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Abstract

This paper addresses the relationship between individual percep-
tions and the uses of a business language. Perceptions are modeled
explicitly, and are not common knowledge. A business language en-
ables individuals with different perceptions to trade.

I present a formal criterion for faithfulness of the business language
among heterogeneous agents. Roughly, the language is heterogeneously
faithful if different agents who observe the same real-world object can
perceive it in a way that leads them to make the same report. Different
business languages lead to different possible equilibria, and thus can
be Pareto-ranked. In particular, heterogeneously faithful languages are
compared with one where agents can fully disclose what they perceive.
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1 Introduction

For trade to occur, both sides of a trade need to have a shared understand-
ing of what is being traded. In an Arrow-Debreu world, this is captured
by assuming the commodity space is common knowledge. There may be
restrictions on what is observable or contractable, but the usual assumption
is that if different agents see the same thing, they will agree on what they
observe. Implicitly, this means that either there is no need for a business
language when goods are commonly observable, or that reports can be given
costlessly and in arbitrarily fine detail.

This assumption is made not because of its plausibility but
because of technical convenience. It has been known at least since Weber [56]
that perceptions do not perfectly correspond to the real world, and that vari-
ations in physical characteristics of real-world objects may be too subtle for
one individual to detect but apparent to another. Experimental evidence of
perceptual differences in numerical judgements, and of the difficulty involved
in modeling these differences according to a psychological law, is discussed
in Dickhaut and Eggleton [19]. What happens if we dispense with a common
view of the world, and acknowledge that agents only understand the world
as they subjectively perceive it—can any of neoclassical economic theory be
salvaged?

This paper models agents who perceive the world privately
and subjectively. Preferences are defined on the agent’s subjective con-
ceptions of the world, and not on alternatives as they are presented in an
objective sense. Trade occurs through a shared language, whose vocabu-
lary and syntax are agreed upon, but where the meanings of the terms are
subjectively understood.

The main questions addressed are:

1. To what extent can a business language salvage any of neoclassical
economic theory when agents have private, subjective perceptions?

2. Can different business languages be compared—for example, by Pareto
ranking the equilibria possible under each language—when the envi-
ronment is not common knowledge?

Each agent has a set of conceptions, i.e., of concepts the the
agent can in principle perceive. Conceptions are subjective, which means
that no one can observe anyone else’s conceptions. An agent’s conceptions
do not need to correspond to reality: they may be incomplete, vague, or
wrong.
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When an agent observes a real-world object, the agent sees a
member of the set of conceptions; this is what is meant by perception. There
may be more than one way that the same object can appear to the same
person. Conversely, many objects may differ too subtly for the agent to
detect. Perception is introduced as a binary relation between the real-world
objects and the agent’s conceptions, capturing this many-to-many nature.
Similarly, reporting in the shared language is introduced as a binary relation
between the agent’s conceptions and the terms in the shared language.

For agents to trade using a business language, there needs to
be some sense in which different terms can be said to mean the same thing
(at least approximately) to different users of the language. This idea leads
to a criterion of heterogeneous faithfulness. That is, the language is faithful
among agents with heterogeneous perceptions if the agents, when faced with
the same real-world object, can report it in the same ways. This notion is
the driving force behind the results in this paper.

This criterion of heterogeneous faithfulness is contrasted with
an alternative criterion of completeness or fullness. A language can fully rep-
resent an agent’s conceptions if every function from the agent’s conceptions
to any other object is identical to a function from the reports the agent
makes in the shared language. Both criteria appear in various forms in the
literature, but heterogeneous faithfulness turns out to have more desirable
properties for enabling agents to trade.

The welfare properties of different business languages are
evaluated in stages. First, I construct a consumer’s choice problem in a
pure exchange setting, where the consumer’s preferences and choices are
defined over the set of conceptions. In other words, the consumer is inter-
ested in choices as they privately appear, and not as they are objectively
presented in the real-world. The consumer cannot determine exactly which
conceptions are available, however, as trade occurs in the shared language.

Once the consumer’s problem is posed, I consider the com-
petitive equilibria that can arise. With an appropriate definition of Pareto
dominance, the equilibria can be partially ordered. One business language
can then be said to Pareto dominate another based on the equilibria that
the two languages make possible.

The structure of this paper is as follows. The next section
discusses related literature. This is followed by a section defining the model
of perceptions. Reporting in the shared language is then introduced, after
which the results on perceptions and reporting are presented. In particular,
the criterion of complete or full reporting is compared with heterogeneous
faithfulness. Preferences and the consumer’s budget problem are then de-
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fined, followed by the definitions of Pareto dominance and the discussion
of competitive equilibria. A final section gives concluding remarks. In an
appendix, I show how the model here is fully constructive.

2 Background and Literature Review

2.1 Disclosure

The model presented here is related to the disclosure model presented in
Demski and Sappington [17, 18]. The issue addressed here differs from that
in Demski and Sappington, in that their interest is in when a reporting lan-
guage enables an agent to fully reveal a private signal, the meaning of which
is known to all parties. That is, the Demski-Sappington model applies to the
special case of the model here where agents have homogenous perceptions.

It will be useful for comparisons later to view the Demski-
Sappington model formally. At date t, a firm knows its history of cash
flows and of informative signals from each date in {0, . . . , t}. Demski and
Sappington write the firm’s information set as Ht ≡ {(xτ , yτ )t

s=0}, where xτ

is the net cash flow and yτ is the firm’s signal at date τ . A state of the world
determines the history of the signals the firm will see, which belong to some
commonly known set Y , and of cash flows the firm will realize. Thus, for
each t, the state of the world determines ht ∈ Ht. A function ηt maps the
state of the world to the period t signal.

Let T be the set of possible reports, and let Ω be the set of
states of the world. Demski and Sappington define the earnings disclosure as
fully revealing if, upon observing the cash flow and the earnings report, the
market can infer the current period signal. That is, the earnings disclosure
fully reveals the firm’s signal if the market has an interpretation function
T

ι−→ Y that makes the following diagram commute at each date t:

Ω
ηt−−−−→ Y

ht

y xι

Ht
〈xt,It〉−−−−→ T

(1)

In other words, the disclosure is fully revealing if the market gets the same
information from interpreting the report the firm makes, based on the his-
tory the firm observes, as if the market could observe the signal directly.
Mathematically, this says that ηt = ι ◦ 〈xt, It〉 ◦ ht.

Vickry [54] was quick to observe that the nature of Y (that is,
of what the market can perceive) largely determines the class of earnings cal-



2 BACKGROUND AND LITERATURE REVIEW 6

culations that are fully revealing. In the special cases where Y = ∅ or where
Y is a singleton, every possible earnings calculation It is fully-revealing: ei-
ther the market automatically knows that the firm cannot see any signal
(because Y is empty), or the firm automatically knows the unique signal
that the firm can observe. Vickrey calls this situation weak transparency.
Similarly, if the cash flow is a sufficient statistic for the signal, then any earn-
ings calculation (or none at all) is fully-revealing; Vickrey calls this strong
transparency.

If the system is not weakly transparent in Vickrey’s sense,
then fully revealing disclosure means that if the market were to see the
signal and the cash flow, it would make the same earnings report that the
firm would make. So if the cash flow is publicly known and the system is not
weakly transparent, the earnings calculation is fully revealing if the following
modification of Diagram 1 commutes, where ι−1 is the inverse map of ι:

Ω
ηt−−−−→ Y

ht

y y〈xt,ι-1〉

Ht
〈xt,It〉−−−−→ T

(2)

Thus the reporting language is fully revealing if each report
means the same thing to each agent. Unless the set of signals is degenerate
in Vickrey’s sense, a fully revealing earnings disclosure evidently must also
be faithful in the sense described in the introduction. It will become clear
that this is because the firm and the market have identical perceptions.

2.2 Perceptual Differences and Hardness

In the Demski-Sappington model, the firm and the market both understand
the set of signals in the same way. The ability of the firm to tell the market its
signal depends entirely on the reporting language and the signals themselves.

The model of information hardness in Kirschenheiter [31],
based on the notion of Ijiri [29], links reporting to perceptions. There is
a collection X of “true signals,” which are not directly observed. Agents
have a partition of X, and see each signal as the unique set to which it
belongs.1 Individuals communicate through a shared language. As in the
present setting, each individual has a private notion of what terms in the
shared language mean.

1Thus, Kirschenheiter’s model is connected to Blackwell’s informativeness. For a sim-
ilar approach, cf. Marschak and Miyasawa [33] and Gjesdal [22, 23].
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Information is hard in Kirschenheiter’s setting if two people
observing the same signal issue the same message. This contrasts with the
the notion of faithfulness here, which requires only that two people observing
the same object can issue the same report. The difference reflects the fact
that signals are uniquely observable in Kirschenheiter but may be perceived
many ways in the present model.

Kirschenheiter’s mapping from the individual’s information
partitions to the shared language is also single-valued. That is, the reporting
system weakly coarsens the individual’s information partition, but there are
no signals in Kirschenheiter’s world where the report is ambiguous.

The formal details of Kirschenheiter’s model can be presented
in a diagram similar to Diagram 2. Let X be the collection of “true signals;”
let P(X) be the class of partitions of X. Agent i has a partition Si ∈ P(X),
and perceives x ∈ X as the set a ∈ Si that contains it. Individual i also has
a map ri that assigns each set in Si to a unique term in the shared language
T . Information is hard iff the following diagram commutes for every pair of
individuals i, j:

X
⊂−−−−→ Si

⊂
y yri

Sj
rj−−−−→ T

(3)

Except for labeling, Diagram 3 is identical to Diagram 2. The interpreta-
tions in Kirschenheiter differ from those in Demski and Sappington, but the
essense of both models, and of the model here, is the above diagram. Thus,
the commutative square seems to capture an essential feature of faithful
reporting.

