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Abstract 
 

Empirical observations on security prices and other financial time series usually 

not only include the closing prices ( tC ), but also the opening, the highest and 

the lowest prices ( , ,t t tO H L ) for specific horizons such as days, weeks and 

months. A multivariate vector of prices ( , , ,t t t tO H L C ) is obviously more 

informative than just the close prices ( tC ) for modelling and forecasting. In this 

paper we attempt to capture the return generation process of security prices 

using all the quoted prices ( , , ,t t t tO H L C ) via a vector error correction (VEC) 

process. 

The results of the empirical models using US daily Dow Jones Industrial (DJI) 

index data from 1990 to 2000 (11 years) indicate some interesting stylised facts 

regarding security returns.  We show, via the return generation process (RGP) 

proposed, that the “cointegrating” returns exhibit significant explanatory power. 

Some insights are also provided as to why tC∆  logarithmic returns tend to be 

non-normally distributed. 

Key words: vector autoregression (VAR), vector error correction (VEC), 

cointegration (CI), return generation process (RGP) and return distributions. 
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1 Introduction 

This paper is based on the premise that “it is possible that the unconditional 

distribution of asset returns may become normal, once the static and dynamic 

relationships are accounted for” Markellos (2002). In other words, normality may 

be falsely rejected due to the fact that the return generation process (RGP) was 

mis-specified. 

The goal of this paper is to account for the static and dynamic relationships in 

asset returns using all the price and return vectors. A dynamic model of asset 

returns using the vector error correction model (VECM) representation of Engle 

and Granger (1987) is applied with the insight that even though open, high, low 

and close prices are non-stationary they might be cointegrated. In doing so, we 

are able to separate the non-marginal (information-based) and marginal 

(expectations-based) aspects of the return generation process. It turns out that 

the price generation process is the error correction process (ECP) of the VECM 

representation. Surprisingly, we still find that the close-to-close residuals, after 

accounting for static and dynamic relationships, are not only non-normally 

distributed but also abnormally distributed. 

Section 2 describes the model adopted. Section 3 describes the dataset. 

Section 4 fits a VEC model. Section 5 fits a VECM model. In Section 6 we 

introduce the VECM-lead(CointEq1) Model. Section 7 attempts the VAR lead-

lag(CointEq1,2,3) Model. The cointegrating vectors are highlighted in Section 8. 

In Section 9 we take stock of the ARCH process. Section 10 summarises the 

findings and suggests future directions for research. 
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2 The Model 

Financial theory assumes that the behaviour of asset returns is the result of 

current and past information. In an informationally efficient market, “price 

changes must be unforecastable if they are properly anticipated, i.e., if they 

incorporate the expectations and information of all market participants” Lo and 

MacKinlay (1999). Since “expectations” is another form of “information”, 

expectations are subsumed under information and we habitually ignore the 

effect of expectations by stating “prices reflect all available information” 

Samuelson (1965), rather than “prices reflect all expectations and available 

information”. This could be partly due the subjectivity implied by expectations 

and objectivity implied by information. 

The timeseries model proposed in this paper attempts to distinguish 

“expectations” from “information” in the price generation process. We assume 

“changes in current price is dependent on changes in past changes in price, 

current and immediate-past information and expectations”. Thus we define a 

VECM-lead(CointEq1,2,3) model given as: 

(1) 
1 1 1

1 0 0 0

p

t i t i j t j j t j j t j t
i j j j

P Pδ α β ξ γ ξ γ ξ ε+ + − −
− − − −

= = = =

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪∆ = + ∆ + + + +⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑  

where tζ  (zeta sub t) are current and immediate-past “normal” information and 

tξ  (xi sub t) are the current and immediate-past positive and negative 

expectation(s) and tε  (epsilon sub t) are the current abnormal disturbances. 

The terms in the within the square brackets are the error correction terms and δ  

is the long-run risk premium. 

We determine the current informational and expectational “disturbances”, tζ  

and tξ  through a series of steps. We first analyse the multivariate data using a 

VAR representation. We then adopt a VEC representation to extract the 

cointegrating vectors. The cointegrating vectors have a lag of 1 by construction 

and proxy the lag 1 informational and expectational disturbances. Hence the 
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“lead 1 cointegrating vectors” are assumed to capture the current informational 

and expectational disturbances. This subsequently enables us to extract the 

abnormal informational shocks ( tε ) by using a VAR representation with the 

leading cointegrating vectors and the exogenous variables. 

 

3 The Dataset 

The dataset is the daily DJI30 index prices from 1/1/1990 to 1/1/2001 covering a 

period of 11 years (2780 x 4 points). We use index data instead of a single 

asset because the index generally reflects the behaviour the market as a whole. 

We use an US index data as the US is one of the largest and most researched 

markets.
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Figure 3-1 DJI30 OPEN LOW HIGH CLOSE Log-Prices (1/1/1990-1/1/2001) 

 

Figure 3-1 shows the open, high, low and close logarithmic prices for chosen 

period. 

Null Hypothesis: CLOSE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on Modified HQ, MAXLAG=30)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.094453 0.9483
Test critical values: 1% level -3.432512  
 5% level -2.862381  
 10% level -2.567262  
*MacKinnon (1996) one-sided p-values. 
   
   
Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(CLOSE) 
Method: Least Squares
Date: 05/26/04   Time: 09:28 
Sample(adjusted): 2 2780 
Included observations: 2779 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
CLOSE(-1) -3.40E-05 0.000360 -0.094453 0.9248
C 0.000774 0.003077 0.251589 0.8014 
R-squared 0.000003    Mean dependent var 0.000484 
Adjusted R-squared -0.000357    S.D. dependent var 0.009372 
S.E. of regression 0.009373    Akaike info criterion -6.501182
Sum squared resid 0.243984    Schwarz criterion -6.496915
Log likelihood 9035.393    F-statistic 0.008921 
Durbin-Watson stat 1.944175    Prob(F-statistic) 0.924756 

Table 3-1 Augmented Dickey-Fuller test statistic for CLOSE Log-Prices 

 

Non-stationary of the log-close prices cannot be rejected using the augmented 

Dickey-Fuller test as shown in Table 3-1. Similar results were obtained for the 

other variables. 

