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ABSTRACT. This paper considers the dynamics for interest rate processes within the

Heath, Jarrow and Morton (1992) specification. It is well known that one of the

difficulties in using this specification for estimation is the non-Markovian nature of

the dynamics. The paper focuses on a fairly broad family of models thatnot only

can be transformed into a Markovian dynamics, but also has an affine representation

for the observed data, which overlaps but is not nested in the Duffie andKan (1996)

class of affine term structure models. The model parameters are estimated using a

maximum likelihood function obtained via the local linearization filter proposedby

Jimenez and Ozaki (2002, 2003). The method is then applied to analyze the volatility

structure of the LIBOR markets.
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1. INTRODUCTION

The no-arbitrage approach, as opposed to the general equilibrium approach, to in-

terest rate modelling has wide appealing power. The specification of Heath,Jarrow

and Morton (1992) (hereafter HJM), and later of Brace, Gatarek andMusiela Brace

et al. (1997) have proved the flexibility of the approach in capturing the shape of the

yield curve and the ability to price various financial quantities. Even though there has

been huge advancement in the theoretical field, the practical implementation ofthis
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model framework is hindered by the non-markovian nature of the interest rate dynam-

ics. Estimation of the model parameters becomes a challenging problem despite its

obvious importance in risk management, pricing and forecast activities.

This paper considers the class of the HJM models analyzed by Chiarella andKwon

(2001b, 2003), where the interest rate dynamics can be markovianized (by extending

the state variable vector) and the observable financial quantities such as the yields or

bond prices can be expressed as affine functions of the underlying state variables. This

class nested some important classes that have been considered previously in the HJM

framework, such as those analyzed by Carverhill (1994), Ritchken and Sankarasub-

ramanian (1995), Bhar and Chiarella (1997a), Inui and Kijima (1998) and De Jong

and Santa-Clara (1999). In addition, this class of models is not nested in theaffine

term structure class considered in Duffie and Kan (1996), even thoughthere will be

occasions when the two classes overlap.

Even though a Markovian structure is obtained, the resulting interest rate system is

high-dimensional and nonlinear, imposing difficulty in estimation. This paper advo-

cates the local linearization method proposed by Jimenez and Ozaki (2002,2003) to

calculate the likelihood function of observable data. The idea is to linearize thesto-

chastic differential equations of the state variables via Itô formula to take into account

their stochastic behaviours. The linear stochastic differential equations are then solved

analytically for their discrete representations and a simple Kalman filter can be called

to calculate the likelihood function for the observables and therefore the model can be

estimated via the maximum likelihood method.

The method is then applied to analyze the volatility structure of LIBOR rates traded

on the United States (hereafter U.S.), the Great Britain, the Australian and theJapanese

markets. The rest of the paper is structured as follows. Section 2 discusses the class

of models we are looking at. Section 3 analyzes the econometric implications of the

model, what has been done in the literature and our proposal. Empirical analysis is

carried out in Section 4 and finally Section 5 concludes the paper.

2. MODEL FRAMEWORK

The general framework for the interest rate models considered in this paper is in-

troduced in Heath, Jarrow and Morton (1992), where the instantaneousforward rates

r(t, x) (the rate that can be confracted att for instantaneous borrowing/lending att+x)
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are assumed to satisfy SDEs of the form1

r(t, x) = r(0, t+ x) +

∫ t

0

σ(s, t+ x)′ [σ̄(s, t+ x) − φ(s)] ds

+

∫ t

0

σ(s, t+ x)′dW (s),

(2.1)

where

σ̄(s, t+ x) =

∫ t+x

s

σ(s, u)du,

andσ(t, x), φ(t) areI-dimensional processes andW (t) is a standardI-dimensional

Wiener process under the market measureP, I ∈ N+ and the superscript′ represents

matrix transposition. The vectorφ(t) can be interpreted as the market price of interest

rate risk vector associated withdW (t).

