attention. It is worth giving the
cycle defined in this way the special name of the acceleration cycle because

2I use the following notation.

∆ notation. For a positive integer r, ∆ryt = ∆
r−1yt − ∆r−1yt−1 and ∆0yt = yt. For

a negative integer the cumulation of yt is calculated, viz ∆−1yt =
Pt

i=0 yi and
∆−2yt =

Pt
j=0

Pj
i=0∆

1−ryi.

Indicator function notation. For a statement S, 1(S) is an indicator function that
takes the value 1 if the statement S is true and zero otherwise.

3Here I am using the term classical cycle rather loosely as Burns and Mitchell also
required minimum phase and cycle lengths. Procedures for locating turningpoints that
meet these criteria are discussed in chapter 5 of Harding (2003).
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the peak measures the date at which the growth rate stops increasing and
begins to decrease. Similarly, the trough measures the date at which the
growth rate stops decreasing and begins to increase.4

2.2 Lower order turning points

Lower order turning points refer to turning points in ∆ryt for r < 0. That is
they refer to turning points in the rth cumulative sum of yt and thus involve
successively stronger notions of what constitutes decisive change. For eco-
nomic time series the case where r = −1 is of some importance. The reason
for this is that most observed economic time series are generally thought to
be I(d) (integrated of order d) with 0 ≤ d < 2. If a series is integrated of
order less than 1

2
then it is covariance stationary and thus the cumulative

sum of the series ∆−1yt is integrated with order greater than one. Later (in
section 5) I show that for any series which is integrated of order higher than
one the expected number of turningpoints equal to zero. Thus, the highest
order of differencing at which the proportion of turning points is zero pro-
vides a measure of the extent of differencing required to induce stationarity
in the series.

3 The relationship between turning points and
crossing points

Turning points are not the only features of the sample path of time series that
are discussed. For example, it is commonplace to also discuss features such
as whether a series is currently above or below trend; whether the output gap
is positive or negative; and for countries that have inflation targets, whether
inflation is above or below the target range. This leads to the concept of
crossing points viz, points at which the series yt crosses some critical mark.5

To show that crossing points can be represented as turning points in a
related series let ot be a mean zero series and assume that up crossing points

4The Economic Cycle Research Institute, New York, refers to the acceleration cycle as
the cycle in the growth rate. However, this terminology runs the risk of being confused
with the growth cycle.

5There is a mathematics and statistical literature on crossingpoints. Some references
to that literature are in Kedem (1980) but the most comprehensive exposition is in Kedem
(1994).
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and down crossing points are represented by binary series it and ht respec-
tively that take the value one when a crossing occurs and zero otherwise.
These crossing points are defined by equations (5) and (6) respectively.

it = 1 (ot < 0, ot+1 > 0) (5)

ht = 1 (ot > 0, ot+1 < 0) (6)

Now consider the series Ot that is the cumulation of ot, that is Ot =Pt
j=1 oj. Then, equations (5) and (6) can be written in terms of Ot as

follows

it = 1 (∆Ot < 0,∆Ot+1 > 0) (7)

ht = 1 (∆Ot > 0,∆Ot+1 < 0) (8)

But these are equivalent to the definitions of classical cycle calculus rule
turning points in Ot. Thus the turning point and crossing point approach
are equivalent. I will focus on turning points because of the long history of
using this concept when studying the business cycle. This equality between
crossing points in ot and turning points in Ot is of great convenience as it
means I can use the mathematics literature on crossing points.

4 Counts of the number of turning points

Let ∨rtand ∧rt , t = 1, ..N be rth order turning points as defined in equations
(1) and (2) and let NTPr be the number of rth order turning points. That
is,

NTPr =
N−1X
t=2

(∨rt + ∧rt ) (9)

This quantity cannot be negative. The sum starts from 2 and runs to T-
1 because calculus rule turning points have minimum pase duration of one
period and thus one cannot determine whether the end points are turning
points. Thus,

N − 2 ≥ NTPr ≥ 0 (10)
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As established in the proposition below there exists a weak form of
monotonicity in the number of classical and higher order turning points.

Proposition 1 Monotonicity of higher order turning points. Let
NTPr be the number of rth order turning points as defined in equation (9).
Then, the following inequality applies: NTPr+1 ≥ NTPr − 1.

Proof. Let there be a rth order peak at t and the next rth order trough be
at date τ . The rth order peak at t requires that ∆ryt > 0 and ∆ryt+1 < 0
. From this it follows that ∆r+1yt+1 < 0 . The trough at τ requires that
∆ryτ < 0 and ∆ryτ+1 > 0. From this it follows that ∆r+1yτ+1 > 0. Thus
there must be at least one (r + 1)st order trough located between the dates
t+1 and τ +1. Thus, leaving aside endpoint problems there must be at least
one (r + 1)st trough for every rth order trough. For a similar reason, leaving
aside endpoint problems, there must be at least one (r + 1)st order peak for
every rth order peak. The endpoint issue mentioned above arises if there is
a rth order turning point at the endpoint. Letting tLTP,r be the date of the
previous turning point, the argument used above told us that there was a
like (r + 1)st turning point in the interval between tLTP,r +1 and T +1. But
since the series is only of length N it is possible that there is no (r + 1)st

order turning point to correspond to the last rth order turning point. Thus,
NTPr+1 ≥ NTPr − 1.