3 Perceptions

3.1 Perceptions as a Relation

Perception is modeled here as a binary relation between the objective, ex-
ternal world and an agent’s private understanding of the world. There are
real-world objects in nature (signals, commodity baskets, etc.), which affect
an agent’s decision problem. However, the agent cannot perfectly distinguish
all possible real-world objects.

Each agent has a set of conceptions, that is, of subjective no-
tions about the different possible choices. To each real-world object, there is
an associated subset of the agent’s conceptions; this subset gives the agent’s
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possible perceptions of the real-world object. Conversely, to each concep-
tion, there is an associated subset of real-world objects; these are objects
the agent can perceive in the same way.

An example may clarify. Suppose an individual is aware of
wines with various bodies. A given body of wine may be indistinguishible
to the agent from a wine that the agent has previously classified as light-
bodied. That is, upon tasting from both bottles, the agent may be unable to
say which wine is fuller in body. The first bottle of wine is then perceptible
as light-bodied.

The same wine might also be indistinguishible from a third
wine, which the agent has previously classfied as full-bodied. For example,
the body of the first wine may be in between that of the second and third.
This means that the first wine can also be perceived as full-bodied. The
wines perceptible as light-bodied are then the first two, and those perceptible
as full-bodied are the second and third. All three are perceptible as wines.

The example illustrates that perceptions are not uniquely
defined, and that being perceptible the same way is not an equivalence
relation. Instead, it is a tolerance relation (see [45]). Two objects that
can be perceived in the same way will be thought of here as belonging to
the same neighborhood.

3.2 A Formal Model of Perceptions

Throughout this work, I assume that there is a set I of agents, with typical
agents i, j ∈ I. Associated with each i ∈ I is a set Si, called i’s internal
conceptions, or sometimes just i’s conceptions.

There is a collection2, X, interpreted as the real-world ob-
jects. No one sees X; instead, each agent i observes Si, but for j 6= i, agent
i does not know Sj .

For each i, a relation i (“can be perceived as”) connects X
with Si. For x ∈ X and a ∈ Si, if

x i a,

then I say that agent i can perceive real-world object x as internal conception
a.

Formally, the definition of perception is as follows:
2This is not necessarily a set, and generally not a set in the constructive sense; see the

appendix for detais.
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Definition 3.1. An agent’s perceptions are a triple 〈X, i, Si〉, where i is
a binary relation between the real-world objects X and the agent’s concep-
tions Si.

Example 3.1. In the Demski-Sappington model, X corresponds to the col-
lection of possible states of the world, while Si is the set of net cash flow and
signal histories Ht the firm can potentially observe. Their function ht gives
a unique history at each date t, so for fixed t the associated relation is the
graph of ht.

The agent’s perceptions are assumed to satisfy a complete-
ness condition:

Assumption 3.1. For each i ∈ I and each x ∈ X, there is an a ∈ Si such
that x i a.

Assumption 3.1 requires the agent to have a coarse enough
conception to cover every real-world object. This assumption is necessary
for any non-trivial discussion of reporting. Intuitively, if the agent can-
not perceive some x ∈ X in any way—even as the most generic possible
conception—then there is nothing for the agent to report.

Additionally, I require that perceptions satisfy the following
consistency condition:

Assumption 3.2. For each i ∈ I, each x ∈ X, and each a, b ∈ Si, if both
a and b are possible perceptions of x, then there is a conception c ∈ Si such
that anything perceptible as c is perceptible both as a and as b. That is,

(∀x ∈ X)(∀a, b ∈ Si)((x i a ∧ x i b)

→ ((∃c ∈ Si)(∀y ∈ X)(y i c→ y i a ∧ y i b)))

Assumption 3.2 requires that, if the agent has two concep-
tions that overlap, then the agent has a conception of their overlap.

3.3 Perceptions of Many Objects

The model so far discusses the perception of a single real-world object. How-
ever, the power of the model comes from its ability to describe agents who
can perceive many things in the same way, and who can have many percep-
tions of the same object. To make this precise, I introduce some definitions.3

3For motivation of these definitions, see Sambin and Gebellato [43] and Sambin [42].
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Definition 3.2. Let 〈Y, R, T 〉 be a triple, where Y and T are arbitrary
collections and R is a binary relation between them. The correspondence r
associated with R is given by, for every y ∈ Y ,

r(y) ≡ {t ∈ T |yRt}.

In particular, for agent i’s perceptions, the symbol i is used
both for the relation, as above, and for the associated correspondence; which
use is meant will be clear from context. So for x ∈ X, agent i has associated
with x a collection of ways that i can perceive x:

i (x) ≡ {a ∈ Si|x i a}.

Instead of fixing the left side of a relation, one can also fix the right side.
In this way, one can define a correspondence from i goes the opposite
direction, from Si −→ X. This correspondence is the inverse image of the
agent’s perceptions:

Definition 3.3. Let 〈Y, R, T 〉 be a triple, where R is a binary relation be-
tween Y and T . The correspondence r− associated with the inverse image
along R is given by, for every t ∈ T ,

r−(t) ≡ {y ∈ Y |yRt}.

For agent i’s perceptions, the symbol −
i is used for this

correspondence. Thus, given a conception a ∈ Si, the objects that are
perceptible as a are

−
i (a) ≡ {x ∈ X|x i a}.

The correspondences i (·) and −
i (·) describe how an indi-

vidual object can be perceived, and what an individual conception can be
the perception of. The following definitions extend these correspondences,
in order to facilitate discussion of perceptions of arbitrary collections.

Definition 3.4. Let 〈Y, R, T 〉 be a triple, where R is a binary relation be-
tween Y and T and r(·) is the associated correspondence. Let Ŷ ⊆ Y . The
strong image of Ŷ along r(·) is

{t ∈ T |(∀y ∈ Y )(t ∈ r(y)→ y ∈ Ŷ )}.

The weak image of Ŷ along r(·) is

{t ∈ T |(∃y ∈ Y )(t ∈ r(y) ∧ y ∈ Ŷ )}.
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In the case of perceptions, the strong image of D ⊆ X is
denoted by 2D, while the weak image is denoted by 3D.4

The mappings from Si to X are defined symmetrically. The
strong image of U ⊆ Si along the inverse of i is called the restriction of
U , written rest U , while the weak image is called the extent of U , written
ext U .

Spelling these out, we have, for U ⊆ Si, D ⊆ X,

3D ≡ {a ∈ Si|(∃x ∈ X)(x i a ∧ x ∈ D)}

ext U ≡ {x ∈ X|(∃a ∈ Si)(x i a ∧ a ∈ U)}

for the weak images, and

2D ≡ {a ∈ Si|(∀x ∈ X)(x i a→ x ∈ D)}

rest U ≡ {x ∈ X|(∀a ∈ Si)(x i a→ a ∈ U)}

for the strong images. For singletons a ∈ Si and x ∈ X, we have

ext {a} = −
i (a)

and
3{x} = i (x).

Thus, there are four correspondences between X and Si that characterize
agent i’s perceptions. To reiterate: for an arbitrary collection of real-world
objects D, 3D gives the conceptions that can be perceptions of something in
D, while 2D gives the conceptions that can only be perceptions of something
in D. For a singleton {x} ⊂ X, 2{x} is empty unless x can be distinguished
from every other real-world object. On the other hand, 3{x} is inhabited,
due to Assumption 3.1.

Symmetrically, for an arbitrary collection of conceptions U ,
ext U gives the collection of real-world objects that can be perceived as
something in U , while rest U gives the real-world objects that can only be
perceived as something in U . For a singleton {a} ⊆ Si, rest {a} is empty
unless a is a perception of an object that can be distinguished from every
other real-world object. It is possible that ext {a} is empty as well, since
the agent may have a conception of something that does not actually exist.
This can happen because i does not see X.

4The notation is by analogy with alethic modal logic, where 2 is read as “necessarily”
and 3 is read as “possibly.”
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3.4 The Perceptual Topology

The correspondences described in the previous section arise from the agent’s
perceptions. In this section, I discuss the composition of these mappings,
which give rise to operators from X −→ X.

These operators induce a topology on X, called the perceptual
topology. Intuitively, two members of X are “close” to each other if they can
be perceived the same way. Thus, the agent’s set of conceptions Si is viewed
as a collection of neighborhoods over X, which forms the base of the topology
induced by i.

To describe the perceptual topology, I first recall the usual
definition of an open set:

Definition 3.5 (Open Sets). Let 〈Y, T 〉 be a topological space, where T is
a base of the topology on Y . A subset C ⊆ Y is open iff, for every y ∈ Y , if
y is in C then y has a neighborhood t ∈ T such that t ⊆ C.

The members of Si can be viewed as the names of neighbor-
hoods in X.5 In particular, each a ∈ Si is associaetd with

−
i (a) = {x ∈ X|x i a},

so all of Si is associated with the neighborhood structure

{{x ∈ X|x i a}|a ∈ Si} = {−
i (a)|a ∈ Si}.

Under this viewpoint, the definition of an open set needs only
slight modification:

Definition 3.6 (Open Sets in the Perceptual Topology). For i ∈ I,
let 〈X, i, Si〉 be agent i’s perceptions. Let D ⊆ X. Then D is open in the
perceptual topology iff, for every x ∈ X, if x ∈ D then there is some a ∈ S
such that a ∈ i (x) and −

i (a) ⊆ D.

Thus, D ⊆ X is open in the perceptual topology if every
point in D can be perceived as a conception that can only be the perception
of something in D. Formally, this says that the interior of D ⊆ X is

int D ≡ {x ∈ X|(∃a ∈ Si)(x i a ∧ (∀y ∈ X)(y i a→ y ∈ D))}.

In the topological reading, int D is the collection of points in D that have an
open neighborhood contained in D. So this condition matches the definition.

