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Abstract

Developments in the global electronics industry are typically monitored by tracking

indicators that span a whole spectrum of activities in the sector. However, these

indicators invariably give mixed signals at each point in time, thereby hampering ef-

forts at prediction. In this paper, we propose a uni�ed framework for forecasting the

global electronics cycle by constructing a VAR model that captures the economic in-

teractions between leading indicators representing expectations, investments, orders,

inventories and prices. The ability of the indicators to presage world semiconductor

sales is assessed by Granger causality tests. The VAR model is also used to derive

the dynamic paths of adjustment of global chip sales in response to shocks in each

of the leading variables. These impulse response functions con�rm the leading qual-

ities of the selected indicators. Finally, out-of-sample forecasts of global chip sales

are generated from the VAR model and compared with predictions from a univariate

model as well as a model which uses a composite index of the leading indicators.

An evaluation of their relative accuracy suggests that the VAR model�s forecasting

performance is superior to that of the univariate model and comparable to that of

the composite index model.
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1 Introduction

The semiconductor industry sets the pace of global economic growth, more so than

any other single sector, and its vitality is a leading indicator of the world�s economic

health. As fundamental building blocks of �nal electronic products, semiconductors

(also known as chips) are used as inputs in a wide variety of sectors such as informa-

tion and communication technology, consumer electronics, as well as the industrial

and transportation sectors. Thus, chips serve as a cornerstone to the global electron-

ics industry. A key characteristic of the semiconductor industry is the acceleration

of technology which renders each new generation of semiconductors obsolete fairly

quickly.2 Consequently, product cycles are short and this, in turn, results in a com-

pression of the overall global electronics cycle. At the same time, the commoditization

of semiconductors� whereby an innovation initially generating high pro�ts plunges

in value as the technology for producing it becomes widespread and standardized�

brings on wide �uctuations in the electronics industry.

The inherent volatility of the global electronics cycle is perhaps most vividly

illustrated by the information technology boom during the 1990s, followed by the

bursting of the technology bubble in late 2000. It is evident that worldwide economic

growth, particularly the domestic business cycles of economies that are heavily reliant

2The semiconductor industry is driven by Moore�s Law which says that the number of transistors

on a chip doubles every 18 to 24 months, resulting in ever faster and cheaper semiconductors.
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on electronics exports, is severely impacted by such swings in electronics demand. It

follows that close monitoring of the electronics industry is essential for assessing the

health of the world economy, which means that timely and accurate forecasts of the

global electronics cycle are indispensable.

Developments in the electronics industry have typically been monitored by track-

ing a host of diverse indicators, such as those measuring expectations, investments,

orders, inventories, production, shipments, prices and pro�ts. As these indicators

span a whole spectrum of activities, they invariably give mixed signals at each point

in time, thereby hampering e¤orts to predict world electronics activity. Apart from

product cycles, global electronics demand can also be a¤ected by other factors and

the predictive value of each indicator might vary depending on which causal fac-

tors are pre-eminent in a particular cyclical episode. There is, therefore, a need

for a systematic examination of the predictive potential of each indicator. Yet, the

approach that has been adopted to circumvent the problem of mixed signals in elec-

tronics indicators� and for that matter, in leading indicators of the economy� is to

aggregate them to form a composite index. For instance, the Monetary Authority

of Singapore has developed an electronics composite leading index comprising �ve

indicators to forecast Singapore�s domestic electronics output and exports (Ng et

al., 2004), while Gartner Research has a composite index of semiconductor market

leading indicators for predicting growth in the world semiconductor industry.
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In this paper, we propose a uni�ed framework for forecasting the global electronics

cycle by constructing a vector autoregressive (VAR) model which incorporates a set

of leading indicators identi�ed from a longer list of electronics series. To the best of

our knowledge, this has hitherto not been done in the literature. Given the endo-

geneity of and dynamic interactions between the economic variables in�uencing the

world electronics cycle, forecasting within a VAR framework may confer advantages.

