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1 Introduction

Functional form specification and heteroscedasticity estimation are two problems of-

ten faced by econometricians. There is a large literature on estimating and testing

heteroscedasticity,1 as well as a sizable literature on estimating and testing functional

form.2 In this paper we address these two issues together. Although a single trans-

formation on the response may result in a correct functional relationship between the

response and the explanatory variables, the residuals may be heteroscedastic. When

the issue of functional form is of primary concern, a serious consequence of assuming

homoscedastic errors is that the estimate of the response transformation is often biased

toward the direction of stabilizing the error variance (Zarembka, 1974).

Lahiri and Egy (1981) suggested that the estimation of functional form should be

separated from the issue of stabilizing the error variance and that the tests for functional

form and heteroscedasticity should be jointly considered. They proposed a test based

on the likelihood ratio (LR) statistic with the Box-Cox transformation and a simple

heteroscedasticity structure. Seaks and Layson (1983) derived a procedure for the joint

estimation of functional form and heteroscedasticity. Tse (1984) proposed an LM test

for jointly testing log-linear versus linear transformation with homoscedastic errors.

In this paper we consider the problem of testing functional form and heteroscedas-

ticity, both separately and jointly, in a heteroscedastic transformation model. We de-

rive Lagrange multiplier (LM) statistics for (i) testing jointly functional form and het-

eroscedasticity, (ii) testing functional form in the presence of heteroscedasticity, and (iii)

testing heteroscedasticity in the presence of data transformation. These tests are either

generalizations or alternatives of the tests available in the literature, such as the tests

by Lahiri and Egy (1981) and Tse (1984) for case (i), Lawrance (1987) for case (ii) and

Breusch and Pagan (1979) for case (iii). The LM statistics are derived based on the

1See, for example, Goldfeld and Quant (1965), Glejser (1969), Harvey (1976), Amemiya (1977),
Breusch and Pagan (1979), Koenker (1981), Ali and Giaccotto (1984), Griffiths and Surekha (1986),
Farebrother (1987), Maekawa (1987), Evans and King (1988), Kalirajan (1989), Evans (1992), and
Wallentin and Agren (2002).

2See, for example, Box and Cox (1964), Godfrey and Wickens (1981), Davidson and MacKinnon
(1985), Lawrance (1987), Baltagi (1997), and Yang and Abeysinghe (2003).
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expected information matrix. As argued by Bera and McKenzie (1986), this version of

the LM statistic is likely to have the best small-sample performance.

For cases (i) and (ii), formulae for the computation of the expected-information based

LM statistics are derived assuming the Box-Cox transformation. For case (iii), the as-

ymptotic distribution of the LM statistic does not depend on whether the functional-

form parameter is estimated or pre-specified. Indeed, the result applies to any smooth

monotonic functional-form specification. Furthermore, when the null hypothesis corre-

sponds to a homoscedastic model under the alternatives specified by Breusch and Pagan

(1979), the test does not depend on the postulated alternative heteroscedasticity struc-

ture. Monte Carlo simulations are performed to examine the small-sample performance

of the tests against other versions of LM statistics, as well as the LR statistic. The

results show that the expected-information based LM test has the most appropriate

empirical finite-sample size. It outperforms the LR test and other versions of LM test,

including the one based on the double-length regression .

The proposed expected-information based LM statistic has closed-form expressions

and is computationally much simpler than the LR statistic. Furthermore, it applies

to null hypotheses with an arbitrary transformation parameter. While the existing lit-

erature focuses on specific transformation parameters corresponding to linear versus

log-linear regression (Godfrey and Wickens, 1981, and Godfrey, McAleer and McKen-

zie, 1988, among others) and simple difference versus percentage change (Layson and

Seaks, 1984, and Baltagi and Li, 2000, among others), our results extend to any hy-

pothesized value within the given range. Also, we accommodate the null hypothesis of

heteroscedastic errors, which extends beyond testing only for homoscedasticity.

