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1. Introduction 

There are good reasons to consider the effects of aggregation from micro units to the ag-

gregate market level data in economic analysis. Policy effects vary across individuals. 

Preferences differ across individuals. The theory of choice applies to individuals. The 

impacts of government policies and market intervention schemes on prices, quantities, 

taxes, benefits and so forth unfold first at the market level and then for individuals. Con-

sistent aggregation has been addressed for complete demand systems in Gorman (1953, 

1961, 1981), Muellbauer (1975, 1976), Lewbel (1987, 1990), and van Daal and Merkies 

(1989). Of these, Gorman’s (1981) remarkable and elegant contribution to the festschrift 

to Sir Richard Stone is the cornerstone to virtually all aggregation analyses in applied 

consumer behavior. 

Following Muellbauer’s (1975) extension of the Gorman polar form to a nonlin-

ear function of income to obtain the price independent generalized linear (PIGL) and 

price independent generalized logarithmic (PIGLOG) functional forms, much progress 

has been made in the past 25 years on aggregation theory for complete demand systems. 

The Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980) implements 

Muellbauer’s results to produce demands with budget shares expressed as functions of 

linear and quadratic terms in the logarithm of prices and a linear term in the logarithm of 

income. The AIDS and its linear approximation (LA-AIDS) have been linchpins in ap-

plied demand analysis since their introduction. Most applications of the AIDS and LA-

AIDS either assume separability and estimate a complete system of demands for a disag-

gregate group of commodities as functions of prices for the goods in the group and total 
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expenditure on the group, or estimate a complete system of demands with highly aggre-

gated commodities as functions of aggregate price indices and total consumption expen-

ditures (hereafter, income, which we denote by m). 

Shortly after the article by Deaton and Muellbauer, in a remarkable and elegant 

contribution to the festschrift to Sir Richard Stone, Gorman (1981) derived the set of 

functional forms for demand models that can be written in terms of any additive set of 

functions of income. Any complete system of demand equations in the class of Gorman 

Engel curves must satisfy two properties in addition to homogeneity, adding up and 

symmetry. First, if the number of independent functions of income is at least three, then 

the functions all must be either (a) polynomials in income, (b) polynomials in some non-

integer power of income, (c) polynomials in the natural logarithm of income, or (d) a se-

ries of sine and cosine functions of the natural logarithm of income. Second, the number 

of linearly independent functions of income in this class of demand systems is at most 

three, where linear independence refers to the rank of the matrix of price functions that 

premultiply the income functions.  

One of the important implications of these results is that all theoretically consis-

tent complete demand systems that are compatible with aggregation across individual in-

comes and that have full column rank require at most three summary statistics from the 

distribution of income to estimate the demand parameters with aggregate data. 

An open question of considerable interest is whether these results on aggregation 

in complete demand systems extend to incomplete demand systems, and if they do, what 

form this extension might take. In this paper, we extend Gorman’s class of polynomial 
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Engel curve demand systems to incomplete demand systems. The extension admits any 

transformation of deflated income, expanding the PIGL/PIGLOG functional forms enor-

mously. But a maximal rank of three for this class follows purely from Slutsky symme-

try; neither adding up nor homogeneity play any role in the rank restriction. At least a 

quadratic polynomial is necessary to obtain rank three. A nondegenerate quadratic is suf-

ficient. A significant benefit of the analysis is that the arguments leading to these conclu-

sions clarify, verify, and extend Gorman’s original conjecture that the quadratic is the 

most general nondegenerate class of full rank three aggregable demand models. 

The models we develop for incomplete demand systems nest the rank of the de-

mand system and functional form of the income variables, can be globally restricted to be 

weakly integrable (LaFrance and Hanemann, 1989), can be estimated with aggregate 

market data, and accommodate inferences on the impacts of policies on consumption and 

economic welfare of various identifiable groups of consumers. 

2. Aggregation Theory for Complete Demand Systems 

We begin with a fairly large amount of notation. Let qn
++∈p  be the vector of market 

prices for the goods of interest, qn
+∈q , let qn

++∈p  be the vector of market prices for 

other goods, qn
+∈q , let m ++∈  be income, let 0s m′ ′= = − >p q p q  be expenditure on 

other goods, let J∈z  be a vector of demand shifters, let ( )π p  be a 1° homogeneous 

function of p ,1 let 1 1[ ( / ( )) ( / ( ))] ( / ( ))
q qn ng p g p ′= π π ≡ πx p p g p p be a vector of twice 

                                                 

1 When the system is complete, p  has no elements and in such a case we adopt the convention ( ) 1π ≡p . 
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continuously differentiable, strictly monotone functions, and let ( / ( ))y f m= π p  be a 

twice continuously differentiable, strictly monotone increasing transformation. 

Suppose that we have a transformed demand system of the form 

 ( )
0

( ; ) ( ; ) ( ; )
K

i i
i

y h y
=

∂ ⋅
= ⋅ ⋅

∂ ∑x x x
x

α , (1) 

where the “⋅” after the semicolon indicates that the system may not be complete and de-

pends on other variables in addition to x. However, for notational clarity and compact-

ness, we will omit this set of unspecified arguments in most of what follows. By a simple 

change of variables from p and m to ln( )=x p  and ln( )y m= , Gorman (1981) showed 

three things about all complete demand systems in this class: 

(i) Normalizing for a unique representation, accounting for adding up, and for 

some of the implications of symmetry, the nonlinear partial differential equations 

can be transformed into a set of homogeneous linear ordinary differential equa-

tions in functions of the natural logarithm of income. From the theory of differen-

tial equations, solutions to this system are of the form ( )( ) ln( )i
i

ih m m mλ= , where 

each λi is a root of the characteristic polynomial for the linear ordinary differential 

equations. In general, such characteristic roots can be either real or complex, and 

complex roots come in conjugate pairs that may have both real and complex parts. 

(ii) Given (i), if the rank of the nq×K coefficient matrix ( ) [ ( )]ij≡ αA x x  equals at 

least three, then symmetry implies that: (a) the characteristic roots are either 

purely real or purely complex (all roots of the form 1i i ia bλ = + −  have 0ia =  if 
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0ib ≠  and conversely, 0ib =  if 0ia ≠ ); (b) if any roots are real, there are no 

complex roots, and conversely; and (c) for real roots, there are no product terms 

of the form ( )ln( )m m βα  with both 1α ≠  and 0β ≠ . 

(iii) Given the functional form restrictions in (ii), symmetry implies that the rank 

of ( )A x  is at most three. 

For rank three demand systems, this completely specifies the class of functional forms for 

the income terms. Only three mutually exclusive cases are possible: (a) ( )ln( ) rm m , r an 

integer; (b) 1m +κ , 0κ ≠ ; or (c) ( )sin ln( )m mτ  and ( )cos ln( )m mτ , 0τ > , with both sine 

and cosine terms appearing as a conjugate complex pair. In other words, for rank three 

demand systems, the model must take one of the following three forms: 

 0
1

( ) ( ) [ln( )]
K

j
j

j

m m m
=

= + ∑q x xα α ; (2) 

 1 1
0( ) ( ) ( )

S S

m m m−κ +κ
τ τ

κ∈ κ∈

= + +∑ ∑q x x xα β γ , (3) 

where S is a set of nonzero constants; or 

 ( ) ( )0( ) ( ) sin ln( ) ( ) cos ln( )
T T

m m m m mτ τ
τ∈ τ∈

= + τ + τ∑ ∑q x x xα β γ , (4) 

where T is a set of positive constants. This includes PIGLOG models and extensions that 

are polynomials in ln( )m , simple polynomials in income, and PIGL models and exten-

sions that are polynomials in mκ . 

