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Abstract

We investigate the e¤ect of publicly released announcements upon trade frequency using
high frequency banking stocks from the Australian Stock Exchange and the Autoregressive
Conditional Hazard (ACH) model of Hamilton and Jorda (2000). Unlike the ACD model, which
models the timing of events, the ACH model focuses on the probability of events and facilitates
the incorporation of �xed interval variables such as announcement indicators. This approach
explicitly allows us to model the probability of trade in the presence of announcements. We
�nd evidence to suggest that announcements increase the probability of trade.
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1 Introduction

Market microstructure theories point to information as a leading in�uence upon market related

variables such as volume, prices, spread and trading frequency. In particular, the work of Easley

and O�Hara (1992) posits that the frequency of trade is indicative of the degree of information

asymmetry present in the market. That is, the greater the trade frequency the greater the number

of informed traders present in the market. This implies increased trade frequency surrounding

announcement releases and also that trade frequency aids understanding of how information is

absorbed by the market. Trade frequency is an interesting variable to investigate since the �ndings

of French and Roll (1986) suggest that prices and volatility can change without trade, as supported

empirically by Fleming and Remolona (1999).

A complement of trade frequency is the time between trades or trade duration. The irregular

spacing and autoregressive nature of such data facilitated the introduction of the autoregressive

conditional duration (ACD) model of Engle and Russell (1997, 1998). Numerous papers have

developed the ACD framework although little research has investigated the e¤ect of announcements

upon trade durations explicitly. The work of Zhang, Russell and Tsay (2000) �nds structural

breaks in IBM stock transaction data that can be linked to announcements, although they do

not incorporate announcement e¤ects directly. A problem with using trade duration data as a

measure of trade frequency is the presence of zero durations that exist when there are simultaneously

occurring multiple trades. Zhang, Russell and Tsay (2000) use multiple-trade indicators to account

for this, although, the inclusion of announcement variables within the ACD framework remains

complicated by the timing of the announcements relative to the irregular spacing of the trade

durations.

We apply the autoregressive conditional hazard (ACH) model of Hamilton and Jorda (2002)

directly to transactions level data in order to evaluate the e¤ect of announcements. We de�ne a

measure of trade frequency by counting the number of trades occurring within 30 second intervals

for each of �ve banking stocks on one day of trade on the Australian Stock Exchange. This is

in contrast to the original application that applied the ACH model to macroeconomic data of US

Federal Funds Target Rates using one week intervals, and another application by Hamilton and

Davis (2002) which investigates the probability of price changes using wholesale gasoline prices.

The ACH model consists of two components. The �rst models the probability of a trade

occurring using a hazard model, incorporating the timing of a trade in addition to exogenous

variables. Unlike logit and probit models the ACH allows the autoregressive dynamics of duration

data to be incorporated succinctly. In our context, we model the probability of a trade occurring

conditional on the trade durations, announcement indicators and other market related variables

such as price changes, volume and spreads. The second model is a count data model that predicts

the trade frequency given that a trade has occurred. Truncated-poisson models were originally

developed to allow the modeling of scenarios where counts are missing either below or above a

certain point, that is the data has either left or right truncation. For example, to obtain a count

of the number of bus trips taken per week by an individual, it is necessary that the individual
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catches the bus to begin with. In this case, as in our example, the data will be truncated at zero.

It is also possible to shift the data and use a standard poisson model. The application of negative

binomial models allows overdispersion in the data to be incorporated.

Related work by Hall, Haustch and McCulloch (2003) uses a bivariate autoregressive conditional

intensity (ACI) model of Russell (1999) to model the arrival of buy and sell orders. Maheu and

McCurdy (2003) examine the conditional variance of returns implied by di¤erent news releases

by using a GARCH model with an autoregressive jump intensity parameter which measures large

jumps in the price process. They use a heterogeneous poisson process with a time varying condi-

tional intensity parameter to measure the likelihood of jumps. Recent work by Gonzalez-Rivera,

Lee, and Mishra (2003) also incorporates jumps in the price process, in addition to modeling the

conditional probability of an alteration in cross-sectional returns when evaluating a nonlinear model

of expected returns. Rydberg and Shephard (1999) use a truncated negative binomial model in

their decomposition of price changes.

In this paper we �nd, in general, that lags of announcement indicators decrease conditional

durations, leading to an increase in the probability that a trade will occur. The e¤ect of announce-

ments upon trade frequency is generally positive leading to an increase in trade frequency for three

out of four stocks for which announcement e¤ects are signi�cant.

The remainder of this paper is organized as follows: Section 2 introduces the ACH model. The

data is described in Section 3. Section 4 discusses the results and Section 5 o¤ers concluding

remarks and areas for future research.