5I first came across this interpretation in Valentini [51].
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Observe that the last part of thedefinition,

(∀y ∈ X)(y i a→ y ∈ D),

has already been discussed in the last section. Recall that

2D ≡ {a ∈ Si|(∀y ∈ X)(y i a→ y ∈ D)}.

So the last part of the definition of the interior of D just says that a ∈ 2D.
That shortens the definition of the interior of D to

int D ≡ {x ∈ X|(∃a ∈ Si)(x i a ∧ a ∈ 2D)}.

Also, recall that

ext U ≡ {x ∈ X|(∃a ∈ Si)(x i a ∧ a ∈ U)}.

Letting U = 2D gives
int D ≡ ext2D.

That is, the interior operator on X is just

int ≡ ext2.

Definition 3.7 (Perceptual Interior). Let 〈X, i, Si〉 be agent i’s percep-
tions. The perceptual interior operator on X is the composition

int ≡ ext2

A closure operator is dual to an interior operator. Intuitively,
replacing strong and weak images throughout the definition of an interior
operator should define a closure operator. This suggest the following defini-
tion:

Definition 3.8 (Perceptual Closure). Let 〈X, i, Si〉 be agent i’s percep-
tions. The perceptual closure operator on X is the composition

cl ≡ rest3

In fact, this definition is correct. In general, the closure of
a set in a topological space is the collection of points for which every open
neighborhood has positive intersection with the set. For D ⊆ X, the closure
of D is

cl D ≡ {x ∈ X|(∀a ∈ Si)(x i a→ (∃y ∈ X)(y i a ∧ y ∈ D))}.
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A real-world object x is in the perceptual closure of D iff it is perceptually
inseparable from D, in the sense that every possible perception of x can
be the perception of some member of D. This is related to the notion of
nearness presented in Vı̂ţă and Bridges [55].

The second part of the above condition says

(∃y ∈ X)(y i a ∧ y ∈ D),

which is the definition of a ∈ 3D. So this shortens the condition to

cl D ≡ {x ∈ X|(∀a ∈ Si)(x i a→ a ∈ 3D)}.

Letting U = 3D and recalling the definition of restriction makes this

cl D ≡ rest3D

as anticipated.
It should be noted that not everything in int D is necessarily

perceived as something in D. The definition only stipulates that anything in
the perceptual interior of D can be perceived as something in D, but there
still be conceptions in Si that can be the perceptions of something in D as
well as of something outside of D. Thus there is use for a stronger notion of
interior, called the stable perceptual interior of D ⊆ X:

Definition 3.9 (Stable Perceptual Interior). Let 〈X, i, Si〉 be agent
i’s perceptions. Let D ⊆ X. The stable perceptual interior of D is given by

sint D ≡ rest2D.

If a set D is equal to its interior, I will call it open. If it is
equal to its stable interior, I will call it stable open. The intuition is that
the stable interior of D is stable to the possible ways it can be perceived,
while the interior may not be.6

Similarly, the perceptual closure of D ⊆ X contains the real-
world objects that can necessarily be perceived as something possibly in D.
There is use here for a weaker notion, specifically, those objects that can
possibly be perceived as something possibly in D.

Definition 3.10 (Perceptual Direct Connection). Let 〈X, i, Si〉 be
agent i’s perceptions. Let D ⊆ X. The perceptual direct connection of D is
given by

con D ≡ ext3D.
6The terminology is based on Prawitz’s notion of stable logic; cf. [40].
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Intuitively, the points in con D are connected to D because
they share a conception with some conception that meets D.

This idea can be iterated: there are points that are directly
connected to con D that are not connected to D. The following definition
formalizes this notion:

Definition 3.11. Let 〈X, i, Si〉 be agent i’s perceptions. Let D ⊆ X. Let
n ∈ N. The set of real-world objects perceptually n-chain connected to D is
given by

conn D,

i.e., by the n-fold composition of con on D.

It is possible for X not to be connected, in the sense that
there may be D,E ⊆ X such that D = con D, E = con E, and any percep-
tion of anything in D is necessarily not in E. I.e.,

(∀a ∈ S)(a ∈ 3D → ¬(a ∈ 3E)).

In such a case, nothing perceptually connected to D is perceptually con-
nected to E. That is:

Definition 3.12 (Tolerance Class). Let 〈X, i, Si〉 be agent i’s percep-
tions. Let n ∈ N. Let D ⊆ X. Suppose connD is a fixed point of the operator
con, i.e.,

connD = conn+1D.

Then D is the tolerance class of D, written scl D.

The tolerance class is thus the set of points that are eventu-
ally n-chain connected to D. If the tolerance class of every E ⊆ D is D ⊆ X,
then D is perceptually connected . This definition matches Schreider [45].

Two extreme cases are as follow:

Example 3.2 (Arrow-Debreu). Suppose that

(∀x ∈ X)(∃a ∈ Si)(a ∈ 2{x}),

i.e., every real-world object has a unique way of being perceived. Then every
singleton {x} = int {x}; i.e., the induced topology is the discrete topology.

Even in this case, the agent cannot necessarily perceive dif-
ferences between every x, y ∈ X; it is only possible that such differences will
be perceived. If, however, every conception can be perceived in at most one
way, i.e., if

(∀a ∈ Si)(∀x, y ∈ X)(x i a ∧ y i a→ x = y),
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then every singleton is equal to its stable perceptual interior. If X is in-
terpreted as the commodity space, this stable discrete topology is the Arrow-
Debreu world.

Example 3.3 (Vickrey Weak Transparency). Suppose that Si is a sin-
gleton. Then, by Assumption 3.1, for every x ∈ X, 3{x} = Si, giving
cl {x} = X. Also, for any D ( X, 2D = ∅, so the only open set is X.
I.e., the induced topology is the indiscrete topology. This is Vickrey’s case
of weak transparency.

The finest perceptual topology would thus seem to be the
Arrow-Debreu world, i.e., the stable discrete topology, where everything is
necessarily perceived with infinite precision. The coarsest topology seems to
be the Vickrey Weak Transparency case, where everything is perceived with
zero precision.

In addition to being useful for defining the Arrow-Debreu
world, the stable interior has some desirable properties, in particular when
discussing complementation. In general, for D ( X, there may be some
x ∈ D, y 6∈ D, and a ∈ Si with x and y both in − (a). That is, it is not
in general possible for an agent to determine whether a boundary point is
inside or outside of a given set.

This may seem to have disastrous consequences—e.g., it is
hard to see how agents who cannot find the boundary of their budget sets can
consume on their budget lines—but the following definition and proposition
limit the impact.

Definition 3.13. For D ⊆ X, the complement of D is

−D ≡ {x ∈ X|¬(x ∈ D)}.

Similarly, for U ⊆ Si, the complement of U is

−U ≡ {a ∈ Si|¬(a ∈ U)}.

Proposition 3.1 (Separation). Let D ⊆ X. Fix a perceptual topology on
X. Then

sint −D = −con D.

I.e., the stable interior of the complement of D is the complement of the
perceptual direct connection of D.

Proof. By definition,

sint −D ≡ {x ∈ X|(∀a ∈ Si)(x i a→ (∀y ∈ X)(y i a→ ¬y ∈ D))}
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= {x ∈ X|(∀a ∈ Si)(x i a→ ¬(∃y ∈ X)(y i a ∧ y ∈ D))}

= {x ∈ X|(∀a ∈ Si)(x i a→ ¬(a ∈ 3D))}

= {x ∈ X|¬(∃a ∈ Si)(x i a→ a ∈ 3D)}

= {x ∈ X|¬(x ∈ ext3D)} = −ext3D = −con D.

The above definitions and results show that an agent’s per-
ceptions 〈X, i, Si〉 can be used to define interior and closure operators on
X which match the usual definitions. To show that 〈X, i, Si〉 does in fact
induce a topology, it remains to show the following:

1. The collections ∅ and X are open in the perceptual topology.

2. For any family Dα of open sets,
⋃

α Dα is open.

3. For any open sets D1, D2, D1 ∩D2 is open.

The following theorem says that these conditions hold.

Theorem 3.1 (Perceptual Topology). Let i ∈ I, and let 〈X, i, Si〉 be
i’s perceptions. For any D ⊆ X, call D open iff D = int D. Then the
collection of open sets forms a topology; i.e., the perceptual topology meets
the definition of a topology.

The proof is through a sequence of lemmata.

Lemma 3.1. Under the hypothesis of Theorem 3.1, ∅ and X are open.

Proof. By definition, int ∅ = ext2∅. Since 2∅ = {a ∈ Si|(∀x ∈ X)(x i

a→ x ∈ ∅}, it follows that ext2∅ = ∅.
Similarly, the interior of X is ext 2X, and 2X = {a ∈

Si|(∀x ∈ X)(x i a→ x ∈ X)}. By Assumption 3.1, ext2X = X.

Lemma 3.2. Under the hypothesis of Theorem 3.1, the union of opens in
the perceptual topology is open.

Proof. Let D =
⋃

α Dα, where each Dα is open. If x ∈ D, then x ∈ Dα

for some α, so there is a ∈ Si with x i a, and every y ∈ X with y i a
belongs to Dα, hence to D.

Lemma 3.3. Under the hypothesis of Theorem 3.1, the intersection of two
opens is open.
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Proof. Let D,E be open. For x ∈ D, there are a, b ∈ Si such that every
y ∈ X perceptible as a belongs to D and every z ∈ X perceptible as b
belongs to E, and {a, b} ⊆i (x). By Assumption 3.2, there is c ∈ Si

such that anything perceptible as c is perceptible as both a and b. Then
every y ∈ X with y i c is in D

⋂
E, so every member of D

⋂
E has a

neighborhood contained in D
⋂

E.

4 Reporting

4.1 Overview of the Reporting System

In this model, no agent sees the real-world; thus, even two agents with the
identical perceptions7 could not verify that they had the same understanding
of the world. That is, since no one knows anyone else’s conceptions, there is
no way to make shared conceptions common knowledge.