The HJM model framework is chosen as it yields arbitrage-free models thatfit the

initial yield curve by construction. The subclass of HJM models which are particu-

larly suited to practical implementation are those which can be Markovianized. The

research of Carverhill (1994), Ritchken and Sankarasubramanian (1995), Bhar and

Chiarella (1997a), Inui and Kijima (1998), De Jong and Santa-Clara (1999) has ad-

vanced our knowledge on the field. Recently, Chiarella and Kwon(2001b, 2003) in-

troduce a class of models that can specialize into the above-mentioned models.The

models in this class satisfy the assumption:

Assumption 2.1. (i) For each1 ≤ i ≤ I, there existsLi ∈ N such that the compo-

nents,σi(t, x), of the forward rate volatility process have the form

σi(t, x) =

Li∑

l=1

cil(t)σil(x) (2.2)

wherecil(t) are stochastic processes andσij(x) are deterministic functions.

(ii) There existM ∈ N and a sequencex1 < · · · < xM ∈ R+ such that the processes

cil(t) have the form

cil(t) = ĉil(t, r(t, x1), . . . , r(t, xM )), (2.3)

whereĉ is deterministic in its arguments.

Chiarella and Kwon (2003) then prove2 that the forward curve can be expressed as

an affine function of some state variables,

1We are in fact using the Brace et al. (1997) implementation of the HJM model. This is more appropriate
to capture the dynamics of LIBOR and various other market quoted rates.
2See proposition 3.4 in their paper.
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Proposition 2.2. Let σ(t, x) satisfy the conditions of Assumption 2.1. Then the for-

ward rate curve can be expressed in the form

r(t, x) = r(0, t+ x) +
I∑

i=1

Li∑

l=1

σil(t+ x)ψi
l(t)

+
I∑

i=1

Li∑

l,l∗=1

l≤l∗

[σil(t+ x)σ̄il∗(t+ x) + ǫll∗σil∗(t+ x)σ̄il(t+ x)]ϕi
ll∗(t),

(2.4)

where

σ̄il(x) =

∫ x

0

σil(s) ds, (2.5)

ϕi
ll∗(t) =

∫ t

0

cil(s)cil∗(s) ds, (2.6)

ψi
l(t) =

∫ t

0

cil(s) dW̃i(s) −
di∑

l∗=1

∫ t

0

cil(s)cil∗(s)σ̄il∗(s) ds, (2.7)

ǫll∗ =





1, if l 6= l∗,

0, if l = l∗.
(2.8)

andW̃i, (i = 1, . . . , I) are standard Wiener process under the equivalent measureP̃.

Let y(t, x) be the yield on the(t + x)-maturity zero coupon bondb(t, x). These

quantities are uniquely linked with the instantaneous forward rates via,

b(t, x) = exp

(
−

∫ x

0

r(t, u)du

)
, (2.9)

y(t, x) =
1

x

∫ x

0

r(t, u)du, (2.10)

therefore they can also be expressed as an affine function of the state variables.

The functional forms for the state variables indicate that this class of model isnot

nested in the affine term structure class considered in Duffie and Kan (1996), even

though there will be occasions when the two classes overlap. Since it is unclear what

these state variables represent, the forward/yield curve can be “inverted” so that eco-

nomically meaningful quantities can serve as the state variables.

Let S = {ψi
l(t), ϕ

i
lk(t)}. DefineN = |S |, choose an ordering forS and write

χn(t) for the elements ofS so thatS = {χ1(t), . . . , χN (t)}. Then (2.4) can be
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written

r(t, x) = a0(t, x) +

N∑

n=1

an(t, x)χn(t), (2.11)

for suitable deterministic functionsa0(t, x) andan(t, x).

Corollary 2.3. Suppose that the conditions of Assumption 2.1 are satisfied. If there

existτ1, τ2, . . . , τN ∈ R+ such that the matrix

A(t, τ1, . . . , τN ) =




a1(t, τ1) a2(t, τ1) · · · aN (t, τ1)

a1(t, τ2) a2(t, τ2) · · · aN (t, τ2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1(t, τN ) a2(t, τN ) · · · aN (t, τN )


 (2.12)

is invertible for allt ∈ R+, then the variablesχn(t) can be expressed in the form

χ(t) = A(t, τ1, . . . , τN )−1 [a0(t, τ1, . . . , τN ) − r(t, τ1, . . . , τN )] , (2.13)

where

χ(t) = [χ1(t), . . . , χN (t)]′, (2.14)

a0(t, τ1, . . . , τN ) = [a0(t, τ1), . . . , a0(t, τN )]′, (2.15)

r(t, τ1, . . . , τN ) = [r(t, τ1), . . . , r(t, τN )]′. (2.16)

The whole forward curve then can be written in terms of these new economically

meaningful state variables

r(t, x) = a0(t, x) − a(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ a(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),
(2.17)

where

a(t, x) = [a1(t, x), . . . , aN (t, x)]′. (2.18)

Therefore, the HJM models admits a N-dimensional affine realization in terms ofthe

forward ratesr(t, τ1, . . . , τN ). This set of forward rates forms a Markov process, and

each forward rater(t, x) satisfies the stochastic differential equation

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

]
dt

+ σ(t, t+ x)′dW̃ (t).