2 The ACH Model

2.1 The ACH Model

The ACD model of Engle and Russell (1997,1998) can be composed in calender time so as to allow

the inclusion of �xed time variables, in particular the announcement indicators. By assuming that

observations occur at discrete points in time, N(t) de�nes the cumulative number of trades that

have taken place as of interval t: For example, if trade occurs in intervals 3, 4 and 6 then,

N(t) =

8>>>><>>>>:
0 for t = 1; 2

1 for t = 3

2 for t = 4; 5

3 for t = 6; 7; :::

(1)

Let uN(t) measure the duration associated with the last trade and initially assume that at most,

each interval can contain one trade. The simplest ACD speci�cation is the ACD(1,1) which, can

be written in calender time as,

 N(t) = �uN(t)�1 + � N(t)�1 (2)
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where  N(t) = E(uN(t)j�t�1) is the conditional mean duration and �t�1 is past information. This
speci�cation can be generalized to include more lags. Here, we initially assume that trade durations

follow an exponential distribution, although we will allow for more general distributions in later

research. By taking the reciprocal of the conditional trade duration, the ACD model can be used

to give the probability of a trade in the next time period. This probability is also known as the

hazard rate. For example, if the conditional mean time between trade was 10 seconds, then the

probability of a trade occurring in the next second will be 1/10, i.e. there will be a 10% chance of

trade occurring in the next second. The hazard rate or probability of a trade conditional on past

information ht = Pr[N(t) 6= N(t� 1)j�t�1] is given by,

ht = 1= N(t�1): (3)

The hazard rate can be expanded to incorporate a constant and exogenous variables contained in

the vector zt�1 via the relationship

ht = 1=( N(t�1) + �
0zt�1 ): (4)

To ensure that the hazard probabilities lie within the (0,1) interval, the denominator of (4) is

replaced with the larger of [ N(t�1)+�
0zt�1 ] and 1.0001, and a sigmoidal function is used to ensure

di¤erentiability between the values of 1.0001 and 1.1, as explained in Hamilton and Jorda (2002).

De�ne xt to be equal to one for when a trade occurs and zero otherwise. The probability of a

trade occurring given past information is given by

g(xtj�t�1; �1) = hxtt (1� ht)1�xt ; (5)

where �1 = (�0; �0; �0) so that the log likelihood function is,

L1(�1) =
TX
t=1

[xt log(ht) + (1� xt) log(1� ht)] (6)

The log likelihood is maximized with respect to �1: To ensure stationarity of the conditional dura-

tions, restricting �; � � 0; and 0 � �+ � � 1 may be required.

2.2 Count Data Models

The second stage of the ACH model predicts the number of trades that occur in each interval where

xt 6= 0. Let Y be the random variable that indicates the number of trades that occur at each

interval for which xt 6= 0, thus, Y can take on the values of yt = 1; 2; 3; :::One possible model

for such data might be a poisson count data model, truncated at zero. For such a distribution the

probability that the number of trades equals a value yt given that Y > 0; where yt = 1; 2; 3; 4; :::

is given by
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Pr(Y = yt j yt > 0) = q(ytj�t�1) =
exp(��t)�ytt

(1� exp(��t))yt!
; yt = 1; 2; 3; ::: (7)

where �t = E(yt) is the mean parameter of the untruncated distribution. Since the mean parameter

�t might change according to the prevailing market conditions, it is natural to set �t = exp(w0t),

where w0t is a vector of explanatory variables such as the announcement indicators, spread, price

changes and volume and  is a vector of parameters.

The log likelihood function can be written as,

L20(�2) =
TX
t=1

[��t + yt log(�t)� log(yt!)� log(1� exp(��t))] (8)

where �2 = (0):

The truncation-at-zero of the trade data shifts the mean upwards. An alternative method of

modeling the trade data would involve shifting the trade count data by subtracting one and then

applying a standard poisson model. The trade count data is now viewed as excess trades and the

resulting distribution is known as a "shifted-poisson", which is characterized by underdispersion

i.e. the variance is smaller than the mean.

Count data often does not satisfy the underlying assumptions of the poisson distribution, es-

pecially the equidispersion assumption that the mean and variance of the poisson distribution are

equal. Typically count data features overdispersion so that the variance is much larger than the

mean. If the poisson distribution is utilized in the presence of overdispersion, then the resulting

standard errors are under estimated. A more �exible distribution such as the negative binomial,

allows overdispersion or heterogeneity in the variance so that the variance is larger than the mean.

The negative binomial distribution generalizes the variance such that:

V ar(yt) = �t + ��
p
t ; (9)

where � is a scalar overdispersion parameter, and p is a constant indicating the type of overdisper-

sion. If p = 1 then V ar(yt) = �t(1 + �) and the overdispersion is linear in the mean yielding the

Negative Binomial I distribution. If p = 2, then the V ar(yt) = �t(1 + ��t) yielding the Negative

Binomial II distribution. The Negative Binomial II distribution is given by,

Pr(Y = yt ) = q(ytj�t�1) =
�(��1 + yt)

�(��1)(yt)!

�
��1

��1 + �t

���1 �
�t

��1 + �t

�yt
; yt = 0; 1; 2; 3; :::

(10)

where �(:) is the gamma function. The extent of the overdispersion can be measured by taking

the ratio of V ar(yt) to the mean E(yt);

V ar(yt)

E(yt)
= 1 + ��t: (11)
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Evaluation of the null H0 : � = 0 using either a likelihood ratio test or Wald test indicates the

signi�cance of the estimated overdispersion parameter. Note that as � ! 0; the negative binomial

distribution collapses to the poisson distribution. We focus on the Negative Binomial II distribu-

tion, which can be treated in a similar manner to the Poisson distribution in that the trade count

data can either be modi�ed and a "shifted-negative-binomial" used, or the Negative Binomial II

distribution can be truncated to allow non-zero counts.

