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ABSTRACT. This paper considers the dynamics for interest rate processes within th
Heath, Jarrow and Morton (1992) specification. It is well known that ohthe
difficulties in using this specification for estimation is the non-Markovian eatdir

the dynamics. The paper focuses on a fairly broad family of modelsnthtabnly

can be transformed into a Markovian dynamics, but also has an affimesentation

for the observed data, which overlaps but is not nested in the Duffi€anq1996)
class of affine term structure models. The model parameters are &estioging a
maximum likelihood function obtained via the local linearization filter propdsed
Jimenez and Ozaki (2002, 2003). The method is then applied to anaéyzelttiility
structure of the LIBOR markets.

Key words Term structure; Heath-Jarrow-Morton; Local Linearization; Filtering
JEL classificationsC51, E43, G12

1. INTRODUCTION

The no-arbitrage approach, as opposed to the general equilibriurnaabp to in-
terest rate modelling has wide appealing power. The specification of Hizatiow
and Morton (1992) (hereafter HIM), and later of Brace, GatarekMusiela Brace
et al. (1997) have proved the flexibility of the approach in capturing thpelof the
yield curve and the ability to price various financial quantities. Even thougite thas
been huge advancement in the theoretical field, the practical implementatibis of
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VOLATILITY STRUCTURE 2

model framework is hindered by the non-markovian nature of the intextesstlynam-
ics. Estimation of the model parameters becomes a challenging problem despite its
obvious importance in risk management, pricing and forecast activities.

This paper considers the class of the HIM models analyzed by Chiarelkansord
(2001b, 2003), where the interest rate dynamics can be markoviatigegkiending
the state variable vector) and the observable financial quantities sucé wgltis or
bond prices can be expressed as affine functions of the underlytegatéables. This
class nested some important classes that have been considered pyénithesHIM
framework, such as those analyzed by Carverhill (1994), RitchkdnSamkarasub-
ramanian (1995), Bhar and Chiarella (1997a), Inui and Kijima (1998) 2@ Jong
and Santa-Clara (1999). In addition, this class of models is not nested &ffithe
term structure class considered in Duffie and Kan (1996), even thitvegl will be
occasions when the two classes overlap.

Even though a Markovian structure is obtained, the resulting interestystensis
high-dimensional and nonlinear, imposing difficulty in estimation. This papen-ad
cates the local linearization method proposed by Jimenez and Ozaki 200, to
calculate the likelihood function of observable data. The idea is to linearizetdhe
chastic differential equations of the state variables iddtmula to take into account
their stochastic behaviours. The linear stochastic differential equatierisen solved
analytically for their discrete representations and a simple Kalman filter caalled c
to calculate the likelihood function for the observables and therefore thelroad be
estimated via the maximum likelihood method.

The method is then applied to analyze the volatility structure of LIBOR ratesdrade
on the United States (hereafter U.S.), the Great Britain, the Australian addpbaese
markets. The rest of the paper is structured as follows. Section 2 désctssclass
of models we are looking at. Section 3 analyzes the econometric implications of the
model, what has been done in the literature and our proposal. Empiridgkisnia
carried out in Section 4 and finally Section 5 concludes the paper.

2. MODEL FRAMEWORK

The general framework for the interest rate models considered in thées Eajm-
troduced in Heath, Jarrow and Morton (1992), where the instantarfienusrd rates
r(t, z) (the rate that can be confracted &br instantaneous borrowing/lendingtat )
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are assumed to satisfy SDEs of the férm

r(t,x) =r(0,t+x) + /0 o(s,t+z) [a(s,t+x)— P(s)] ds
2.1)

.
—I—/ o(s,t+x)dW(s),
0
where
t+x
o(s,t+x)= / o(s,u)du,

ando (t,x), ¢(t) areI-dimensional processes ab¥l (¢) is a standard-dimensional
Wiener process under the market meas@rd € N, and the superscriptrepresents
matrix transposition. The vect@¥(¢) can be interpreted as the market price of interest
rate risk vector associated withW (¢).