(2.19)
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In terms of the real world measure, whereφ ≡ (φ1, . . . , φI) is the vector of market

prices of risk associating with the Wiener processW , the system becomes

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

+ φ′σ(t, t+ x)
]
dt+ σ(t, t+ x)′dW̃ (t).

(2.20)

The yieldy(t, x) can also be expressed as an affine function of forward rates

y(t, x) =b0(t, x) − b(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ b(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),
(2.21)

where

b0(t, x) =
1

x

∫ x

0

a0(t, u)du,

b(t, x) =
1

x

∫ x

0

a(t, u)du.

3. ESTIMATION FRAMEWORK

3.1. Econometric implication of the model.

Some specialized models of the class discussed in the previous section have been

empirically analyzed. Bliss and Ritchken (1996) consider the case where the volatility

function in (2.2) can be written as3

σ(t, x) = c(t) e−κx .

They then introduce an error term into the relationship (2.21) to estimate their model

via the Maximum Likelihood procedure4. This method has two undesirable features.

First, due to the need to input the market values of the forward rates into (2.21), the

estimation results may vary as to the choice of which forward rates to serve asthe

state variables. This choice is arbitrary, and Bliss and Ritchken also show that the

parameter estimates are sensitive to this choice. Second, Bliss and Ritchken realize

that the relationship (2.21) does not depend on the parameters characterizing function

c(t), and therefore their estimation method can only identifyκ 5. However, all of the

3With this volatility function, the model can be markovianized using two state variables.
4The relationship Bliss and Ritchken use is actually an expression of the wholeyield curve as an affine
function of some particular yields rather than the forward rates. This canbe derived very simply from the
model here.
5In our general class, the only parameters that affect the relationship (2.21) are those of the functionsσij .
Those parameters of the functioncij do not affect this linkage between term structure.
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parameters in the models are important in practical work, such as determining the price

of a derivative contract.

De Jong and Santa-Clara (1999) also empirically study two-state variable HJM

model. However, they overcome the problem of Bliss and Ritchken (1996) by us-

ing both the relationship (2.21) and the markovian system (2.20) in their estimation.

They use the Kalman filtering method where (2.21) serves as the observableequation

and (2.20) is discretized into a transition equation. The market price of risk term in

(2.20) is assumed to be proportional to the square root of the spot rate. In their paper,

due to the special structure of their model, De Jong and Santa-Clara can solve the sys-

tem for an exact linear discretized solution to apply the Kalman filter. However, not all

nonlinear system has an exact solution and the behaviour of the estimator, istherefore,

dependent on the method of discretizing the structural stochastic system.

In this paper, we advocate the local linearization filter (hereafter LL filter)of Jimenez

and Ozaki (2002, 2003). The approach is still based on the Kalman filter for a discrete

linear system. However, Jimenez and Ozaki do not discretize the nonliear system di-

rectly, but rather approximate it by a linear system, then solve the linear system for an

exact solution, and finally apply the Kalman filter. The approximation is not based on

a first order Taylor approximation used in the extended Kalman filter framework, but

it is based on the second order approximation using Ito formula to take into account

the stochastic behaviour of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the performance of themaximum

likelihood estimator based on the LL filter and the one based on the extended Kalman

filter for a system with additive noise (i.e. the volatility function is not dependent on

the state variable). Shoji, via Monte Carlo method, showed that the LL filter provided

estimates with smaller bias, particularly in estimation of the coefficient of the drift

term. In a different study, Jimenez et al. (1999) also reported the numerical advan-

tages of the LL filter, including numerical stability, better accuracy and order of strong

convergence.