A shared language is introduced as a way around this dif-
ficulty.8 Intuitively, a shared language is a common vocabulary and syn-
tax and a method for each agent to describe subjective conceptions in the
common vocabulary. If agents can phrase things in accepted terms, trade
becomes possible.

Reports go from the agent’s conceptions to the common lan-
guage. As with perceptions, there are gray areas in reports: this is because
the terms in the reporting language cannot be guaranteed to be isomorphic
to the agent’s conceptions. Thus, the map from the agent’s conceptions to
the common language is not in general a function. Instead, there is a relation
between the agent’s conceptions and the common language.

Definition 4.1. A shared language is a collection of triples 〈Si, Ri, T 〉, for
each i ∈ I, where Si is i’s set of conceptions, T is the common vocabulary,
and Ri is a binary relation between Si and T , called the reporting relation.

For a fixed agent i ∈ I, 〈Si, Ri, T 〉 is referred to as i’s report-
ing system The relation Ri is read as “can be reported by i as.” If a ∈ Si and
t ∈ T , then aRit means that i can report a as t. Following the pattern in

7Identical here is in meant in the sense of being isomorphic.
8The development and evolution of the language system are beyond the scope of this pa-

per. These issues are treated extensively in the computer science literature—see especially
Ahn [2, 3], Ahn and Borghuis [4], and Linder et al. [52]. In the psychology literature, Heit
and Barsalou [24] discuss the development of what here is called the reporting rule; that
is, they discuss how agents associate examples of terms in a common language with their
private conceptions. Instead, the focus here is restricted to characterizing an exogenously
given language.
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the section on perceptions, I define two correspondences that are associated
with the reporting relation. These are given by, for a ∈ Si and t ∈ T ,

Ri(a) ≡ {t ∈ T |aRit}

and
R−

i (a) ≡ {a ∈ Si|aRit}.

If R−
i is interpreted as a relation (defined by aR−

i t ≡ tRia for a ∈ Si and
t ∈ T ), then 〈T,R−

i , Si〉 is a reporting system, called i’s report interpretions.
The shared language thus works exactly like the individual’s

perceptions. Moreover, the range of the agent’s perceptual relation i is the
domain of the agent’s reporting relation Ri. Linking real-world objects to
the reporting system is then an exercise in composition. That is, agent i can
report real-world object x ∈ X as some term t ∈ T iff

t ∈ Ri(i (x)). (4)

Equivalently, i can report x as t iff

(∃a ∈ Si)(x i a ∧ aRit). (5)

If this condition holds, then the report t and the real-world object x are said
to meet in Si at a. This is denoted as

3x G R−
i (t).

Here 3x gives the ways the agent can perceive x, while R−
i (t) gives the

conceptions i can report as t, or, equivalently, the interpretations that i
assigns to t. So x is reportable as t if the agent’s interpretation of t is
consistent with a way the agent can perceive x.

4.2 The Reporting Topology

This section makes use of the symmetry of i’s perceptions with i’s reporting
system. Just as i’s perceptions induce a topology on i’s conceptions, the
reporting system induces a topology on i’s conceptions.

Specifically, let 〈Si, Ri, T 〉 be i’s reporting system. Let W ⊆
T be a subset of the common vocabulary. From Definition 3.4, the weak
image of W along R−

i is

r−i (W ) ≡ {a ∈ Si|(∃t ∈ T )(aRit ∧ t ∈W )},
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and the strong image of W along R−
i is

r∗i (W ) ≡ {a ∈ Si|(∀t ∈ T )(aRit→ t ∈W )}.

Here r−i is completely analogous to ext, and r∗i is completely analogous to
rest.

Conversely, let U ⊆ Si. The weak image of U along Ri is
then

ri(U) ≡ {t ∈ T |(∃a ∈ Si)(aRit ∧ a ∈ U)},

and the strong image of U along Ri is

r−∗i (U) ≡ {t ∈ T |(∀a ∈ Si)(aRit→ a ∈ U)}.

It is clear that ri and r−∗i are analogous to 3 and 2.
The following assumption guarantee that the shared language

allows the agent to make reports:

Assumption 4.1. Let i ∈ I, and let 〈Si, Ri, T 〉 be i’s trade reporting system.
For each a ∈ Si, there is a t ∈ T such that aRit.

Assumption 4.1 is a straightforward translation of Assump-
tion 3.1 into the reporting setting.

An analogue of Assumption 3.2 states that the reporting lan-
guage is consistent:

Assumption 4.2. Let i ∈ I, and let 〈Si, Ri, T 〉 be i’s reporting system. For
each a ∈ Si and each t, u ∈ T , if i can report a as either t or u, then there
is some v ∈ T such that whatever i can report as v can be reported as t or
u. That is,

(∀a ∈ Si)(∀t, u ∈ T )((aRit ∧ aRiu)→

((∃v ∈ T )(∀b ∈ Si)(bRiv → bRit ∧ bRiu))).

Thus, if i has two ways of reporting the same thing, then i
can report something like “this looks like both t and u.” Assumption 4.2
evidently means that the language is rich enough to support conjunction,
and that i’s reports are consistent with conjunction.

From here, the definitions are completely analogous to those
on the perceptual topology. Formally,

Definition 4.2. Let i ∈ I. Let 〈Si, Ri, T 〉 be i’s trade reporting system. Let
U ⊆ Si. Let W ⊆ T . Then
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1. The reporting interior of U is

intT (U) ≡ r−(r−∗(U)) ≡ {a ∈ Si|(∃t ∈ T )(aRit∧(∀b ∈ Si)(bRit→ b ∈ U))}

2. The reporting closure of U is

clT (U) ≡ r∗(r(U)) ≡ {a ∈ Si|(∀t ∈ T )(aRit→ (∃b ∈ Si)(bRit∧b ∈ U))}

3. The reporting stable interior of U is

sintT (U) ≡ r∗(r−∗(U)) ≡ {a ∈ Si|(∀t ∈ T )(aRit→ (∀b ∈ Si)(bRit→ b ∈ U))}

4. The reporting direct connection of U is

conT (U) ≡ r−(r(U)) ≡ {a ∈ Si|(∃t ∈ T )(aRit∧(∃b ∈ Si)(bRit∧b ∈ U))}

With these definitions and assumptions, I have the following
theorem.

Theorem 4.1. Let i ∈ I, and let 〈Si, Ri, T 〉 be i’s reporting system. For
any U ⊆ Si, call U open iff U = intT (U). Then the collection of open sets
forms a topology.

The proof is analogous to the proof with the perceptual topol-
ogy.

5 Heterogeneous Faithfulness

5.1 Overview

Recall Diagram 2 from the discussion of the Demski-Sappington model
presents fully revealing disclosure as a commutative square:

S
ηt−−−−→ Y

ht

y yι-

Ht
r−−−−→ T

In their setting, the maps ht, ηt, and r are all functions. The square is fully
revealing if ι− has an inverse ι, giving a unique interpretation to the market
in Y of the firm’s report in T . In other words, the reporting system is fully
revealing for Demski and Sappington iff r ◦ht = ι− ◦ηt. As discussed above,
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unless the model is weakly transparent in Vickrey’s sense, fully-revealing
disclosure requires faithfulness.

Closely related is the model of Kirschenheiter, where Dia-
gram 3 is essentially a relabeling of the vertices in Diagram 2. Signals
in Kirschenheiter’s model go from the “true signals” X (analogous to the
real-world objects here) to the partitions each individual has of X. This
mapping for Kirschenheiter is a function, namely, a true signal x is per-
ceived as the unique set it belongs to in Si ∈ P(X). Additionally, each
agent in Kirschenheiter’s model has a function that assigns members of the
agent’s information partition to reports in the shared language T . Informa-
tion is hard for Kirschenheiter if the relabeled diagram commutes. That is,
the fully transparent disclosure of Demski-Sappington is a special case of
Kirschenheiter’s information hardness.

The current model replaces the above functions with rela-
tions, and with their associated correspondences. Accordingly, the notion
of faithfulness has to be modified: the reporting system cannot in general
guarantee that the same real-world object will always be reported the same
way. For a given real-world object x, there will be a collection i (x) of
possible ways an individual can perceive x, and for each of these, there will
be a collection ri◦ i (x) of possible reports. The definition of faithfulness
is hence as follows:

Definition 5.1. Let i, j ∈ I. Let 〈X, i, Si〉, 〈X, j , Sj〉 be i’s and j’s
perceptions. Let 〈Si, Ri, T 〉, 〈Sj , Rj , T 〉 be i’s and j’s reporting systems.
Then the shared language is heterogeneously faithful between i and j iff the
following diagram commutes:

X
i−−−−→ Si

j

y yri

Sj
rj−−−−→ T

(6)

That is, the shared language is heterogeneously faithful between i and j iff

ri◦ i= rj◦ j .

If the trade reporting system is heterogeneously faithful between every i, j ∈ I,
then the shared language is said to be heterogeneously faithful.

The definition of heterogeneous faithfulness is symmetric, in
the following sense:
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Proposition 5.1. Let i, j ∈ I. Let 〈X, i, Si〉, 〈X, j , Sj〉 be i’s and j’s
perceptions. Let 〈Si, Ri, T 〉, 〈Sj , Rj , T 〉 be i’s and j’s reporting systems.
Suppose the trade reporting system is heterogeneously faithful between i and
j, i.e., ri◦ i= rj◦ j. Then the interpretation of the reports is also hetero-
geneously faithful, i.e., −

i ◦r
−
i =−

j ◦r
−
j .

Intuitively, the above proposition says that if reporting is
heterogeneously faithful, then so is the interpretation. Hence heterogeneous
faithfulness does not require taking the sides of end-users or of reporting
entities—what is meaningful for one is meaningful for the other.