Figure 3-2 depicts the timeseries plots of the differenced logarithmic prices 

(logarithmic returns). The log-return series appear similar but are not identical, 

meaning t t t tO H L C∆ ≈ ∆ ≈ ∆ ≈ ∆  and they seem to share similar shocks or 

disturbances. 
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Figure 3-2 D(OPEN) D(LOW) D(HIGH) D(CLOSE) Log-Returns 

 

D(OPEN) D(HIGH) D(LOW) D(CLOSE)
Mean 4.58E-18 5.86E-18 -4.43E-18 -2.05E-18

 Median  8.36E-05 0.000275 0.000299  0.000117 
 Maximum  0.052373 0.042203 0.065505  0.048121 
 Minimum -0.075043 -0.042524 -0.067535 -0.075033 
 Std. Dev.  0.009287 0.007751 0.009038  0.009372 
 Skewness -0.406476 -0.177760 -0.366280 -0.412063 
 Kurtosis  8.123666 5.583676 9.167421  7.732747 
   
 Jarque-Bera  3116.283 787.5887 4466.515  2672.249 
 Probability  0.000000 0.000000 0.000000  0.000000 
   
 Sum  7.74E-15 -8.35E-15 -7.71E-15 -8.29E-15 
 Sum Sq. Dev.  0.239618 0.166885 0.226937  0.243985 
   
 Observations  2779 2779 2779  2779 

Table 3-2 DJI30 Log-returns Summary Statistics 
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Table 3-2 summarises the summary statistics for the dataset used. The means 

do not differ significantly across the variables [see Table 3-3] but the variances 

differ significantly [see Table 3-4]. All the variables are negatively skewed with 

moderately high kurtosis. However, the Jarque-Bera statistics significantly 

rejects the normal distribution for all variables indicating a non-normality of their 

unconditional distributions. 

Test for Equality of Means Between Series
Sample: 1 2780 
Included observations: 2780 
Method df Value Probability
Anova F-statistic (3, 11112) 8.82E-28 1.0000
   
Analysis of Variance 
Source of Variation df Sum of Sq. Mean Sq.
Between 3 2.09E-31 6.96E-32
Within 11112 0.877424 7.90E-05 
Total 11115 0.877424 7.89E-05 
   
Category Statistics 
  Std. Err. 
Variable Count Mean Std. Dev. of Mean
D(OPEN) 2779 4.58E-18 0.009287 0.000176
D(HIGH) 2779 5.86E-18 0.007751 0.000147 
D(LOW) 2779 -4.43E-18 0.009038 0.000171 
D(CLOSE) 2779 -2.05E-18 0.009372 0.000178 
All 11116 9.91E-19 0.008885 8.43E-05 

Table 3-3 Test for Equality of Means Between Series 

 
Test for Equality of Variances Between Series
Sample: 1 2780 
Included observations: 2780 
Method df Value Probability
Bartlett 3 124.0436 0.0000
Levene (3, 11112) 16.29509 0.0000 
Brown-Forsythe (3, 11112) 16.37086 0.0000 

Category Statistics 
Mean Abs. Mean Abs.

Variable Count Std. Dev. Mean Diff. Median Diff. 
D(OPEN) 2779 0.009287 0.006672 0.006672
D(HIGH) 2779 0.007751 0.005705 0.005701 
D(LOW) 2779 0.009038 0.006304 0.006301 
D(CLOSE) 2779 0.009372 0.006742 0.006741 
All 11116 0.008885 0.006356 0.006354
Bartlett weighted standard deviation: 0.008886

Table 3-4 Test for Equality of Variances Between Series 
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Null Hypothesis: D(CLOSE) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on Modified HQ, MAXLAG=30)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -51.23833 0.0001
Test critical values: 1% level -3.432512
 5% level -2.862381  
 10% level -2.567262  
*MacKinnon (1996) one-sided p-values.
   
   
Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(CLOSE,2) 
Method: Least Squares
Date: 05/26/04   Time: 09:37 
Sample(adjusted): 3 2780 
Included observations: 2778 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
D(CLOSE(-1)) -0.972240 0.018975 -51.23833 0.0000
C 0.000471 0.000178 2.644139 0.0082 
R-squared 0.486056 Mean dependent var -2.63E-06
Adjusted R-squared 0.485871   S.D. dependent var 0.013070 
S.E. of regression 0.009371    Akaike info criterion -6.501591
Sum squared resid 0.243796    Schwarz criterion -6.497322
Log likelihood 9032.710    F-statistic 2625.366 
Durbin-Watson stat 1.997477    Prob(F-statistic) 0.000000 

Table 3-5 Augmented Dickey-Fuller test statistic for D(CLOSE) Log-Returns 

 

Form Table 3-5 the log-difference series can be taken to be stationary. The null 

hypothesis that D(CLOSE) has a unit root can be rejected. Similar results were 

obtained for the other variables. Hence, for all our vectors, the logarithmic price 

series are non-stationary and the logarithmic returns series are stationary. 
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Figure 3-3 LS 0 0 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C 

The auto- and cross-correlation plots in Figure 3-3 confirm the lag 1 

autoregression for some of the variables. Clearly, the D(OPEN) and D(CLOSE)  

series are not auto-correlated. In fact, there is no significant autocorrelations for 

all combinations with D(OPEN). There is significant autocorrelations at lag 1 for 

the D(HIGH) and D(LOW) series. 
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Figure 3-4 D(CLOSE) Histogram and Stats 

The unconditional histogram of the close log-returns is highly peaked and 

moderately skewed. Note that the skewness and kurtosis are the same as for 

the “raw” logarithmic returns. The maximum and minimum exceed more than 3 

standardised deviations and the Jarque-Bera test rejects the normal distribution.  

Current financial theory attributes the non-normality to serial correlations and 

heteroskedasticity in the log-returns series. Thus, we attempt to remove the 

serial correlations from the dataset but instead of considering the univariate 

approach whereby an ARMA model is fitted to the close log-return series we 

use a multivariate approach where we consider all the log-price and log-return 

series i.e. we use the VECM formulation. 
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4 The VAR Model 

First we undertake a VAR Lag Order selection process. The results for various 

selection criteria are listed in Table 4-1. The SC selects 10 lags, the HQ selects 

11 lags and the rest select 29 lags, including the AIC. In this paper we adopt the 

HQ criteria and use 11 lags. 