VOLATILITY STRUCTURE 8

3.2. The local linearization filter and the maximum likelihood estimator.

Let the state space model defined by the continuous state equation

dx(t) = f(t,x(t))dt+
m∑

i=1

gi(t,x(t))dWi(t), (3.1)

and the discrete observation equation6

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (3.2)

wheref andgi are nonlinear functions,x(t) ∈ R
d is the state vector at the instant

of time t, ztj ∈ R
r is the observation vector at the instant of timetj , W is am-

dimensional Wiener process, and{etj : etj ∼ N (0,Π), j = 0, . . . , J} is a sequence

of random vector i.i.d.

The systematic functionsf andgi can be linearly approximated. Jimenez and Ozaki

(2003) proposed to approximate them via truncated Ito-Taylor expansionto take into

account the stochastic behaviour of the underlying state system. For example, the

approximation forf is

f(t,x(t)) ≈f(s,u) +


∂f(s,u)

∂s
+

1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2f(s,u)

∂uk∂ul


 (t− s)

+ Jf (s,u)(x(t) − u),

(3.3)

where(s,u) ∈ R × R
d, Jf (s,u) is the Jacobian off evaluated at the point(s,u) and

G(s,u) is thed×m matrix defined byG(s,u) ≡ (g1, . . . ,gm).

Using these approximations forf andgi, the solution of the nonlinear state equation

(3.1) can be approximated by the solution of the piecewise linear sde

dy(t) =
(
A(tj , ŷtj |tj )y(t) + a(t, tj , ŷtj |tj )

)
dt

+

m∑

i=1

(
Bi(tj , ŷtj |tj )y(t) + bi(t, tj , ŷtj |tj )

)
dWi(t)

(3.4)

6A full (nonlinear) specification of the observation equation would be

ztj
= h(tj ,x(tj)) +

n∑

i=1

pi(tj ,x(tj))ξ
i
tj

+ etj
, for j = 0, 1, . . . , J,

whereh andpi are nonliear functions,{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j = 0, . . . , J}

is a sequence of random vector i.i.d., andξi
tj

andetj
are uncorrelated for alli andj. However, in view

of most finance applications, including ours, we chose a linear specification for pi and to omit the term
ξ.
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for all t ∈ [tj , tj+1), starting aty(t0) = ŷt0|t0 = x̂t0|t0 . The remaining notations are

defined as

x̂t|ρ = E (x(t)|Zρ) , Zρ = {ztj : tj ≤ ρ},

ŷt|ρ = E (y(t)|Zρ) ,

A(s,u) = Jf (s,u),

Bi(s,u) = Jgi
(s,u),

a(t, s,u) = f(s,u) − Jf (s,u)u +
∂f(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2f(s,u)

∂uk∂ul
(t− s),

bi(t, s,u) = gi(s,u) − Jgi
(s,u)u +

∂gi(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2gi(s,u)

∂uk∂ul
(t− s).

This linear state equation can be solved for an exact solution.

After approximation, (3.4) and the “new” observation equation (see (3.2))

ztj = C(tj)y(tj) + etj , for j = 0, 1, . . . , J, (3.5)

form a linear state space system. The optimal linear filter proposed by Jimenezand

Ozaki (2002) can be applied (see Appendix A for the definition) to determine the con-

ditional mean̂yt|ρ and conditional covariance matrixPt|ρ = E((y(t) − ŷt|ρ)(y(t) −

ŷt|ρ)
′|Zρ) for all ρ ≤ t.

Due to the assumption of multivariate normality of the disturbancesetj (and if the

initial state vector also have a proper multivariate normal distribution), the distribution

of ztj+1
conditional onZtj is itself normal (see (3.5)). The mean and covariance matrix

of this conditional distribution are given directly by the local linearization filterabove.

Therefore, a maximum likelihood estimator for the model parameters can be easily

derived.

Let θ be the vector of parameters of interest, which include all parameters speci-

fying the state space model (3.4) and (3.5), plus the initial state values ofx̂t0|t0 and

Pt0|t0 . The log likelihood function forZ is

LZ(θ) = −
rJ

2
ln(2π) −

1

2

J∑

j=1

ln |Σtj | −
1

2

J∑

j=1

ν ′
tj
Σ−1

tj
νtj (3.6)
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where the innovation equations are

νtj = ztj − C(tj)ŷtj |tj−1
, (3.7)

Σtj = C(tj)Ptj |tj−1
C′(tj) + Π. (3.8)

The maximum likelihood estimator ofθ is

θ̂ = max
θ

LZ(θ). (3.9)

3.3. Econometric implementation.

We analyze a one-factor interest rate model where the volatility of the interest rates

is dependent on the level of the rates, i.e.