This result is of particular interest as it allows the following corollary
which will prove to be useful later in the paper.

Corollary 2 Monotonicity and boundedness of the proportion of
higher order turning points. Let pr,N be the proportion of time occupied
by rth order calculus rule turning points, that is

pr,N =
NTPr

N − 2
And let pr = lim

N→∞
pr,N be the proportion of turning points as the length of the

series becomes infinite. Then, pr is bounded below by zero and above by one
and is non decreasing in r. That is, 1 ≥ pr ≥ 0 and pr+1 ≥ pr for all r.
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Proof. Proposition 2 above implies that the proportion of time occupied by
higher order turning points in a series of length N is weakly non-decreasing
in the sense that pr+1,N ≥ pr,N − 1

N
. Thus, taking limits yields

pr+1 = lim
N→∞

pr+1,N ≥ lim
N→∞

µ
pr,N − 1

N − 2
¶
= pr

from which it follows that pr+1 ≥ pr for all r..The boundedness of pr follows
directly from inequality (10).

The intuition behind the result just given is that for the calculus rule the
pattern of turning points converges to an infinite dimension vector of ones as
r→∞. That is, successive differencing of the time series ultimately extracts
all of the information about the DGP of that series.

4.1 Certain properties of pr,N
The quantity pr,N is an estimator of the proportion of time occupied by rth
order turning points. To obtain the properties of this estimator we need
to make some assumptions about yt. I will assume that there exists some
number k for which ∆kyt it is strictly stationary. This implies that E∨kt and
E∧kt are both constants that I represent by Yk and Zk respectively.6

With this notation in place it is straight forward to see that Epr,N is an
unbiased estimate of Yr + Zr. This is because

Epr,N = E
NTPr

N − 2

=
1

N − 2
N−1X
t=2

E (∨rt + ∧rt )

= Yr + Zr

Proposition 3 The variance of pr,N is bounded above by 2(Yr+Zr)
(N−2) .

6Strict stationarity of ∆kyt is a stronger assumption than I require but it simplifies the
analysis.
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Proof. The variance of pr,N is defined as

V ar (pr,N) = E

"
1

N − 2
N−1X
t=2

(∨rt + ∧rt )− Yr + Zr
#2

= E

"
1

N − 2
N−1X
t=2

(∨rt + ∧rt )
#2
− (Yr + Zr)2 (11)

The binary nature of turning points implies that the first term in equation
(11) achieves its maximum where ∨rt + ∧rt is perfectly synchronized at lag
k that is where E (∨rt + ∧rt )

¡∨rt−k + ∧rt−k¢ = (Yr + Zr) . Moreover, it is clear
again because of the binary nature of turning points that k = 1

Yr+Zr . An
implication of the assumption that turning points are perfectly synchronized
at lag k is that they are perfectly non synchronized at lags that are not
integer multiples of k. That is E (∨rt + ∧rt )

¡∨rt−j + ∧rt−j¢ = 0 if j 6= ik for i
an integer. This now allows a bound to be placed on the variance of pr,N .
Specifically,

V ar (pr,N) ≤ 1

(N − 2)2
N−1X
t=2

E (∨rt + ∧rt )2

+
2

(N − 2)2
N−2
kX

i=1

N−1X
t=2+ik

E (∨rt + ∧rt )
¡∨rt−ik + ∧rt−ik¢

− (Yr + Zr)2

where it is understood that the expectations are taken under the assumption
that the turning points are perfectly synchronized at lag k. Taking the
expectations and making use of the fact that k = 1

Yr+Zr and simplifying
yields

V ar (pr,N) ≤ Yr + Zr
(N − 2) + 2

Yr + Zr
(N − 2)2

N−2
kX

i=1

(N − 2− ik)− (Yr + Zr)2

=
2 (Yr + Zr)
(N − 2)

which is as stated in the proposition.

This result is important because it underpins proofs of the following two
propositions about the conistency of pr,N for Yr + Zr and the asymmptotic
distribution of

√
N (pr,N − Yr + Zr)
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Proposition 4 pr,N is a consistent estimator of Yr + Zr.

Proof. This follows immediately from the results that pr,N is unbiased for
Yr+Z and its variance is bounded above by 2(Yr+Zr)

(N−2) which converges to zero
as N goes to infinity.

Proposition 5
√
N (pr,N − Yr + Zr) converges in distribution to N (0, σ2)

where σ2 ≤ 2 (Yr + Zr)

Proof. ∨rt + ∧rt is a stationary stochastic process with mean Yr + Zr and
variance this bounded above by 2(Yr+Zr)

(N−2) thus, the result follows from from
proposition 7.11 of Hamilton (1994).