The HIM model framework is chosen as it yields arbitrage-free modelsittitiae
initial yield curve by construction. The subclass of HIM models which argcpa
larly suited to practical implementation are those which can be Markovianized. T
research of Carverhill (1994), Ritchken and Sankarasubramahf8%), Bhar and
Chiarella (1997a), Inui and Kijima (1998), De Jong and Santa-Clar@9)1Bas ad-
vanced our knowledge on the field. Recently, Chiarella and Kwon(2@0@8) in-
troduce a class of models that can specialize into the above-mentioned nibdels.
models in this class satisfy the assumption:

Assumption 2.1. (i) For eachl < i < I, there existd,; € N such that the compo-
nents,o;(t, x), of the forward rate volatility process have the form

L;
oi(t,z) = Zcil(t)%l(x) (2.2)
I=1

wherec;;(t) are stochastic processes ang (x) are deterministic functions.
(i) There existM € N and a sequence; < --- < zjr € Ry such that the processes
cii(t) have the form

ciu(t) =¢cu(t,r(t,x1),...,r(t,znr)), (2.3)

wherec is deterministic in its arguments.

Chiarella and Kwon (2003) then prcithat the forward curve can be expressed as
an affine function of some state variables,

IWe are in fact using the Brace et al. (1997) implementation of the HIM m®tes is more appropriate
to capture the dynamics of LIBOR and various other market quoted rates

2See proposition 3.4 in their paper.
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Proposition 2.2. Let o (¢, ) satisfy the conditions of Assumption 2.1. Then the for-
ward rate curve can be expressed in the form

I L,
r(t,z) =r(0,t+2) + Y Y oult + )i (t)
=1 [=1
L; '
+ Z Uzl )61’1* (t + x) + €+ 04+ (t + 33)5’1'[(75 + CL‘)]C,O;I* (t),
=1 l,l [:*
(2.4)
where
g; = ZUZ‘ d y 2.5
() / ((s) ds (2.5)
t

Le(t) = () e (s) ds, 2.6
ol (1) /Ocz<s>cl<s> 5 (2.6)

t
i(t) = /0 - Z / cals)en(s)ou-(s)ds,  (2.7)

1*=1
1, ifl#1%,
0, ifl=1"

and Wi, (¢ =1,...,I) are standard Wiener process under the equivalent meaBure

Let y(t,z) be the yield on thé€t¢ + x)-maturity zero coupon bont¢, z). These
guantities are uniquely linked with the instantaneous forward rates via,

b(t,z) = exp <— /0 xr(t,u)du) , (2.9)
y(t,z) = %/Oxr(t,u)du, (2.10)

therefore they can also be expressed as an affine function of the atiztieles.

The functional forms for the state variables indicate that this class of modet is
nested in the affine term structure class considered in Duffie and K&&)18ven
though there will be occasions when the two classes overlap. Since itlesaumdhat
these state variables represent, the forward/yield curve can be “idvedehat eco-
nomically meaningful guantities can serve as the state variables.

Let.” = {¢i(t), ¥}, (t)}. DefineN = |.#|, choose an ordering fo#” and write
xn(t) for the elements of” so that = {xi(¢),...,xn~(t)}. Then (2.4) can be
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written
N

r(t,x) = ao(t, ) + D an(t, ) xn(t), (2.11)

n=1

for suitable deterministic functions (¢, ) anda, (¢, x).

Corollary 2.3. Suppose that the conditions of Assumption 2.1 are satisfied. If there

existry, 7o, ..., 7n € Ry such that the matrix
ar(t,m) ag(t,m) -+ an(t,m)
At,m,... ) = | 2O abm) o an(t ) (2.12)
ai(t,7n) ao(t,7n) -+ an(t,7n)

is invertible for allt € R, then the variableg,,(t) can be expressed in the form

X(t) = A(t,’]’l, .. .,TN)_l [ao(t,’ﬁ, .. .,TN) — T(t,’]’l, .. .,TN)] , (2.13)
where

x(t) = [xa(t), .., xn (0], (2.14)

ao(t,n, ey TN) = [ao(t,Tl), e ,ao(t,TN)}/, (215)

T(t,Tl, ey TN) = [T‘(t,Tl), e ,T(t, TN)}/. (216)