Demand models that have full rank (Lewbel, 1990) are characterized by the prop-

erty that the rank of the matrix ( )A x  is equal to the number of its columns, that is, the 
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number of different income functions, ( )jh y . Full rank one complete demand systems 

must be homothetic, 

 0( ) ,m=q xα  (5) 

due to adding up. In budget share form, full rank one systems are zero order polynomials 

in income. Muellbauer (1975, 1976) showed that all full rank two complete demand sys-

tems are either PIGL or PIGLOG; that is, either 

 1
0 1( ) ( ) ,m m −κ= +q x xα α  (6) 

for some κ ≠ 0, or 

 0 1( ) ( ) ln( )m m m= +q x xα α . (7) 

If we note that Bernoulli’s equation, 

 1
0 1

( ; ) ( ; )( ; ) ( ) ( ) ( , )e ee e u
κ

κ− κ∂ ⋅ ∂ ⋅   = κ ⋅ + κ   ∂ ∂ 
x xx x x x
x x

= β β , (8) 

has the PIGL form, 

 1
0 1

( ; ) ( ) ( ; ) ( ) ( , )e e e u −κ∂ ⋅
⋅ +

∂
x x x x x
x

= α α , (9) 

while the logarithmic transformation, 

 [ ] [ ]0 1
ln ( ; ) ( ; ) / ( ) ( ) ln ( ; )

( ; )
e e e

e
∂ ⋅ ∂ ⋅ ∂

= = + ⋅
∂ ⋅
x x x x x x
x x

α α , (10) 

has the PIGLOG form 

 [ ]0 1
( ; ) ( ) ( ; ) ( ) ( ; ) ln ( ; )e e e e∂ ⋅

= ⋅ + ⋅ ⋅
∂
x x x x x x
x

α α , (11) 

then we can see that full rank two complete systems are first-order polynomials in a sin-

gle transformation of income. 
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Gorman (1981) conjectured that second-order polynomials are the most general 

nondegenerate full rank three complete demand systems. Pursuing this conjecture by ex-

ploiting the methods Van Daal and Merkies (1989) applied to the quadratic expenditure 

system, Lewbel (1990) showed that all full rank three members of the Gorman Engel 

curve class of complete demand systems are quadratic polynomials in one of three possi-

ble transformations of income: (a) the quadratic Bernouli equation, 

 1( ; ) ( ; )( ; )e ee
κ

κ−∂ ⋅ ∂ ⋅ = κ ⋅  ∂ ∂ 
x xx
x x

 

 
2

0 1 2( ) ( ) ( , ) ( ) ( , )e u e uκ κ   + κ + κ   x x x x x= β β β , (12) 

has the generalized PIGL form, 

 1 1
0 1 2

( ; ) ( ) ( ; ) ( ) ( , ) ( ) ( , )e e e u e u−κ +κ∂ ⋅
⋅ + +

∂
x x x x x x x
x

= α α α ; (13) 

(b) the quadratic logarithmic transformation, 

 [ ] [ ] [ ]{ }2
0 1 2

ln ( ; ) ( ; ) / ( ) ( ) ln ( ; ) ( ) ln ( ; )
( ; )

e e e e
e

∂ ⋅ ∂ ⋅ ∂
= = + ⋅ + ⋅

∂ ⋅
x x x x x x x x
x x

α α α , (14) 

has the generalized PIGLOG form, 

 [ ] [ ]{ }2
0 1 2

( ; ) ( ) ( ; ) ( ) ( ; ) ln ( ; ) ( ) ( ; ) ln ( ; )e e e e e e∂ ⋅
= ⋅ + ⋅ ⋅ + ⋅ ⋅

∂
x x x x x x x x x
x

α α α ; (15) 

and (c) the quadratic complex exponential transformation,2 

                                                 

2 Including -(ιτ)-1 on the left is innocuous. The right can be multiplied by -ιτ and absorbed into the complex 

conjugate price vectors without changing the final structure. Lewbel (1990) didn’t derive or state (16)–(17), 

but they can be deduced easily enough from his arguments and a careful reading of Gorman (1981). 
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 1 1 ( ; )( ) ( ; ) ( ; ) ee e− −ιτ −ιτ−∂ ∂ ⋅ − ιτ ⋅ = ⋅ ∂ ∂
xx x

x x
 

 [ ] [ ]( )21 1
0 1 2 1 22 2( ) ( ) ( ) ( ; ) ( ) ( ) ( ; )e eιτ ιτ= + − ι ⋅ + + ι ⋅x x x x x x xα α α α α , (16) 

has the trigonometric form 

 ( ) ( ){ }0 1 2
( ; ) ( ; ) ( ) ( )sin ln ( ; ) ( )cos ln ( ; )e e e e∂ ⋅

= ⋅ + τ ⋅ + τ ⋅      ∂
x x x x x x x
x

α α α , (17) 

where we use de Moivre’s theorem to obtain the right-hand-side expressions,  

 1 1 2
1! 2!1 ( ) ( )xe x x±ιτ = + ±ιτ + ±ιτ +  

 1 1 11 12 6 3 5
1! 3! 5!2! 4!1 ( ) ( ) ( ) ( ) ( )x x x x x   = − τ + τ + ± ι τ − τ + τ +     

 cos( ) sin( )x x= τ ± ι τ . (18) 

Thus, we have just shown that any full rank complete demand system in Gorman’s class 

of Engel curves can be represented as an exact system of partial differential equations in 

a polynomial of a single function of income. 

3. Aggregation Theory for Incomplete Demand Systems 

All of the previous results on rank and functional form of the income terms in demand 

rely on 0° homogeneity and adding up for complete demand systems. But an incomplete 

information set is the rule in empirical demand analysis, not the exception. In every case, 

we are faced with a subset of quantity, price, and income or wealth data – even when one 

uses a demand model that has, say, total personal consumption expenditures as the source 

of the adding up condition. This measure of total expenditure does not include borrowing 

or saving, which means that the period-to-period budget constraint is missing at least one 

good (savings). Even if preferences are separable across periods, it is well-accepted and 
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widely understood that expenditure is endogenous (e.g., Deaton). With borrowing and 

saving and the time dimension in consumption and demand, the consumer budget con-

straint is defined in terms of current wealth plus the discounted present value of expected 

future earnings relative to the discounted present value of current and expected future to-

tal consumption expenditures. 

In addition, one is almost always interested in a much smaller subset of goods 

consumed than the complete list of possible items that can purchased and used by indi-

viduals in the economy. Usually we try to model a relatively small number of goods as a 

function of the prices of those goods, some measures of the costs of other goods, and ei-

ther income or total expenditures on the goods of interest. Carrying out this kind of 

analysis in a coherent manner forces us to face up to the reality that the models we must 

develop and apply are incomplete.  

We generically are only interested in, have data for, or are feasibly able to meas-

ure, estimate, and predict consumption behavior for a subset of the goods that make up 

the consumer’s total budget. This has two essential, related, and unavoidable impacts on 

the demand models that we need to use in all of these cases. Only some of the goods are 

the objects of study, and the budget constraint becomes a strict inequality. And the de-

mand equations will no longer be homogeneous of degree zero in the prices of the goods 

of interest and income, because the zero degree homogeneity condition arises from the 

adding up condition, which in turn is defined for all prices and income or wealth. More-

over, since we are only trying to model some of the goods purchased and consumed, there 

is no reason to require the demand equations for the goods that we don’t (or can’t) model 
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to have the same functional structure as those that we do model. They might have the 

same form, but then again, they might not. We simply have no way of knowing or choos-

ing which is the case, since we aren’t in a position to measure, estimate, or predict these 

other demand functions with an incomplete information set. In other words, the residual 

claimant for the budget constraint is the generic variable total expenditure on all other 

goods, which by its very nature has a unit price and is measured only indirectly as the dif-

ference between the income variable and expenditures on the goods that we do measure. 

In almost all cases, therefore, if we’re honest with ourselves about the true structure of 

the economic problems at hand, then we must admit that our demand systems are incom-

plete. The main point, however, is that, for these reasons and many others (some of which 

may become more clear as a result of the following arguments), incomplete systems are 

far more interesting than complete ones, in any case. 

When the goods of interest form an incomplete demand system (Gorman, 1965; 

Epstein, 1982; LaFrance, 1985; and LaFrance and Hanemann, 1989), the results that are 

detailed in the previous section on the rank and functional form of the income terms of 

demand models that can be aggregated across individual income levels to market de-

mands, cannot be applied. Moreover, as we will see from the results of this paper, there is 

no restriction on the class of income functions that meet the original definition for aggre-

gation laid out by Gorman, so that the aggregation theory for complete demand systems 

cannot be extended to incomplete demand systems. One reason is that adding up plays 

two critical roles in Gorman‘s constructive argument. The constant function must be one 

of the income functions and the demands can be transformed to a square (complete) sys-
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tem of linear, homogeneous ordinary differential equations in functions of the logarithm 

of income. These two conditions lead to the general class of solutions in Gorman’s full 

rank three case, with symmetry determining the final restrictions on functional form. Re-

lated, but somewhat distinct, is the fact that the functional form restrictions in the rank 

one and two cases are purely due to homogeneity in all prices and income. Since homo-

geneity does not apply in the same fashion to incomplete demand systems as it does to 

complete demand systems, we don’t get any restrictions on the functional forms in the 

lower rank cases either. 