Firstly, it frees us from the implicit assumption made in the index approach of a single

common factor underlying the movements in electronics indicators, possibly associ-

ated with the product cycle. Secondly, the �exibility of the VAR model means that

it can potentially accommodate the di¤erent lead times of indicators, which might

partly account for the con�icting signals received.

We initially use the VAR model to perform Granger causality tests that assess

the ability of the selected leading indicators to presage world semiconductor sales.

Following this, their leading qualities are examined through an impulse response

analysis by tracing out the dynamic adjustment paths of global chip sales in response

to orthogonalized shocks in each of the indicators. The VAR model is next employed

to generate out-of-sample forecasts of global semiconductor sales. Finally, we evaluate

the relative predictive accuracy of the VAR model against a benchmark univariate

model and an alternative model which uses a composite index constructed from the

leading indicators.
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2 Leading Indicator Selection

The �rst task in forecasting the global electronics cycle is to search for plausible

leading indicators. We began with a list of indicators that covers, inter alia, US

time series on electronics new orders, inventories and shipments. Also included in the

list are producer prices for dynamic random access memory (DRAM), the Institute

of Supply Management�s (ISM) manufacturing Purchasing Managers�Index (PMI),

the book-to-bill ratio of semiconductor equipment and Nasdaq stock prices, all of

which are widely used as de facto leading indicators of the global electronics cycle by

private sector analysts. In addition, US corporate pro�ts and private �xed investment

in information processing equipment and in computers and peripherals were also

considered as possible proxies of the �nal end-user demand for electronics.

The selection of leading indicators from the pool of economic variables at our

disposal could be a potentially daunting exercise. Assuming that 5 indicators are to

be picked from 15 series, there are over 3000 combinations of indicators to choose from.

We resolved the conundrum by appealing to the classical criteria used by researchers

at the National Bureau of Economic Research (NBER) to select leading indicators for

the macroeconomy. These include �economic signi�cance�, �currency�and �conformity�

(Zarnowitz, 1992, pp. 317�319). We ensured that the �rst criterion is satis�ed i.e.,

there should be an economic reason for why an indicator leads. Accordingly, US

shipments of electronics was dropped as it appears by de�nition to be more nearly

6



coincident with the global electronics cycle. The PMI also did not qualify as a leading

indicator because the share of electronics production in US manufacturing output is

fairly small. The currency criterion, interpreted as a timeliness constraint, meant

that quarterly time series should be eschewed in favour of monthly ones, thereby

precluding the selection of the pro�ts and investment series as leading indicators.

As a measure of an indicator�s conformity, we calculated its cross correlation

coe¢ cients at various lead times with the coincident indicator of the electronics cy-

cle used in our study� global semiconductor sales. This indicator represents world

billings or shipments of semiconductor products, as reported by the Semiconductor

Industry Association (SIA) at its website (we have seasonally adjusted the raw data

using the Census X-12 multiplicative method). We chose to use global chip sales as

the coincident series because it is commonly viewed as the best available indicator

of the unobserved state of the world electronics sector.3 The conformity criterion,

taken together with the need to ensure timeliness, further eliminated electronics se-

ries that exhibited statistically insigni�cant correlations or very short leads of less

than three months, resulting in the eventual selection of �ve variables as putative

leading indicators of the global electronics cycle.4

3Some might argue that the use of a coincident index of world electronics activity, analogous to

the one developed for the US technology cycle by Hobijn et al. (2003), is preferable to relying on a

single indicator. However, the construction of such an index is beyond the scope of this paper.
4The cross correlation results are available upon request from the authors.
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The identi�ed variables are the Nasdaq composite index (NASDAQ), the North

American book-to-bill ratio for semiconductor equipment (BTB), US new orders of

electronics (NO), the inverted change in US electronics inventories (INVENT)5, and

the US producer price index for DRAM (PPI). The Nasdaq index was downloaded

from Datastream, the book-to-bill ratio from the Semiconductor Equipment and Ma-

terials International (SEMI) website, the seasonally adjusted new orders and inven-

tories series from the Census Bureau website (series codes are A34SNO and A34STI

respectively), and the PPI from the Bureau of Labour Statistics website (the series

code is PCU3344133344131A101). The overlapping sample period of these monthly

datasets is 1992:2�2004:1, which is therefore the time period used in the paper.