The rest of the paper is organized as follows. Section 2 describes the model and the

maximum likelihood estimation of the model parameters. Section 3 develops the LM

statistics. Section 4 evaluates the small-sample properties of the LM tests by means of

Monte Carlo simulation. Section 5 concludes.
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2 The Model

Let h(.) be a monotonic increasing transformation dependent on a parameter vector λ

with p elements. Suppose that the transformed dependent observation h(yi,λ) follows a

linear regression model with heteroscedastic normal errors given by:

h(yi,λ) = h
I(x1i,λ)β1 + xI2iβ2 + σ ω(vi, γ) ei, i = 1, · · · , n, (1)

where β1 and β2 are k1 × 1 and k2 × 1 vectors of regression coefficients, x1i and x2i
are k1 × 1 and k2 × 1 vectors of independent variables, ω(vi, γ) ≡ ωi(γ) is the weight

function, vi is a set of q weighting variables, γ is a q× 1 vector of weighting parameters,
and σ is a constant. Note that among the regressors the functional transformation h(·)
is applied to x1i but not x2i.

3

It is convenient to re-write equation (1) as

h(yi,λ) = x
I
i(λ)β + σ ω(vi, γ) ei, i = 1, · · · , n, (2)

where xi(λ) = (h
I(x1i,λ), xI2i)

I, and β = (β I1, β
I
2)
I has k = k1+k2 elements. The weighting

variables vi may include some regressors in x1i and x2i. We assume ω(vi, 0) = 1 so that

γ = 0 represents a model with homoscedastic errors.

Let ψ = {βI,σ2, γI,λI}I be the parameter vector of the model. We now discuss the
estimation of the model, followed by the tests of functional form and heteroscedasticity

in the next section.

2.1 Estimation

Let Ω(γ) = diag{ω21(γ), · · · ,ω2n(γ)}. We denote the n × k regression matrix by X(λ)
and the n × 1 vector of (untransformed) dependent variable by Y. The log-likelihood
function of model (1), ignoring the constant, is

f(ψ) = −n
2
log σ2 −

n3
i=1

logωi(γ)− 1

2σ2

n3
i=1

^
h(yi,λ)− xIi(λ)β

ωi(γ)

�2

+
n3
i=1

log hy(yi,λ), (3)

3Throughout this paper we assume that yi and all elements of x1i are positive.
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where hy(y,λ) = ∂h(y,λ)/∂y.4 For given γ and λ, the constrained MLE of β and σ2 are

β̂(γ,λ) = [XI(λ)Ω−1(γ)X(λ)]−1XI(λ)Ω−1(γ)h(Y,λ), (4)

σ̂2(γ,λ) =
1

n
hI(Y,λ)M(γ,λ)Ω−1(γ)M(γ,λ)h(Y,λ), (5)

where M(γ,λ) = In − X(λ)[XI(λ)Ω−1(γ)X(λ)]−1XI(λ)Ω−1(γ). Substituting these ex-
pressions into (3) gives the following concentrated (profile) log-likelihood of γ and λ,

fp(γ,λ) = n log
�
J̇(λ)/ω̇(γ)

=
− n
2
log σ̂2(γ,λ), (6)

where ω̇(γ) and J̇(λ) are the geometric means of ωi(γ) and Ji(λ) = hy(yi,λ), respectively.

Maximizing (6) over γ gives the constrained MLE of γ given λ, denoted as γ̂c; maxi-

mizing (6) over λ gives the constrained MLE of λ given γ, denoted as λ̂c, and maximizing

(6) jointly over γ and λ gives the unconstrained MLE of γ and λ, denoted as γ̂ and λ̂,

respectively. Substituting γ̂c into equations (4) and (5) gives the MLE of β and σ
2 with

λ constrained. Likewise, substituting λ̂c into equations (4) and (5) gives the MLE of β

and σ2 with γ constrained. The unconstrained MLE of β and σ2 are obtained, however,

when γ̂ and λ̂ are substituted into equations (4) and (5). To facilitate the construc-

tion of various test statistics, the Appendix provides the first- and second-order partial

derivatives of the log-likelihood function.