σ(t, x) = γrλ(t). (3.10)

The dependence of interest rate volatility on the level of rates has been long docu-

mented. In a large number of previous research, especially within the quadratic term

structure family of models, a square root dependence (i.e.λ = 0.5) has been used.

However, some other researchers have estimatedλ and found it to be equal to 1.5 in

Chan et al. (1992), and in the range of 0.5 to 1.5 (dependent on the interest rate series

used) in Pagan et al. (1996).

The market price of risk termsφ is assumed to follow a CIR type of processes, ie.

it is mean reverting and has volatility function proportional to the square rootof the

level of itself, ie.

dφ = α(φ̄− φ)dt+ β
√
φ(t)dW (t). (3.11)

Intuitively, the specification suggests that the market price of interest raterisk is always

positive and tends to converge to its long run equilibrium.

Using some algebra work, we now have a continuous-discrete nonlinear state space

system. The nonlinear transitional system contains the evolution equations for three

underlying state variables

dr(t) =

(
r(t, τ2) − r(t)

τ2
− φγrλ

)
+ γrλdW (t), (3.12)

dr(t, τ2) =

(
r(t, τ2) − r(t)

τ2
+ γ2r2λτ2 − φγrλ

)
+ γrλdW (t), (3.13)

dφ(t) = α(φ̄− φ)dt+ β
√
φdW (t). (3.14)

The linear measurement equation expresses zero-coupon yields as functions of the

state variables

y(t, x) =

(
1 −

x

2τ2

)
r(t) +

x

2τ2
r(t, τ2) + ex (3.15)
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(for different values of maturityx), where we have introduced into the observation

equation a measurement error, which reflects the fact that the model cannot fit all

observed yields simultaneously. This measurement error is assumed to followa multi-

variate normal distribution.

The LL algorithm can be readily implemented. We use LIBOR rates for our empir-

ical study. It should be noted that there is a one-to-one relationship between Libor rate

and zero-coupon yield

exp(x× y(t, x)) = 1 + xL(t, x), (3.16)

therefore to obtain the likelihood function for these Libor series we need to transform

the likelihood function for the yields obtained through the LL procedure via aJacobian

transformation.

4. EMPIRICAL ANALYSIS

4.1. The Data.

We use weekly data for Libor rate with maturities range from 1 month to 12 months

traded during the 4-year period 1999-2002 in 4 markets of the United States, the Great

Britain, the Japan and the Australia.

The typical movements of the LIBOR rates in each market can be seen in Figure 1.

In Australia and Great Britain, the rates fluctuated around a mean level of 5.3%. At the

end of year 1999, the rate in the Great Britain started to decline and kept thismovement

throughout the year 2000. The Australian market experienced a much shaper decline

in the last quarter of 1999 and first quarter of 2000, and then moved widely around the

mean level. The U.S. market experienced even a shaper decline until the beginning of

2002, when the rates gradually decreased from 2% to a low level of 1.5%.However,

this level was still much higher than that in the Japanese market. This market had an

extremely high volatility of very low interest rate level, which was as low as 0.1%

since the second quarter of 2001.

4.2. Empirical Results.

The model (3.12)-(3.15) are fitted to the four markets, and the estimation results are

reported in Table 1.

The dependence of the volatility on the level of interest rate is a nonlinear relation-

ship via the power parameterλ. Only in the Japanese market where the estimated

λ is 0.47 we find evidence of a square-root typed dependency. In all ofother mar-

kets we find an estimate of 1.5, which predicts a much smaller volatility for a given

level of interest rate. The implied volatilities for the instantaneous rate vary widely
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FIGURE 1. 6-month LIBOR Rates
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Japan

between different markets (see Figure 2). The Japanese market, with its extremely low

interest rate level, has the highest implied volatility, averaging at an astonishing level

of 15%. The Great Britain and Australia markets have stable interest rate volatility,

though volatility in the Australian market is averaging at 5%, which is much lower

than the level of 7.5% in the Great Britain. In the U.S., the volatility picks at the be-

ginning of 2001, when the sharp decline in the level of rate is started. The volatility

level fluctuates during this rate-declining period then gradually settles downto the 1%

level.