We end this section with a discussion of the economic rationales behind our cho-

sen set of leading indicators that draws on ideas in Zarnowitz (1992) and de Leeuw

(1991). The Nasdaq stock price index is a good proxy for �rms�expectations about

future global electronics activity. At the root of the leading relationship is the mar-

ket�s sensitivity to the discounted future earnings of technology �rms that supply to

world markets, which are ultimately dependent on the �nal demand for electronics

products. A drawback of stock prices is that they tend to be a¤ected by other factors,

including speculation, thus occasionally giving rise to false signals. Like the Nasdaq

5In its latest revisions to the historical data, the Census Bureau has excluded semiconductors

from the new orders series but included them in the inventory series. We would have preferred to

use indicators with a consistent coverage had they been available.
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index, the book-to-bill ratio responds to feedback from the end-user demand for semi-

conductors, as well as from chip prices. Being the three-month moving average ratio

of new orders to sales received by North American-based manufacturers of semicon-

ductor equipment, however, the ratio has a tendency to lead global chip sales because

investment decisions by equipment makers temporally precede other processes.

New orders of electronics is synonymous with demand and serve as an indicator

of the early stage in the production process. This indicator might be expected to

lead electronics activity because it usually takes time to translate an order into actual

production and sales; it works especially well as a leading indicator if �rms adopt �just-

in-time�manufacturing technologies. However, given that �rms do try to anticipate

future sales, only unexpected changes in orders will presage global chip sales.

The level of electronics inventories has a propensity to lag the electronics cycle.

But when its inverted changes are taken or it is considered in relation to sales as in

the shipment-to-inventory ratio, the series becomes a leading indicator.6 Changes in

inventories help �rms smooth production by acting as a bu¤er to unexpected �uctu-

ations in demand. For example, an increase in orders could be met by a temporary

drawdown in inventories before prices are adjusted. Indeed, anecdotal evidence sug-

gests that the elimination of excess inventory in a downturn is a pre-requisite for

6We do not consider the shipment-to-inventory ratio in order to avoid duplicating the coverage

of the inverted inventory change series.
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future increases in prices and sales. DRAM prices respond in turn to both antic-

ipated and unforeseen imbalances in demand and supply, making them a leading

indicator in much the same way as the prices of sensitive materials.

3 A VAR Analysis of Electronics Leading Indicators

In this section, we carry out empirical analyses to demonstrate the leading quali-

ties of the identi�ed electronics indicators. These latter were converted into natural

logarithms to stabilize their variances and mitigate departures from normality. We

investigated the integration status of the transformed series by applying the DF-GLS

unit root test developed by Elliot, Rothenberg and Stock (1996), in conjunction with

the modi�ed AIC for selecting the lag length proposed by Ng and Perron (2001). The

DF-GLS test is an asymptotically more powerful variant of the augmented Dickey-

Fuller (ADF) test obtained via generalized least squares detrending.

The results are shown in Table 1. Except for the inverted change in electronics

inventories and the semiconductor book-to-bill ratio, which is apparently stationary,

the indicator series were found to be integrated of order one. Given this, we checked

for cointegration between them using Johansen�s trace test with six lags and an

unrestricted constant. The trace statistic for the null hypothesis that there is at most

two cointegrating relations in the data is 36:92, thus making it impossible to reject

the hypothesis even at the 10% signi�cance level.
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Table 1: Unit Root Tests

Variable Lag Length �GLS 5% Critical Value

NASDAQ 1 �1:260 �2:977

BTB 3 �2:823 �2:058

NO 2 �0:850 �2:965

INVENT 5 �2:236 �2:042

PPI 1 �2:632 �2:977

CHIP 5 �1:755 �2:924

Notes: The tests are for the logarithms of variables. A trend was included except in the

cases of BTB and INVENT. Critical values are from Cheung and Lai (1995).