2.3 The Combined Model

The combination of the ACH and the count data model yields the joint probability of observing xt
and yt conditional on past information, which can be written as the product of the marginal and

conditional distributions as,

f(xt;ytj�t�1; �1;�2) = g(xtj�t�1; �1):q(ytjxt;�t�1; �2) (12)

with log likelihood,

TX
t=1

log f(xt;ytj�t�1; �1;�2) = L1(�1) + L2(�2) (13)

where L1(�1) =
PT

t=1 log(xtj�t�1; �1) and L2(�2) =
PT

t=1 xt; log q(ytjxt;�t�1; �2): Note that for
L2(�2) we are conditioning on xt = 1, so that only positive integer values greater than zero for yt
are considered.

It is possible to maximize (13) by maximizing L1(�1) and L2(�2) separately to obtain e¢ cient

and consistent parameter estimates, provided that �1 and �2 do not share common parameters.

However, if �1 and �2 do share common parameters, then parameter estimates remain consistent

but are no longer e¢ cient.

3 Data

The data consists of one day of trade from �ve banking stocks on the Australian Stock Exchange in

the month of November 2001. Only one day of trade for each of the stocks was examined, in order

to keep the analysis tractable and manageable. Separate days for each of the banks were chosen for

analysis, based on the number and type of announcements occurring on each of those days. The

banks are the ANZ Bank (ANZ), Commonwealth Bank (CBA), National Australia Bank (NAB),

St George Bank (SGB) and the Westpac Bank (WBC). The chosen days are 19th for ANZ, 5th for

CBA, 8th for NAB, 7th for SGB and the 2nd for WBC. The types of announcements are listed in

Appendix 1.

The �rst twenty minutes of the trading day were removed to eliminate overnight trading e¤ects.

The transactions data for each stock was aggregated into 30 second intervals, beginning at 10.20am

and ending at 4.00pm. Within each of the 30 second intervals the number of trades were counted.
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Bid and ask prices were determined by using the best bid and the best ask price from among the

trades occurring within each interval. For intervals with no trade, the bid and ask prices were

taken from the previous interval within which trades had occurred. Volume for intervals for which

trades occurred was determined by aggregating the trade sizes of the individual trades within that

interval. Prices were calculated as the average of the best bid and ask prices in dollars.

From each of the datasets a number of other variables were then created, including the natural

log of both the percentage spread and percentage spread changes in percentage points denoted by

Ln(S) and Ln(S�) respectively. Price � is the price change calculated as the di¤erence in prices
between intervals t and t-1 in cents. Prior to taking the natural log, the volume variable was scaled

by dividing through by 1000. The announcement indicator, ANN was de�ned as one for those

intervals in which an announcement occurred and zero otherwise. A trade indicator variable was

similarly de�ned as one for intervals in which trades occurred and zero otherwise. Ten lags of each

of the above variables, corresponding to 5 minutes of calender time were also created.

Typically trade duration data displays a distinct inverted-U shape across the trading day, with

shorter durations occurring at the beginning and end of the trading day and longer durations

corresponding to the lunch period. This diurnal pattern can be removed by using smoothing

splines and assuming that the inverted-U shape pattern has a multiplicative relationship with the

durations such that, e� i = � i=�(ti�1); where � i are the durations, e� i are the adjusted durations and
�(ti�1) is the smoothing spline. The diurnal pattern has not been removed from the data used in

this paper since it requires estimation across the many trading days in order to obtain the e¤ect

of the average diurnal trading pattern. Instead, to model the diurnal pattern, a proxy variable for

the time of day e¤ects - the previous-trade variable, was used. Prev. Trade counts the number
of intervals occurring since the previous non-zero trade interval, and its minimum value will be one,

occurring when trade occurs in consecutive intervals. The previous trade variable will be low early

and late in the day when trade is frequent, and high in the middle of the day when trading is sparse.

It works by shifting the constant term within the ACH model to allow the conditional durations to

be larger for when the time between non-zero trade intervals is large.

Another important issue is that of the interval length, which has been set equal to 30 seconds for

this paper. This may be too small or too large, depending on the trade frequency of the individual

stocks. If the interval is too small relative to the trade frequency then there will be numerous

intervals in which zero trade and market activity occurs causing the data to be zero in�ated. The

reverse case will lead to an over-aggregation of the data causing a loss of information. Ultimately,

the intervals will be tailored to the trade frequency of each of the stocks.

When trade halt data becomes available, a new variable will be developed to explicitly incorpo-

rate the e¤ect of market imposed halts upon trade frequency.
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4 Empirical Results and Discussion

4.1 Results for the ACH model

The trade durations for each of the stocks displays signi�cant autocorrelation for up to 15 lags, as

presented in Table 1 below,

TABLE 1 Q statistics for the Trade Durations

ANZ CBA NAB SGB WBC

Q(15) 4009.60 842.26 936.66 293.95 1918.70
The critical value for the 5% level of signi�cance is �2(15) = 24:996.

The autocorrelation in the trade durations is modeled by  N(t)�1 within equation (3).  N(t)�1

could be generalized to allow di¤erent lag structures and di¤erent distributions such as the gener-

alized gamma, but in this paper we employ an exponential ACH(1,1) form.