VAR Lag Order Selection Criteria
Endogenous variables: D(OPEN) D(HIGH) D(LOW) D(CLOSE) 
Exogenous variables: C  
Sample: 1 2780 
Included observations: 2749 
Lag LogL LR FPE AIC SC HQ

0 40148.66 NA 2.43E-18 -29.20673 -29.19812 -29.20362
1  43513.39  6717.226 2.13E-19 -31.64306 -31.60000 -31.62750
2  44111.81  1192.931 1.39E-19 -32.06680 -31.98928 -32.03879
3  44477.09  727.1019 1.08E-19 -32.32091 -32.20895 -32.28046
4  44756.52  555.4008 8.91E-20 -32.51256 -32.36615 -32.45966
5  44893.44  271.7591 8.16E-20 -32.60054 -32.41968 -32.53520
6  45006.29  223.6385 7.61E-20 -32.67100 -32.45569 -32.59321
7  45065.48  117.1264 7.37E-20 -32.70242 -32.45266 -32.61218
8  45126.66  120.8896 7.13E-20 -32.73529 -32.45108 -32.63260
9  45187.37  119.7984 6.91E-20 -32.76782 -32.44916 -32.65269
10  45273.46  169.6111 6.56E-20 -32.81882 -32.46570* -32.69124
11  45321.49  94.48233 6.41E-20 -32.84212 -32.45455  -32.70209*
12  45352.15  60.22450 6.34E-20 -32.85278 -32.43077 -32.70031
13  45383.69  61.87449 6.27E-20 -32.86409 -32.40763 -32.69917
14  45409.31  50.17436 6.23E-20 -32.87109 -32.38017 -32.69372
15  45434.41  49.07500 6.19E-20 -32.87771 -32.35234 -32.68789
16  45453.84  37.95389 6.17E-20 -32.88021 -32.32039 -32.67794
17  45479.65  50.31227 6.13E-20 -32.88734 -32.29307 -32.67263
18  45505.22  49.78114 6.09E-20 -32.89430 -32.26558 -32.66715
19  45523.54  35.61895 6.08E-20 -32.89599 -32.23282 -32.65639
20  45566.74  83.84744 5.96E-20 -32.91578 -32.21816 -32.66373
21  45583.00  31.52592 5.96E-20 -32.91597 -32.18390 -32.65148
22  45611.09  54.36237 5.90E-20 -32.92477 -32.15825 -32.64782
23  45623.10  23.20563 5.92E-20 -32.92186 -32.12089 -32.63247
24  45664.84  80.53151 5.81E-20 -32.94059 -32.10517 -32.63875
25  45677.48  24.34076 5.83E-20 -32.93814 -32.06827 -32.62386
26  45695.03  33.77015 5.82E-20 -32.93927 -32.03495 -32.61254
27  45714.31  37.02357 5.80E-20 -32.94166 -32.00289 -32.60248
28  45739.36  48.04690 5.77E-20 -32.94824 -31.97502 -32.59662
29  45756.32   32.48238*  5.76E-20* -32.94894* -31.94127 -32.58487
30  45767.84  22.01408 5.78E-20 -32.94568 -31.90356 -32.56916
* indicates lag order selected by the criterion

 LR: sequential modified LR test statistic (each test at 5% level)
 FPE: Final prediction error 
 AIC: Akaike information criterion 
 SC: Schwarz information criterion 
 HQ: Hannan-Quinn information criterion 

Table 4-1 VAR Lag Order Selection Criteria 
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Vector Autoregression Estimates
 Sample(adjusted): 13 2780 
 Included observations: 2768 after adjusting endpoints
 Standard errors in ( ) & t-statistics in [ ] 

D(OPEN) D(HIGH) D(LOW) D(CLOSE)
C 5.36E-05 0.000360 0.000276 0.000502
  (5.0E-05) (0.00012) (0.00014)  (0.00018)
 [ 1.06416] [ 3.10321] [ 2.02756] [ 2.78581] 
R-squared 0.923343 0.414037 0.408144 0.035187

 Adj. R-squared  0.922104 0.404569 0.398580  0.019597 
 Sum sq. resids  0.018278 0.097285 0.133390  0.234118 
 S.E. equation  0.002591 0.005977 0.006999  0.009272 
 F-statistic  745.4264 43.72851 42.67681  2.256990 
 Log likelihood  12580.66 10266.67 9829.832  9051.269 
 Akaike AIC -9.057559 -7.385601 -7.069965 -6.507420
 Schwarz SC -8.961221 -7.289263 -6.973627 -6.411081
 Mean dependent  0.000504 0.000507 0.000504  0.000506 
 S.D. dependent  0.009283 0.007746 0.009025  0.009365 
Determinant Residual Covariance 6.06E-20

 Log Likelihood (d.f. adjusted) 45531.59  
 Akaike Information Criteria -32.76849  
 Schwarz Criteria -32.38314  

Table 4-2 LS 1 11 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C1 

The VAR(11,4) model estimates are shown in Table 4-2. The open, high and 

low log-returns are moderately to strongly captured by the model, indicating that 

lag variables strongly influence these variables. However, the model apart from 

reducing the serial correlations in the close log-return residuals, does not 

account much for the variances in close log-returns. This is probably due to the 

non-synchronous nature of the sampling process, whereby the closing prices 

are the most current prices within a day, thus rendering the closing log-returns 

unaccountable in the traditional VEC model. 

 

 

                                            

1 Whenever possible E-Views notation is retained for the table headings. This is to enable 
tractability of the models. 
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Figure 4-1 VAR RESIDUALS (LS 1 11 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C) 

The VAR(11,4) residuals for all log-return variables are shown in Figure 4-1. 

The D(OPEN) residuals appear “abnormally” distributed whereas the high, low 

and close residuals appear normal or continuously distributed. At this point, one 

can only state that the D(OPEN) returns appear to be fully captured by the 

model with non-typical residuals. 

Further, the high and low residuals are asymmetrically distributed and the close 

residuals are symmetrically distributed. 
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Figure 4-2 IRF (LS 1 11 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C) 

The impulse response functions are depicted in Figure 4-2. The open log-

returns are influenced by all the other (high, low and close) lag 1 variables, thus 

explaining the strong fit of the VAR(11,4) model. The high log-returns are 

influenced by the current shock and open log-returns and the lag 1 close and 

low variables. The low log-returns are influenced by the current shock and open 

and high log-returns and the lag 1 close log-returns. The close log-returns are 

influenced primarily by the current shocks and variables. 
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5 The VECM model 

A natural progression from a VAR representation is the VECM model, especially 

when the level series are non-stationary. We initially test for the rank of the 

cointegration using the methodology by Johansen (1988). 