In the light of these �ndings, the empirical analyses are performed in the frame-

work of a vector autoregression (VAR) in levels given by:

yt = � +�1yt�1 + � � �+�kyt�k + "t; t = 1; :::; T (1)

where yt = (NASDAQ, BTB, NO, INVENT, PPI, CHIP)0; the �i are �xed (6 � 6)

matrices of parameters, � is a (6 � 1) vector of constants and "t � MN(0;�) is

multivariate normal white noise with zero mean. The optimal lag length k selected by

minimizing information criteria such as the AIC and the Hannan-Quinn criterion was

3. However, the residuals that resulted from including only 3 lags in the VAR model

exhibited autocorrelation and were also not normally distributed, with attendant
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complications for post-estimation inferences. As a remedy to both problems, we

decided to use 6 lags in the analyses that follow.

3.1 Causality Tests

The standard Granger causality test entails specifying the VAR in (1) and testing to

see if the subset of coe¢ cients associated with a given leading indicator is jointly and

signi�cantly di¤erent from zero in the equation for global chip sales. Under the null

hypothesis of no Granger causality, the test statistic follows a �2 distribution with m

degrees of freedom in large samples, m being the number of zero restrictions imposed.

A summary of the empirical results from the Granger causality tests is presented

in Table 2. The null hypothesis of non-causality can be rejected at the 5% signi�-

cance level for three out of the �ve electronics indicators� inverted inventory change,

the DRAM chip price and the Nasdaq stock index. The other two indicators do not

Granger-cause global chip sales at the usual signi�cance levels. Although these re-

sults may seem a little disappointing, it should be borne in mind that the use of a

multivariate VAR for causality testing imposes relatively stringent requirements on

the information content of electronics indicators. When pairwise causality tests were

performed instead, the book-to-bill ratio was found to Granger-cause world semicon-

ductor sales at the 10% signi�cance level even though non-causality still cannot be

rejected for the new orders series.7

7This �nding might be explained by the fact that the shipments of electronics industries which
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Table 2: Causality Tests

Granger Toda-Yamamoto

Variable �26 p-value �26 p-value

NASDAQ 15.633 0.016 11.892 0.064

BTB 7.525 0.275 5.817 0.444

NO 4.237 0.645 2.980 0.811

INVENT 16.549 0.011 9.375 0.154

PPI 16.643 0.011 9.088 0.169

Notes: The VAR is estimated with six lags in the Granger tests and seven lags in the

Toda-Yamamoto tests. The �26 values are the test statistics for the null hypothesis that a

variable does not Granger-cause global chip sales.

The Granger causality tests carried out above based on levels estimation are as-

ymptotically valid because the VAR is consistently estimated in the presence of coin-

tegration (Sims, Stock and Watson, 1990). However, the results are conditional on

the prior outcomes of the tests for unit roots and cointegration. To avoid possible pre-

test bias and at the same time provide a robustness check, we also implemented the

causality test proposed by Toda and Yamamoto (1995). The advantage of the Toda-

Yamamoto test is its invariance with respect to the integration and cointegration

do not produce to order are counted as part of new orders.
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status of variables. It is similar to the standard Granger test in that an augmented

VAR with p = k + dmax lags is estimated in place of (1), where dmax is the maximal

order of integration suspected in the time series under consideration. If we take it

that dmax = 1; the estimated VAR is:

yt = �̂ + �̂1yt�1 + � � �+ �̂kyt�k + �̂k+1yt�k�1 + "̂t (2)

The above equation can be re-written in more compact matrix notation as

Y0
0 = �̂ i

0 + �̂X
0
+ �̂k+1Y

0
k+1 + �̂ (3)

where Yi = (y1�i; :::;yT�i); X = (Y0
1; :::;Y

0
k)
0; �̂ = ("̂1; :::; "̂T ); �̂ = (�̂1; :::; �̂k) and

i is a (T � 1) vector of ones. The Wald statistic to test for Granger non-causality is