A consistent robust estimate of the variance bσ2 can be obtained by ap-
plication of the heteroscedasticity and autocorrelation consistent (HACC)
robust estimator suggested by Kiefer and Vogelsang (2002). That is let urt ,
vrt and bσ2 be defined as follows

urt = ∨rt + ∧rt − pr,N

vrt =
tX

i=1

uri

bσ2 = N−2
NX
t=1

(vrt )
2

In some instances interest will centre on the vector of ith to rth order turn-
ing point proportions denoted pi,r,N =

£
pi,N pi+1,N · · · pi−1,N pr,N

¤0
.

The propositions regarding asymptotics extend to this case and the method
described above also extends to obtaining a HACC robust estimator for the
variance covariance matrix of pi,r,N .
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5 The relationship between expected number
of turning points and the parameters of the
DGP for yt

Interest centres on the relationship between the expected proportion of turn-
ing points and the parameters of the DGP for yt. Where the DGP involves
the elliptically symmetric distribution analytic results can be obtained as is
shown in section 5.1 below. In other cases one must proceed via simulation.

5.1 The expected proportion of turning points when
the time series has an elliptically symmetric dis-
tribution

The class of elliptically symmetric distributions introduced by Kelker (1970)
is of considerable interest as it contains the multivariate normal, multivari-
ate Student’s t, multivariate logistic, and multivariate Cauchy distribution
along with a large range of other less familiar distributions. A particular
realization from this class of distributions is described by a vector of para-
meters µ, a symmetric matrix of parameters Σ and a function g. If v has
elliptically symmetric distribution then we will write that in shorthand as
v˜ES (µ,Σ, g) . Appendix A provides a more detail discussion of the class of
elliptically symmetric distributions and the properties relevant to this paper.

Assume that the vector
£
∆y1 · · · ∆yT

¤0
˜EST (µt,Σ, gT ) where µt is

a polynomial time trend of degree q viz, µt = µ0 + µ1t + ..µbt
q, Σ is a

T × T positive definite symmetric banded matrix with iith element σ20 and
ijth element σ|i−j| for i 6= j and gT is a density function generator.7 Construct
the 2× T matrix Bt+1,r such that

Bt+1,r =

∙
0 0 ra

r
t+1 · · · 0a

r
t+1 0

0 ra
r
t · · · 0ra

r
t 0 0

¸
(12)

where ja
r
t places the signed integer

¡
r
j

¢
(−1)j in the tth column. Thus,when

applied to
£
∆y1 · · · ∆yT

¤0
the matrix Bt+1,r produces a 2× 1 vector of

the (r + 1)st differences of yt+1 and yt. That is

7The assumption that all elements in a band of the matxix Σ are equal is necessary to
ensure that the distribution is strictly stationary. One could proceed in cases where the
distribution is non stationary but it would introduce difficulties that are unnecessary at
this stage.
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∙
∆r+1yt+1
∆r+1yt

¸
= Bt+1,r

⎡⎢⎣ ∆y1
...

∆yT

⎤⎥⎦ (13)

Since pre multiplication by Bt+1,r is a linear transformation, it follows from
property 1 of elliptically symmetric distributions stated in Appendix A that£
∆r+1yt+1 ∆r+1yt

¤0
˜ES

³£
∆r+1µt+1 ∆r+1µt

¤0
, Bt+1,rΣB

0
t+1,r, g2

´
. The

assumption that Σ is symmetric and banded with ijth element σ|i−j| allows
us to write Bt+1,rΣB

0
t+1,r as follows

Bt+1,rΣB
0
t+1,r = ωr

∙
1 ρr
ρr 1

¸
, ωr > 0 , and − 1 < ρr < 1. (14)

Thus, ∙
∆r+1

¡
yt+1 − µt+1

¢
/ωr

∆r+1 (yt − µt) /ωr

¸
˜ES

µ
0,

∙
1 ρr
ρr 1

¸
, g2

¶
(15)

Appendix B provides formulas that relate ρr to the elements of Σ.

Now interest is focused on the probability of a rth order calculus peak at
date t viz Pr (∧rt = 1) . Letting zt = (yt − µt) /ωr This can be calculated as
follows,

Pr (∧rt = 1) = Pr
¡
∆r+1yt+1 < 0,∆

r+1yt > 0
¢

(16)

= Pr
¡
∆r+1zt+1 < −∆r+1µt+1/ωr,∆

r+1zt > −∆r+1µt/ωr

¢
Appealing to the arcsine result obtained in Appendix A we have that

Pr (∧rt = 1) =
1

4
− 1

2π
arcsin ρr + h

¡
∆r+1µt+1/ωr, ρr

¢
(17)

where

h
¡
∆r+1µt+1/ωr, ρr

¢
=

Z 0

−∆r+1µt/ωr

Z −∆r+1µt+1/ωr

−∞

a2p
(1− ρ2r)

g2

µ
x2 − 2ρrxy + y2

(1− ρ2r)