 

Sample(adjusted): 12 2780
Included observations: 2769 after adjusting endpoints
Trend assumption: Linear deterministic trend
Series: CLOSE HIGH LOW OPEN  
Lags interval (in first differences): 1 to 10 
   
Unrestricted Cointegration Rank Test 
Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 
None ** 0.081218 500.2015 47.21 54.46
At most 1 **  0.075362 265.6481 29.68  35.65 
At most 2 **  0.017423 48.68849 15.41  20.04 
At most 3  6.92E-06 0.019169  3.76   6.65 
*(**) denotes rejection of the hypothesis at the 5%(1%) level

 Trace test indicates 3 cointegrating equation(s) at both 5% and 1% levels
   
Hypothesized Max-Eigen 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 
None ** 0.081218 234.5534 27.07 32.24
At most 1 **  0.075362 216.9596 20.97  25.52 
At most 2 **  0.017423 48.66932 14.07  18.63 
At most 3  6.92E-06 0.019169  3.76   6.65 
*(**) denotes rejection of the hypothesis at the 5%(1%) level

 Max-eigenvalue test indicates 3 cointegrating equation(s) at both 5% and 1% levels

Table 5-1 Cointegration Tests (EC(C,3) 1 10 OPEN HIGH LOW CLOSE) 

From Table 5-1 the max-eigenvalue test indicates 3 cointegrating equation(s) at 

both 5% and 1% levels. Table 5-2 details the 3 cointegrating equations and their 

adjustment coefficients. 

3 Cointegrating Equation(s):  Log likelihood  45840.60 
Normalized cointegrating coefficients (std.err. in parentheses)
CLOSE HIGH LOW OPEN 
 1.000000  0.000000 0.000000 -0.999681 
   (8.7E-05) 
 0.000000  1.000000 0.000000 -1.005055 
   (0.00070) 
 0.000000  0.000000 1.000000 -0.994943 
   (0.00071) 
   
Adjustment coefficients (std.err. in parentheses)
D(CLOSE) -1.046382 0.248668  0.139272 
  (0.30621) (0.13469)  (0.12627) 
D(HIGH)  0.411063 -0.285535 -0.214568 
  (0.19758) (0.08690)  (0.08147) 
D(LOW)  0.414077 -0.394900 -0.559414 
  (0.23016) (0.10124)  (0.09491) 
D(OPEN)  0.947824 0.012107 -0.008975 
  (0.08340) (0.03668)  (0.03439) 

Table 5-2 Cointegrating Equation(s 



Page 16 of 38 

 

Vector Error Correction Estimates
 Sample(adjusted): 12 2780 
 Included observations: 2769 after adjusting endpoints
 Standard errors in ( ) & t-statistics in [ ] 
Cointegrating Eq: CointEq1 CointEq2 CointEq3
CLOSE(-1) 1.000000 0.000000 0.000000
   
HIGH(-1)  0.000000 1.000000 0.000000  
   
LOW(-1)  0.000000 0.000000 1.000000  
   
OPEN(-1) -0.999681 -1.005055 -0.994943  
  (8.7E-05) (0.00070) (0.00071)  
 [-11442.0] [-1429.36] [-1403.40]  
   
C1 -0.003125 0.032196 -0.032239  
Error Correction: D(CLOSE) D(HIGH) D(LOW) D(OPEN)
CointEq1 -1.046382 0.411063 0.414077 0.947824
  (0.30621) (0.19758) (0.23016)  (0.08340)
 [-3.41721] [ 2.08053] [ 1.79910] [ 11.3654]
   
CointEq2  0.248668 -0.285535 -0.394900  0.012107
  (0.13469) (0.08690) (0.10124)  (0.03668)
 [ 1.84627] [-3.28563] [-3.90080] [ 0.33005]
   
CointEq3  0.139272 -0.214568 -0.559414 -0.008975
  (0.12627) (0.08147) (0.09491)  (0.03439)
 [ 1.10300] [-2.63366] [-5.89435] [-0.26100]
   
C2  0.000117 0.000427 0.000202  0.000503
  (0.00022) (0.00014) (0.00016)  (5.9E-05)
 [ 0.53692] [ 3.03402] [ 1.23311] [ 8.46998]
R-squared 0.036410 0.413329 0.413488 0.927231

 Adj. R-squared  0.021205 0.404071 0.404233  0.926082
 Sum sq. resids  0.233984 0.097413 0.132192  0.017356
 S.E. equation  0.009266 0.005979 0.006965  0.002524
 F-statistic  2.394556 44.64764 44.67693  807.4902
 Log likelihood  9055.829 10269.05 9846.380  12657.38
 Akaike AIC -6.509085 -7.385376 -7.080087 -9.110424
 Schwarz SC -6.414916 -7.291207 -6.985918 -9.016255
 Mean dependent  0.000501 0.000509 0.000505  0.000507
 S.D. dependent  0.009366 0.007745 0.009024  0.009282
Determinant Residual Covariance 5.23E-20

 Log Likelihood 45840.60  
 Log Likelihood (d.f. adjusted) 45751.89  
 Akaike Information Criteria -32.91000  
 Schwarz Criteria -32.50764  

Table 5-3 EC(C,3) 1 10 OPEN HIGH LOW CLOSE 

From Table 5-2 and Table 5-3, we make a number of observations. The 

normalised cointegrating coefficients only load on the OPEN series with 

negative coefficients. Thus we have: 

(2) 
 1.000000• 0.999681•
 1.000000• 1.005055•
 1.000000• 0.994943•

t t

t t

t t

C O
H O
L O

−
−
−

 

This resembles the futures-spot parity equations, with , ,t t tH L C  as the futures 

prices and the tO  as the spot price. Thus, one can say that the error correction 

process is a no-arbitrage process. The cointegrating coefficients measure the 

long-run cost of carry for the , ,t t tH L C  prices.  The C1 values reflect the log-run 
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price of immediacy embedded in the cointegrating vectors. C2 reflect the long-

run risk premiums for the various series. 