W = f(�̂)0[F (�̂)
n
�̂" 
 (X0QX)�1

o
F (�̂)0]�1f(�̂) (4)

where �̂ = vec(�̂); F (�̂) = @f(�̂)=@�̂
0
; Q = Q� �Q�Yk+1(Y

0
k+1Q�Yk+1)

�1Y0
k+1Q� ;

Q� = IT � i(i0i)�1i0; and �̂" = T�1�̂
0
�̂: Notice that the parameter restrictions in

f(�̂) = 0 do not involve the coe¢ cients of �̂k+1; since the latter are all zero under

the assumption that the true lag length is k: Toda and Yamamoto (1995) prove that

W converges in distribution to a �2m random variable irrespective of whether the yt

process is stationary, integrated or cointegrated.8

8The asymptotic results will hold as long as p > k+ dmax: This implies that the test is still valid

if the true lag length is smaller than six.

14



The Toda-Yamamoto tests produced results that are similar to the Granger tests

in levels, as can be seen from Table 2. However, the p-values for inverted inventories

and the DRAM chip price now exceed 10% while the �26 statistics for the book-to-

bill ratio and new electronics orders continue to suggest that these two variables are

not causally prior with respect to global chip sales. We present further evidence in

the next sub-section that overturns these ambiguous �ndings and demonstrates the

leading abilities of all the electronics indicators.

3.2 Impulse Response Analysis

The second use to which we put the VAR model is the derivation of impulse response

functions, which show the dynamic paths taken by global chip sales in response to

innovations in the leading series. Traditionally, impulse response analysis in leading

indicator research has been conducted using the bivariate methodology of transfer

function models (Koch and Rasche, 1988; Veloce, 1996). We prefer to adopt a VAR

approach because it accounts for the endogeneity of the electronics variables and

also captures the dynamic economic relationships between the leading and coincident

indicators.

The impulse response functions generated by the VARmodel will only be meaning-

ful if innovations to the variables in the system are serially and mutually uncorrelated.

Granted this, the innovations can then be interpreted as unanticipated shocks to the
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leading indicators. Justifying the causal ordering with the economic rationales of the

leading indicators discussed in the previous section, we orthogonalize these shocks by

resorting to a Choleski decomposition of the estimated variance-covariance matrix of

the residuals. In theory, if the individual series have distinct lead times over global

chip sales, the contemporaneous correlations between their residuals in the VAR will

be small and alternative causal orderings will yield impulse responses that look alike.

This is in fact true for the majority of the empirical correlations. In any event, we

tried putting the Nasdaq index after the book-to-bill ratio and new orders on the

grounds that the share prices of technology �rms might very well react to the release

of new data on electronics indicators, but this makes virtually no di¤erence to the

results. Similarly, switching the positions of inverted inventories and chip prices in

the system leave the impulse response functions qualitatively unchanged.

The estimated impulse response functions are depicted in Figures 1�5. Follow-

ing the advice of Sims and Zha (1999), we have included 68% asymptotic con�dence

intervals to gauge the statistical signi�cance of the responses.9 In every case, unan-

ticipated shocks to the leading indicators produce signi�cant movements in world

semiconductor sales. The time horizon over which the dynamic adjustment paths of

chip sales are plotted following the innovations to each of the leading series extends

to 24 months, by which time the responses are all insigni�cantly di¤erent from zero.

9Bootstrapped standard errors did not materially alter the widths of the intervals.
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Figure 1: Impulse Response of Global Chip Sales to Nasdaq Shock

Figure 2: Impulse Response of Global Chip Sales to Book-to-Bill Shock

Figure 3: Impulse Response of Global Chip Sales to New Orders Shock
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Figure 4: Impulse Response of Global Chip Sales to Inventory Shock