Figure 3 illustrates the implied market price of interest rate risk in each market7.

The U.S and the Australian market offer a highest reward for a given level of interest

rate risk. The Japanese market pays the smallest price for the risk and theGreat Britain

only reward a slightly higher prize compared to the Japanese market. All of the market

prices of risk revert very quickly towards their long term level. It takes roughly 1.7

7The first 3 observations are ignored. The values which seem to be unreasonable might be the result of
the filter has not settled down properly.
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TABLE 1. Estimation Results

This table reports the parameter estimates for each market.Asymptotic standard errors
of the estimate are given in parentheses.

Parameter United States Australia Great Britain Japan

γ 3.7499 3.0127 4.6875 3.7499
(0.0041) (1.73e-9) (6.16e-5) (8.88e-9)

λ 1.4963 1.4989 1.4999 0.4683
(0.0009) (3.42e-7) (1.10e-7) (1.92e-8)

α 49.9983 49.1699 99.9023 98.4375
(0.0019) (4.85e-7) (1.14e-5) (1.22e-8)

φ̄ 0.5771 0.1875 0.2498 0.0625
(3.64e-5) (4.76e-6) (1.52e-8) (2.08e-9)

β 0.2500 1.0000 1.0000 0.2500
(0.0002) (1.64e-9) (1.05e-9) (1.18e-8)

σ2
e 4.39e-7 1.53e-7 3.05e-7 5.08e-5

(5.78e-17) (7.59e-11) (2.96e-9) (1.36e-10)

FIGURE 2. Implied volatility of the instantaneous interest rate
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FIGURE 3. Implied market price of interest rate risk

Year1999 2000 2001 2002

0.25

0.5

0.75
United States

Great Britain

Year1999 2000 2001 2002

0.25

0.5

0.75
Australia

Japan

days in the U.S. and the Australian markets and 3.5 days in the Great Britain andthe

Japanese markets for the market price of risk to half its level.

The discount on the instantaneous short rate (which will be transformed into a pre-

mium on bond price) can be determined by scaling the volatility level by this market

price of risk. It can be seen from Figure 4 that the discount in the U.S. market is highest

and that in the Australian market is lowest. The discount levels in both the Australian

and the Great Britain market are stable, whereas that in the Japanese market fluctuates

strongly.

In all of the markets the model provides a reasonable fit to data. Table 2 reports

the absolute difference between the predicted values for LIBOR rates based on fitted

state variables and the observed rates. Overall, the absolute error in the U.S market

is 6.7 basis points, and 1.6-3 basis points in the other three markets. The prediction

error is similar across the terms of the rates, except for the longest and shortest terms

where the errors are slightly higher. The higher errors observed in theU.S market are

concentrated on the two quarters from the end of 2000 to the beginning of 2001, where

interest rate movement changes its direction from an increase trend to a sharp decline.
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FIGURE 4. Implied discount for the instantaneous short rate
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The error patterns can be seen in Figure 5, where the errors for 4-month LIBOR rate

prediction have been illustrated (the term is chosen so as its average errormatches that

across maturities).

5. CONCLUSION

The paper has implemented a local linearization filter of Jimenez and Ozaki (2002,

2003) to estimate (via the maximum likelihood method) a model for the LIBOR rates

traded in the U.S., Great Britain, Australia and Japan. The model allows a nonlinear

dependence of volatility on the level of the interest rate. The estimation predicts a

different power dependence than a square-root model usually usedin the literature.