The VECM model is based on 10 lags. Table 5-3 does not display the 

coefficients for the lag logarithmic returns. There are 3 cointegrating vectors and 

hence 1 stochastic trend. However, the R-squared for the close logarithmic 

returns is still low (0.036410), indicating a possible under-specification in as far 

explaining the closing returns are concerned. 
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Figure 5-1 EC(C,3) 1 10 OPEN HIGH LOW CLOSE 
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The residuals from the VECM(C,3) model also exhibit marked differences from 

each other. The D(OPEN) residuals appear to be unrelated to the other 

variables. This is a direct result of the non-synchronous sampling and the 

opening prices do not capture the current disturbances over the current trading 

day. 
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Figure 5-2 EC(C,3) 1 10 OPEN HIGH LOW CLOSE 

The responses reflect the non-stationarity of the level series. 
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6 The VECM-lead(CointEq1) model 

As the VECM Model is under-specified, we fit an augmented VECM model 

called the VECM-lead(CointEq1) model, where the first cointegrating vector is 

treated as a leading exogenous variable. 

Vector Error Correction Estimates
 Sample(adjusted): 12 2779 
 Included observations: 2768 after adjusting endpoints
 Standard errors in ( ) & t-statistics in [ ] 
Cointegrating Eq: CointEq1 CointEq2 CointEq3
CLOSE(-1) 1.000000 0.000000 0.000000
   
HIGH(-1)  0.000000 1.000000 0.000000  
   
LOW(-1)  0.000000 0.000000 1.000000  
   
OPEN(-1) -0.999681 -1.005033 -0.994954  
  (1.5E-09) (0.00071) (0.00072)  
 [-6.6E+08] [-1418.77] [-1383.94]  
   
C1 -0.003123 0.032016 -0.032146  
Error Correction: D(CLOSE) D(HIGH) D(LOW) D(OPEN)
CointEq1 -0.033182 0.931238 1.025439 0.967127
  (0.08341) (0.12685) (0.14555)  (0.08344)
 [-0.39780] [ 7.34137] [ 7.04549] [ 11.5908]
   
CointEq2  0.007596 -0.409922 -0.541365  0.007599
  (0.03663) (0.05570) (0.06391)  (0.03664)
 [ 0.20739] [-7.35903] [-8.47022] [ 0.20739]
   
CointEq3 -0.011864 -0.292089 -0.650514 -0.011868
  (0.03432) (0.05220) (0.05989)  (0.03433)
 [-0.34565] [-5.59596] [-10.8618] [-0.34565]
   
C2  0.000510 0.000626 0.000437  0.000508
  (5.9E-05) (9.0E-05) (0.00010)  (5.9E-05)
 [ 8.62087] [ 6.95725] [ 4.22640] [ 8.58043]
   
COINTEQ01(1)  1.019146 0.524929 0.617817  0.019152
  (0.00551) (0.00838) (0.00962)  (0.00552)
 [ 184.835] [ 62.6034] [ 64.2158] [ 3.47228]
R-squared 0.928869 0.759498 0.766734 0.927540

 Adj. R-squared  0.927720 0.755611 0.762965  0.926370
 Sum sq. resids  0.017268 0.039934 0.052574  0.017279
 S.E. equation  0.002518 0.003830 0.004394  0.002519
 F-statistic  808.1513 195.4347 203.4174  792.1950
 Log likelihood  12659.33 11499.02 11118.43  12658.44
 Akaike AIC -9.114399 -8.276028 -8.001030 -9.113761
 Schwarz SC -9.018060 -8.179690 -7.904692 -9.017422
 Mean dependent  0.000504 0.000508 0.000505  0.000505
 S.D. dependent  0.009367 0.007746 0.009025  0.009283
Determinant Residual Covariance 0.000000

Table 6-1 EC(C,3) 1 10 OPEN HIGH LOW CLOSE  @ COINTEQ01(1) 
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Figure 6-1 EC(C,3) 1 10 OPEN HIGH LOW CLOSE  @ COINTEQ01(1) 

We can see from Table 6-1 and Figure 6-1 that the D(CLOSE) fully captured by 

the lead(CointEq1) augmentation. The lead and current cointegrating vector 1 is 

common to both the D(OPEN) and D(CLOSE) process. CointEq Vectors 2 and 

3 are common to the D(HIGH) and D(LOW). The error correction process can 

be said to mirror the data generation process for D(OPEN) and D(CLOSE) 

series. However, the D(HIGH) and D(LOW) series can be further fitted. We do 

this by considering a VECM-lead(CointEq1,2,3) model in Section 7. 
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7 The VECM-lead(CointEq1,2,3) model 

When we attempt to fit a VECM model with the 3 cointegrating vectors as 

exogenous variable, we face a “near singular matrix” problem. However, in as 

much as the VAR can be modelled as a VECM model, we can also model the 

VECM as a VAR with exogenous variable, where the current and the 

immediate-past cointegrating vectors are the exogenous terms. 

Vector Autoregression Estimates
 Sample(adjusted): 12 2779 
 Included observations: 2768 after adjusting endpoints
 Standard errors in ( ) & t-statistics in [ ] 

D(OPEN) D(HIGH) D(LOW) D(CLOSE)
C2 0.000518 0.000521 0.000516 0.000518
  (5.9E-05) (6.0E-05) (5.9E-05)  (5.9E-05) 
 [ 8.74851] [ 8.74851] [ 8.74851] [ 8.74851] 
   
COINTEQ01(1)  0.017605 0.017694 0.017516  1.017599 
  (0.01246) (0.01252) (0.01240)  (0.01246)
 [ 1.41275] [ 1.41275] [ 1.41275] [ 81.6863] 
   
COINTEQ02(1) -0.043179 0.956602 -0.042961 -0.043165 
  (0.01613) (0.01621) (0.01605)  (0.01612)
 [-2.67711] [ 59.0109] [-2.67711] [-2.67711] 
   
COINTEQ03(1)  0.039050 0.039247 1.038853  0.039038 
  (0.01386) (0.01393) (0.01379)  (0.01385)
 [ 2.81762] [ 2.81762] [ 75.3384] [ 2.81762] 
   
COINTEQ01  0.962884 0.967751 0.958015 -0.037423 
  (0.08326) (0.08369) (0.08284)  (0.08324)
 [ 11.5642] [ 11.5642] [ 11.5642] [-0.44959] 
   
COINTEQ02  0.054188 -0.945539 0.053914  0.054170 
  (0.03865) (0.03884) (0.03845)  (0.03863)
 [ 1.40214] [-24.3434] [ 1.40214] [ 1.40214] 
   