Figure 5: Impulse Response of Global Chip Sales to DRAM Price Shock

Apart from the response for the book-to-bill ratio, the graphs share the same

hump-shaped feature so often observed in the impulse responses reported in business

cycle studies. In our context, this characteristic demonstrates the leading qualities

of the electronics indicators, including the US new orders series. The indicators

di¤er, however, on the number of months it takes for the dynamic response of global

chip sales to reach a peak, which gives us an idea of the average lead in a series. The

impulse responses indicate that the average lead for the inverted change in inventories,
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at 10�12 months, is the longest, followed by the Nasdaq index at 9 months. The lead

times for new orders and DRAM prices coincide at about 3�4 months. And though

the response of chip sales to a shock in the book-to-bill ratio has an irregular shape

and is insigni�cant for the most part, there is a prominent spike corresponding to an

average lead time of 5 months. To sum up, the impulse response functions from the

VAR model con�rm that all the selected indicators presage world electronics activity,

albeit with di¤erent lead times.

4 Forecast Performance of VAR Model

The VAR model in (1) incorporating our �ve leading indicators is next used to gener-

ate ex ante forecasts of global chip sales. Since our primary concern is in predicting

the state of the electronics cycle rather than its growth rates, the forecasts are gener-

ated from the model speci�ed in levels.10 We will compare the predictive performance

of the VAR with two alternative models of chip sales. The �rst is the univariate au-

toregressive (AR) process, which is a frequently used benchmark model. The presence

of a unit root in the sales series suggests modelling in logarithm �rst di¤erences, and

the following AR model of order 5 was found to �t the data well:

4yt = � +
5X
k=1

�k4yt�k + "t (5)

10We eschew the VECM speci�cation for simplicity and to avoid misspeci�cation errors that might

arise from estimated cointegrating relationships, albeit at the expense of some loss in e¢ ciency.
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The forecasts of chip sales from this model are converted into levels for comparison

with the VAR model.

The second forecasting model we consider is a bivariate speci�cation involving a

composite index derived from the leading indicators. As mentioned at the beginning,

it is customary to combine leading series into a composite index to give a summary

measure of their movements. Using the methodology employed by The Conference

Board for compiling the US Leading Index, we constructed a similar index for the

global electronics cycle.11 This leading index (zt) was found to be cointegrated with

global chip sales (yt), motivating us to build a bivariate VAR model in the logarithm

levels of these two series. Modelling in levels instead of di¤erences facilitates com-

parison with the multivariate VAR model. Both the AIC and the Hannan-Quinn

criterion selected an optimal lag length of 6 for the leading index model, hence we

estimate these two equations:

yt = � 1 +
6X
k=1

�1kyt�k +
6X
k=1

�1kzt�k + "1t (6)

zt = � 2 +

6X
k=1

�2kyt�k +

6X
k=1

�2kzt�k + "2t

11This entails the computation of symmetrical month-to-month percentage changes in each in-

dicator, followed by a standardisation process to prevent the more volatile series from dominating

the rest. These are then summed to yield the monthly percentage changes in the composite index,

thus e¤ectively assigning equal weights to each component. Finally, the index levels are derived

recursively after setting the �rst month�s value of the index to 100.
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It is fortuitous to have a common lag length for all three models in terms of

predicting the level of global chip sales, as this enhances forecast comparability. For

the purpose of evaluating each model�s predictive performance, we divided our data

set into two parts. The �rst spans the period from 1992:3 to 2003:1 and was used only

for estimation; the remaining 12 data points, spanning 2003:2 to 2004:1, were used

for post-sample prediction. We do not use a longer post-sample prediction period in

view of the shortness of the data series as well as the size of the VAR model. Forecast

horizons of one, three and six months are considered. Re�ecting what a forecaster

would be able to do in practice, we estimated each model recursively so that the

forecast for time t+ h is computed with data up to time t.

As is conventional in the literature, we use the root mean square prediction error

(RMSE) and the mean absolute prediction error (MAE) as measures of forecast ac-

curacy. The results from the univariate AR model serve as a yardstick against which

we measure the predictive abilities of the other two models; that is, we compute the

ratio of the latter�s RMSE or MAE to that of the AR model. Whenever the relative

RMSE or MAE of the VAR or leading index model is smaller (larger) than one, its

forecasting performance is better (worse) than the benchmark model. Table 3 reports

the relative RMSE and MAE associated with the out-of-sample forecasts of global

chip sales generated from the VAR and index models.
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Table 3: Forecast Performance of VAR and Index Models

Relative RMSE Relative MAE

Forecast Horizon VAR Index VAR Index

1 month 1.098 0.925 1.103 0.939

3 months 0.861 0.906 0.833 0.845

6 months 0.882 0.812 0.682 0.721

Note: Relative RMSE or MAE is expressed as a ratio to the univariate AR model.