Interesting behaviours of interest rate and the market price of its risk arealso revealed.
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FIGURE 5. Prediction error for LIBOR rates
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TABLE 2. Absolute difference between the fitted and the observed
LIBOR rates

Term U.S. Australia Great Britain Japan
(months) Avr Stdev Avr Stdev Avr Stdev Avr Stdev

1 0.00132 0.00195 0.00049 0.00042 0.00059 0.00059 0.00031 0.00052
2 0.00089 0.00152 0.00023 0.00020 0.00036 0.00036 0.00021 0.00025
3 0.00069 0.00125 0.00016 0.00022 0.00031 0.00037 0.00019 0.00022
4 0.00058 0.00093 0.00021 0.00021 0.00029 0.00036 0.00016 0.00019
5 0.00052 0.00066 0.00026 0.00021 0.00027 0.00030 0.00013 0.00016
6 0.00044 0.00037 0.00030 0.00022 0.00027 0.00023 0.00011 0.00013
7 0.00036 0.00024 0.00024 0.00017 0.00020 0.00015 0.00007 0.00010
8 0.00038 0.00045 0.00018 0.00013 0.00016 0.00012 0.00006 0.00007
9 0.00045 0.00080 0.00012 0.00008 0.00016 0.00013 0.00009 0.00007
10 0.00056 0.00116 0.00008 0.00006 0.00022 0.00017 0.00013 0.00008
11 0.00078 0.00150 0.00021 0.00015 0.00033 0.00024 0.00018 0.00012
12 0.00105 0.00183 0.00036 0.00025 0.00044 0.00032 0.00024 0.00015
All 0.00067 0.00122 0.00024 0.00024 0.00030 0.00033 0.00016 0.00022

APPENDIX A. L OCAL L INEARIZATION FILTER FOR L INEAR

CONTINUOUS-DISCRETESTATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space model defined bythe con-

tinuous state equation

dx(t) = (A(t)x(t) + a(t)) dt+
m∑

i=1

(Bi(t)x(t) + bi(t)) dWi(t), (A.1)

and the discrete observation equation8

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (A.2)

wherex(t) ∈ R
d is the state vector at the instant of timet, ztj ∈ R

r is the observation

vector at the instant of timetj , W is am-dimensional Wiener process, and{etj :

etj ∼ N (0,Π), j = 0, . . . , J} is a sequence of random vector i.i.d.

Define x̂t|ρ = E (x(t)|Zρ) andPt|ρ = E((x(t) − x̂t|ρ)(x(t) − x̂t|ρ)
′|Zρ) for all

ρ ≤ t, whereZρ = {ztj : tj ≤ ρ}.

8Their original specification is

ztj
= C(tj)x(tj) +

n∑

i=1

Di(tj)x(tj)ξ
i

tj
+ etj

, for j = 0, 1, . . . , J,

where{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j = 0, . . . , J} is a sequence of random vector

i.i.d., andE(ξi
tj

, etj
) = ϑi(tj). However, in view of most finance applications, we chose to omit the

termξ.
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Suppose thatE (W(t)W′(t)) = I, x̂t0|t0 <∞ andPt0|t0 <∞.

Theorem A.1. (Jimenez and Ozaki (2002)) The optimal (minimum variance) linear

filter for the linear model (A.1)- (A.2) consists of equations of evolution for the condi-

tional meanx̂t|t and the covariance matrixPt|t. Between observations, these satisfy

the ordinary differential equation

dx̂t|t =
(
A(t)x̂t|t + a(t)

)
dt, (A.3)

dPt|t =

(
A(t)Pt|t + Pt|tA

′(t) +
m∑

i=1

Bi(t)
(
Pt|t + x̂t|tx̂

′
t|t

)
B′

i(t)

+
m∑

i=1

(
Bi(t)x̂t|tb

′
i(t) + bi(t)x̂

′
t|tB

′
i(t) + bi(t)b

′
i(t)
))

dt,

(A.4)

for all t ∈ [tj , tj+1). At an observation attj , they satisfy the difference equation

x̂tj+1|tj+1
= x̂tj+1|tj + Ktj+1

(
ztj+1

− C(tj+1)x̂tj+1|tj

)
, (A.5)

Ptj+1|tj+1
= Ptj+1|tj − Ktj+1

C(tj+1)Ptj+1|tj , (A.6)

where

Ktj+1
= Ptj+1|tjC

′(tj+1)
(
C(tj+1)Ptj+1|tjC

′(tj+1) + Π
)−1

(A.7)

is the filter gain. The prediction̂xt|ρ and Pt|ρ are accomplished, respectively, via

expressions (A.3) and (A.4) with initial conditionsx̂t0|t0 andPt0|t0 andρ < t.

The analytical solution for these system of equations can be easily found,for details

see Jimenez and Ozaki (2003). They also provide some equivalent expressions that are

easier to implement via computer programs.
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