For each of the banks several models for the ACH component were estimated, and since each

of the banks display di¤erent dynamics a representative model for each of the stocks has been

presented separately within Table 2. In each of the models, the sum of the estimated coe¢ cients

for beta and alpha remain less than one ensuring that the conditional durations are stationary.

Across each of the stocks the most consistent e¤ect comes from the announcement indicator

variables which are always signi�cantly negative, con�rming the theory of Easley and O�Hara (1992),

who suggest that the greater the time between trade, the less likely it is that new information exists.

The announcement indicators directly measure the release of new information, so that we would

expect the estimated coe¢ cients to be negative causing the conditional durations to decrease. Our

results support this theory, and suggest that announcements increase the probability of trade.

The e¤ect of the log volume is also predominantly negative across each of the stocks, consistent

with Easley and O�Hara�s (1987) prediction that large trades are more likely to come from informed

traders. If informed traders maximize pro�t by trading large amounts as often as possible, then

the time between trades will decrease in the presence of informed traders and large volume.

Price changes can be viewed as a measure of volatility. Engle (2000) �nds a negative relationship

between price volatility per second and the time between trades, whereas we �nd that the sign of

the price change variable di¤ers across each of the stocks. It may be the case that the price e¤ects

should be modeled by using the absolute value of price changes as a measure of volatility. Also,

one might adopt the approach of Fletcher (1995) who de�nes an indicator variable i.e. IPt = 1 for

when the price change variable is negative and zero otherwise, and then use the signed absolute

value of the price change variable, i.e. IPt:jLn(Pr ice� )t�1j; as an indicator of bad news. By

separating these two e¤ects, the e¤ect of price changes may become more distinct.

The e¤ect of the spread upon durations is not immediately obvious and few theoretical papers

discuss the direct impact of the spread on trade durations. The work of Demsetz (1968) and

Glosten and Milgrom (1985) imply that there is a positive relationship between the spread and

trade durations, since the spread can be interpreted as a transaction cost so that the larger the
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transaction cost, the longer the durations1 . We would thus expect a positive relationship between

the spread and trade durations. However, according to the model of Easley and O�Hara (1992),

the probability that new information exists is reduced as the time between trades increases, so

that the spread should become more narrow re�ecting the decreased informational trade. This

suggests a negative relationship between trade durations and the spread. We �nd di¤ering signs

on the spread variable across each of the stocks, in line with opposing theories on the e¤ect of the

spread upon trade durations.

Turning to individual stocks, we �nd that the estimated coe¢ cients on the announcement in-

dicators for ANZ are generally signi�cantly negative. In particular, if an announcement occurred

two lags (i.e. one minute in calender time) prior to the current time period, then trade durations

are reduced, causing an increase in the probability of trade. The previous trade variable is also sig-

ni�cantly positive. The estimated coe¢ cient on volume is signi�cantly negative suggesting that as

volume increases then the conditional durations will decrease causing an increase in the probability

of a trade.

The signi�cant coe¢ cients in the estimated ACH model for ANZ fall into two groups: those at

low lags of one or two lagged periods, and coe¢ cients at high lags of seven and ten lagged periods.

Although the exact lags di¤er, this is also true for CBA, SGB and WBC, with the sole exception

of NAB. It is often the price change and spread variables that are signi�cant at these high lags

suggesting that the probability of trade in the current period is a¤ected by information contained

from up to �ve minutes prior to the current period. One explanation of this behavior may be

due to small rallies and falls in the share price prompting traders to act upon the combination

of more recent information, as contained in the lower lags, and past information as contained

in the higher lags. For example, if the share price is rallying then traders may only wish to

enter the market and buy shares when the price appears to be continually increasing. A second

explanation of this behavior may be due to the secondary round of trade compensating for over-

reactions that often occur after information is received in the market, as suggested by Ederington

and Lee (1995) and Fleming and Remolona (1999). A more direct measure for over-reaction may

be better incorporated by including interactions between each of the explanatory variables and the

announcement indicators.

CBA announcements increase the probability of trade, but unlike the results for ANZ, the price

change estimated coe¢ cients for CBA are signi�cantly negative, suggesting that if price changes

are positive then conditional durations are decreased and the probability of a trade is increased.

When the lagged log percentage spread variables are signi�cant they are positive, such that the

larger the percentage spread the greater the conditional duration and the less likely it is that trade

will occur.

For NAB the estimated coe¢ cients on the announcement indicator, log volume and log percent-

age spread when signi�cant are negative, leading to a reduction in the conditional durations and

an increase in the probability of a trade. Only the lower lags of volume and spread are signi�cant,

1See Ulph (1999) for more details
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indicating that only short run dynamics are important for predicting the probability of trade.

The previous trade variable is positive for SGB, indicating signi�cant daily e¤ects, and an-

nouncements increase the probability of trade for almost �ve minutes. The estimated coe¢ cients

for lag one of the log volume variable is positive, so that if a large volume of stock was traded 30

seconds prior to the current time period, then conditional durations are increased and the proba-

bility of trade is reduced. The log percentage spread variables, when signi�cant have a negative

e¤ect on trade durations, while the price change variable has a positive e¤ect.