COINTEQ03 -0.038065 -0.038257 -1.037872 -0.038053 
  (0.03497) (0.03514) (0.03479)  (0.03496)
 [-1.08856] [-1.08856] [-29.8315] [-1.08856] 
R-squared 0.927912 0.895421 0.924497 0.929234

 Adj. R-squared  0.926693 0.893654 0.923221  0.928038 
 Sum sq. resids  0.017190 0.017364 0.017017  0.017179 
 S.E. equation  0.002513 0.002526 0.002501  0.002513 
 F-statistic  761.4048 506.4724 724.2934  776.7348 
 Log likelihood  12665.56 12651.61 12679.60  12666.45 
 Akaike AIC -9.117459 -9.107375 -9.127598 -9.118097 
 Schwarz SC -9.016839 -9.006755 -9.026978 -9.017477 
 Mean dependent  0.000505 0.000508 0.000505  0.000504 
 S.D. dependent  0.009283 0.007746 0.009025  0.009367 
Determinant Residual Covariance 0.000000

Table 7-1 LS 1 10 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C COINTEQ01(1) 
COINTEQ02(1) COINTEQ03(1) COINTEQ01 COINTEQ02 COINTEQ03 
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Figure 7-1 LS 1 10 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C COINTEQ01(1) 
COINTEQ02(1) COINTEQ03(1) COINTEQ01 COINTEQ02 COINTEQ03 

Note that the residuals are identical with perfect positive correlations as listed in 

Table 7-2 and shown in Figure 7-1. 

D(OPEN) D(HIGH) D(LOW) D(CLOSE)
D(OPEN) 1.000000 1.000000 1.000000 1.000000
D(HIGH)  1.000000 1.000000 1.000000  1.000000 
D(LOW)  1.000000 1.000000 1.000000  1.000000 
D(CLOSE)  1.000000 1.000000 1.000000  1.000000 

Table 7-2 LS 1 10 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C COINTEQ01(1) 
COINTEQ02(1) COINTEQ03(1) COINTEQ01 COINTEQ02 COINTEQ03 

Hence we are able to specify a model with a number of common disturbances, 

the normal disturbances (3 cointegrating residuals) and abnormal disturbances. 
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Figure 7-2 LS 1 10 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C COINTEQ01(1) 
COINTEQ02(1) COINTEQ03(1) 

From Table 7-1 we can see that all the logarithmic returns considered a nearly 

fully explained  (R-squares of 0.927912, 0.895421,0.924497 and 0.929234 for 

the open, high, low and close logarithmic returns) by the assumed model. 

Further the C2 values are nearly identical, highlighting a common risk premium 

and implying a good fit of the VECM-lead(CointEq1,2,3) model. 
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Figure 7-3 LS 1 10 D(OPEN) D(HIGH) D(LOW) D(CLOSE)  @ C COINTEQ01(1) 
COINTEQ02(1) COINTEQ03(1) COINTEQ01 COINTEQ02 COINTEQ03 

Figure 7-3 indicates that the residuals (which are perfectly positively correlated) 

are also not serially correlated. The D(CLOSE) significantly loads on 

COINTEQ01(1), the D(OPEN) significantly loads on COINTEQ01(0), the 

D(HIGH) and D(LOW) significantly loads on COINTEQ02(1) and 

COINTEQ02(0). In words, today’s change in close price is dependent on 

today’s COINTEQ01(1) residual which is estimated to be 0.999681t t tC C O∆ ≈ − . 

Today’s change in open price is dependent on yesterday’s COINTEQ01(0) 

residual which is estimated to be 1 10.999681t t tO C O− −∆ ≈ − . 
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Today’s change in high prices are dependent on today’s COINTEQ02(1) and 

yesterday’s COINTEQ02(0). Similarly, today’s change in low prices are 

dependent on today’s COINTEQ03(1) and yesterday’s COINTEQ03(0). Both 

the changes in high and low prices also load significantly on yesterday’s 

COINTEQ01(0). Hence the cointegrating residuals play a paramount role on the 

process captured. In fact one can say that the cointegrating vectors explain all 

the “normal” variance in the logarithmic returns. 
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Figure 7-4 EC(C,3) 1 10 CLOSE HIGH LOW OPEN 

Hence the error correction process cum the return generation process has three 

components, each of which reflect a specific uncertainty in prices. Moreover, 

the cointegrating components are the “normal” disturbances that significantly 

capture and reflect the logarithmic returns. The residuals of the VAR-lead-

lag(CointEq1,2,3) model can be said to capture the “abnormal” disturbances. 

Since the cointegrating vectors reflect the normal disturbances and since the 

COINTEQ01 vector is symmetric, we assume this to be a reflection of the “true” 

normal information set. Similarly, the asymmetric COINTEQ02 and COINTEQ03 

vectors are assumed to refect the sell-side and buy-side expectations. 
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8 The Cointegrating Vectors 

The cointegrating vectors themselves exhibit some stylised facts. We now 

investigate and illustrate these facts in detail. Table 8-1 lists the summary 

statistics for the 3 cointegrating residuals. COINTEQ01 is moderately and 

negatively skewed. COINTEQ02 is strongly positively skewed and COINTEQ03 

is strongly negatively skewed. All cointegrating residuals exhibit high kurtosis 

and consequently all reject the Jarque-Bera test for normality. 

 

COINTEQ01 COINTEQ02 COINTEQ03
Mean 3.45E-18 -6.53E-17 1.72E-17

 Median  5.89E-05 -0.000661  0.000958 
 Maximum  0.047107 0.040885  0.014908 
 Minimum -0.074819 -0.014805 -0.063071 
Std. Dev. 0.008835 0.005925 0.006763 
 Skewness -0.527120 1.149337 -1.951248 
 Kurtosis  8.445128 7.022164  12.74227 
   
 Jarque-Bera  3549.032 2476.144  12707.55 
 Probability  0.000000 0.000000  0.000000 
   
 Sum  9.25E-15 -1.82E-13  4.55E-14 
 Sum Sq. Dev.  0.216058 0.097189  0.126608 
   
 Observations  2769 2769  2769 

Table 8-1 LS 0 0 COINTEQ01 COINTEQ02 COINTEQ03  @ C 

 

The cointegrating vectors also exhibit some serial and cross-correlations. 