The whole forward curve then can be written in terms of these new ecornlbmica
meaningful state variables

r(t,x) = ao(t,z) — a(t,z) At,m1,...,78) tag(t,11,...,7N)
) (2.17)
+a(t,z) Alt,m1,...,78) Pt 1, TN),
where
a(t,z) =[ai1(t,z),...,an(t,2)]’. (2.18)

Therefore, the HIM models admits a N-dimensional affine realization in terting of
forward rates-(¢, 1, ..., 7n). This set of forward rates forms a Markov process, and
each forward rate(t, =) satisfies the stochastic differential equation

_ [Qao(t,z)  dalt,z)

dr(t,x) = o7 o7 A(t,Tl,...,TN)_lao(t,Tl,...,TN)
/
—|—aa(aﬂA(t,ﬁ, o TN) Tt T, ) F ot t 4z a4 x) | dt
x
+o(t,t+z)dW(t).

(2.19)
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In terms of the real world measure, whebe= (¢4, ..., ¢s) is the vector of market
prices of risk associating with the Wiener proc&gs the system becomes

dag(t, oa(t,z)
dr(t, x) = %(w - ((955 )
da(t, z)
o

+ @lo(t,t+ )] dt+o(t,t +z)dW(t).

A(t,Tl,... ,TN>_1a0(t,T1,...,TN)

At 7, ..., 7n) It 1, . ) + ot t +2) et t+ )

(2.20)

The yieldy(t, z) can also be expressed as an affine function of forward rates
y(t,xz) =bo(t,z) — b(t,z) A(t,1,...,78) tag(t,11,...,7n)

) (2.21)
+b(t,z) Alt,m,...,78) et T, .., TN),

where

1 T
bolt, 7) = / ao(t, u)du,
0

xT

b(t, z) = l/oxa(t,u)du.

3. ESTIMATION FRAMEWORK

3.1. Econometric implication of the model.

Some specialized models of the class discussed in the previous sectiorekave b
empirically analyzed. Bliss and Ritchken (1996) consider the case wheveldtility
function in (2.2) can be written 3s

o(t,z) =c(t)e .

They then introduce an error term into the relationship (2.21) to estimate theglmod
via the Maximum Likelihood procedure This method has two undesirable features.
First, due to the need to input the market values of the forward rates intb) (2h2
estimation results may vary as to the choice of which forward rates to senye as
state variables. This choice is arbitrary, and Bliss and Ritchken also sladwhi
parameter estimates are sensitive to this choice. Second, Bliss and Ritelakea r
that the relationship (2.21) does not depend on the parameters chanagtemction
c(t), and therefore their estimation method can only identiﬁ/ However, all of the

Swith this volatility function, the model can be markovianized using two state bi@sa

“The relationship Bliss and Ritchken use is actually an expression of the wietdecurve as an affine
function of some particular yields rather than the forward rates. Thibeaterived very simply from the
model here.

SIn our general class, the only parameters that affect the relatior&sBip) @re those of the functions;.
Those parameters of the functiey do not affect this linkage between term structure.
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parameters in the models are important in practical work, such as determiaipddé
of a derivative contract.

De Jong and Santa-Clara (1999) also empirically study two-state varialde HJ

model. However, they overcome the problem of Bliss and Ritchken (199&)sb

ing both the relationship (2.21) and the markovian system (2.20) in their estimation
They use the Kalman filtering method where (2.21) serves as the obseegalaigon

and (2.20) is discretized into a transition equation. The market price of niskite
(2.20) is assumed to be proportional to the square root of the spotmateeit paper,

due to the special structure of their model, De Jong and Santa-Claraleanhsosys-

tem for an exact linear discretized solution to apply the Kalman filter. Howeeeall
nonlinear system has an exact solution and the behaviour of the estimétergifore,
dependent on the method of discretizing the structural stochastic system.