¶
dydx

(18)

−
Z ∞

0

Z 0

∆r+1µt+1/ωr

a2p
(1− ρ2r)

g2

µ
x2 − 2ρrxy + y2

(1− ρ2r)

¶
dydx
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Now the probability of a rth order trough is

Pr (∨rt = 1) = Pr
¡
∆r+1yt+1 > 0,∆

r+1yt < 0
¢

(19)

appealing to the elliptical symmetry assumption yields the conclusion that
Pr (∨rt = 1) = Pr (∧rt = 1) . Since these are binary variables Pr (∧rt = 1) =
E (∧rt ) and thus E (∨rt + ∧rt ) = 2Pr (∧rt = 1) . Making use of equation (19)
yields

E (∨rt + ∧rt ) = Pr (∧rt = 1) + Pr (∨rt = 1) (20)

=
1

2
− 1

π
arcsin ρr + 2h

¡
∆r+1µt+1/ωr, ρr

¢
which establishes that the expected proportion of rth order turning points
can be directly related to the parameters of the data generating process.

Figure 2: Relationship between 1
2
− 1

π
arcsin ρr and ρr
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When seeking to gain intuition about equation (20) it is useful to restrict
attention to the case where ∆r+1µt = 0 so that E (∨rt + ∧rt ) = 1

2
− 1

π
arcsin ρr.

Figure 2 show a plot of 1
2
− 1

π
arcsin ρr against ρr illustrating the important

14



point that the expected proportion of turning points is monotonically de-
creasing in ρr and E (∨rt + ∧rt ) is bounded below by zero and above by one.
Thus lim

ρr%1
E (∨rt + ∧rt ) = 0 and lim

ρr&−1
E (∨rt + ∧rt ) = 1. This leads to the con-

clusion that if yt is integrated of order j the expected proportion of rth order
turning points is zero for r < j − 1 and is positive and is non decreasing in
r for r ≥ j − 1. This result looks like it will prove to be useful in testing for
the order of differencing that results in a series being stationary. I have not
included such tests in this draft of the paper since they involve issues with
testing at the boundary of the parameter space.

A second application of the monotonicity of 1
2
− 1

π
arcsin ρr is that when

pr,N is plotted for two time series the finding that the proportion of turning
points for one series always lies below the other has the interpretation that
the series with the lower pr,N is more persistent than than the other series in
the sense that it has a lower value of ρr.

5.2 The expected proportion of turning points for an
AR 1 process

As an illustration consider a gaussian AR 1 process in growth rates such as

∆yt = (1− α)µ+ α∆yt−1 + εt εt˜iidN (0, 1)

which has moving average representation

∆yt = µ+
∞X
j=0

αjεt−j

And thus, ρ0 = α, ρ1 =
2α−α2−1

2
.

As an experiment I apply this model to US GDP for the period 1947.1 to
2001.4. On this data a typical estimate of α would be 0.34. Thus the AR 1
model yields an estimated proportion of 0 order turning points (in detrended
ln(US GDP) of 0.44 whereas the data for 1947.1 to 2001.4 shows an estimated
proportion of 0.48. The estimated proportion of first order turning points
from the AR 1 model is 0.57 whereas the data yieds an estimate of 0.70. Thus
the proprtion of turning points in the data conflicts with those predicted by
an AR 1 model estimated on the data. The proportion of turning points
predicted by the AR 1 model is less than that seen in the data for both
orders of differencing and for the reasons given earlier this suggests that the
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DGP is less persistent than the estimated AR 1 in growth rates. I have not
put standard errors on these estimates for reasons of time but the discussion
in section 4 shows how it can be done.

6 Applications

Figure 3 shows the proportion of turning points in the logarithm of US GDP
(the solid line) and the proportion of turning points in the deviation of GDP
from a linear trend (the dashed line). The following information can be
extracted from Figure 3. First, the fact that the two proportions diverge for
order of differencing below 1 and converge for orders of differencing above
1 indicates that ln(GDP) contains a deterministic component that is well
approximated by a linear time trend. Second the fact that the proportion
of turning points in zt is substantially greater than zero is evidence that the
series is not I(2), also the proportion of turning points in ∆−1zt is 0.1 which
provides some evidence against the hypothesis that US GDP is I(1) and for
the hypothesis that it is I(0). Finally, the proportion of turning points in
∆−2zt is 0.01 which provides evidence against the hypothesis that US GDP
is I(-1).

Figure 3: Proportion of turning points in ln(US GDP) and its deviation from
trend, 1947.1 to 2001.4
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In the discussion above I have not referred to standard errors or developed
formal statistical tests. In an earlier section I have developed a technology
to do that but time prevents applying that technology in this paper. In the
remainder of this section I present simulation based tests that were developed
in Harding (2003). My objective in reporting those tests here is to assure
the reader that the standard errors obtained for the proportion of turning
points are quite small and that it is possible to use turning point based tests
to distinguish between competing hypotheses.