The inclusion of information from the leading indicators in the VAR and index

forecasting models clearly leads to an improvement in predictive accuracy over the

benchmark AR model, especially at the 3 and 6 months forecast horizons. However,

it does not come as a surprise that the 1-step ahead forecasts from these models only

improved moderately or even worsened vis-à-vis the univariate model, since ARIMA

models are known to produce very accurate forecasts in the short term. As for the

relative predictive performances of the VAR and index models, we do not observe

any one model being consistently superior to the other: at the 3 months horizon, the

VAR model fares unambiguously better but at the 6 months horizon, it outperforms

the index model only in terms of the MAE criterion.

To ascertain if the di¤erences in predictive accuracy found between the models

are statistically signi�cant, we conduct formal tests of forecast performance. In par-

ticular, we employ the following Diebold-Mariano (1995) test statistics (DM) and its
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small sample version (DM y) proposed by Harvey, Leybourne and Newbold (1997):

DM =
�dp
V ( �d)

(7)

V ( �d) =
1

T

 

̂0 + 2

h�1X
k+1


̂k

!

DM y =

r
T + 1� 2h+ h(h� 1)=T

T
DM (8)

where T is the number of forecasts made, h is the forecast horizon, �d is the sample

mean of the di¤erences between the squared or absolute forecast errors from any

two competing models, V ( �d) is the approximate asymptotic variance of �d; and 
̂k

is the estimated kth order autocovariance of the forecast error di¤erences. These

test statistics are shown in Table 4 and compared with critical values from the t-

distribution with T � 1 degrees of freedom.

It is evident from the table that where the 1-month ahead forecasts are concerned,

there is no appreciable di¤erence in forecast performance between the three competing

models as all the test statistics turned out to be insigni�cant. At the 3 months

forecast horizon, however, the DM tests indicate that the VAR and index models

deliver signi�cantly more accurate predictions than the univariate AR model. The

corresponding DM y statistics are marginally insigni�cant for squared forecast errors

and signi�cant only in the case of the absolute forecast errors generated by the index

model. Interestingly, the hypothesis of equal predictive ability between the VAR and

index models cannot be rejected at the 10% signi�cance level at the same horizon.
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Table 4: Predictive Accuracy Tests

DM DM y

Sq. Errors Abs. Errors Sq. Errors Abs. Errors

h = 1

VAR vs AR 0:511 0:395 0:490 0:378

Index vs AR �1:170 �0:721 �1:072 �0:691

VAR vs Index 0:834 0:879 0:764 0:841

h = 3

VAR vs AR �1:641� �1:385� �1:228 �1:037

Index vs AR �1:703� �2:426� �1:274 �1:815�

VAR vs Index 0:004 0:095 0:003 0:071

Notes: * denotes signi�cance at the 10% level. The one-tailed critical values for the 1

and 3 months forecast horizons are �1.363 and �1.383 respectively.

The Diebold-Mariano test statistics are unde�ned for the 6-steps ahead forecasts

because V ( �d) took on a negative value in every case, requiring the evaluation of the

square root of a negative number in equation (7). In such pathological situations,

Diebold and Mariano (1995) suggest that the null hypothesis of equal forecast accu-

racy be rejected. To help us infer which is the outperforming model, we rely on the

summary measures in Table 3 and visual inspection of the 6-months ahead forecasts

generated by the three models, which are plotted alongside global chip sales in Fig-
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ure 6. While all the models missed the strong upturn in semiconductor sales during

the post-sample sub-period 2003:7�2003:10, the VAR arguably gives the best visual

forecasts. The plot, and the RMSE and MAE measures, indicate that the benchmark

AR model is inferior to both the VAR and index models for forecasting at the 6

months horizon. But as we saw earlier, the relative ranking of the predictive ability

of these two models is ambiguous, being dependent on the metric used for evaluation

in Table 3. Figure 6 shows that the forecasts from the leading index model appear

to be slightly worse than those of the VAR model.