For WBC, the probability of trade increases about 4.5 minutes after an announcement. Other

than the previous trade variable, which suggests signi�cant daily trading patterns in WBC stocks,

the only other variables that a¤ect trading frequency are the spread and spread changes, which

both increase trade durations and decrease the probability of trade.
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TABLE 2 Estimates of the ACH Component (Equation (4))

ANZ -19th Nov. 2001

Beta 0.823**

(0.061)

Alpha 0.075**

(0.030)

Constant -0.188

(0.215)

Prev. Trade 0.120**

(0.072)

Annt�2 -0.715**

(0.120)

Annt�7 -0.630

(1.252)

Annt�10 0.210*

(0.843)

Ln(Vol)t�1 -0.073*

(0.033)

Price �t�2 0.095*

(0.037)

Price�t�10 0.210*

(0.084)

Ln(S�)t�10 -0.012*

(0.005)

LogL -409.324

 0.940

� 2.447

CBA-5th Nov. 2001

Beta 0.94**

(0.019)

Alpha 0.054**

(0.016)

Constant -0.920**

(0.250)

Annt�2 2.209

(2.281)

Annt�7 -0.585**

(0.195)

Ln(vol)t�7 -0.091**

(0.033)

Price �t�7 -0.059*

(0.024)

Ln(S)t�5 0.203**

(0.063)

LogL -406.101

 1.522

� 1.713

NAB-7th Nov. 2001

Beta 0.894**

(0.035)

Alpha 0.080**

(0.026)

Constant -0.634**

(0.134)

Annt�2 -0.299*

(0.129)

Ln(S)t�3 -0.064*

(0.026)

LogL -372.607

 1.113

� 1.499
Table 2 presents estimated coe¢ cients for the ACH component. ** indicates signi�cance at the

1% level, * indicates signi�cance at the 5% level.  and � are the average conditional durations

and unconditional durations respectively.
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SGB-8th Nov. 2001

Beta 0.927**

(0.033)

Alpha 0.028

(0.015)

Constant 0.142

(0.528)

Prev. Trade 0.324**

(0.086)

Annt�1 -1.574**

(0.201)

Annt�2 -1.235**

(0.424)

Annt�5 -0.699**

(0.226)

Annt�6 -0.485

(0.421)

Annt�8 -0.532

(0.644)

Annt�9 -1.472**

(0.261)

Ln(Vol)t�1 0.266*

(0.124)

Ln(Vol)t�2 -0.143

(0.157)

Price �t�4 0.333**

(0.099)

Ln(S)t�2 -0.152*

(0.075)

LogL -408.639

 1.160

� 2.645

WBC-2nd Nov. 2001

Beta 0.908**

(0.035)

Alpha 0.053*

(0.022)

Constant -0.770**

(0.215)

Prev. Trade 0.197*

(0.079)

Annt�9 -1.242**

(0.350)

Ln(S)t�3 0.348*

(0.143)

Ln(S �)t�8 0.358**

(0.116)

LogL -417.660

 1.133

� 2.103
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4.2 Results for the Poisson and Negative Binomial Models

Prior to modeling the trade count data, the mean and the variance were calculated as presented in

Table 3,

TABLE 3 Mean and Variance of the Trade Count Data
Stock ANZ CBA NAB SGB WBC

Mean 2.766 2.718 3.469 1.866 2.548

Variance 5.948 6.050 8.680 2.074 4.347
Note that the trade count data does not contain zero counts. However, when the mean of the

shifted trade count data is calculated to include zero counts, the mean decreases by one.

From Table 3 it can be seen that for all the banks, the variance is larger than the mean violating the

equidispersion assumption of the poisson distribution. It is therefore likely that estimated standard

errors for the shifted-poisson models are under-estimated due to the use of the incorrect distribution.

Rather than shifting the data, another way to model the trade counts is to shift the mean using

the truncated-poisson model. The results shown in Table 4 for the shifted-poisson and truncated-

poisson models, indicate that the e¤ect of the natural log of volume and the announcement indicators

are generally positive for all stocks, increasing the number of trades, whilst the e¤ect of the price

changes and natural log of the percentage spread tend to di¤er in sign.

The main problem in using the poisson is that it does not allow overdispersion to be modeled. If

overdispersion is ignored, then the results from using the poisson distribution will still be consistent

but will now be ine¢ cient. To measure overdispersion, the shifted-negative binomial and truncated-

negative binomial models were estimated. For both these models using a Wald test2 , the estimated

overdispersion parameter b� is highly signi�cant and many of the variables from the shifted-poisson

and truncated-poisson models are no longer signi�cant, suggesting that the standard errors in both

the shifted-poisson and truncated-poisson models were underestimated. Furthermore, Cameron and

Trivedi (1998) explain that when using the Negative Binomial II model with b� values around 0:5
and low counts of 0,1 and 2, the model has mild overdispersion, and with high counts of 10 or more

the model has severe overdispersion. All of the stocks have high counts and each of the estimated

overdispersion parameters are large indicating a large degree of overdispersion in the data.