At this point, it is probably worthwhile summarizing for comparison the main im-

plications of aggregation in a complete demand system. All full rank one, two, or three 

(the highest possible rank) members of Gorman’s class of Engel curves can be written as 

systems of exact partial differential equations in zero-, first- or second-order polynomials, 

respectively, in a single function of income. In addition, the possible class of transforma-

tions is limited. In rank one models, only the identity transformation works, y m≡ ; rank 

two has two possible cases, Bernoulli’s transformation, y mκ≡ , and the logarithmic 

transformation, ln( )y m= ; while rank three has a third possibility for a pair of conjugate 

complex roots, y m±ιτ= .  

In the case of an incomplete demand system, we are able to show that the restric-

tion on the functional form of the income transformation does not apply, even in the 

homothetic, rank one case. There are two related reasons for this increase in generality. 

First, homogeneity can be accommodated independently of the subset of prices of the 

goods of interest. A homothetic, weakly integrable, incomplete demand system can have 
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a common income elasticity that differs from unity and need not be constant (LaFrance 

and Hanemann, 1989). Second, the budget constraint is a strict inequality – adding up 

does not apply to a proper subset of goods consumed. This influences demand models of 

all ranks, but its impact is perhaps greatest for rank three, and possibly even higher rank, 

incomplete demand systems.  

Since Gorman’s constructive argument shows us that all aggregable complete 

demand systems can be written as a system of partial differential equations in a polyno-

mial of one among three possible functions of income, a natural extension is the class of 

incomplete demand systems that can be written as a polynomial of any order in any func-

tion of income. Proposition 1 shows that a maximal rank of three is a corollary to sym-

metry (the Appendix gives a constructive proof). A quadratic form is sufficient to obtain 

rank three, while the polynomial must be at least second-order to achieve rank three. In 

this sense, a quadratic form of a single function of income defines the most general non-

degenerate class of full rank polynomial expenditure systems.  

Proposition 1.  If the possibly incomplete demand system has the polynomial form 

 
0

( ; ) ( ; ) ( ; )
K

i
i

i

y y
=

∂ ⋅
= ⋅ ⋅

∂ ∑x x x
x

α  

and is weakly integrable, then there exist : , 2, ,qn
i i Kϕ → = …  such that 

 ( ) ( ) ( ) 2i i K i≡ ϕ ∀ ≥x x xα α . 

In what follows, we apply this result to develop several full rank models of in-

complete demand systems that can be used to nest both the rank and functional form in 

applied demand analysis. It warrants emphasizing, though, that these procedures are ap-
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plicable only to incomplete demand systems. At least one of the goods in the consumer’s 

bundle is left as the residual claimant for total expenditure, and therefore is not required 

to have the same functional form as the goods that are subjected to empirical analysis, 

and the specific model specifications derived in the sequel. When it is possible to relate 

the restricted functional forms for which a complete system can apply, we do so. How-

ever, it is in large part the adding up condition that drives the functional form restriction 

in the work by Gorman, Lewbel, Muellbauer, and others on aggregation in complete de-

mand systems. Previous work of LaFrance and recent work by von Haefen, show that the 

functional form restrictions do not apply for any rank of incomplete demand system. 

3.1 Nesting LA-AIDS, AIDS, and QAIDS within a QPIGL-IDS 

In the two decades since its introduction by Deaton and Muellbauer, the AIDS has been 

widely used in demand analysis. The vast majority of empirical applications follows 

Deaton and Muellbauer’s suggestion and replaces the translog price index that deflates 

income with Stone’s index, which generates the LA-AIDS. Although Deaton and Muell-

bauer (1980: 317-320) cautioned against and avoided the practice, most empirical appli-

cations of the LA-AIDS include tests for and the imposition of an approximate version of 

Slutsky symmetry by restricting the log-price coefficient matrix to be symmetric. Exam-

ples include Anderson and Blundell (1983), Buse (1998), Moschini (1995), Moschini and 

Meilke (1989), and Pashardes (1993).3  

In this subsection, we derive the conditions for integrability of LA-AIDS and a 
                                                 

3 However, Browning and Meghir (1991) estimate a nonlinear AIDS by first estimating an LA-AIDS with a 

symmetric matrix of log-price coefficients to get starting values for the nonlinear AIDS. 
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simple method for nesting the homothetic integrable solution within a class of homothetic 

PIGL demand models. We then extend this nesting procedure to non-homothetic PIGL 

and QPIGL forms.  

If it is integrable, the LA-AIDS can be written in matrix notation as 

 ln ( , ) ln ( , )ln ln ( , ) (ln )
ln ln
e u e ue u ∂ ∂′= = + + − ∂ ∂ 

p pw B p p p
p p

α γ  (19) 

where α and γ are nq-vectors and B is an nq×nq matrix of parameters. At various points in 

the paper, it proves to be helpful to change variables from quantities, prices, expendi-

tures, budget shares, and income to particular transformations of these variables. In the 

present situation, it is most useful to define ln( )≡x p  and ( , ) ln[ ( ( ), )]y u e u≡x p x , 

where 1( ) [ ]nqxxe e ′≡p x . With these definitions, we can rewrite (19) in the form 

 ( , )) ( , )y u y u∂′( + = + +
∂
xI x Bx x
x

γ α γ . (20) 

Our first result identifies conditions for local integrability of the LA-AIDS.4  

Proposition 2. If the LA-AIDS is weakly integrable over an open set qn⊂N  

with a nonempty interior and such that 1 0′+ ≠ ∀ ∈x xγ N , then either (a) γ ≠ 0 

and B = β0γγ′ for some 0β ∈ , or (b) γ = 0 and B = B′. In case (a), the loga-

rithmic expenditure function has the form 

                                                 

4 This proposition only requires local conditions. However, N  covers all of nq–space except for an (nq–1)–

dimensional hyperplane, which has Lesbesgue measure zero in nq–space. 
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 0( , ) (1 ) ln(1 ) (1 ) ( , )
(1 )

y u u
′ ′ ′ ′ ′= + β + + − + + θ ′+ 

xx x x x x p
x

γ
α γ γ γ

γ
, 

while in case (b) it has the form, 

 1
2( , ) ( , )y u u′ ′= + + θx x x Bx pα , 

where ( , )uθ p  is 0° homogeneous in p  and increasing in u, but otherwise cannot 

be identified. 

Case (b) produces a homothetic demand model and is the solution of interest. 5 In particu-

lar, this solution has the same structure as the homothetic Linear Incomplete Demand 

System (LIDS) in LaFrance (1985). By forgoing the same functional forms for all de-

                                                 

5 Case (a), where the log-income coefficients do not vanish and the matrix of log-price coefficients has rank 

one, is too restrictive to be of empirical interest. Nevertheless, this case reveals an interesting property. In 

particular, it is characterized by a system of linear identities among budget shares, 

 1 1 1( ) /w≡ + − α γw α γ , 

where without loss in generality, γ1 ≠ 0. Recall that the linear expenditure system is characterized by a sys-

tem of linear identities among expenditures,  

 1 1 1 1( ) /e p≡ + − α γe Pα γ , 

where ei ≡ piqi, 1
[ ]

qne e ′=e  is the nq–vector of expenditures on the goods q, and P = diag[pi]. Similarly, 

LaFrance (1985) shows that weakly integrable, non-homothetic Linear Incomplete Demand Systems are 

characterized by linear identities in quantities,  

 1 1 1( ) /q≡ + − α γq α γ . 