Proof. The heterogeneous faithfulness between i and j means that, given
x ∈ X and t ∈ T , i can report x as t iff j can report x as t. By definition, i
can report x as t iff

(∃a ∈ Si)(x i a ∧ aRit),

which means that

(∃a ∈ Si)(a ∈ r−i (t) ∧ x ∈−
i (a)),

i.e., x is reportable as t iff t is interpretable as x. By an identical argument,
if j can report x as t, then j can interpret t as x. So commutativity of the
square in Equation 5.1 holds iff the following square commutes:

X
-

i←−−−− Si

-
j

x xr-i

Sj

r-j←−−−− T

The symmetry in the above proposition does not hold in the
Demski-Sappington model. This is because a relation can always have an
inverse relation defined, whereas the Demski-Sappington model works with
functions, which are not necessarily invertible. However, heterogeneous
faithfulness and Demski-Sappington fully revealing disclosure agree in the
following sense:

Proposition 5.2. Suppose that the income disclosure in the Demski-Sappington
model is fully revealing. Then the reporting system is heterogeneously faithful
between the firm and the market.
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Sketch. From Diagram 1, the disclosure is heterogeneously faithful iff there
is an interpretation function ι from the report T to the market’s possible
signals (i.e., to the market’s set of conceptions) Y such that, for every s ∈ S,

ηt(s) = ι ◦ r ◦ ht(s),

where r ≡ 〈xt, It〉 is the cash flow-income disclosure pair. Let ι− be the
inverse (not necessarily a function) of ι. Then ι−(y) is the set of reports
t ∈ T that the market can interpret as y. Since the disclosure by hypothesis
is fully revealing, any t ∈ ι−(y) is uniquely interpreted by the market as y.
This means that ι− ◦ ηt = r ◦ ht, which is the definition of heterogeneous
faithfulness.

A converse will not hold, as the following example illustrates.
Suppose the collection of real-world objects is {0, 1, 2}, and that Si = Sj =
X. Suppose the reporting language is T = {0, 1}, and each individual reports
according to ri(0) = rj(0) = 0, ri(1) = ri(2) = rj(1) = rj(2) = 1. Each
individual’s perceptual map is the identity function. The reporting system
is heterogeneously faithful: i can report 0 iff j can report 0 (when the real-
world object is 0), and i and j can both report 1 otherwise. However, a
report of 1 is not invertible as a function: if either individual sees a report
of 1, both 1 and 2 are possible interpretations.

Note that a trivial counter-example is also possible: just take
T = ∅. Then every report that i can make has the same meaning as the
same report by j, since there are no possible reports. However, the reporting
system is not invertible in the signal, unless the set of possible signals is also
degenerate.9

The reason that heterogeneous faithfulness is weaker than
fully revealing disclosure is that the Demski-Sappington model requires unique
identification, because all of their maps are functions. When perception is
imperfect and conceptions are not common knowledge, the best we can hope
for is consistency.

5.2 Remarks on Fullness

The fullness of the Demski-Sappington model captures the followign general
sense of completeness:

C1 Every distinction a reporting entity can make has a distinct report in
the shared langauge.

9Kirschenheiter gives a similar counter-example.
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C2 Every distinction an end-user can make has a distinct report in the
shared language.

That is, the reporting system is complete both for the senders and for the
users of the reports.

To see that completeness holds in these senses, recall that the
firm sees a cash flow and a signal. If the disclosure is fully revealing, then the
report includes the cash flow and an income calculation that together suffice
to inform the market of the signal. Hence, given a cash flow, the firm needs
to be able to report a unique income calculations for each signal. This just
says that different cash flow and signal pairs generate distinct reports; i.e.,
Demski-Sappington fully revealing disclosure implies C1. Moreover, since
fully revealing disclosure identifies the signal, a fully revealing system must
be complete in the sense of C2 as well.

Completeness for the reporting entitiy also holds in Kirschen-
heiter’s information hardness notion: C1 follows from the fact that every
mapping in Kirschenheiter’s model is a total function. On the other hand,
C2 does not follow from information hardness, as is seen from considering
the case where the common vocabulary is a singleton.

To understand completeness better, consider the following
examples, based on Shin’s model (cf. [46]):

Example 5.1 (Shin’s model, N=1). In Shin’s model, suppose

X = {(0, 0), (1, 0), (1, 1)} = S1 = S2

1 ((0, 0)) = {(0, 0)}
1 ((1, 0)) = 2 ((1, 1)) = {(1, 0), (1, 1)}
2 ((0, 0)) = 2 ((1, 0)) = {{(0, 0), (1, 0)}

2 ((1, 1)) = {(1, 1)}
If the shaerd language is complete in the sense of C1, then the smallest
common vocabulary is ⋃

x∈X

1 (x))
⋃

(
⋃

x∈X

2 (x))

= {{(0, 0)}, {(1, 0), (1, 1)}, {(0, 0), (1, 0)}, {(1, 1)}}.
If the shared language is complete in the sense of C2, then the smallest
common vocabulary is

(
⋃

x∈X

1 (x))× (
⋃

x∈X

2 (x)).
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Any set with four elements can work equally well in the previ-
ous example. When X is slightly larger, completeness is no longer symmetrc:

Example 5.2 (Shin’s model, N=2). Suppose now that

X = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2)} = S1 = S2

1 ((0, 0)) = {(0, 0)}

1 ((1, 0)) = 2 ((1, 1)) = {(1, 0), (1, 1)}

1 ((2, 1)) = 1 ((2, 2)) = {(2, 1), (2, 2)}

2 ((0, 0)) = 2 ((1, 0)) = {{(0, 0), (1, 0)}

2 ((1, 1)) = 2 ((2, 1) = {(1, 1), (2, 1)}

2 ((2, 2)) = {(2, 2)}

If the shared language is complete in the sense of C1, then the smallest
common vocabulary is

(
⋃

x∈X

1 (x))
⋃

(
⋃

x∈X

2 (x))

= {{(0, 0)}, {(1, 0), (1, 1)}, {(0, 0), (1, 0)}, {(1, 1), (2, 1)}, {(2, 2)}}.

If the shared language is complete in the sense of C2, then the smallest
common vocabulary is

(
⋃

x∈X

1 (x))× (
⋃

x∈X

2 (x)).

The smallest set that makes the above model complete for
the reporting entities has five elements, whereas nine elements are necessary
to be complete for the end-user.

In the above examples, there were no cases where 1 (x) =
2 (x). Since conceptions are private, even if two individuals have the same
conceptions, the private, subjective nature of the Si prevents them from
verifying that their conceptions perfectly overlap. Accordingly, completeness
in the sense of C1 can require some repitition. This motivates the following:

Definition 5.2. For each i ∈ I, let 〈X, i, Si〉 be the perceptions of agent i.
Let 〈Si, ri, T 〉, be i’s reporting system. The shared language is complete for
reporting entities iff there is an injection from T to the disjoint union∑

i∈I

(
⋃

x∈X

i (x)) ≡ {(i, i (x))|i ∈ I, x ∈ X},
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and for each t ∈ T , for every i, j ∈ I, and for every a ∈ Si and b ∈ Sj,

aRit→ ¬(bRit)

The shared language is complete for the end users iff there is an injection
from T to the Cartesian product∏

i∈I

(
⋃

x∈X

i (x)),

and if, for each i ∈ I, r−i (·) is a projection map onto (
⋃

x∈X i (x)).

The above definition shows in particular that completeness
is not symmetric, as the disjoint union is not in general isomorphic to the
Cartesian product. Since heterogeneous faithfulness is symmetric by Propo-
sition 5.1, the following holds:

Proposition 5.3. If the shared language is complete for the reporting enti-
ties, then it is not necessarily heterogeneously faithful.

Proof. (Sketch) Follows directly from the definition of disjoint union.

5.3 Heterogeneous Faithfulness as Continuity

As described in Section 3.4 and Section 4.2, the agent’s perceptions 〈X, i

, Si〉 can be viewed as a topological space, with Si forming a base of the
topology induced by i on X. By an entirely analogous argument, the
agent’s reporting system 〈Si, Ri, T 〉 is a topological space, with T a base of
a topology induced by Ri on Si.

Recall that the definition of heterogeneous faithfulness given
in Section 5.1 says that the following diagram commutes:

X
i−−−−→ Si

j

y yri

Sj
rj−−−−→ T

In other words, the map j takes a topological space 〈X, Si〉 (with the per-
ceptual topology of i) to a topological space 〈Sj , T 〉 (with the reporting
topology. The map ri is a relation between neighborhoods of these topologi-
cal spaces. Commutativity of the diagram then says that j takes open sets
to open sets. Moreover, since relations always have inverse relations, com-
mutativity also says that j is a map whose inverse image takes open sets to
open sets. In the special case where the correspondences are single-valued,
the following holds:
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Theorem 5.1 (Hardness Implies Continuity). If information in a shared
language is hard between two agents i and j, then j is a continuous map
from X with i’s perceptual topology to Sj with the reporting topology.

Proof. In the information hardness model, for every x ∈ X, there is a unique
a ∈ Si such that x i a, because Si ∈ P(X). In other words, every x ∈ X
has a unique open neighborhood in i’s perceptual topology.

Since Sj ∈ P(X), there is a unique b ∈ Sj such that j (x) =
b. In other words, j (·) is a function. Reports are also single-valued, so
there is exactly one t ∈ T such that bRjt. That means that there is a unique
neighborhod of j (x) in j’s reporting topology.

By the hardness of information, j can report x as t iff i can
report x as t. Thus, a ∈ {â ∈ Si|âRit}, which means that a ∈ r−i (t). Hence,
every x ∈ X, the inverse image of every open neighborhood of j (x) in
j’s reporting topology contains an open neighborhood of x in i’s perceptual
topology. Therefore, j (·) is continuous.