After accounting for overdispersion the announcement variables are no longer signi�cant (except

in the WBC case). Thus, although announcements increase the probability of trade in a given

interval (via the ACH component), they do not increase the number of trades in intervals when

trading takes place. Past volume generally increases the number of trades. The most e¤ective

variables within the negative-binomial and truncated-negative binomial models are the natural log

of the scaled volume, price changes and the natural log of the percentage spread changes. When

the log volume variable is signi�cant, it has a positive impact. For both the price change and log

2When � = 0; the Negative Binomial model collapses to the Poisson model. Using a Wald test for overdispersion
such that � > 0, the signi�cance of � can be evaluated even though the restriction means � cannot be less than
zero. Hence, the distribution of the Wald statistic is nonstandard, see Cameron and Trivedi (1998) for more details.
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percentage spread change variables, the coe¢ cients di¤er in sign across stocks. This highlights

the potentially asymmetric e¤ects of these variables, which like the ACH component may be better

modeled using the approach taken by Fletcher (1995) as mentioned earlier.

Interestingly, the results for SGB suggest that the only signi�cant estimated parameter is that

of the overdispersion parameter, b�, which is disproportionately high in comparison to the values
of b� for the other stocks. It is thus possible that the Negative Binomial II distribution with a
quadratic variance function is inappropriate, and instead some other form or even distribution for

the trade counts will be more appropriate. Note that of the �ve stocks, SGB is the least liquid,

with much thinner trading and fewer transactions in comparison to the remaining four stocks, it

is possible that the interval of 30 seconds is too small for SGB and a larger interval of up to two

minutes may be more appropriate.
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TABLE 4
Panel A: Count data models for ANZ
Shifted-Poisson

Constant 0.375**

(0.059)

Annt�5 0.847*

(0.337)

Ln(Vol)t�2 0.089**

(0.029)

Price �t�1 -0.164**

(0.046)

Price �t�3 -0.143**

(0.046)

Price �t�4 -0.163**

(0.048)

LogL -761.844

% Correct

Trunc. Poisson

Constant 0.700**

(0.079)

Annt�5 0.581

(0.314)

Annt�6 0.731*

(0.351)

Ln(Vol)t�2 0.075**

(0.026)

Price �t�1 -0.121**

(0.043)

Price �t�3 -0.112**

(0.044)

Price �t�4 -0.149**

(0.047)

Ln(S)t�6 0.073

(0.077)

Ln(S�)t�3 -0.018*

(0.007)

Ln(S�)t�4 -0.002*

(0.008)

Ln(S�)t�5 -0.017

(0.009)

LogL -712.484

% Correct

Shifted-Negbin

Constant 0.548**

(0.063)

Price �t�1 -0.153*

(0.007)

Psi 0.861**

(0.104)

LogL -668.997

% Correct

Trunc. NegBin

Constant 0.606**

(0.010)

Price �t�1 -0.150*

(0.072)

Psi 0.831**

(0.184)

LogL -669.381

% Correct
Table 4 presents estimated coe¢ cients for the Count Data component. ** indicates signi�cance

at the 1% level, * indicates signi�cance at the 5% level.

15



Panel B: Count data models for CBA
Shifted-Poisson Trunc. Poisson Shifted-Negbin Trunc. NegBin

Constant 0.088 Constant 0.429** Constant 0.0091 Constant 0.098

(0.085) (0.072) (0.102) (0.152)

Ln(Vol)t�1 0.172** Ln(Vol)t�1 0.108** Ln(Vol)t�1 0.152* Ln(Vol)t�1 0.152*

(0.039) (0.033) (0.069) (0.072)

Ln(Vol)t�6 0.125** Ln(Vol)t�6 0.097** Ln(Vol)t�6 0.147* Ln(Vol)t�6 0.147*

(0.037) (0.034) (0.069) (0.071)

Ln(Vol)t�8 0.160** Ln(Vol)t�9 0.106** Ln(Vol)t�8 0.166* Ln(Vol)t�8 0.165*

(0.038) (0.034) (0.080) (0.082)

Price �t�1 0.071* Price �t�1 0.071** Price �t�4 0.111* Price �t�4 0.110*

(0.029) (0.025) (0.046) (0.047)

Price �t�2 0.073** Price �t�2 0.055** Ln(S�)t�10 0.182* Ln(S�)t�10 0.181*

(0.028) (0.024) (0.072) (0.073)

Price �t�4 0.134** Price �t�4 0.115** Psi 0.959** Psi 0.979**

(0.030) (0.027) (0.122) (0.252)

Price �t�5 0.065* Ln(S)t�10 0.223**

(0.029) (0.054)

Ln(S)t�1 -0.263** Ln(S�)t�7 0.181**

(0.065) (0.057)

Ln(S)t�10 0.210**

(0.071)

Ln(S�)t�7 0.255**

(0.064)

Ln(S�)t�10 0.160*

(0.075)

LogL -865.995 LogL -833.062 LogL -758.001 LogL -758.052
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Panel C: Count data models for NAB
Shifted-Poisson Trunc. Poisson Shifted-Negbin Trunc. NegBin

Constant 0.276** Constant 0.694** Constant 0.368** Constant 0.435**

(0.072) (0.066) (0.105) (0.126)

Annt�5 -0.713** Annt�5 -0.581** Ln(Vol)t�1 0.125** Ln(Vol)t�1 0.122**

(0.238) (0.216) (0.048) (0.047)

Annt�7 -0.892** Annt�7 0.710* Ln(Vol)t�5 0.109* Ln(Vol)t�5 0.107*

(0.233) (0.279) (0.045) (0.044)

Annt�8 -0.548 Annt�8 -0.465* Ln(Vol)t�7 0.111* Ln(Vol)t�7 0.109**

(0.233) (0.212) (0.042) (0.042)