In this sense, (a) closes the set of models characterized by quantities demanded, expenditures, or budget 

shares lying on a ray in nq–dimensional space. 
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mand equations, a minor consideration in almost all cases, we can nest a homothetic LA-

AIDS and LIDS with Box-Cox transformations in an IDS framework. To see this, let the 

model apply to nq out of N ≥ nq+1 goods. Define ( ) ( 1) /m mκκ ≡ − κ , ( ) ( 1) /i ip pλλ ≡ − λ , 

and 1( ) [ ( ) ( )]
qnp p ′λ ≡ λ λp .6 Assume that m and p are deflated, with a common defla-

tor that is a known, positive valued and 1° homogeneous function of (at least some of) the 

prices of all other goods, ( )π p . Under these conditions, we can write a class of weakly 

integrable, homothetic PIGL-IDS models in budget share form as 

 [ ( )]m−κ λ= + λw P Bpα , (21) 

where [ ]ipλ λ≡P diag  is a diagonal matrix with typical diagonal element ipλ . Using the 

integration techniques detailed in LaFrance and Hanemann (1989), it can be shown that 

the expenditure function for this PIGL-IDS satisfies 

 { }11
2e( , , ) ( ) 1 ( ) ( ) ( ) ( , )u u

κ
′ ′ ≡ π + κ λ + λ λ + θ p p p p p Bp pα , (22) 

where ( , )uθ p  is 0° homogeneous in p  and increasing in u, but otherwise cannot be 

identified (LaFrance (1985); LaFrance and Hanemann (1989)). It also can be shown that 

the demands in (21) are homothetic, with income elasticities equal to 1− κ ∀ κ ∈ . 

We next extend this way to nest the functional form and rank to full rank 2, non-

homothetic, integrable AIDS-IDS models, 

                                                 

6 We could easily extend all of the results in this paper by allowing for each price to have its own Box-Cox 

parameter, say λi, i = 1,…,nq. None of the arguments would change, although the notational burden in-

creases substantially. 
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 1
0 2

ln( ) ln( ) ln( ) ln( ) ln( )m ′ ′ = + + − α − − w B p p p B pα γ α . (23) 

To do this, we require a third result, which states that (23) is a special case of a complete 

class of incomplete demand models that can be characterized as follows. Let ( )y f m≡  

and ( )i i ix g p≡ , i = 1…nq, where f(⋅) and gi(⋅), i =1,…,nq, are arbitrary strictly increasing 

and twice continuously differentiable functions on ++ , and write the nq–vector inverse 

of g(⋅) as p(x). Suppose that, after an appropriate set of transformations, the demand func-

tions for the goods q can be written as a linear function of ( )( , , ) ( ( ), , )y u f e u≡x p p x p  

and linear and quadratic functions of x, with no interaction terms between x and y, 

 1
2

( , , ) ( , , ), 1, ,i i i i q
i

y u y u i n
x

∂ ′ ′= α + + + γ =
∂
x p x x x x pβ ∆ … , (24) 

where, without loss in generality, 1 0γ ≠  and each nq×nq matrix, ∆i, is symmetric ∀ i. We 

have the following. 

Proposition 3. The system of partial differential equations in (24) is weakly inte-

grable if and only if it can be written in the form 

 1
0 2

( , , ) ( , , )y u y u∂ ′ ′ = + + − α − − ∂
x p Bp x p x x Bx
x

α γ α  

where 0α  is a scalar (that may be a function of other prices), 0− αα = α γ  is an 

nq×1 vector, B  is a symmetric n×n matrix that satisfies ′= +B B γα , where 

1 ]
qn=B [β β , and i i i= −γ ∀B∆ . 

Note that if f(⋅) and all of the gi(⋅) are natural logarithms, then we obtain the inte-

grable AIDS-IDS. Moreover, the AIDS form is the only choice that has the structure of 



Building Gorman’s Nest 19 

 

the proposition and can satisfy adding up at more than a single point. In other words, the 

AIDS model is the only functional form in this class that can be weakly integrable and a 

complete system. This elucidates one of the important differences between complete and 

incomplete demand systems. In this case, adding up ultimately determines the functional 

form of the complete demand system, while an incomplete demand system with the same 

basic structure admits any functional form.  

For incomplete demand systems, since we don’t have to live within the confines 

of a log-log form for the expenditure function, it is of interest to consider nesting it within 

a class of models. In particular, using the above Box-Cox definitions for m(κ) and p(λ), 

we can write an integrable non-homothetic PIGL-IDS that is linear in the Box-Cox ex-

penditure term and linear and quadratic in the Box-Cox price terms as 

 { }1
0 2

( ) ( ) ( ) ( ) ( )m m−κ λ ′ ′ = + λ + κ − α − λ − λ λ w P Bp p p Bpα γ α , (25) 

where, for notational simplicity, we have dropped the tildes over the parameters.  

Unlike the homothetic case, for all (κ, λ) pairs, this functional form allows one to 

estimate the income aggregation function through the Box-Cox parameter κ. If κ = 0 we 

obtain the integrable AIDS-IDS, if κ = 1 we obtain the linear-quadratic IDS (LQ-IDS) of 

LaFrance (1990), and for all (κ, λ) pairs we obtain an integrable PIGL-IDS.7 Finally, it 

can be shown that the expenditure function for (25) is 

 { }11 ( )
0 2e( , , ) ( ) 1 ( ) ( ) ( ) ( , )u u e

κ′ λ′ ′ ≡ π + κ α + λ + λ λ + θ 
pp p p p p Bp p γα , (26) 

                                                 

7 See Agnew (1998) for a comprehensive development and application of this full rank two PIGL-IDS. 
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where θ(⋅) has the same properties as before. Note that this expenditure function simply 

generalizes the one for the homothetic case with the additional term α0, which is often 

fixed at zero in applications, and the factor eγ ′p(λ), which produces the vector of non-

homothetic income coefficients. 

We conclude this subsection by extending these arguments to demand models that 

include linear and quadratic terms in the Box-Cox transformation of deflated income 

(QES-IDS). We proceed with this by extending the rank two PIGL-IDS expenditure func-

tion to one that is rank three and that generates a relatively simple form for the quadratic 

terms in the demand equations. A simple, and convenient, choice is a quasi-indirect util-

ity function (Hausman (1981); LaFrance (1985); LaFrance and Hanemann (1989)) that 

can be written in a form that is consistent with the QES originally developed in Howe, 

Pollak, and Wales (1979),8 

 ( )
1

0 2

1( , ) ( )
( ) ( ) ( ) ( )

m e
m

′ λ
  ′ϕ = − + λ ′ ′ κ − α − λ − λ λ   

pp p
p p Bp

γδ
α

. (27). 

Applying the methodology of LaFrance and Hanemann (1989), it can be shown that (27) 

is equivalent to an expenditure function of the form 

 ( )

1
( )

1
0 2 ( )

( , , ) ( ) 1 ( ) ( ) ( )
( ) ( , )

ee u
e u

κ
′ λ

′ λ

   ′ ′ ≡ π + κ α + λ + λ λ − ′ λ + θ    

p

p
p p p p p Bp

p p

γ

γ
α

δ
. (28) 

                                                 

8 Solve (22) for θ, transform to 1θ = − θ  to get ( ) 1
0 2( , ) [ ( ) ( ) ( ) ( )]m e m′ λ ′ ′ϕ = − κ −α − λ − λ λpp p p Bpγ α , 

and add the term ( )( )e ′ λ′ λ pp γ−δ  to obtain (27). 
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That is, the QPIGL-IDS expenditure function generalizes the non-homothetic PIGL-IDS 

expenditure function by replacing ( )( , )u e ′ λθ pp γ  with ( ) 1( ) ( , ) ]u e ′ λ −′− λ + θ pp p −γ[δ , which 

produces the nq-vector of parameters δ associated with the quadratic term in supernumer-

ary income, in addition to the nq-vector of parameters γ associated with the linear super-

numerary income term.  

An application of Roy’s identity generates the QPIGL-IDS extension of the 

AIDS-IDS in budget share form as 

 { 1
0 2

( ) ( ) ( ) ( ) ( )m m−κ λ ′ ′ = + λ + κ − α − λ − λ λ w P Bp p p Bpα γ α  

 [ ] }21
0 2

( ) ( ) ( ) ( ) ( )m′ ′ ′ + + λ κ − α − λ − λ λ I p p p Bpγ δ α . (29) 

Assuming that α and B do not vanish simultaneously, it follows that: (a) γ ≠ 0, δ ≠ 0 is 

necessary and sufficient for a full rank three QPIGL-IDS; (b) γ ≠ 0, δ = 0 is necessary and 

sufficient for a full rank two, non-homothetic PIGL-IDS; (c) γ = 0, δ ≠ 0 is necessary and 

sufficient for a full rank two QPIGL-IDS that excludes the linear term; and (d) γ = δ = 0 

is necessary and sufficient for a homothetic PIGL-IDS. Thus, we obtain a rich class of 

models that permits nesting, testing and estimating the rank and functional form of the 

income terms in incomplete demand systems with a generalized AIDS structure. 