The converse requires i (·) and ri(·) to be single-valued for
every i ∈ I. That is, information hardness does not apply to settings where
perceptions can overlap.

When i and Ri are relations, there are many possible def-
initions of continuity. For example, an order relation may be required to
have closed upper and lower countour sets, as in Debreu [16]. Alternatively,
one may consider a relation continuos if the associated correspondence is
upper or lower hemicontinuous.

To preserve the intuition of continuous functions, I define
continuity as follows: X

r−→ Y is continuous iff r carries open subsets of X
to open subsets of Y . It is shown in Gebellato and Sambin [21] that this def-
inition of continuity is necessary in order to guarantee that the composition
of continuous relations is continuous. Formally:

Definition 5.3. Let 〈X, S〉, 〈Y, T 〉 be topological spaces, where S is a base
of the topology on X and T is a base of the topology on Y . A binary relation
R between X and Y is continuous iff for every x ∈ X, if t ∈ T is an
open neighborhood of some y ∈ Y such that xRy, then there is an open
neighborhood a of x such that a ⊆ r−(t).

From this definition, it is almost immediate to conclude the
following:

Theorem 5.2 (Transparency Is Continuity). Let i, j ∈ I be two agents.
Let 〈X, i, Si〉, 〈X, j , Sj〉 be i’s and j’s perceptions. Let 〈Si, Ri, T 〉, 〈Sj , Rj , T 〉



5 HETEROGENEOUS FAITHFULNESS 29

be i’s and j’s reporting systems. If the shared language is heterogeneously
faithful between i and j, then i is a continuous relation from X with i’s
perceptual topology to Sj, with j’s reporting topology.

Conversely, if j is a continuous relation between X with
i’s perceptual topology and Sj with j’s reporting topology, then there exists
a reporting relation for i such that the shared language is heterogeneously
faithful between i and j.

Proof. The proof is essentially a comparison of definitions. Heterogeneous
faitufulness means that rj◦ j= ri◦ i. The map rj(·) carries members of
Sj to their neighborhoods in j’s reporting topology. The map i carries
members of X to their neighborhoods in i’s perceptual topology. Therefore,
ri(·) carries open neighborhoods of any x ∈ X in i’s perceptual topology to
open neighborhoods of j (x) in j’s reporting topology. That is, j is a
continuous relation.

Conversely, let j be a continuous relation. Let ri be the
correspondence from Si to T defined by

ri(a) ≡ rj◦ j ◦ −
i (a).

Then ri carries open neighborhoods of any x ∈ X to open neighborhoods of
j (x); i.e., the resulting shared language is heterogeneously faithful.

Heterogeneous faithfulness and continuity are therefore two
ways of asserting the same thing. The reason that hardness is a special
case of heterogeneous faithfulness is that the maps i (·) and ri(·) must be
single-valued for every agent in order for information to be hard. Viewing
heterogoeneous faithfulness as continuity, this says that the perceptual and
reporting topologies all need to be degenerate in the sense that every point
has exactly one open neighborhood in the base of the topology.

5.4 Example

To illustrate the connection between perceptions and reporting, this section
revisits the example from Shin [46] above.

Example 5.3 (Shin’s model, N=1). In Shin’s model from [46], suppose

X = {(0, 0), (1, 0), (1, 1)} = S1 = S2

1 ((0, 0)) = {(0, 0)}

1 ((1, 0)) = 2 ((1, 1)) = {(1, 0), (1, 1)}
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2 ((0, 0)) = 2 ((1, 0)) = {{(0, 0), (1, 0)}

2 ((1, 1)) = {(1, 1)}

Observe that in Shin’s model, both agents have exactly one
way of perceiving each point in X. That is, every point has a unique neigh-
borhood in the perceptual topology. Since both have neighborhoods with
more than one point, and since each point belongs to exactly one neighbor-
hood, the topology is not T -1.10

There is no hope of finding a non-trivial information struc-
ture that is hard. This is because the first agent perceives (1, 0) and (1, 1)
as belonging to the same neighborhood, while the second agent perceives
(0, 0) and (1, 0) as belonging to the same neighborhood. Since information
hardness requires that every conception has exactly one possible report and
that agents agree, the only possibility is that both agents report (0, 0), (1, 0),
and (1, 1) the same way. Thus, information hardness requires the reporting
language to be a singleton.

If the reporting maps are allowed to be relations, consider
the following possibility:

T = {“not (0, 0)”,“not (1, 1)”,“unknown”}

r1({(0, 0)}) = {“not (1, 1)”,“unknown”}

r1({(1, 0), (1, 1)}) = {“not (0, 0)”,“unknown”}

r2({(1, 1)}) = {“not (0, 0)”,“unknown”}

r1({(0, 0), (1, 0)}) = {“not (1, 1)”,“unknown”}

If x = (0, 0) or x = (1, 1), the possible reports for each agent are the same.
So clearly the reporting system is heterogeneously faithful at both these
points. If x = (1, 0) and both agents report “unknown,” then there is agree-
ment. If x = (1, 0) and agent 1 reports “not (0,0),” then agent 2 looks at
r−2 (“not (0, 0)”) = {(1, 1)}, which 2 knows is incorrect. Thus the reporting
system can be made heterogeneously faithful at (0, 0) and (1, 1) in this way,
but at the cost of losing heterogenous faithfulness at (1, 0). This breakdown
occurs because the topology is not T -1.

10A topological space satisfies the T -1 separation axiom if, for every pair of distinct
points, there is a neighborhood of one that does not contain the other. That is, if x 6= x′,
then there is a neighborhood a ∈ Si such that x i a ∧ ¬(x′ i a). In this model, a
T -1 space is one where different objects have at least the possibility of being perceived
differently. For details on this axiom and continuity properties, see [36] or [53].
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6 An Individual Consumer’s Problem

Preferences are defined over the choices an agent faces as they subjectively
appear, and not over choices as they objectively are. This departure from
neoclassical consumer theory means that the usual definition of preference
relations needs some modification. In particular, because conceptions can
overlap, preferences in general are incomplete.

Additionally, the agent need not have experience with every
conception in Si (some may not even exist, and the agent may not know
this), and may have a hard time determining what is preferrable among
things that have not be experienced. The literature in psychology suggests
that agents reason about conceptions by envisioning examples (see e.g. Heit
and Barsalou [24]), so not having witnessed something may make it difficult
to specify a preference.

To accomodate these requirements, I define preferences for
agent i ∈ I by four binary relations:

Definition 6.1. Let i ∈ I. Let Si be i’s set of conceptions. Then agent i’s
preferences are four binary relations (�i, 6�i,∼i, 6∼i) on Si × Si.

The relations are interpreted as follows: (∀a, b, c ∈ Si),

1. a �i b is interpreted as i prefers a to b.

2. a 6�i b is interpreted as i does not prefer a to b.

3. a ∼i b is interpreted as i is indifferent between a and b.

4. a 6∼i b is interpreted as i is not indifferent between a and b.

Incompleteness of preferences means it is not required that a �i b ∨ a 6�i b,
or that a ∼i b ∨ a 6∼i b.

I make the following assumptions about the four preference
relations:

Axiom 6.1. For each i ∈ I, the relations (�i, 6�i,∼i, 6�i) satisfy the follow-
ing: (∀a, b, c ∈ Si),

1. a 6�i b→ ¬(a �i b) and a 6∼i b→ ¬(a ∼i b).

2. a �i b→ b 6�i a.

3. a �i b→ a 6∼i b.

4. ∼i is an equivalence relation:
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• a ∼i a,

• a ∼i b→ b ∼i a, and

• a ∼i b ∧ b ∼i c→ a ∼i b.

5. a ∼i b ∧ b �i c→ a �i c.

6. a �i b ∧ b ∼i c→ a �i c.

7. a �i b ∧ b �i c→ a �i c.

8. a 6�i b ∧ b 6�i a→ a ∼i b.

9. a 6∼i b ∧ b 6�i a→ a �i b.

10. a 6�i b ∧ b 6�i c→ a 6�i c.

The last item, which states that 6�i is transitive, can be weak-
ened somewhat; e.g., one can require that the transitive closure of 6�i have
empty intersection with �i. Nonetheless, transitivity of 6�i seems natural,
and adding this stronger than necessary assumption gives greater intuitive
clarity.

Lemma 6.1. Let X = Si, and let i=∼i or i=6�i. Assume there is at
least one element of Si. Then Assumptions 3.1 and 3.2 hold.

Proof. The indifference relation is an equivalence relation by Axiom 6.1 (4).
So trivially, for any a ∈ Si, there exists b ∈ Si (namely a) such that a ∼i b.
So Assumption 3.1 holds for ∼i. Similarly, by Axiom 6.1 (2), if a �i a then
a 6�i a, and by Axiom 6.1 (1), both cannot hold simultaneously. So it must
be that a 6�i a, giving Assumption 3.1 for �i.

Suppose for a, b, c ∈ Si, a ∼i b ∧ a ∼i c. By transitivity
of an equivalence relation, for any d ∈ Si, if d ∼i a then d ∼i b ∧ d ∼i

c. So Assumption 3.2 holds for ∼i. Similarly, for 6�i, the transitivity in
Axiom 6.1 (10) gives Assumption 3.2.

The lemma suffices to prove the following:

Theorem 6.1 (Preference topologies). If Axiom 6.1 holds, then the
agent’s indifference relation ∼i and no-better-than relation 6�i each induce
a topology on Si.

Proof. Entirely analogous to the proof of Theorem 3.1.
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The definition of preferences suggests the following notion of
Pareto-dominance:

Definition 6.2. Let a, a′ ∈
∏

i∈I Si be perceived allocations. Then a Pareto
dominates a′ iff, for every i ∈ I, a′ 6�i a, and, for some j ∈ I, a �i a′.