As discussed in Blanchard and Fischer (1989), the maintained hypothesis
that the major macroeconomic variables follow linear or log linear stochastic
processes has influenced much of the direction of economic research. Given
this hypothesis, empirical attention has focused on whether the linear sto-
chastic process is trend stationary or difference stationary. For the post
WWII United States this leads to the question of whether GDP is better
described by equation (21) in the trend stationary case

yt = 0.297 + .000318t+ 1.316yt−1 − 0.356yt−2 + 0.00943et (21)

or (22) in the difference stationary case.8

∆yt = 0.00548 + 0.343∆yt−1 + 0.00943et (22)

I assume that et ˜iid N(0, σ2) – earlier I have shown that many of the
results would hold provided (e1, .., eT ) comes from an elliptically symmetric
distribution. The objective of the simulations below is to explore whether
turning point based tests can shed light on the adequacy of these two models
in terms of their capacity to match the dynamics of GDP.

6.1 Simulation of a stationary AR(2) with Gaussian
shocks

Figure (4) compares actual and simulated proportions of turning points;
the simulations were for equation (21) in with iid Gaussian shocks and
NSim = 1000. The property established earlier that pr,N is non decreas-
ing in r is apparent in the plot of the actual proportion of turning points.
The monotonicity in r of the population proportion of turning points is il-
lustrated by the monotonicity of the average proportion of turning points
from the simulation. The latter quantity is a good approximation to the
comparable population quantity for large NSim.

8These equations were estimated on the log of US GDP in billions of chained 1996
dollars for the period 1947.1 to 2002.4.
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In Figure 4 the actual proportion of turning points in the data is shown by
the dashed line, the mean proportion of turning points from the simulation
is shown by the solid line and the upper and lower 95 per cent confidence
bands are shown by the dotted lines.9 It is clear that the first and second
order turning points lie above the upper confidence band suggesting that the
model does not adequately capture the dynamics of the data.

Figure 4: Classical and higher order turningpoint frequencies actual and
simulated for AR(2) in (log) levels of US GDP, 1947.1 to 2002.4

6.2 A turning point-based test of model fit

To supplement Figure 4 it would be useful to have a single summary statistic
to quantify the fit of the simulated turning point frequencies to the data. To
achieve this let epir be the proportion of rth order turning points in the ith
simulation where turning points are located by the calculus rule (k=1) and
P be the matrix that contains all the simulated proportions for i = 1, .., NSim

and r = 0, .., r, viz

9By 95 per cent confidence bands I mean that 97.5 per cent of simulations were above
the lower band and 97.5 per cent of simulations were below the upper band. Thus 95 per
cent of simmulations fell between the upper and lower bands.
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P =

⎡⎢⎣ ep10 · · · ep1r
...

. . .
...epNSim

0 · · · epNSim
r

⎤⎥⎦ (23)

The vector containing the mean proportion of turning points in the sim-
ulation (P ) is obtained as,

P = ι0NSim
P/NSim (24)

Ω the covariance matrix from the simulated data is obtained as follows

Ω =
¡
P − ιNSim

P
¢0 ¡

P − ιNSim
P
¢
/NSim (25)

where ιNSim
is a (NSim × 1) vector of ones. Let Pi be the ith row of P and form

the scalarsQi =
¡
Pi − P

¢
Ω−1

¡
Pi − P

¢0
andQ =

¡
Pdata − P

¢
Ω−1

¡
Pdata − P

¢0
then one can test the overall ability of the model to match the turning
point information in the data by comparing Q with the distribution of Qi

i = 1, .., Nsim from the simulation. The simplest method of effecting such a
comparison is by computing the p-value viz,

p-value =
1

NSim

NSimX
i=1

1 (Qi > Q) (26)

For the trend stationary AR(2) in equation (21) with a choice of r = 4,
Q = 13.00 with p-value=0.028.10 Thus, one can conclude that the estimated
trend stationary model does not adequately capture the dynamics of the data.
It is important to note that this conclusion relates to the estimated model
since I conditioned on the parameters of that model. If one sought to make
a statement as to whether a model that is "close" to the estimated model
could have generated the pattern of dynamics in the data then one would
need to define "close" and base the simulations on that definition. One way
of doing this would be to draw the parameters from their distribution Ndraw

times and for each parameter draw simulate the model NSim times yielding a
total of Ndraw +NSim vectors of turning point frequencies. I have not made
this extension here since I am primarily interested in the question of whether
the estimated model could have generated the dynamics of the data.