3.3 Nested Rank 3 Extensions of Quadratic Utility Models 

In this subsection, we apply the methods developed above to produce a full rank three 

generalization of the quadratic direct and translog indirect utility models (Christensen, 

Jorgenson, and Lau, 1975). We first define the functions  

 ( , ) 2 1′ ′ϕ = + +x p x Bx xγ , (30) 
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 0( , , ) ( , ) ( , )′θ = α −x p z p z p z xα , (31) 

where ( , )p zα  is a vector of functions of other prices and demographics, 0( , )α p z  is a 

scalar function of other prices and demographics, with ( , )p zα  and 0( , )α p z  0° homoge-

neous in p , B is an nq×nq matrix of parameters, and γ is a vector of parameters. Due to 0° 

homogeneity of ( , )p zα  and 0( , )α p z  in p , we can (and do) take ( , , )mp p  to be deflated 

by ( )π p  without any loss in generality, and absorb the common deflator in the price and 

income variables. The starting point for our application of Proposition 1 in this subsection 

is the class of indirect utility functions defined by  

 
( , )

( , , , ) ; ,
[ ( , , )] ( , )

v y
y

 ′ϕ = ψ − − − θ ϕ  

x p xx p z p z
x p z x p

δ . (32) 

Members of the class of incomplete demand systems generated by this indirect utility 

function include rank two translog and quadratic utility functions and rank three exten-

sions that are quadratic in log-income and income, respectively.  

Choices for ( )f ⋅  and ( )⋅g  that are both interesting and useful continue to be Box-

Cox transformations, ( 1)y mκ= − κ  and ( 1) , 1, ,i i qx p i nλ= − λ = . When 0κ = λ = , 

we obtain a rank three extension of a translog model; when 1κ = λ = , we obtain a rank 

three extension of the quadratic model; and for all values of κ and λ, we obtain a full rank 

three QPIGL-IDS. Rank two versions are obtained when 0δ = , while if ( , , ) 0θ ≡x p z  

and 0δ = , we obtain rank one homothetic versions, again nesting the rank and functional 
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form of the income terms within a single unifying framework.9 

From the results of LaFrance and Hanemann (1989), to study the demands for the 

goods of interest, q, we can focus exclusively on the quasi-indirect utility function, 

 
( )

( )
( , , , )

( , , ) ( )
y

y
′ϕ

υ = − −
− θ ϕ

x xx p z
x p z x

δ . (33) 

Roy’s identity applied to (33) therefore gives a rank three QPIGL-IDS, 

 
1 2( )1 (dy y y y

dm

−   ′    ∂ − θ − θ − θ   ′= + − + +       ∂ ϕ ϕ ϕ        

xq x Bx
p

α δ γ) δ . (34) 

However, an alternative and useful view of this incomplete demand system arises from 

noting that the demands for q satisfy the partial differential equations, 

 
2( )1 (y y y y    ∂ − θ − θ − θ′= + − + +    ∂ ϕ ϕ ϕ    

x Bx
x

α δ γ) δ . (35) 

By Lemma 2 in the Appendix, this functional form allows us to determine necessary and 

sufficient conditions for symmetry and sufficient conditions for concavity of y in x, hence 

of e in p, entirely from (35) for this class of incomplete demand models.  

Calculating the second-order partial derivatives and careful (and, of course, quite 

tedious) grouping, canceling, and algebraic manipulation of various terms gives 

 
2 ) 11 ( (y y y        ∂ − θ − θ′ ′= − − + +        ′∂ ∂ ϕ ϕ ϕ        

x B Bx Bx
x x

δ γ) γ)  

                                                 

9 An advantage of both choices of preference functions in this paper is that the demands are conditionally 

linear in δ. This simplifies the interpretation, estimation and testing of the second-order income effects. 
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3

2

( ) 1 12 ( ) ( )y       − θ ′ ′ ′+ − + − +      ϕ ϕ ϕ      
I Bx x I x Bxγ δδ γ , (36) 

so that symmetry of B is necessary and sufficient for symmetry of 
2 y∂

′∂ ∂x x
, and therefore 

also for symmetry of 
2e∂

′∂ ∂p p
 (see the Appendix for details). 

Turning back to (33), note that we have used the transformation 1u u−= −  (again 

taken from Howe, Pollak, and Wales) of the Gorman polar form for the quasi-indirect 

utility function with = 0δ  (i.e., we take the negative reciprocal of ( ) /y − θ ϕ , which is 

the generalized quadratic quasi-indirect utility function10). In this case y = θ  is the bliss 

point and monotonicity requires 0y − θ < , while 0ϕ >  is required for the radical to be 

well-defined in Gorman’s choice for normalizing the utility index. When < εδ  for 

small enough ε > 0, we have 1 ( ) / 0y′− − θ ϕ >xδ . It turns out that this inequality must be 

satisfied, at least in a neighborhood of each data point, if preferences are well-behaved. 

This is equivalent to the condition that adding /′ ϕx−δ  to 1u u−= −  does not change the 

sign of the (cardinal) utility index. Indeed, this condition is required for the Howe, Pollak, 

and Wales transformation from u to –u-1 to remain well-defined and it can be shown that 

preferences become ill-behaved when it is violated.  

                                                 

10 We use the terminology “generalized quadratic” to refer to the fact that the quasi-indirect utility function 

is defined in terms of deflated and transformed prices and income, x and y, respectively, rather than directly 

in terms of p and m. 
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In any case, we would expect the second-order income effects to be small relative 

to the first-order income effects on the demands. In other words δ′x should be small rela-

tive to ϕ. The upshot is that, so long as 1 ( ) / 0y′− − θ ϕ >xδ , 0y − θ <  and 0ϕ > , the 

second line of (36) is a symmetric, negative semidefinite, rank one matrix. Hence, Lem-

mas 1 and 2 in the Appendix show us that ′=B LL  is necessary, while ′ ′= +B LL γγ  is 

sufficient, for 
2 y∂

′∂ ∂x x
 to be symmetric and negative semidefinite. Under certain conditions 

for the functions y and ϕ, this is necessary and sufficient for weak integrability through-

out on the open set  

 { }( , , , ) : 0, 0,1 ( ) / 0q qn n Jm y y++ ++ ++ ′ℑ ≡ ∈ × × × ϕ > − θ < − − θ ϕ >p p z xδ . 

These curvature restrictions apply only to the parameters of the model and are straight-

forward to implement. We recently have experienced success applying them to U.S. food 

consumption (Beatty and LaFrance, 2001; LaFrance and Beatty, 2003). 

4. Conclusions 

In this paper, we have extended the existing literature on aggregation in demand analysis 

to incomplete demand systems. In stark contrast to complete demand systems, we find 

that there are no restrictions on the class of functional forms for the income variables that 

can satisfy weak integrability. On the other hand, in the large class of incomplete demand 

models that are specified as polynomials of any finite order of one function of income, 

the maximal rank of the incomplete demand system is three. This result follows purely 

from Slutsky symmetry, since adding up is obtained with the good or goods that are not 

the direct subject of study, while homogeneity can be sustained through some linearly 



Building Gorman’s Nest 26 

 

homogeneous function of the prices of these other goods.  

We also have used Box-Cox transformations of the prices of the goods of interest 

and a separate Box-Cox transformation on income to generate two large classes of nested 

functional forms. One makes it possible to test for the rank and functional form of gener-

alized AIDS models. The other permits the same analysis to be applied to generalized 

translog/quadratic utility functional forms.  

We have found both frameworks for nesting incomplete demand systems to be 

empirically tractable as well as substantial improvements over the traditional rank two 

alternatives (Beatty and LaFrance, 2001a, 2001b; LaFrance, Beatty, Pope and Agnew, 

2000, 2002; and LaFrance and Beatty, 2004). For both classes of nested functional forms, 

rank three appears to be essential. In addition, the point estimates for the Box-Cox pa-

rameters on prices and income tend to fall much closer to unity (the extended QES case) 

than to zero (the extended QAIDS case). However, both restrictions (κ = λ = 1 or 0, re-

spectively) are rejected at all reasonable levels of significance in every data set we have 

used to empirically investigate this question. We hope applied researchers find these 

models to be as informative and valuable as we have. 