COINTEQ01 is not serially correlated, but the other two are strongly serially 

correlated. This indicates the COINTEQ01 is probably proxies the informational 

disturbances and COINTEQ02 and COINTEQ03 proxy the expectational 

disturbances2. This lends support to the “expectation” and “information” 

components of the marginal or normal disturbances. Consequently we make the 

following identifications: 

(3) 
1

1

1

01

02

03

t

t

t

COINTEQ

COINTEQ

COINTEQ

ζ

ξ

ξ

−
+
−
−
−

≈

≈

≈

 

                                            

2 Expectational disturbances tend to be biased. 
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Figure 8-1 LS 0 0 COINTEQ01 COINTEQ02 COINTEQ03  @ C 

 

As the cointegrating residuals are stationary, we fit a VAR model to remove the 

serial and cross-correlations. We use the HQ selection criteria and obtain an 

optimal lag of 4 as shown in Table 8-2. 
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VAR Lag Order Selection Criteria
Endogenous variables: COINTEQ01 COINTEQ02 COINTEQ03 
Exogenous variables: C  
Sample: 1 2780 
Included observations: 2739 
 Lag LogL LR FPE AIC SC HQ 
0  31593.59 NA   1.93E-14 -23.06724 -23.06076 -23.06490 
1  32480.72  1771.678 1.01E-14 -23.70845 -23.68253 -23.69908
2  32608.66  255.2269 9.30E-15 -23.79530 -23.74995 -23.77891
3  32658.84  99.99253 9.02E-15 -23.82537 -23.76058 -23.80196
4  32696.82  75.58758 8.83E-15 -23.84652 -23.76230*  -23.81609*
5  32711.33  28.85280 8.80E-15 -23.85055 -23.74688 -23.81309
6  32731.25  39.57007 8.73E-15 -23.85853 -23.73542 -23.81404
7  32745.50  28.27553 8.70E-15 -23.86236 -23.71982 -23.81085
8  32758.68  26.12332 8.67E-15 -23.86541 -23.70344 -23.80688
9  32768.63  19.69502 8.66E-15 -23.86611 -23.68469 -23.80055
10  32785.92  34.18190 8.61E-15 -23.87216 -23.67131 -23.79958
11  32800.08  27.97540 8.58E-15 -23.87593 -23.65564 -23.79632
12  32811.05  21.63606 8.57E-15 -23.87736 -23.63764 -23.79074
13  32819.98  17.59147 8.57E-15 -23.87731 -23.61815 -23.78366
14  32829.32  18.39037  8.56E-15* -23.87756* -23.59896 -23.77688
15  32836.70  14.51921 8.57E-15 -23.87638 -23.57834 -23.76868
16  32843.27  12.89629 8.59E-15 -23.87460 -23.55713 -23.75988
17  32848.77  10.78776 8.61E-15 -23.87204 -23.53514 -23.75030
18  32858.36  18.80728 8.61E-15 -23.87248 -23.51613 -23.74371
19  32868.81  20.45917 8.60E-15 -23.87354 -23.49776 -23.73774
20  32881.90  25.58885 8.57E-15 -23.87652 -23.48130 -23.73370
21  32886.63  9.249371 8.60E-15 -23.87341 -23.45875 -23.72357
22  32893.06  12.53773 8.62E-15 -23.87153 -23.43744 -23.71466
23  32902.21  17.82962 8.62E-15 -23.87164 -23.41811 -23.70775
24  32907.05  9.422218 8.64E-15 -23.86860 -23.39563 -23.69769
25  32917.15  19.63469 8.63E-15 -23.86940 -23.37700 -23.69146
26  32920.72  6.943790 8.67E-15 -23.86544 -23.35360 -23.68048
27  32927.13  12.42906 8.69E-15 -23.86355 -23.33227 -23.67156
28  32935.35  15.93884 8.69E-15 -23.86298 -23.31226 -23.66397
29  32949.75  27.87253 8.66E-15 -23.86692 -23.29677 -23.66089
30  32959.97   19.76056* 8.65E-15 -23.86781 -23.27822 -23.65476
 * indicates lag order selected by the criterion 
 LR: sequential modified LR test statistic (each test at 5% level)
 FPE: Final prediction error 
 AIC: Akaike information criterion 
 SC: Schwarz information criterion 
 HQ: Hannan-Quinn information criterion 

Table 8-2 VAR Lag Order Selection Criteria [COINTEQ01 COINTEQ02 COINTEQ03] 

The lag order for the cointegrating residuals is reduced to 4 from 11, indicating 

that information based adjustments is much shorter than adjustments due to 

lagged logarithmic returns. Since the explanatory power of the lagged log-

returns is much smaller than the cointegrating returns, this is a welcomed result. 
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Figure 8-2 LS 1 4 COINTEQ01 COINTEQ02 COINTEQ03  @ C 

The residuals of the cointegrating VAR model have no or weak serial 

correlations.  
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Figure 8-3 LS 1 4 COINTEQ02 COINTEQ03 COINTEQ01  @ C 

An impulse response function plot is illustrated in Figure 8-3. One standard 

deviation innovations to all three cointegrating vectors is felt by COINTEQ01. 

This lends support to the hypothesis that COINTEQ01 is information and 

expectations driven. 
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Figure 8-4 LS 1 4 COINTEQ01 COINTEQ02 COINTEQ03  @ C 

Figure 8-4 depicts the cointegrating VAR residuals, which have no serial 

correlations. The overall characteristics of the timeseries plots have not been 

altered drastically. This is further confirmed by the summary statistics as per 

Table 8-3. 
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CIRESID01 CIRESID02 CIRESID03
Mean 3.44E-19 2.28E-19 1.06E-18

 Median  0.000146 -0.000400  0.000627 
 Maximum  0.044121 0.032590  0.021092 
 Minimum -0.076093 -0.023280 -0.057901 
 Std. Dev.  0.008775 0.005353  0.006318 
 Skewness -0.674100 0.555998 -1.621308 
 Kurtosis  8.846206 5.320504  11.28696 
   
 Jarque-Bera  4147.012 762.8261  9123.142 
 Probability  0.000000 0.000000  0.000000 
   
 Sum  4.76E-16 4.26E-16  3.23E-15 
 Sum Sq. Dev.  0.212825 0.079211  0.110316 
   
 Observations  2765 2765  2765 

Table 8-3 LS 1 4 COINTEQ01 COINTEQ02 COINTEQ03  @ C 

 

The results for the cointegrating vectors indicate a strong possibility of non-

normal unconditional distributions for all three vectors. Though it is not the 

primary goal of this paper, we fit three descriptive distributions to the three 

cointegrating vectors and find that they are not rejected at the 0.05% level by 

the Cramer-von Mises (W2), Watson (U2) and Anderson-Darling (A2) statistics. 