Ln(Vol)t�1 0.106* Ln(Vol)t�1 0.087** Ln(S �)t�9 -0.147* Ln(S �)t�9 -0.144**

(0.026) (0.023) (0.072) (0.070)

Ln(Vol)t�5 0.098** Ln(Vol)t�5 0.082** Psi 0.901** Psi 0.818*

(0.026) (0.023) (0.095) (0.155)

Ln(Vol)t�7 0.092** Ln(Vol)t�7 0.076**

(0.026) (0.023)

Price�t�2 0.049** Price�t�2 0.037*

(0.017) (0.016)

Ln(S)t�6 0.133** Ln(S)t�2 0.089*

(0.043) (0.040)

Ln(S)t�10 0.124* Ln(S)t�6 0.118**

(0.049) (0.039)

Ln(S�)t�9 -0.115* Ln(S�)t�9 -0.164**

(0.054) (0.041)

LogL -1217.300 LogL -1146.735 LogL -1032.610 LogL -1032.583
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Panel D: Count data models for SGB
Shifted-Poisson Trunc. Poisson Shifted-Negbin Trunc. NegBin

Constant -0.276* Constant 0.609** Constant -0.144 Constant -1.143

(0.116) (0.048) (0.108) (1.083)

Annt�3 1.070** Annt�3 0.723* Psi 1.619** Psi 5.247

(0.356) (0.296) (0.333) (7.227)

Ln(Vol)t�3 0.176** Price �t�2 0.141*

(0.067) (0.062)

Price �t�2 0.287** Ln(S�)t�1 0.156*

(0.087) (0.067)

Ln(S)t�6 -0.012 Ln(S�)t�6 -0.150*

(0.086) (0.071)

Ln(S�)t�1 0.329**

(0.085)

LogL -332.231 LogL -373.607 LogL -305.667 LogL -305.817
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Panel E: Count data models for WBC
Shifted-Poisson Trunc. Poisson Shifted-Negbin Trunc. NegBin

Constant 0.253** Constant 0.639** Constant 0.164 Constant 0.296

(0.088) (0.079) (0.140) (0.158)

Annt�1 0.591** Annt�1 0.556** Annt�1 0.789* Annt�1 0.754*

(0.181) (0.163) (0.388) (0.367)

Annt�4 0.483* Ln(Vol)t�3 0.098** Ln(Vol)t�3 0.128** Ln(Vol)t�3 0.123**

(0.199) (0.028) (0.049) (0.047)

Annt�8 -0.832* Ln(Vol)t�10 0.095** Ln(Vol)t�10 0.127** Ln(Vol)t�10 0.121**

(0.412) (0.027) (0.047) (0.045)

Ln(Vol)t�3 0.101** Price �t�4 0.312** Price �t�4 0.387** Price �t�4 0.372**

(0.032) (0.071) (0.121) (0.115)

Ln(Vol)t�10 0.108** Ln(S)t�1 -0.249** Ln(S)t�1 -0.282 Ln(S)t�1 -0.273

(0.030) (0.089) (0.157) (0.151)

Price �t�4 0.331** Ln(S�)t�4 -0.299** Ln(S�)t�4 -0.385* Ln(S�)t�4 -0.371*

(0.080) (0.090) (0.165 (0.106)

Price �t�6 -0.217* Ln(S�)t�10 -0.190* Ln(S�)t�10 -0.224* Ln(S�)t�10 -0.217*

(0.076) (0.085) (0.111) (0.106)

Ln(S)t�1 -0.329* Psi 0.810** Psi 0.671**

(0.098) (0.138) (0.217)

Ln(S�)t�4 -0.369*

(0.100)

Ln(S�)t�10 -0.226**

(0.093)

LogL 701.385 LogL -680.247 LogL -636.631 LogL -636.693

5 Conclusions, Limitations and Future Work

In this paper we use the ACH model of Hamilton and Jorda (2002) to study the impact of �rm

speci�c announcements upon trade frequency. The ACH model consists of two components: the �rst

models the probability of a trade, and the second models the trade frequency. The �rst component,

the ACH, uses an autoregressive conditional duration speci�cation to model the autocorrelation in

the time between non-zero trade intervals. The ACH also incorporates exogenous variables such

as the announcement indicators, spread, price and percentage spread changes, and volume. We

�nd that the e¤ect of the announcement indicators are negative across all of the stocks leading to

a decrease in the conditional durations which in turn leads to an increase in the probability of a

trade.

The ACH component in this paper assumed an exponential distribution for the trade durations,

however, this could be generalized using alternate distributions such as the generalized gamma and
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log-normal. It is also possible to use higher order lag structures other than the ACH(1,1). This

has been left for future work.

The second component uses poisson and negative binomial speci�cations to model the non-zero

trade counts. The trade count data consists of non-zero counts, negating the direct application

of the poisson distribution. In this scenario, truncated models can be used. Alternatively, the

data can be "shifted" by subtracting one from each count to ensure the existence of zero counts

so that the poisson and negative binomial models are valid. The negative binomial models were

estimated to check whether the variance of the trade count data was overdispersed relative to the

mean. All stocks exhibited overdispersion and interestingly, the majority of signi�cant variables

from the shifted-poisson and truncated-poisson models tend to lose signi�cance when overdispersion

is accounted for. We �nd that announcement indicators no longer a¤ect the number of trades even

though in the ACH component, announcements have a strong impact on the probability of a trade.