Our analysis has shown that all full rank one, two and three members of the Gor-

man class of complete demand systems can be written down as systems of exact partial 

differential equations in zero-, first- or second-order polynomials, respectively, in a single 

function of income. Moreover, the class of feasible functions is limited. Rank one models 

only permit the identity transformation, y m≡ ; rank two has two possible cases, y mκ≡  

and ln( )y m= ; and rank three admits a third possibility to accommodate a pair of conju-
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gate complex roots, y m±ιτ= . 

For incomplete demand systems, even in the rank one case, these restrictions on 

functional form do not apply. There are two related reasons for this substantial increase in 

generality. First, homogeneity can be accommodated independently of the prices of the 

goods that are of primary interest. Relaxing this constraint affects even rank one models 

by generating a large class of homothetic incomplete demand systems. For example, the 

common income elasticity of demand for a homothetic subset of all goods consumed 

need not be unity or even constant (LaFrance and Hanemann, 1989). Both properties 

must hold in a homothetic complete demand system. Second, the budget constraint is a 

strict inequality – adding up does not apply. This influences demand models of all ranks. 

However, its impact is greatest for rank three and possibly even higher rank incomplete 

demand systems. Since Gorman’s result hinges on adding up in addition to symmetry to 

obtain a complete system of linear ordinary differential equations, his functional form 

restrictions do not apply and cannot be extended to incomplete demand systems.  

A natural extension of Gorman’s framework is to the class of all generalized 

polynomial Engel curves. Proposition 1 then shows us that Gorman’s rank result applies 

to incomplete demand systems as a corollary to symmetry. A quadratic form is sufficient 

for rank three. Obviously, it is necessary that the polynomial be at least second-order to 

achieve rank three. In this sense a quadratic form in a function of income defines the 

most general nondegenerate class of full rank generalized polynomial expenditure mod-

els, even for incomplete demand systems. Gorman’s conjecture is indeed correct, even 

when we extend his framework as far as our abilities permit. 
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APPENDIX 

Mathematical Preliminaries and Proofs 

A.1. Semidefinite Matrices 

Lemma 1. Let the n×n real-valued matrix A be symmetric and positive semidefi-

nite. Then : 0n ′∀ ∈ >x x Ax , the matrix 1( )−′ ′−A x Ax Axx A  is symmetric and 

positive semidefinite, with x contained in its null space. 

Proof:  Since 0′ >x Ax  by hypothesis, n∀ ∈z , 1( ) 0−′ ′ ′ − ≥ z A x Ax Axx A z  if and 

only if 2( ) ( )′ ′ ′≥z Az x Ax x Az . Let the matrix Q satisfy ′=A QQ  and define ′=v Q z  and 

′=w Q x . Then 2( ) ( )′ ′ ′≥z Az x Ax x Az  if and only if 2( ) ( )′ ′ ′≥v v w w v w . The latter is an n–

dimensional statement of the Cauchy-Schwarz inequality. Note that this inequality con-

tinues to apply even when some of the elements of v and or w vanish, which can occur if 

A has less than full rank. Finally, inspection verifies that  

 1( )−′ ′ − = − = A x Ax Axx A x Ax Ax 0 ,  

so that x is contained in the null space of the matrix 1( )−′ ′ − A x Ax Axx A . ■ 

We apply this result to the generalized quadratic/translog utility model by setting 

1
 

=  ′ 

B
A

γ
γ

 to obtain  

 ( ) 1
2

( )( ) ( 1)( )
2 1

1 ( 1)( ) ( 1)
− ′ ′+ + + +   ′ ′− + +   ′ ′ ′ ′+ + +   

B Bx Bx x Bx
x Bx x

x Bx x
γ γ γ γ γ

γ
γ γ γ γ

 (37) 

as a symmetric, positive semidefinite matrix with a zero eigen value in the direction of 

the vector [ 1]′ ′x . It follows from this that the upper left q qn n×  block, 
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 ( ) 12 1 ( )( )−′ ′ ′− + + + +B x Bx x Bx Bxγ γ γ , 

is symmetric and positive semidefinite. This latter condition plus three additional proper-

ties of the demand model are necessary and sufficient for negative semidefiniteness of the 

Slutsky substitution matrix for the goods q. 

Lemma 2: A necessary condition for the symmetric matrix 
1

 
 ′ 

B γ
γ

 to be positive 

semidefinite is ′=B LL , where L is (upper) triangular, while a sufficient condi-

tion is ′ ′= +B LL γγ . 

Proof: For necessity, note that if the complete matrix is positive semidefinite, then the 

upper left nq×nq submatix B must be as well. This implies the existence of a (possibly re-

duced rank) Choleski factorization B as LL′. For sufficiency, we simply note that 

 
1 1 1 1

′ ′ ′+       
= =       ′ ′ ′ ′       

B LL L L 0
0

γ γγ γ γ
γ γ γ

. ■ 

We apply this result to the generalized quadratic/translog utility model. When L is 

upper triangular, 
1 1 1

′     
=     ′ ′ ′     

B L L 0
0

γ γ
γ γ

 is an upper triangular Choleski factorization 

of 
1

 
 ′ 

B γ
γ

. Because the demand model is 0° homogeneous in the elements of δ and 

1
 
 ′ 

B γ
γ

, normalizing the last element in the lower right corner of the latter to unity sim-

ply accommodates identification of the remaining model parameters. 
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A.2. Symmetry and Curvature 

Lemma 3.  Let ( , , , )e up p z  be the deflated expenditure function, let ( )y f e= , 

with 2f ∈ , 0f ′ > , and inverse ( )m y= φ , let ( )i i ix g p= , 2
ig ∈ , 

0, 1, ,i qg i n′ > = … , and write the deflated expenditure function as 

 [ ]( , , , ) ( ( ), , , )e u y u= φp p z g p p z . 

Then (a) 
2e∂

′∂ ∂p p
 is symmetric if and only if 

2 y∂
′∂ ∂x x
 is symmetric; and (b) if 

0′′φ ≤ , 0ig i′′≤ ∀ , and y is concave in x, then e is concave in p. 

Proof:  We have 

 [ ]( ) i
e yy g∂ ∂′ ′= φ

∂ ∂p x
diag , (38) 

so that 

 [ ] [ ]
2

( ) ( )i i i
i

e y y yy g g y g
x

∂ ∂ ∂ ∂ ′′ ′ ′ ′ ′′= φ + φ  ′ ′∂ ∂ ∂ ∂ ∂ p p x x
diag diag diag  

 [ ] [ ]
2

( ) i i
yy g g∂′ ′ ′+ φ

′∂ ∂x x
diag diag . (39) 

The first two terms on the right are automatically symmetric, so that symmetry of the left-

hand-side is equivalent to symmetry of the Hessian matrix on the far right-hand-side. The 

first two matrices on the right are negative semidefinite when 0′′φ ≤  and 0ig i′′≤ ∀ , so 

that if 
2 y∂

′∂ ∂x x
 is negative semidefinite, then 

2e∂
′∂ ∂p p
 is as well. ■ 

In general terms, this result can be applied to both QPIGL-IDS models. When 1κ = λ =  
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in the above Box-Cox transformations of income and prices, 0′′φ =  and 0ig i′′= ∀ . Then 

the first two terms on the right of (39) vanish. In general, we have 1/( ) (1 )y y κφ = + κ  and 

( ) ( 1) /i i ig p p iλ= − λ ∀ , so that when 1κ ≥  and 1λ ≤ , we have 0′′φ ≤  and 0ig i′′≤ ∀  

and the conditions of the Lemma are satisfied. More specifically, in the case of the gener-

alized quadratic/translog utility model, an open neighborhood of 1κ = λ =  exists such 

that symmetry of B and the curvature conditions ′ ′= +B LL γγ , L triangular, define weak 

integrability of the incomplete demand system throughout the set ℑ . 