As an illustration, the interior of some set U ⊆ Si in the
indifference topology is

int∼i U ≡ {a ∈ Si|(∃b ∈ Si)(a ∼i b ∧ (∀c ∈ Si)(b ∼i c→ c ∈ U))}.

This is the set of conceptions to which something is known to be indifferent,
and which are indifferent only to members of U . That is, the indifference-
interior of U is the set of conceptions a which are witnessed to be indifferent
to something and which can only be indifferent to members of U .

Since ∼i is symmetric, a can serve as its own witness. Thus,
int∼iU becomes

{a ∈ Si|(∀c ∈ Si)(a ∼i c→ c ∈ U)},

i.e., this becomes a set that contains everything indifferent only to members
of U . A dual argument shows that the indifference closure of U is a set
containing something indifferent to something in U .

Thus the topological notions presented above have indiffer-
ence as a special case, and provide notions related to the neoclassical indif-
ference curves. An analogous argument shows that the relation 6�i induces
a topology that is a gives notions related to neoclassical upper and lower
contour sets.

These topologies are more than curiousities. In particular,
consider the following:

Theorem 6.2. Let 〈Si,∼i, Si〉 and 〈Si, 6�i, Si〉 be reporting systems, where
agent i reports internally what is indifferent or not preferred to a given
conception. Let 〈X, i, Si〉 be i’s perceptions. Then indifference and weak
preference topologies induce comparable relations on X if the trade reporting
system is heterogeneously faithful.

To be completed, but essentially from the commutative diagrams.
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7 Heterogeneous Faithfulness and Equilibrium

7.1 Optimality, Equilibrium, and Heterogeneous Faithful-
ness

Each individual reports desired trades in a common language T . Prices are
defined on T , and not on X; that is, prices are stated in terms of the shared
language.

In this setting, the individual’s decision problem is modified
as follows:

Definition 7.1. Let t′ ∈ T be a member of the common vocabulary. Given
prices p on T , the reports that can feasibly trade for t′ are the members of

I(p, t′) ≡ {t ∈ T |p · t′ ≤ p · t}.

The set I(p, t′) is called the set of reports that suffice for t′.

Observe that the reporting language simplifies the expres-
sion of what is needed to afford a particular choice. The reason is that
the reporting language is common knowledge, which means that prices and
alternatives are the same for everyone.

Feasibility of the individual’s budget problem is now stated
as follows:

Definition 7.2. Let i ∈ I; let 〈Si, Ri, T 〉 be i’s reporting system; and let
a ∈ Si be i’s perceived endowment. Some t′ ∈ T is budget feasible for i iff

(∃t ∈ T )(aRit ∧ t ∈ I(p, t′),

i.e., if the set of possible reports of the perceived endowment meets the reports
that suffice for t′:

ri(a) G I(p, t′).

Thus, feasibility is expressed by the following diagram:

Si
ri−−−−→ TyI(p,·)

T

Because reports do not map perfectly to the individual’s con-
ceptions, it will not in general be possible to choose a report that is both
feasible and always interpreted as at least as good as any other feasible
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choice. The reason is that ri(·) is not single-valued. Hence I consider a
weaker notion of optimality. Intuitively, a chosen report is budget optimal if
any other feasible choice has an interpretation that is not better than some
interpretation of the chosen report. That is, any other budget feasible choice
cannot be necessarily better.

I make this precise with the following definition:

Definition 7.3. Let i ∈ I, and let U ⊆ Si. Let (�i, 6�i,∼i, 6∼i) be i’s
preferences. The conceptions no better than a are

Ŵ (U) ≡ {b ∈ Si|(∃a ∈ Si)(b 6�i a ∧ a ∈ U)}.

An optimal choice can now be defined as follows:

Definition 7.4. Let i ∈ I; let 〈Si, Ri, T 〉 be i’s reporting system; and let
a ∈ Si be i’s perceived endowment. Some t′ ∈ T is budget optimal for i iff
t′ is budget feasible, and, for any budget feasible t′′ ∈ T ,

r−i (t′′) G Ŵ (r−i (t′).

Thus, optimality is a commutative square:

Si
ri−−−−→ T

Ŵ

y yI(p,·)

Si
ri−−−−→ T

The following then holds:

Corollary 7.1. An individual’s budget problem has an optimal choice iff
there the reporting system is heterogeneously faithful in the individual’s no-
better-than topology, i.e., in the topology induced by 6�i.

Proof. Immediate from the definition of optimality and from Theorem 5.1.

Since prices are defined on T , the definition of market clearing
is the natural one. This motivates the following definition of competitive
equilibrium:

Definition 7.5. Let 〈X, i, Si〉i∈I be the perceptions of the individuals in
an economy. Let 〈Si, Ri, T 〉i∈I be the trade reproting system. For each i ∈ I,
let ai be individual i’s perceived endowment. A competitive equilibrium is a
map p : T −→ R and a collection {(ti, t′i)}i∈I of pairs in T × T such that,
for each i ∈ I, the following conditions hold:
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Feasibility aiRiti and p · t′i ≤ p · ti;

Optimality For bi ∈ Si, if (∃t′′i ∈ T )(bRit
′′
i ), then (∃ci ∈ Si)(ciRit

′
i ∧ bi 6�i

ci); and

Market Clearing
∑

i∈I ti =
∑

i∈I t′i,

where the summations are in the group addition operation on T .

In the above definition, markets clear relative to the reporting
language. Because the reporting language and the individuals’ perceptions
may be imprecise, not every welfare-improvit trade will be made. More
precisely, the following holds:

Theorem 7.1. Comptetitive equilibrium is not necessarily Pareto optimal.

Proof. Consider the following counter-example: let I = {1, 2}, and suppose

X = {x, y} S1 = {a, b} S2 = {c, d} T = {t, t′}

1 (x) = {a} 1 (y) = {b} 2 (x) = {c} 2 (y) = {d}

r1(a) = {t} r1(b) = {t′} r2(c) = {t′} r2(d) = {t}

ω1 = x ω2 = y b �1 a c �2 d

p(t) = 1 p(t′) > 1.

Here individual 1 has perceived endowment of a, and would prefer b. In-
dividual 2 has perceived endowment d, and would prefer c. The reporting
system is not heterogenously faithful, and in particular both report t in
this case. Here autarky is a competitive equilibrium, but both individuals
would be strictly better off if they were to swap endowments, and doing so
is feasible.

The lack of heterogeneous faithfulness in the previous exam-
ple causes the failure of competitive equilibrium to be optimal. However,
even heterogeneously faithful systems can be Pareto dominated. This is be-
cause a proposed trade does not fully specify what will be sent or received.

Example 7.1. Let T = {0}, with the usual definition of addition. Then T

is a group, and every map to T is a group homomorphism; i.e., if Y
f−→ T

and y, y′ ∈ Y , then f(y + y′) = f(y) + f(y′). Here the reporting system is
heterogeneously faithful, as it is weakly transparent in Vickrey’s sense. Irre-
spective of what endowments, perceptions, preferences, and prices are, and
irrespective of whether any goods are exchanged, the market is in equilibrium.
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On the other hand, we have the following positive result.

Theorem 7.2. Suppose that the shared language is heterogeneously faithful
relative to the individuals’ perceptions. Let ωi ∈ X be individual i’s endow-
ment, and let xi ∈ X be what the individual receives in equilibrium. If∑

i∈I

ωi =
∑
i∈I

xi, (7)

then for each i there are reports ti ∈ ri◦ i (ωi) and t′i ∈ ri◦ i (xi) such that
markets clear in T . Conversely, if markets clear in T , there are real-world
objects in X corresponding to the reports such that Equation 7 holds.

Proof. (Sketch of proof) The mappings from X −→ T are group homomor-
phisms on topological groups. Hence, they are invertible.

Thus while heterogeneous faithfulness does not guarantee op-
timality of equilibrium, it does make equilibrium possible. Without hetero-
geneous faithfulness, the mapping between X and T generated by an in-
dividual’s perceptual and reporting maps would not be continuous, hence
the invertibility of the group homomorphisms would not be guaranteed. In
other words, if equilibrium in the reporting language is to correspond to
equilibrium in the real-world objects, then the equilibrium needs to be at a
point of continuity, i.e., of heterogeneous faithfulness.

8 Concluding Remarks

This paper models the perception reporting under perceptual differences.
Here perceptions are not uniquely defined, which in turn suggests that the
ways in which information is reported can have gray areas.

Making perceptions and reporting relations rather than func-
tions generates a rich mathematical structure. Specifically, perceptions in-
duce a topology on the collection of real-world objects, with the agent’s con-
ceptions serving as a base for this topology. Standard topological notions
such as that of open sets, closed sets, and connected sets can all be defined in
terms of the agent’s conceptions. Thus, the structure of the agent’s percep-
tions can be discussed purely in terms of what the agent finds meaningful,
without any need of mentioning the actual real-world objects independent
of how they can be perceived.

Reporting is introduced as a way for agents with different
conceptions to communicate with each other. Each agent has a method for
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reporting subjective perceptions in the agreed-upon reporting language. As
with perceptions, reporting may be ambiguous: an agent may have several
ways to report the same subjective conception, as the language may not per-
fectly fit what is in the agent’s mind. Conversely, there may be distinctions
the agent can make that the reporting language ignores.

The reporting system induces a topology on the agent’s con-
ceptions, just as perceptions induce a topology on the real-world objects.
The reporting language serves as a base of the reporting topology, which
means that open sets, closed sets, connected sets, and other topological no-
tions can be described in terms of the reporting language.

This structure is used to define heterogeneous faithfulness,
which I compare with the information hardness notion of Ijiri, as modeled
by Kirschenheiter, and to the notion of fully-revealing disclosure modeled by
Demski and Sappington. The reporting system is heterogeneously faithful
if different agents seeing the same thing can report it in the same ways. An
alternative definition would state that two agents seeing the same report
would interpret it in ways corresponding to perceptions of the same real-
world objects. It turns out that these two definitions are equivalent, though
this is not true of information harndess or of fully-revealing disclosure.