A priori, it is di¢ cult to predict which model will do better. On the one hand, the

VAR model extracts information from a diversi�ed set of leading indicators, thereby

obviating the need to form a composite index and avoiding the problems associated

with index construction, such as the weights to be assigned to the component in-

dicators. The �exibility of the VAR model means that the di¤erent lead times of

indicators are accommodated and it also frees us from the implicit assumption of

a single common factor underlying the movements in the indicators. On the other

hand, forecasting with an index results in a much more parsimonious model� the

number of autoregressive parameters drops from 216 to 24� hence averting the over-

�tting problem and yielding more e¢ cient estimates of the parameters in the index

model. Moreover, when the mixed signals provided by the individual electronics in-

dicators are caused by measurement errors and random disturbances, the use of a
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single composite index leads to noise reduction. That said, our results show that the

VAR generates forecasts with an accuracy that can rival the predictions from the

index model. We surmise that the greater �exibility of the VAR model o¤sets its less

parsimonious structure, thereby resulting in gains to forecasting in practice.

Figure 6: Forecasts Comparisons for 6 Months Forecast Horizon
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5 Conclusion

In this study, we identi�ed from a list of frequently monitored electronics indicators

�ve monthly leading series that are economically signi�cant and show the potential to

presage global semiconductor sales. These are the Nasdaq composite index, the semi-

conductor industry book-to-bill ratio, US new orders of electronics, inverted changes

in US electronics inventories, and DRAM chip prices. We then construct for this

set of leading indicators and our chosen coincident indicator of the global electronics

cycle a VAR model that re�ects the dynamic interactions in the electronics market.
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Besides providing a natural framework for performing Granger causality tests which

establish the leading qualities of most of the selected indicators, the VAR system is

also used to characterize the dynamic paths of adjustment of global chip sales in re-

sponse to orthogonalized shocks in each of the leading series. These impulse response

functions with their hump-shaped features con�rm that our chosen set of electronics

indicators presage the world electronics cycle by distinct lead times.

From a methodological point of view, the principal objective of adopting a VAR

approach is to provide a uni�ed framework for forecasting the global electronics cycle

with leading indicators, without having to make the restrictive assumption of a single

common factor underlying the movements in the indicators. To this end, post-sample

predictions of global chip sales were generated from the VARmodel and their accuracy

compared with forecasts from two alternative models� a benchmark AR model and

a model which uses a composite index constructed from the same set of leading

indicators. An evaluation based on standard measures of forecast accuracy and formal

tests of predictive ability suggests that the VAR model�s forecasting performance is

superior to that of the benchmark model, and is comparable to that of the composite

index model. Our results are therefore in contrast to recent studies that compare the

relative forecasting e¢ cacy of index and VAR models, and �nd that index models

generally predict better (Camba-Mendez et al., 2002; Bodo et al., 2000).

Although we conclude that the proposed VAR model incorporating our set of
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identi�ed leading indicators is useful for forecasting the global electronics cycle, there

is scope for further work. For one thing, one might want to consider the ability of

the model to anticipate turning points in the global electronics cycle. Forecasters

in the electronics industry might be more interested to predict the timing of peaks

and troughs rather than in the type of quantitative forecasts that we focused on in

this paper. We did not address this issue partly because of the paucity of turning

points in our relatively short sample period, but also due to the inherent di¢ culty

of de�ning cyclical turning points. Nonetheless, future research along these lines is

warranted. Another possible extension of this study is to explore the forecasting

power of Bayesian VAR (BVAR) models based on our set of leading indicators. The

use of the BVAR as a more parsimonious alternative to the VAR might just strike

the right balance between the objectives of �exibility and noise reduction.
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