In this paper, we advocate the local linearization filter (hereafter LL fitteHimenez
and Ozaki (2002, 2003). The approach is still based on the Kalman &herdiscrete
linear system. However, Jimenez and Ozaki do not discretize the nonfsansdi-
rectly, but rather approximate it by a linear system, then solve the lineans{stan
exact solution, and finally apply the Kalman filter. The approximation is nadas
a first order Taylor approximation used in the extended Kalman filter frameuwat
it is based on the second order approximation using Ito formula to take inbmicc
the stochastic behaviour of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the performance ohthémum
likelihood estimator based on the LL filter and the one based on the extentledrKa
filter for a system with additive noise (i.e. the volatility function is not depenhden
the state variable). Shoji, via Monte Carlo method, showed that the LL filteigwed
estimates with smaller bias, particularly in estimation of the coefficient of the drift
term. In a different study, Jimenez et al. (1999) also reported the nuahedean-
tages of the LL filter, including numerical stability, better accuracy andrartigtrong
convergence.
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3.2. The local linearization filter and the maximum likelihood estimator.

Let the state space model defined by the continuous state equation
dx(t) = £(t,x())dt + > g;(t, (1)) dW;(t), (3.1)
=1

and the discrete observation equation
Z; = C(tj)X(tj) + e, forj=0,1,...,J, (3.2)

wheref andg; are nonlinear functionsg(t) € R¢ is the state vector at the instant
of time ¢, z; € R" is the observation vector at the instant of timje W is am-
dimensional Wiener process, afé;; : e;; ~ N(0,II),j = 0,...,J} is a sequence
of random vector i.i.d.

The systematic functiorfsandg, can be linearly approximated. Jimenez and Ozaki
(2003) proposed to approximate them via truncated Ito-Taylor expatsi@ke into
account the stochastic behaviour of the underlying state system. For lexahgp
approximation foff is

d
£(t,x(t)) ~f(s,u) + &+% S [G(s,w)G (s, )] zé’aflgsaj (t— s)
+ Je(s,u)(x(t) —u),
(3.3)

where(s,u) € R x R?, J¢(s, u) is the Jacobian of evaluated at the poirft, u) and
G(s,u) is thed x m matrix defined byG(s,u) = (g,...,8,,)-

Using these approximations fbandg;, the solution of the nonlinear state equation
(3.1) can be approximated by the solution of the piecewise linear sde

dy(t) = (A(tj,ytj\tj)}’(t) + a(t,tj,ytj\tj)> dt
m (3.4)
37 (Bilts, 71,1, )y (0) + bilt 15,5,1,) ) AW (1)

=1

6a full (nonlinear) specification of the observation equation would be
zi; = h(t;, x(t; +sztj7x §t +ey, forj=0,1,...,J

whereh andp, are nonliear functlons{,gtj &y, N(0,A), A =diag((A1,..., n)),7=0,...,J}

is a sequence of random vector i.i.d., aﬂ@]d ande,; are uncorrelated for alland;j. However, in view
of most finance applications, including ours, we chose a linear speifidar p, and to omit the term

¢.
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forall ¢ € [t;,t,11), starting aty (to) = ¥y,1, = Xuolto- The remaining notations are
defined as
Xyp = E(x(t)|Z,), Zp = {2z, : t; < p},
yt|p =E y(t)‘Zp) )
A(S’ 11) = Jf(S, 11),

Bi(s,u) = Jg(s,u),

(
(

a(t,s,u) = f(s,u) — Jg(s,u)u+ af(;; u) (t—s)
1< 0%t (s,u
+ 5521 (s u)]k’lﬁ(t—s),
8gi(5’ 11)

bi(t,S,ll) = gi(87u) —Jgi(s,u)u—i— ) (t_ S)
S

Gls )G (s ) BB

+ oukou!

N =
]~

1

k,l
This linear state equation can be solved for an exact solution.

After approximation, (3.4) and the “new” observation equation (see)(3.2)
zy; = C(t;)y(tj) + ey, forj=0,1,...,J, (3.5)

form a linear state space system. The optimal linear filter proposed by Jiraadez
Ozaki (2002) can be applied (see Appendix A for the definition) to deterihia con-
ditional meany,, and conditional covariance matB;, = E((y(t) — ¥,)(y(t) —
Vi) Z,) forall p <t

Due to the assumption of multivariate normality of the disturbargegand if the
initial state vector also have a proper multivariate normal distribution), theldistn
of z;,,, conditional onZ,, is itself normal (see (3.5)). The mean and covariance matrix
of this conditional distribution are given directly by the local linearization fiétieove.
Therefore, a maximum likelihood estimator for the model parameters can i eas
derived.