10For a choice of r = 6, zdata = 14.6 with a p-value=0.045.
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6.3 Simulation of the difference stationary model with
Gaussian shocks

Now attention turns to the difference stationary case of equation (22). Figure
(5) compares actual and simulated turning point frequencies; the simulations
were for equation (22) with iid Gaussian shocks and NSim = 1000. As was
the case with Figure 4 the dashed line represent the observed frequencies, the
solid line the mean of the simulated frequencies, and the two dotted lines are
the upper and lower 95 per cent confidence bands. The difference stationary
model does not appear to fit the data well. Most notably for r > 1 the data
yields more turning points than expected on the basis of the model. For the
reasons discussed earlier this suggests that there is less persistence in the
data than in the model.

Figure 5: Classical and higher order turningpoint frequencies, actual and
simulated for AR(1) in growth rates of US GDP, 1947.1 to 2002.4

Again with r = 4 the test statistic Q = 12.7 with p-value= 0.032 for
the difference stationary case. Thus, I conclude that the estimated difference
stationary model in equation (22) does not adequately capture the dynamics
of the data.11

11For a choice of r = 6, zdata = 14.3 with a p-value=0.052.
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7 Summary and Conclusions

In this paper it is shown that calculus rule turning points can be given a
precise mathematical formulation. I have argued that turning points are very
useful when studying dynamics because the expected proportion of turning
points in a sample always exists and is bounded below by zero and above by
one. This is not true of, for example, population moments since some or all
of them may not exist. It was shown that one can measure what constitutes
decisive change by locating turning points in higher differences of ∆yt. It was
also shown that if the deterministic trend is removed from yt then turning
points located in ∆ryt are identical to crossing points in ∆r−1yt so there is a
strong connection with the mathematics and statistics literatures on crossing
points.

It was shown that expected proportions of turning points are related to
the parameters of the DGP for the series of interest and thus one can recover
estimates of the parameters from turning point frequencies. Specifically, if
the DGP comes from the elliptically symmetric class of distributions then
turning point frequencies and the parameters of the DGP are related by
the arcsine rule. If the DGP does not come from the elliptically symmetric
class of distributions then one can proceed via simulation to find the model
parameters that yield turning point frequencies that match those found in
the data.

It was also shown that turning points can be used to develop tests of
how well particular models fit the data. Moreover, it was shown that given
the assumption that the DGP comes from elliptically symmetric class of
distributions it was possible to interpret the rejection of the model in a
particular way.

I have shown that one can assess the fit of a dynamic model to the data
by comparing the actual frequency of turning points observed in the data
with the simulated frequencies of turning points from the model. The Gauss
procedures written to do this can handle any model that is capable of being
simulated. In the examples considered here I have analyzed two low order
autoregressions where the question of interest is how much persistence there
is in the data. I showed that simulation of the two models with Gaussian
shocks led to their rejection.

I used the fact that when the DGP comes from the elliptically symmetric
class of distributions, the arcsine rule could be used to interpret the simula-
tions. This rule suggests that the data is generated by a process that is less
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persistent than either of the processes embedded in the models considered.
In this sense I read the results as supporting the trend stationary case.

Thus, in addition to being a useful tool for studying dynamics, turning
points frequencies seem likely to be useful as an adjunct to unit root testing.
Of course one will need to undertake monte carlo studies to assess how well
these tests perform.
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Appendices

A Some properties of elliptically symmetric
distributions

My objective in this appendix is to provide a brief discussion of this class of
distributions and outline its relevance to the analysis of dynamics via turnng
points. There are several ways of defining the class of elliptically symmetric
distributions. I found the approach below useful.
Let X be a J × 1 random vector with distribution function F(X) and v

be a J ×1 vector then the characteristic function ϕX (v) is defined as follows

ϕX (v) =

Z ∞

−∞
· · ·
Z ∞

−∞
eiv

0XdF

Let Φ represent the set of continuous scalar functions that map the non
negative real line into itself viz,

Φ = {φ (.) : [0,∞)→ [0,∞)}
If the characteristic function of X is of the form ϕX (v) = eiv

0µφ (v0Σv)
for φ�ΦJ and Σ a symmetric positive definite matrix we say that X belongs to
the class of elliptically symmetric distribution which we write in shorthand
as X˜ESJ (µ,Σ, φ) .
Of course if ϕX (v) is a valid characteristic function it must satisfy the

fundamental theorem of characteristic functions which relates to inversion.
This places further restrictions on φ. The multivariate inversion formula is
tedious to write out for the general case and I will not do so here, the reader is
referred to Stuart and Ord (1994, Sec 4.17 p. 140) for details. However, it is
instructive to consider the case where the distribution function is continuous
and thus a density exists. In this case the inversion theorem links the density
and the characteristic function as follows

f (x) =
1

(2π)J

Z ∞

−∞
· · ·
Z ∞

−∞
e−iv

0xϕX (v) dv (27)

For the elliptically symmetric class of distributions this integral becomes
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f (x) =
1