A.3 Differential Equations and the PIGL/PIGLOG Functional Forms 

Consider the quasi-linear ordinary differential equation 

 ( ) ( )ln ( )( ) ( ) ( ) ( )
( )

d y xy x x x f y x
y x dx
′

= = α + β . (40) 

This differential equation lies at the heart of the functional form question originally posed 

by Muellbauer (1975, 1976). In particular, the simplest form of this question is, “What is 

the class of functions ( )f y  that can satisfy (40) and the 0° homogeneity condition, 

 ( ) ( ) ( ) ( ) ( ) 0x x x xf y x f y y′ ′ ′α + β + β ≡ ?” (41) 

It turns out that there are only two possibilities: a special case of Bernoulli’s equation, 

 0 0 , 0y y
y x

κ′  = α + β κ ≠ 
 

; (42) 

or a special case of the logarithmic transformation, 

 0 0 lny y
y x
′  = α + β  

 
. (43) 

The reason for this can be obtained by analyzing the implications of (41) directly. First, 
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consider the case where ( ) 0x x′α = , so that 0( )xα = α , a constant. Then (41) reduces to 

 ( ) ( ) ( ) ( ) 0x xf y x f y y′ ′β + β ≡ , (44) 

or equivalently, 

 ln( ) ( ) ( ) ln( )
ln( ) ( ) ( ) ln( )

d f f y x dy x
d y f y x d x

′ ′β β
= = − = − = κ

β
, (45) 

where κ is a constant because the left-hand-side is independent of x, while the right-hand-

side is independent of y. Without any loss in generality, the solutions are ( )f y yκ=  and 

0( )x x−κβ = β . 

Now suppose that ( ) 0x x′α ≠ , so that  

 ( ) ( ) ( ) ( ) ( )x xf y x f y y x x′ ′ ′β + β = −α . (46) 

Since the right-hand-side is again independent of y, at least one of the terms on the left 

also must be independent of y. If ( ) 0f y′ = , so that 0( )f y f=  is constant, we obtain the 

degenerate case where the functions of y on the right-hand-side of (40) are not linearly 

independent. Hence, it must be that ( ) 0x x′β = , i.e., ( )xβ = β , a constant, and 

 ( ) ( )( )
ln( )

df y x xf y y
d y

′α′ = = − = λ
β

, (47) 

where λ is a constant again because the left-hand-side is independent of x and the right-

hand-side is independent of y. Solving the left side gives  

 ( ) ln( )f y y= λ + γ , (48) 

while the right-hand-side can be rewritten as  

 ( )
ln( )

d x
d x

α
= −λβ , (49) 
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which has solution 

 ( ) ln( )x xα = α − λβ . (50) 

Combining (48) and (50), we obtain (43), with 0α = α + γ  and 0β = βλ . 

The implication is that, for ranks one and two demand models in this class, the 

admissible forms of ( )f y  are completely determined by homogeneity. 

When we consider incomplete demand systems, we do not necessarily have ho-

mogeneity (in terms of the subset of prices of interest) or adding up to restrict the func-

tional forms. For Bernoulli’s differential equation, 

 1( ) ( ) , 0y x y x y −κ′ = α + β κ ≠ , (51) 

by noting that ( ) 1d y y y
dx

κ κ− ′κ = , we can rewrite this as the linear ordinary differential 

equation in ( )f y yκ= κ , 

 ( ) ( ) ( )1 ( ) ( )d y y y x y x
dx

κ κ− κ′κ = = κα κ + β , (52) 

with complete solution 

 ( )
1/

( ) ( )( ) ( )
x sxs ds t dty x e e s ds c

κ
∫ κα − ∫ κα = κ β +  ∫ . (53) 

Similarly, the generic logarithmic first-order linear differential equation is 

 ( )ln( ) ( ) ( ) lnd y y x x y
dx y

′
= = α + β , (54) 

with complete solution given by  

 ( ){ }( ) ( )( ) exp ( )
x sxs ds t dty x e e s ds c∫ β − ∫ β= α +∫ . (55) 
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The generic nature of both of these differential equations is that they can be written as 

simple linear first-order ordinary differential equations, 

 ( ( )) ( ) ( ) ( ( ))df y x x x f y x
dx

= α + β . (56) 

But when y is deflated income and the demands do not absorb all of the consumer’s 

budget, homogeneity and adding up do not apply any restriction on the class of functions 

( )f y  that can solve this differential equation, and the complete class of solutions is 

 ( )1 ( ) ( )( ) ( )
x sxs ds t dty x f e e s ds c− ∫ κα − ∫ κα = β +  ∫ . (57) 

A.4 Proofs of the Propositions 

Proposition 1. If the possibly incomplete demand system has the polynomial form 

 
0

( ; ) ( ; ) ( ; )
K

i
i

i

y y
=

∂ ⋅
= ⋅ ⋅

∂ ∑x x x
x

α  

and is weakly integrable, then there exist : , 2, ,qn
i i Kϕ → = …  such that 

 ( ) ( ) ( ) 2i i K i≡ ϕ ∀ ≥x x xα α . 

Proof:  Slutsky symmetry is equivalent to symmetry of the matrix 

 1

0 1 0

K K K
i i ji

i j
i i j

y i y + −

= = =

∂ ′+
′∂∑ ∑∑x

α
α α , (58) 

where each i ′∂ ∂xα  is an nq×nq matrix. By continuity, symmetry requires that each like 

power of y has a symmetric coefficient matrix, and all of the matrices for powers K+1 

through 2K-2 involve nontrivial symmetry conditions without involving any i ′∂ ∂xα  

terms. The matrix for the term y2K-1 only involves K K′α α , which is clearly symmetric. 
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Combine terms in like powers of y and apply a backward recursion beginning with the 

matrix for y2K-2, so that 

 1 1( 1) K K K KK K− −′ ′− +α α α α  (59) 

is symmetric if and only if 1 1K K K− −≡ ϕα α , say, for some 1 : qn
K −ϕ → . Similarly, 

 2 1 1 2( 2) ( 1)K K K K K KK K K− − − −′ ′ ′− + − +α α α α α α  (60) 

is symmetric if and only if 2 2K K K− −≡ ϕα α for some 2 : qn
K −ϕ → . Applying the recur-

sive argument, consider the y2K–4 matrix for K≥3, 

 3 2 1 1 2 3( 3) ( 2) ( 1)K K K K K K K KK K K K− − − − − −′ ′ ′ ′− + − + − +α α α α α α α α . (61) 

Symmetry of the middle two terms follows from above, since 2 1 2 1K K K K K K− − − −′ ′= ϕ ϕα α α α  

and 1 2 1 2K K K K K K− − − −′ ′= ϕ ϕα α α α . The matrix ( )3 3( 3) K K K KK − −′ ′− +α α α α  is symmetric. 

Therefore, the matrix on y2K–4 is symmetric if and only if 33 K K −′α α  is symmetric, which 

requires that 3 3K K K− −≡ ϕα α for some 3 : qn
K −ϕ → ; completing the argument for K ≤ 

5. If K > 5, for each j such that 4 ≤ j ≤ K-1, ..., group like terms, substitute K i K i K− −≡ ϕα α  

for each i < j, and appeal to symmetry of the matrix ( )1 1K j K K K j+ − + −′ ′+α α α α , which se-

quentially requires that each matrix of the following form is symmetric: 

 
2

1 1
1

( 1) ( )
j

K K j K i K i j K K
i

j K i
−

+ − − + + −
=

′ ′− + − ϕ ϕ∑α α α α . (62) 

Each matrix is symmetric if and only if 1 1K j K j K+ − + −≡ ϕα α  for some 1 : qn
K j+ −ϕ → : 

4j =  gives the condition for αK-3; 1j K= −  gives the condition for 2α ; and 2K∀ ≥ , 

i i K≡ ϕα α , 2, ,i K= … , and the rank of [ ]ijα  is no more than three. �  
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Proposition 2. If the LA-AIDS is integrable over an open set qn⊂N  with a non-

empty interior and such that 1 0′+ ≠ ∀ ∈x xγ N , then either (a) γ ≠ 0 and B = 

β0γγ′ for some 0β ∈ , or (b) γ = 0 and B = B′. In case (a), the logarithmic ex-

penditure function has the form 

 0( , ) (1 ) ln(1 ) (1 ) ( , )
(1 )

y u u
′ ′ ′ ′ ′= + β + + − + + θ ′+ 

xx x x x x p
x

γ
α γ γ γ

γ
, 

while in case (b) it has the form, 

 1
2( , ) ( , )y u u′ ′= + + θx x x Bx pα . 