Thus, heterogeneous faithfulness has the desirable property
that a reporting system is faithful among reporting entities if and only if it is
faithful among end-users. This property, corresponding to the accountant’s
notion of neutrality, does not hold of the related notion of completeness:
reporting structures that are complete from the viewpoint of the reporting
entities are not in general complete from the viewpoint of the end users.

The topological interpretation leads to an additional desir-
able property: heterogeneous faithfulness turns out to be identical to con-
tinuity. An information structure is heterogeneously faithful between two
agents if and only if the first agent’s perceptions form a continuous map from
the real-world objects, endowed with the second agent’s perceptual topology,
to the first agent’s conceptions, endowed with the reporting topology. Any
refinement of a set of reporting rules that maintains continuity therefore has
no impact on heterogeneous faithfulness.

The welfare effects of heterogeneous faithfulness are addressed
in the context of a consumer’s budget choice problem. Optimality of a con-
sumer’s budget problem is shown to depend on faithfulness between prefer-
ences and the reporting system. Finally, the existence of competitive equi-
librium with natural properties is shown to depend on the equilibrium being
at a point of heterogeneous faithfulness.

Nevertheless, competitive equilibria need not be Pareto opti-
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mal, even when reporting is heterogeneously faithful. The reporting system
may coarsen the set of feasible trades to the point where mutually desirable
trades cannot be communicated. An example shows that refining the report-
ing language can increase the number of points of heterogeneous faithfulness,
even if the system as a whole is no longer heterogeneously faithful.

A natural direction for future work is to explore this trade-off
in greater detail. The topological interpretation of reporting, perceptions,
and preferences suggests that it may suffice for a system to be heteroge-
neously faithful on all but a topologically small set, such as a set of the first
Baire category in the respective topologies. (Related ideas are discussed in
Calude and Zamfirescu [15] in a number theoretic context, and in Calude
[14] in the context of computational complexity theory.) Also, since many
of the counter-examples failed in topologies that did not satisfy the T -1 sep-
aration axiom, future work may explore the connection between a positive
notion of apartness and optimality, as in the work of Bridges and Vı̂ţa [10, 9]
and Bridges, Vı̂ţa, and Schuster [8].

Many of the results presented here have a similar feel to those
in Kanodia [30], who argues that the role of an accounting system is not to
determine whether markets are efficient, but to determine what the set of
possible efficient equilibria might be. Here the reporting system determines
whether equilibrium or even optimization is feasible. Refining the report-
ing system to the point where continuity deteriorates does not just change
the nature of equilibrium, but makes optimization impossible, in or out of
equilibrium.

A Appendix: Constructivity and Conceptions

Because the agents’s conceptions are mental creations, I restrict claims about
the conceptions to those that are fully constructive. For the purposes of this
paper, fully constructive claims must involve only predicative definitions
and must be intutionistically valid. Roughly, this means that definitions
cannot depend on what is being defined (no vicious circle), and that proofs
of positive assertions cannot depend on the excluded middle.

The notion of predicative definition, due to Poincaré [38, 39]
and Russell [41], is essentially non-circularity. A definition that presupposes
the defined term to exist is impredicative; definitions that do not implicitly
refer to themselves are predicative. Classical mathematics permits impred-
icative definitions (a standard example is the usual construction of the real
numbers). The position here is that an agent’s conceptions are the creations
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of the agent, and hence that the individual must be able to describe them
in a non-circular way.

Predicativity, then, is constructivism with respect to defini-
tions. But predicative reasoning need not be fully constructive. For example,
it is not circular to define an integer x by x = 0 if some open question turns
out to be true, and x = 1 if the question turns out to be false. Neverthe-
less, it is unreasonable to expect an agent to know the answer to any or
all unsolved questions. Such a definition is non-constructive, not because of
impredicativity, but because it relies on the principle of the excluded mid-
dle. That is, the integer x defined above is only well-defined if we expect
every well-formed question to be solvable. Logic that omits the principle of
the excluded middle from classical logic (as well as the related principle of
double negation, which is derived as a consequence of the excluded middle)
is called intuitionistic logic, originating in Brouwer’s Ph. D. thesis [11] and
specified fully by Heyting and Kolmogorov [26, 25, 32].

The usual explanation of intuitionistic logic is in terms of the
“BHK-conditions” (for Brouwer-Heyting-Kolmogorov), which are as follows:

1. A proof of A ∧B is a proof of A and a proof of B.

2. A proof of A ∨B is a proof of A or a proof of B.

3. A proof of A→ B is a method of turning a proof of A into a proof of
B.

4. A proof of ⊥ (read as “falsehood”) is impossible.

5. A proof of (∀x)A(x) is a method of turning any x into a proof of A(x).

6. A proof of (∃x)A(x) is an agent x and a proof of A(x).

The notation ¬A, read “not A,” is a shorthand for A → ⊥. I.e., “not A” is
read as “assuming A leads to a contradiction.”

The above specification gives the idea behind intuitionistic
logic. However, it is unsatisfactory as a definition, as it relies on what
is understood by “a method” for transforming proofs, and also on what is
understood by a proof. There are many satisfactory ways to define the rules
of inference for intuitionistic logic; for details, see Negri and von Plato [37],
Prawitz [40], Troelstra and van Dalen [49], or Martin-Löf [34, 35].11

11The foundation due to Martin-Löf has attracted considerable attention. It is both
predicative and intuitionistic, and has natural interpretations in category theory. How-
ever, the original form of Martin-Löf’s intuitionistic type theory was inconsistent. An
introduction to Martin-Löf’s corrected version, see Valentini [50]. An interesting histori-
cal background and philosophical discussion is in Sommaruga [47].
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The discussion of constructivism here is necessarily cursory.
For an overview, see Bishop and Bridges [5], Heyting [27, 28], or Spitters [48].
Detailed development, and contrasts with different forms of constructivism,
are in Troelstra and van Dalen [49], Bridges and Richman [7], and Spitters
[48].

In the setting of the model here, the fully constructive ap-
proach requires care in interpreting differences between sets and collections.
All sets are collections, but for a collection to be a set, there must be a way
to construct all of its canonical (i.e., definitional) elements, and it must be
possible to determine whether two canonical elements are equal; see Bishop
and Bridges or Martin-Löf for details.

The discussion throughout this paper refers to subsets of the
collection of real-world objects, arbitrary subcollections of an agent’s internal
conceptions, relations between arbitrary collections, and so forth. These
definitions are entirely consistent with a constructive approach; however,
one needs to be careful in how subsets and relations are defined.

I do not discuss the foundations in detail in the paper; how-
ever, the definitions and proofs are deliberately chosen in order to be con-
sistent with the approach in Sambin and Valentini [44]. A subset is not
properly thought of as a set; instead, it is thought of as a predicate defined
on some collection. Thus, if X is an arbitrary collection, D(x) might be
thought of as a statement like “x is an even number.” Because the reasoning
is constructive, it is not always the case that D(x) = > or D(x) = ⊥; it
is possible that the collection X or the predicate D is not constructively
well-enough defined for the truth value of D(x) to be meaningful.12 The
notation ‘D ⊆ X’ is taken as a shorthand for D is a predicate on X, while
‘x ∈ D’ is read as x ∈ X and D(x) = >. This is a slight abuse of notation,
since ‘∈’ is used in two senses. Sambin and Valentini introduce the symbol
‘ε’ to be used instead for this situation.

Generalizing from subsets to relations is entirely straightfor-
ward. Classically, a binary relation between two collections X and S is
typically presented as a subset of X × S. Alternatively, a binary relation
can be presented as a 2-place predicate; logicians often favor this approach
(see e.g. Boolos and Jeffrey [6]). Given the definition of subsets used here,
the two approaches appear equivalent. Thus, a binary relation  between

12Dummett [20] gives as an example the statement, “Hamlet wore a moustache.” This
is clearly well-formed as a proposition, but it need not have a fixed truth value. The
character Hamlet is a mental creation, and is not necessarily specified to this level of
detail. Brouwer gave similar examples in mathematics throughout his career; see e.g. [12],
or [13] for details on the general structure of intuitionistic counter-examples.
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arbitrary collections X and S is predicate on X × S. If x ∈ X and a ∈ S,
then ‘x  a’ is a shorthand for  (x, a) = >, while ¬(x  a) is a shorthand
for  (x, a) = ⊥. As with subsets, relations may not have constructively
meaningful truth values. This means that (x  a) ∨ ¬(x  a) is not a valid
rule of inference, which just means that the logic is indeed intuitionistic.

There are alternative approaches to constructive set theory;
e.g., Aczel [1] also works in intuitionistic type theory. An thorough devel-
opment of the history and general approaches is in Sommaruga [47]. Other
approaches are discussed in Troelstra and van Dalen [49].
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[9] D. S. Bridges and L. S. Vı̂ţă. Separatedness in constructive topology.
Working Paper, University of Canterbury, November 2002.
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matica, pages 195–200, 1909.

[40] D. Prawitz. Natural Deduction. Almqvist & Wiksell, 1965.

[41] B. Russell. Mathematical logic as based on the theory of types. Amer-
ican Journal of Mathematics, 30(3):222–62, 1908.

[42] G. Sambin. Some points in formal topology. Theoretical Computer
Science, 305(1–3):347–408, 2003.

[43] G. Sambin and S. Gebellato. A preview of the basic picture: A new
perspective on formal topology. In Types and Proofs for Programs,
volume 1657 of Lecture Notes in Computer Science, pages 194–207.
Springer-Verlag, 1998.

[44] G. Sambin and S. Valentini. Building up a toolbox for Miartin-Löf’s
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