(2π)J

Z ∞

−∞
· · ·
Z ∞

−∞
e−iv

0xeiv
0µφ (v0Σv) dv

=
1

(2π)J

Z ∞

−∞
· · ·
Z ∞

−∞
e−iv

0(x−µ)φ (v0Σv) dv (28)

Fang, Kotz and Ng (1990) shows that if X has an elliptically symmetric
distribution then the density (if it exists) is given by equation (29)

fX (x) =
aJp|Σ|gJ ¡(x− µ)0Σ−1 (x− µ)

¢
(29)

where gJ (.) is a function that maps the non-negative real line into itself. The
constant aJ is given by equation (30).

aJ =
Γ (J/2)

(2π)
J
2

∙Z ∞

0

v
J
2
−1gJ (v) dv

¸−1
(30)

Thus, the density exists if inequality (31) is satisfiedZ ∞

0

v
J
2
−1gJ (v) dv <∞ (31)

Where the density exists it is useful to also useX˜ESJ (µ,Σ, gJ) as short-
hand for the statement that ‘X has an elliptically symmetric distribution with
density function proportional to gJ the centrality parameter vector µ and the
dispersion matrix Σ’.
Elliptically symmetric distributions have a number of useful properties

some of which are stated below.
Property 1: Linear combinations of X have an elliptically sym-

metric distribution If X˜ES (µ,Σ, φ) with density fX(x; gJ , µ,Σ), B is a
(q × J)matrix of rank q and b is a (q × 1) vector, then (BX + b) ˜ESq (Bµ+ b,BΣB0, φ) .
And, if the density function fX(x; gJ , µ,Σ) exists, then
fBX+b(.; .) = fX (x; gq, Bµ+ b,BΣB0) . See Fang et al. (1990, p. 43).
Property 2: Marginal density. Partition X, µ and Σ as follows.

X = [X1,X2]
0 , µ = [µ1, µ2]

0 and Σ =

∙
Σ11 Σ12
Σ21 Σ22

¸
then if X˜ES (µ,Σ, φ) it

is the case that X1˜ES (µ1,Σ11, φ) and X2˜ES (µ2,Σ22, φ) . That is the sub
vectors have elliptically symmetric distribution with the same characteristic
generating function φ. See Fang et al. (1990, p. 43).
Property 3. Conditional density Using the partition of X above, and

lettingX1|X2 = x denote the random vectorX1 conditional onX2 = x. Then
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X1|X2 = x has elliptically symmetric distribution with conditional mean
µ1|2 = µ1+Σ12Σ

−1
22 (x− µ2) and conditional varianceΣ11.2 = Σ11−Σ12Σ−122 Σ21;

see Fang et al. (1990, p. 45-46) for further details.

Property 4. Arcsine rule Let
£
X Y

¤0
˜ES

µ
0,

∙
1 ρ
ρ 1

¸
, gJ

¶
then,

Pr (X > c1, Y < c2) for c1 ≤ 0, c2 ≤ 0 is given by equations (32) and (33).

Pr (X > c1, Y < c2) =
1

4
− 1

2π
arcsin ρ+ h (c1, c2, ρ) (32)

where

h (c1, c2, ρ) =

Z 0

c1

Z c2

−∞

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx (33)

−
Z ∞

0

Z 0

c2

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx

Property 4 is not in the literature, which focuses on the case c1 = c2 = 0.
But property 4 follows in a straightforward way from the following argument.
Since the probability of interest is Pr (X > c1, Y < c2) for c1 ≤ 0, c2 ≤ 0, it
can be obtained as

Pr (X > c1, Y < c2) =

Z ∞

c1

Z c2

−∞

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx(34)

=

Z ∞

0

Z 0

−∞

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx

+

Z 0

c1

Z c2

−∞

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx

−
Z ∞

0

Z 0

c2

a2p
(1− ρ2)

g2

µ
x2 − 2ρxy + y2

(1− ρ2)

¶
dydx

Making use of the result that Pr (X > 0, Y < 0) = 1
4
− 1

2π
arcsin ρ see

Fang et al. (1990), and naming the second part of the integral h (c1, c2, ρ) the
result stated in proposition 4 holds.12

Property 5. Moments of elliptically symmetric distributions.
If X˜ESJ (µ,Σ, gJ) and the first moment of X is finite then E (X) = µ. If

12It is interesting to note that the mathematics behind the arcsin rule for the gaussian
case originates in the late 19th century with the work of Stieltjes (1889) and Sheppard
(1899). One wonders why Mitchell did not use this mathematics to provide a rigorous
foundation for turningpoint analysis.

25



the second moment of X is finite then Cov (X) = cΣ for some constant c–
in the Gaussian case where Σ is nonsingular c = 1 and thus Cov (X) = Σ.
Higher moments are obtained by further differentiation of the characteristic
function ϕX (v) = eiv

0µφ (v0Σv) wrt v and evaluating the derivative at v = 0.