Proof: (This proof is taken entirely from LaFrance (2004)). It is straightforward to show 

that |I + γx′| = 1 + γ ′x, so that I + γx′ is nonsingular and its inverse is I – γx′/(1 + γ ′x) if 

and only if γ ′x ≠ –1. We therefore can write the LA-AIDS as a system of linear partial 

differential equations, 

 ( , ) ( , ) ( )
(1 ) (1 )

y u y u ′ ∂
− = − + ′ ′∂ + + 

x x xI Bx
x x x

γ
γ α

γ γ
, (63) 

where use has been made of [I - γx′/(1 + γ ′x)]γ ≡ γ / (1 + γ ′x). Then, by simply noting that 

 ( , ) ( , ) ( , ) 1
1 (1 ) (1 )
y u y u y u   ∂ ∂

= −   ′ ′ ′∂ + ∂ + +   

x x x
x x x x x

γ
γ γ γ

, (64) 

we can multiply by 1/(1 + γ ′x) to make the left-hand-side an exact differential. Conse-

quently, Slutsky symmetry is equivalent to symmetry of the nq×nq matrix 

 1 ( )
(1 ) (1 )

 ′ ∂
− + =  ′ ′ ′∂ + +  

xI Bx
x x x

γ
α

γ γ
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 [ ]
2 3

( ) ( ) 2( )
(1 ) (1 ) (1 )

′ ′ ′ ′ ′+ + + + ′ ′ ′+
− −

′ ′ ′+ + +
Bx x B x BB x x Bx

x x x
α γ γ α α γγ

γ γ γ
. (65) 

Imposing symmetry on each of the terms associated with like powers of (1 + γ ′x) and ig-

noring terms that are automatically symmetric, we obtain ′=B B  and ′ ′ ′=x B B xγ γ . 

There are two ways that these conditions are satisfied simultaneously ∀ ∈x N : (i) γ ≠ 0 

and B = β0γγ′ for some 0β ∈  (including β0 = 0); and (ii) γ = 0 and B = B′. Case (i) gives 

the LA-AIDS model in the form 

 
2

0 0
0

( )
1 1

y y y′ ′ ′ ′   ∂ − − β − + β′= + β + = +   ′ ′∂ + +  

x x x xx
x x x

α γ α γ
α γγ γ α γ

γ γ
. (66) 

This is a very simple system of linear first-order partial differential equations. Noting that  

 1
1 1 (1 )

 ′ ′   ∂
= −    ′ ′ ′∂ + + +    

x x
x x x x

γ γ
γ γ

γ γ γ
, (67) 

and that 

 0
0 2ln(1 )

1 (1 )
  ′ ′ ∂ β ′β + − =   ′ ′∂ + +    

x xx
x x x

γ γγ
γ

γ γ
, (68) 

combining these two equations with (64), and integrating with respect to x, we obtain the 

logarithmic expenditure function as 

 0( , ) (1 ) ln(1 ) (1 ) ( , )
(1 )

y u u
′ ′ ′ ′ ′= + β + + − + + θ ′+ 

xx x x x x p
x

γ
α γ γ γ

γ
. (69) 

Case (ii) generates the homothetic LA-AIDS demand model, 

 y∂
= +

∂
Bx

x
α , (70) 

which gives the logarithmic expenditure function as 
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 1
2( , ) ( , )y u u′ ′= + + θx x x Bx pα . (71) 

This establishes necessity of the parameter restrictions for integrability. On the other 

hand, γ = 0 trivially gives an LA-AIDS form. To show sufficiency when γ ≠ 0, write 

 
2 2

0 0
0

( ) ( )
1 1

y y yy y
 ′ ′ ′ ′ ∂ − − β − − β′ ′ ′− = − + β + =  ′ ′∂ + +  

x x x xx x x
x x x

α γ α γ
α γγ γ

γ γ
. (72) 

Direct substitution then gives the LA-AIDS form, 

 0
y yy∂ ∂ ′ ′= + β + − ∂ ∂ 

x x
x x

α γγ γ . �  

Proposition 3. The system of partial differential equations in (24) is weakly inte-

grable if and only if it can be written in the form 

 1
0 2

( , , ) ( , , )y u y u∂ ′ ′ = + + − α − − ∂
x p Bp x p x x Bx
x

α γ α  

where 0α  is a scalar (that may be a function of other prices), 0− αα = α γ  is an 

nq×1 vector, B  is a symmetric nq×nq matrix that satisfies ′= +B B γα , where 

1 qn
 =  B β β , and i i i= −γ ∀B∆ . 

Proof: Symmetry of the Slutsky substitution terms is equivalent to symmetry of the nq×nq 

matrix with typical element 

 1
2

1 1 1 1

q q q qn n n n

ij ij ijk k i j jk k jk k j
k k k

s x x x x y
= = = =

 
= β + δ + γ α + β + δ + γ 

 
∑ ∑ ∑∑ . (73) 

To show necessity, we will derive the implications of symmetry, ,ij jis s i j= ∀ . These 

implications can be conveniently grouped into three sets: 
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(a) ij i j ji j iβ + γ α = β + γ α ; 

(b) 
1 1
( ) ( )

q qn n

ijk i jk k jik j ik k
k k

x x
= =

δ + γ β = δ + γ β∑ ∑ ; and 

(c) 
1 1 1 1

q q q qn n n n

i jkl k l j ikl k l
k l k l

x x x x
= = = =

γ δ = γ δ∑∑ ∑∑ . 

From (a), it follows that 0ˆ ˆ≡ − αα α γ , where 1 1 1ˆ ( ) /i i iα = β − β γ  and 0 1 1ˆ /α = −α γ . Substi-

tuting the right-hand-side for each αi back into (a) implies ˆ[ ]ij i jB ≡ β + γ α  is symmetric, 

equivalently ij ′ β = −  B γα  for some symmetric matrix B. Now turning to (b), we will 

use a specialized result of LaFrance and Hanemann (1989, Theorem 2, p. 266) for these 

kinds of problems to obtain , ,ijk i jk jik j ik i j kδ + γ β = δ + γ β ∀ . We will return to this in a 

moment. First, however, we need to apply the same result of LaFrance and Hanemann to 

(c) to get , , ,i jkl j ikl i j k lγ δ = γ δ ∀ . This, in turn, implies that for each i, the nq×nq matrix 

[ ]ikl iδ = γ C  where C is a symmetric matrix with typical element 1 1/kl klc = δ γ . Combining 

this with (b) gives ( ) ( ) , ,i jk jk j ik ikc b c b i j kγ + = γ + ∀ . Exploiting 1 0γ ≠  and the symme-

try of both B and C then gives 2
11 11 1( ) ( ) /ij ij i jb c b c+ = + γ γ γ , so that B and C are related 

by ( )′= − + εC B γγ , where 2
11 11 1( ) /b cε = − + γ . Combining all of these implications, the 

transformed demands can be written in matrix notation as 

 1
0 2

( , ) ˆ ˆ ˆ( ) ( ) ( , )y u y u∂ ′ ′ ′= − α + − − + ε +
∂
x B x x B x x
x

α γ γα γ γγ γ  

 [ ]1
0 2ˆ ˆ ˆ( , ) ( )y u ′ ′ ′= + + − α − − + εBx x x x B xα γ α γγ . (74) 

Now, we note that adding and subtracting εγ  and ′ε xγγ  has no affect on the transformed 
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demands. Therefore, let ˆ= + εα α γ , ′= + εB B γγ , and 0 0ˆα = α + ε , and rewrite the par-

tial differential equations in the equivalent form 

 1
0 2

( , ) ( , )y u y u∂ ′ ′ = + + − α − − ∂
x Bx x x x Bx
x

α γ α . (75) 

Finally, the integrating factor e ′− xγ makes the partial differential equations exact, 

 ( )1
0 2( , )e ey u ′ ′− −∂  ′ ′  = + − α +   ∂

x xx Bx x x Bx
x

γ γα γ + α  

 ( )1
0 2 e ′−∂  ′ ′= α + ∂

xx x Bx
x

γ+ α , (76) 

with complete solution class given by 

 1
0 2( , , ) ( , ) ey u u ′′ ′= α + + + θ xx p x x Bx p γα . (77) 

Sufficiency is demonstrated by applying Hotelling’s/Shephard’s lemma. �  
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