Let @ be the vector of parameters of interest, which include all parameters speci-
fying the state space model (3.4) and (3.5), plus the initial state valueg qf and
Py, 1o~ The log likelihood function fo is

Lz7(0) = —ﬂln 27) — = Zln]Zt Zl/t72 v, (3.6)
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where the innovation equations are

Vi, = Z¢; — C(tj)ytﬂtj_la (3-7)
Etj = C(tj)Ptj\tj,lc,(tj) + IT1. (3.8)

The maximum likelihood estimator &fis

0 = mgXEZ(O). (3.9)

3.3. Econometric implementation.

We analyze a one-factor interest rate model where the volatility of the ihtates
is dependent on the level of the rates, i.e.

o(t,z) = yr(t). (3.10)

The dependence of interest rate volatility on the level of rates has begrdtmu-
mented. In a large number of previous research, especially within theajicarm
structure family of models, a square root dependence fi.es 0.5) has been used.
However, some other researchers have estimataad found it to be equal to 1.5 in
Chan et al. (1992), and in the range of 0.5 to 1.5 (dependent on thesintate series
used) in Pagan et al. (1996).

The market price of risk terms is assumed to follow a CIR type of processes, ie.
it is mean reverting and has volatility function proportional to the squareabtite
level of itself, ie.

do = a(p — ¢)dt + Br/o(t)dW (t). (3.11)

Intuitively, the specification suggests that the market price of interesisitis always
positive and tends to converge to its long run equilibrium.

Using some algebra work, we now have a continuous-discrete nonlii@ispace
system. The nonlinear transitional system contains the evolution equatiotisde
underlying state variables

are) = (MEPLET ) raw ), 312
dr(t,m) = <—T(t7 T27)—2_ r(t) + 422y — qbf)/r/\) + ’yr)‘dW(t), (3.13)
dé(t) = a(d — ¢)dt + B+/pdW (¢). (3.14)

The linear measurement equation expresses zero-coupon Yieldsctisrfarof the
state variables

T T
y(t,z) = (1 - %> r(t) + 2—7_27“(75,7'2) + ey (3.15)
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(for different values of maturity:), where we have introduced into the observation
equation a measurement error, which reflects the fact that the modedtdénall
observed yields simultaneously. This measurement error is assumed todathoi-
variate normal distribution.

The LL algorithm can be readily implemented. We use LIBOR rates for our empir
ical study. It should be noted that there is a one-to-one relationship &etwieor rate
and zero-coupon yield

exp(z x y(t,x)) = 1+ zL(t, z), (3.16)

therefore to obtain the likelihood function for these Libor series we needmsfiorm
the likelihood function for the yields obtained through the LL procedure Jviacabian
transformation.

4. EMPIRICAL ANALYSIS

4.1. The Data.

We use weekly data for Libor rate with maturities range from 1 month to 12 months
traded during the 4-year period 1999-2002 in 4 markets of the United StateSreat
Britain, the Japan and the Australia.

The typical movements of the LIBOR rates in each market can be seen ireHigur
In Australia and Great Britain, the rates fluctuated around a mean level%f A\t the
end of year 1999, the rate in the Great Britain started to decline and kepidkiesnent
throughout the year 2000. The Australian market experienced a maglestiecline
in the last quarter of 1999 and first quarter of 2000, and then movedywaddmund the
mean level. The U.S. market experienced even a shaper decline untibiheibg of
2002, when the rates gradually decreased from 2% to a low level of 1Hsfitever,
this level was still much higher than that in the Japanese market. This matkahha
extremely high volatility of very low interest rate level, which was as low as 0.1%
since the second quarter of 2001.

4.2. Empirical Results.

The model (3.12)-(3.15) are fitted to the four markets, and the estimatidtsras
reported in Table 1.