Within the negative binomial models, price changes and volume are the best predictors for the

trade count data.

The modeling of the trade count data can be re�ned using Katz, Double Poisson and Generalized

poisson models, which allow for underdispersion which may be more appropriate for days without

announcements. It is also possible to use a hurdle model for the "shifted" data. The hurdle model

consists of two parts, the �rst a binary outcome indicating the probability of a non-zero outcome,

whilst the second model is a truncated count data model. In our case it is possible that shifting

the data causes the quantity of zeros to be larger than a poisson distribution will allow which, in

addition to the extreme counts, causes another form of overdispersion. The additional zeros may

also be modeled using a zero in�ated poisson (ZIP) model. Future work will investigate these

speci�cations.

Finally, it is important to note that the Australian Stock Exchange will sometimes halt trade

if it believes that an announcement is price sensitive. None of the announcements included in

this paper were price sensitive and no trading halts occurred. We aim to include price sensitive

announcements and trading halt information when it becomes available in a wider framework of

the e¤ects of announcements upon trading frequency.
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6 Appendix 1

Time ANZ Announcements 19th November 2001

11:25:06 Open Brie�ng:SecureNet MD on ANZ Alliance

11:43:50 Open Brie�ng:SecureNet MD on ANZ Alliance

14:27:18 ANZ Directors Declare Dividend

15:52:50 ANZ Directors Declare Dividend

CBA Announcements 5th November 2001

13:23:32 Appendix 3B - Exercise of Executive Options

13:26:54 Appendix 3B - Employee Share Acquisition

13:29:59 Appendix 3B - Equity Reward Plan

13:35:07 Appendix 3B - Equity Reward Plan

15:20:03 GLD - Change in Substantial Holding from CBA

15:23:19 GDG - Change in Substantial Holding from CBA

15:23:50 ION - Change in Substantial Holding from CBA

NAB Announcements - 8th November 2001

11:17:56 Supplementary O¤ering Circular NABWGF

11:44:44 2001 Pro�t Announcement - Full Year Result 3/19

11:47:02 2001 Pro�t Announcement - Full Year Result 2/19

11:48:35 Preliminary Final Report 4/4

11:57:52 2001 Pro�t Announcement - Full Year Result 1/19

12:06:17 2001 Pro�t Announcement - Full Year Result 4/19

12:37:54 2001 Pro�t Announcement - Full Year Result 5/19

12:53:18 2001 Pro�t Announcement - Full Year Result 6/19

13:22:12 2001 Pro�t Announcement - Full Year Result 7/19

13:35:53 2001 Pro�t Announcement - Full Year Result 8/19

14:03:09 2001 Pro�t Announcement - Full Year Result 10/19

14:04:22 2001 Pro�t Announcement - Full Year Result 12/19

14:17:38 2001 Pro�t Announcement - Full Year Result 9/19

14:32:54 2001 Pro�t Announcement - Full Year Result 16/19

14:47:15 2001 Pro�t Announcement - Full Year Result 18/19

14:48:03 2001 Pro�t Announcement - Full Year Result 17/19

14:51:07 2001 Pro�t Announcement - Full Year Result 14/19

15:13:23 2001 Pro�t Announcement - Full Year Result 11/19

15:33:39 Preliminary Final Report 3/4

15:47:50 2001 Pro�t Announcement - Full Year Result 15/19

15:52:29 Preliminary Final Report 2/4
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Time SGB Announcements-7th November 2001

10:26:26 SGB - Preliminary Final Report 11/15

10:29:33 SGB - Preliminary Final Report 6/15

10:51:53 SGB - Preliminary Final Report 12/15

11:02:33 SGB - Preliminary Final Report 4/15

11:11:44 SGB - Preliminary Final Report 13/15

11:45:54 SGB - Preliminary Final Report 14/15

12:12:41 SGB - Preliminary Final Report 9/15

12:14:59 SGB - Preliminary Final Report 7/15

14:06:21 SGB - Preliminary Final Report 10/15

14:08:53 SGB - Preliminary Final Report 15/15

WBC Announcements-2th November 2001

10:29:06 Westpac delivers strong pro�t results 1/5

10:40:00 Westpac delivers strong pro�t results 2/5

10:50:21 Pro�t Announcement 1/5

11:05:02 Media Release Westpac delivers strong pro�t results 1/1

11:26:18 Westpac delivers strong pro�t results 4/5

11:37:12 Preliminary Final Report 2/6

11:54:06 Westpac delivers strong pro�t results 3/5

12:11:13 Preliminary Final Report 3/6

12:13:19 Westpac delivers strong pro�t results 5/5

12:23:20 Pro�t Announcement 2/5

12:26:44 Pro�t Announcement 4/5

12:57:57: Pro�t Announcement 3/5

12:10:01 Pro�t Announcement 5/5

13:36:21 Intention to declare dividend

13:48:18 Appendix 3B - Exercise of Options

15:23:24 HPL becoming a substantial shareholder from WBC
The denominator of the fractions indicate the total number of documents being released, whilst

the numerator indicates which document from the total is being released to the market.
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