The three distributions fitted are the logistic, the maximum extreme value and 

the minimum extreme value distributions. (The normal is rejected at the 0.001% 

level for all cointegrating vectors.) 
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Figure 8-5 Histogram and Stats for CIRESID01 

 

Empirical Distribution Test for CIRESID01
Hypothesis: Logistic 
Sample(adjusted): 16 2780 
Included observations: 2765 after adjusting endpoints
Method Value   Adj. Value Probability  
Cramer-von Mises (W2) 0.242252 0.242311 < 0.005  
Watson (U2) 0.241804 0.241863 < 0.005  
Anderson-Darling (A2) 1.665480 1.665630 < 0.005  
  
Method: Maximum Likelihood (Marquardt)
Estimation settings: tol= 0.10000 
Initial Values: C(1)=3.4E-19, C(2)=0.00484
Convergence achieved after 1 iteration 
Covariance matrix computed using second derivatives
Parameter Value    Std. Error z-Statistic Prob.  
MU 0.000164 0.000156 1.049977 0.2937 
S 0.004580 8.19E-05 55.89010 0.0000 
Log likelihood 9314.235       Mean dependent var. 3.44E-19 
No. of Coefficients 2      S.D. dependent var. 0.008775

Table 8-4 Empirical Distribution Test for CIRESID01 
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Figure 8-6 Histogram and Stats for CIRESID02 

 

Empirical Distribution Test for CIRESID02 
Hypothesis: Extreme Value Max 
Sample(adjusted): 16 2780 
Included observations: 2765 after adjusting endpoints 
Method Value   Adj. Value Probability  
Cramer-von Mises (W2) 6.481856 6.506510 < 0.01  
Watson (U2) 6.407398 6.431768 < 0.01  
Anderson-Darling (A2) 41.85633 42.01553 < 0.01  
     
Method: Maximum Likelihood (Marquardt) 
Estimation settings: tol= 0.10000 
Initial Values: C(1)=-0.00241, C(2)=0.00417 
Convergence achieved after 3 iterations 
Covariance matrix computed using second derivatives 
Parameter Value    Std. Error z-Statistic Prob.  
M -0.002568 0.000103 -24.89224 0.0000 
S 0.005283 6.15E-05 85.91097 0.0000 
Log likelihood 10382.65       Mean dependent var. 2.28E-19 
No. of Coefficients 2       S.D. dependent var. 0.005353 

Table 8-5 Empirical Distribution Test for CIRESID02 
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Figure 8-7 Histogram and Stats for CIRESID03 

 

Empirical Distribution Test for CIRESID03
Hypothesis: Extreme Value Min 
Sample(adjusted): 16 2780 
Included observations: 2765 after adjusting endpoints
Method Value   Adj. Value Probability  
Cramer-von Mises (W2) 3.535262 3.548708 < 0.01  
Watson (U2) 3.490771 3.504048 < 0.01  
Anderson-Darling (A2) 21.18180 21.26236 < 0.01  
  
Method: Maximum Likelihood (Marquardt)
Estimation settings: tol= 0.10000 
Initial Values: C(1)=0.00284, C(2)=0.00493
Convergence achieved after 1 iteration 
Covariance matrix computed using second derivatives
Parameter Value    Std. Error z-Statistic Prob.  
M 0.002818 9.92E-05 28.39861 0.0000 
S 0.005265 5.88E-05 89.50017 0.0000 
Log likelihood 10239.83       Mean dependent var. 1.06E-18 
No. of Coefficients 2      S.D. dependent var. 0.006318

Table 8-6 Empirical Distribution Test for CIRESID03 
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9 ARCH Effects 

Note we have not allowed for ARCH effects in our model. Our intent is to 

consider unconditional distributions. Further, we do not wish to dilute the focus 

of this paper, this is the error correction process is the return generation 

process. However, one can take a number of approaches, either a univariate 

GARCH model or a mutlivariate GARCH model to remove the ARCH effects 

[we do not quote the references for GARCH models in this paper]. 

 

10 Conclusion 

In this paper we take a “naive” view of the return generation process by allowing 

all the price data to “econometrically” speak for themselves. As returns are 

serially correlated we first attempt a VAR model. As the prices are cointegrated 

we then apply the VECM model. From the VECM model we are able to estimate 

the cointegrating vectors. We find that the cointegrating vectors (both lead and 

lag) explain the logarithmic returns nearly completely and thus propose a 

VECM-lead(CointEq1,2,3) model. 

The findings indicate that the return generation process can be modelled as an 

error correction process. Abnormal information or “news” only plays a marginal 

role in the process.  Normal information and expectations play a significant role 

in the process. Our model does not contradict the EMH hypothesis. However, 

we make a distinction between “expectations” over “information” in the return 

generation process.  

The model also supports the view that asset price dynamics comprise of normal 

and abnormal shocks [see Merton (1976)]: 

(1) The normal shocks can be due to “temporary imbalance between supply 

and demand” Merton (1976), changes in the price of risk or in the 
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economic outlook, or other new information that causes marginal 

changes in the asset value. 

(2) The abnormal shocks are due to “the arrival of new important information 

about the asset that has more than a marginal effect on value” Merton 

(1976). 

We further found that the COINTEQ01 residuals are more “normal” than the 

D(CLOSE) logarithmic returns. The results for the VECM-lead(CointEq1,2,3) 

model indicate that COINTEQ01 (or 0.999681t tC O− ) is a good proxy for tC∆  

logarithmic returns or the change in close logarithmic prices is equivalent to the 

difference between the current close and current open logarithmic prices. 

We also find that the cointegrating logarithmic returns are non-normally 

distributed, with the logistic and extreme-value distributions being able to 

describe the serially uncorrelated cointegrating residuals. Whilst this may be 

pre-emptive in this paper, it sets a possible direction for further research into the 

unconditional distributions of financial asset returns. 
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