The dependence of the volatility on the level of interest rate is a nonlinkdiore
ship via the power parameter Only in the Japanese market where the estimated
A is 0.47 we find evidence of a square-root typed dependency. In athetr mar-
kets we find an estimate of 1.5, which predicts a much smaller volatility for a given
level of interest rate. The implied volatilities for the instantaneous rate varglyvid
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FIGUurRe 1. 6-month LIBOR Rates
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between different markets (see Figure 2). The Japanese market, wittrésely low
interest rate level, has the highest implied volatility, averaging at an astogitaviel

of 15%. The Great Britain and Australia markets have stable interest rk#lityg
though volatility in the Australian market is averaging at 5%, which is much lower
than the level of 7.5% in the Great Britain. In the U.S., the volatility picks at the be-
ginning of 2001, when the sharp decline in the level of rate is started. dladility

level fluctuates during this rate-declining period then gradually settles tmtine 1%
level.

Figure 3 illustrates the implied market price of interest rate risk in each market
The U.S and the Australian market offer a highest reward for a givex tévnterest
rate risk. The Japanese market pays the smallest price for the risk aAcedueBritain
only reward a slightly higher prize compared to the Japanese market. A8 afdinket
prices of risk revert very quickly towards their long term level. It takesghly 1.7

The first 3 observations are ignored. The values which seem to basem@ble might be the result of
the filter has not settled down properly.
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TABLE 1. Estimation Results

13

This table reports the parameter estimates for each makkgmptotic standard errors
of the estimate are given in parentheses.

Parameter United States Australia Great Britain Japan
v 3.7499 3.0127 4.6875 3.7499
(0.0041) (1.73e-9) (6.16e-5) (8.88e-9)
A 1.4963 1.4989 1.4999 0.4683
(0.0009) (3.42e-7) (1.10e-7) (1.92e-8)
«@ 49.9983 49.1699 99.9023 98.4375
(0.0019) (4.85e-7) (1.14e-5) (1.22e-8)
¢ 0.5771 0.1875 0.2498 0.0625
(3.64e-5) (4.76e-6) (1.52e-8) (2.08e-9)
I} 0.2500 1.0000 1.0000 0.2500
(0.0002) (1.64e-9) (1.05e-9) (1.18e-8)
o? 4.39e-7 1.53e-7 3.05e-7 5.08e-5
(5.78e-17) (7.59e-11) (2.96e-9) (1.36e-10)

9%
8%

%,
69 -,

5%

FIGURE 2. Implied volatility of the instantaneous interest rate

e Great Britain

4% VY e
304~ —— — — ~Australia
2%
1%
1999 2000 2001 2002 Year
40%
30%
20%
10% Japan
1999 2000 2001 2002 Year
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FIGURE 3. Implied market price of interest rate risk
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days in the U.S. and the Australian markets and 3.5 days in the Great Britatheand
Japanese markets for the market price of risk to half its level.

The discount on the instantaneous short rate (which will be transforned jore-
mium on bond price) can be determined by scaling the volatility level by this market
price of risk. It can be seen from Figure 4 that the discount in the U.&ahiarhighest
and that in the Australian market is lowest. The discount levels in both thealastr
and the Great Britain market are stable, whereas that in the Japanest fiuatkates
strongly.

In all of the markets the model provides a reasonable fit to data. TableoZsep
the absolute difference between the predicted values for LIBOR rasesl lmn fitted
state variables and the observed rates. Overall, the absolute error inShaddket
is 6.7 basis points, and 1.6-3 basis points in the other three markets. Thetipred
error is similar across the terms of the rates, except for the longest artésttterms
where the errors are slightly higher. The higher errors observed id.®enarket are
concentrated on the two quarters from the end of 2000 to the beginnifaf &here
interest rate movement changes its direction from an increase trend tpadsicéine.
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FIGURE 4. Implied discount for the instantaneous short rate
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The error patterns can be seen in Figure 5, where the errors for thihtBOR rate
prediction have been illustrated (the term is chosen so as its averagmatobres that
across maturities).