A.1 Generating linear time series with elliptically sym-
metric distributions

This section turns to the question of under what circumstances will a time
series {yt}Tt=1 have an elliptically symmetric distribution. Let yt be generated
by the linear autoregression described in matrix notation by equation (35)

A

⎡⎢⎣ yT
...
y1

⎤⎥⎦ =
⎡⎢⎣ eT
...
e1

⎤⎥⎦ (35)

whereA is a T×T invertible matrix. Assume that £ eT · · · e1
¤0
˜EST (0,Σ, gT )

then, by property 1 above
£
yT · · · y1

¤0
˜EST (0, A

−1ΣA0−1, gT ) . Now this
is a very general class of linear model and some considerable attention needs
to be paid to the specification of the A and Σ matrices.
Two sets of restrictions are common in the time series literature, one on A,

the other on Σ. The former restriction requires that the matrix A have zeros
below the diagonal, ones on the diagonal, and typical element Ai,j+i = αj for
j = 1, ..p where where the roots of 1−α1z− ..−αpz

p = 0 lie outside the unit
circle. That is

A =

⎡⎢⎢⎢⎢⎢⎣
1 −α1 · · · −αp 0
0 1 −αp

0 · · ·
... 1 −α1
0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ (36)

The second restriction is to let Σ = B0B where B is an upper diago-
nal matrix with zeros below the diagonal, ones on the diagonal and typical
element Bi,j+i = βj for j = 1, ..q. That is
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B =

⎡⎢⎢⎢⎢⎢⎣
1 β1 βq 0
0 1 βq

0
...

... 1 β1
0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ (37)

Thus by construction with these restrictions yt is an ARMA(p, q) with
elliptically symmetric distribution.

B Relating ρr and ωr to the DGP of yt
The quantity ρr used in equation (14) is given by equation (38) where it is
related to r and the dispersion parameters of the DGP of y.

ρr =

σ1
σ0
+
Pr+1

j=2 (−1)1−j r!r!
(r−j+1)!(r+j−1)!

σj+σj−2
σ0

1 + 2
Pr

j=1 (−1)j r!r!
(r−j)!(r+j)!

σj
σ0

(38)

The quantity ρr is obtained as the following ratio ρr =
ρrωr
ωr

where the
quantities ωr and ρrωr in equation (14) are linked to the parameters of the
Σ matrix σ|i−j| via equations (39) and (40).

ωr = σ0

µ
2r

r

¶
+ 2

rX
j=1

(−1)j σj
µ
2r

r − j

¶
(39)

ρrωr = σ1

µ
2r

r

¶
+

r+1X
j=2

(−1)1−j
µ

2r

r − j + 1

¶
[σj + σj−2] (40)

This following sections established these two results for ωr and ρrωr

B.1 Obtaining ωr

Equation (39) can be obtained by expanding the (1,1) term in Bt+1,rΣB
0
t+1,r

into its component terms as in equation (41).

ωr = σ0

rX
i=0

∙
(−1)i

µ
r

i

¶¸2
+ 2

rX
j=1

"
σj

r−jX
i=0

(−1)i
µ
r

i

¶
(−1)i+j

µ
r

j + i

¶#
(41)

which can be simplified to yield equation (39) by making use of two results
from combinatorics. The first result is that
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µ
x

v

¶
=

µ
x

x− v

¶
(42)

Applying this result to equation (41) yields

ωr = σ0

rX
i=0

µ
r

i

¶µ
r

r − i

¶
+ 2

rX
j=1

(−1)j σj
r−jX
i=0

µ
r

i

¶µ
r

r − j − i

¶
(43)

The second combinatoric result is that

wX
i=0

µ
x

i

¶µ
v

w − i

¶
=

µ
x+ v

w

¶
(44)

Applying this result to equation 43 yields

ωr = σ0

µ
2r

r

¶
+ 2

rX
j=1

(−1)j σj
µ
2r

r − j

¶
which is the result stated in equation (39).

B.2 Obtaining ωrρr

Now equation (40) can be obtained in a similar fashion viz, expanding the
(1,2) term in Bt+1,rΣB

0
t+1,r into its component terms as in equation (45)

ρrωr = σ1

rX
i=0

(−1)i
µ
r

i

¶
(−1)i

µ
r

i

¶
(45)

+
r+1X
j=2

[σj + σj−2]
rX

i=j−1
(−1)i

µ
r

i

¶
(−1)i−j+1

µ
r

i− j + 1

¶
Making use of the combinatoric result (42) equation (45) becomes

ρrωr = σ1

rX
i=0

µ
r

i

¶µ
r

r − i

¶
+

r+1X
j=2

(−1)1−j [σj + σj−2]
rX

i=j−1

µ
r

i

¶µ
r

r + j − 1− i

¶
(46)

Simplifying this expression using the combinatoric results used earlier
yields equation (47)

ρrωr = σ1

µ
2r

r

¶
+

r+1X
j=2

(−1)1−j
µ

2r

r − j + 1

¶
[σj + σj−2] (47)
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