5. CONCLUSION

The paper has implemented a local linearization filter of Jimenez and Oz&é,(20
2003) to estimate (via the maximum likelihood method) a model for the LIBOR rates
traded in the U.S., Great Britain, Australia and Japan. The model allowslimean
dependence of volatility on the level of the interest rate. The estimation [sealic
different power dependence than a square-root model usuallyimgbd literature.
Interesting behaviours of interest rate and the market price of its risksoeevealed.
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FIGURE 5. Prediction error for LIBOR rates
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TABLE 2. Absolute difference between the fitted and the observed

17

LIBOR rates
Term U.S. Australia Great Britain Japan
(months)|  Avr Stdev Avr Stdev Avr Stdev Avr Stdev
1 0.00132 0.0019%0.00049 0.000420.00059 0.000590.00031 0.00052
2 0.00089 0.001520.00023 0.000200.00036 0.00036¢0.00021 0.0002"
3 0.00069 0.0012%0.00016 0.000220.00031 0.000370.00019 0.0002:
4 0.00058 0.000930.00021 0.000210.00029 0.00036¢0.00016 0.0001¢
5 0.00052 0.00066 0.00026 0.000210.00027 0.000300.00013 0.0001¢
6 0.00044 0.000370.00030 0.000220.00027 0.000230.00011 0.00013
7 0.00036 0.000240.00024 0.000170.00020 0.0001%0.00007 0.0001(
8 0.00038 0.0004%0.00018 0.000130.00016 0.000120.00006 0.0000]
9 0.00045 0.0008(00.00012 0.000080.00016 0.000130.00009 0.0000]
10 0.00056 0.001160.00008 0.000060.00022 0.000170.00013 0.0000¢
11 0.00078 0.001500.00021 0.0001%0.00033 0.000240.00018 0.00011
12 0.00105 0.001830.00036 0.0002%0.00044 0.000320.00024 0.0001%
All 0.00067 0.001220.00024 0.000240.00030 0.000330.00016 0.00027

APPENDIXA. LOCAL LINEARIZATION FILTER FORLINEAR

CONTINUOUS-DISCRETESTATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space model defitteel dyn-
tinuous state equation

dt+z

and the discrete observation equation

Zy; = C(tj)X(tj) + €5, forj=0,1,...

bi(t)) dW(t),

’J7

(A.1)

(A.2)

wherex(t) € R? is the state vector at the instant of time,, € R" is the observation
vector at the instant of time;, W is a'm-dimensional Wiener process, agéd;; :

ey, ~N(0,II),j =0,...,
Definex,, = E (x(t)|Z,) andP,, = E((x(t) — Xy,)(x(t)

p < t,whereZ, = {z,

:tj Sp}

8Their original specification is

J} is a sequence of random vector i.i.d.

- %y,)'|Z,) for all

t; = C(t;)x(t;) +ZD (t;)%(t; 5t +ey, forj=0,1,...,J,
where{§, :§, ~ N(,A),A = d1ag(()\1, ..., An)),7 =0,...,J}is asequence of random vector
iid., and]E(éij,et_ ) = 9(t;). However, in view of most finance applications, we chose to omit the

term¢.
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Suppose thak (W (t)W'(t)) = T, Xy, < 0o andPy,, < oo.

Theorem A.1. (Jimenez and Ozaki (2002)) The optimal (minimum variance) linear
filter for the linear model (A.1)- (A.2) consists of equations of evolution frctndi-
tional meanx,, and the covariance matri¥,,. Between observations, these satisfy
the ordinary differential equation

d%y; = (A(t)Xy, +a(t)) dt, (A.3)

dPy;, = <A(t)Pt|t + Py Al(t) + Z B;(t) (Pt\t + fct|t§(§t|t) B;(t)
= (A.4)

+ 3 (Bilhxyubl(t) + bilt)xy Bi(1) + bi(t)bé(t))> dt,

m

1

forall t € [t;,t;+1). Atan observation at;, they satisfy the difference equation

Xijaltin = Xty + K (th+1 - C(tﬂ'ﬂ)itjﬂltj) ) (A-5)
Ptj+1|tj+1 = Ptj+1|tj - Ktj+1c(tj+1)Ptj+1|tj7 (A6)
where
-1
Ktj+1 = Ptj+1‘tj C,(t]+1) (C(tj+1)Ptj+1‘tj C/(tj+1) + H) (A7)

is the filter gain. The predictiok,, and P,, are accomplished, respectively, via
expressions (A.3) and (A.4) with initial conditiorg,, andP,;, andp < t.

The analytical solution for these system of equations can be easily fimrmtbtails
see Jimenez and Ozaki (2003). They also provide some equivalegassigns that are
easier to implement via computer programs.
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