If the transformation and weight parameters are given, equation (2) can be con-

verted to the standard linear regression equation by pre-multiplying Ω−
1
2 (γ) on each

side of equation (2), where Ω−
1
2 (γ) = diag{ω−11 (γ), · · · ,ω−1n (γ)}. Thus, the standard

linear regression theory applies after replacing h(Y,λ) by Ω−
1
2 (γ)h(Y,λ) and X(λ) by

Ω−
1
2 (γ)X(λ).

3 Lagrange Multiplier Tests

Let S(ψ) be the score vector, H(ψ) be the Hessian matrix, and I(ψ) = −E[H(ψ)] be the
information matrix. If ψ̂0 is the constrained MLE of ψ under the constraints imposed

by the null hypothesis, the LM statistic takes the following general form

LME = S
I(ψ̂0)I−1(ψ̂0)S(ψ̂0). (7)

4This notation for partial derivatives will be used for ωi(γ) and xi(λ) as well.
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See, for example, Godfrey (1988). As I(ψ) may not be easily obtainable, alternative

ways of estimating the information matrix have been proposed. In particular, I(ψ) may

be replaced by −H(ψ) or the outer product of the gradient (OPG) G(ψ)IG(ψ), with
G(ψ) = {∂fi(ψ)/∂ψI}, where fi is the element of the log likelihood f corresponding to
the ith observation. Hence, the Hessian form and the OPG form of the LM statistic,

denoted by LMH and LMG, respectively, can be calculated as follows:

LMH = −S I(ψ̂0)H−1(ψ̂0)S(ψ̂0), (8)

LMG = 1InG(ψ̂0)[G
I(ψ̂0)G(ψ̂0)]−1GI(ψ̂0)1n, (9)

where 1n is an n-dimensional vector of unity. We shall denote D(ψ̂0) = G
I(ψ̂0)G(ψ̂0).

In addition, the LM statistic can also be calculated from the double-length artificial

regression proposed by Davidson and MacKinnon (1984). We denote this version of the

LM statistic by LMD. Defining ei(ψ) = [h(yi,λ)−xIi(λ)β]/[σωi(γ)], LMD is the explained

sum of squares of the following regression (with 2n observations and k + p + q + 1

regressors): w
e(ψ̂0)
1n

W
=

X −∂e(ψ̂0)/∂ψI
∂
p
log |∂e(ψ̂0)/∂y|

Q
/∂ψI

~
θ + ε (10)

where e(ψ) = {ei(ψ)}, and θ and ε are, respectively, the regression parameter and

residual. The LMD statistic has been found to outperform the LMH and LMG statistics

in finite-sample performance (Davidson and MacKinnon, 1993), and has been applied

by many authors in different situations (see Tse, 1984, and Baltagi and Li, 2000, among

others).

Let ψ be divided into two components denoted by ψ1 and ψ2, with similar notations

for the score functions, the Hessian matrix and the information matrix. If the null

hypothesis concerns the parameters in ψ2 only, then LME can be written as

LME = S
I
2(ψ̂0)I

22(ψ̂0)S2(ψ̂0),

where I22(ψ) denotes the relevant block of I−1(ψ).5 Similar expressions for LMH and

LMG can be obtained.

5Similar notations will be used for H(ψ) and D(ψ).
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Although the four forms of LM statistic are asymptotically equivalent with the same

limiting chi-squared distribution under the null, LME is expected to give the best finite-

sample performance.6 This will be verified empirically in our present context using

Monte Carlo experiment.

We now consider the LM tests for functional form and heteroscedasticity, both jointly

and conditionally.

3.1 Tests for functional form and heteroscedasticity

Equations (8), (9) and (10) can be used as generic formulae for the Hessian-based,

gradient-based and double-length regression based forms of the LM statistic, respectively,

for various tests (joint and conditional) of functional form and heteroscedasticity. The

derivatives given in the Appendix facilitate the calculation of these statistics, and they

are applicable for arbitrary transformations and weight functions. In what follows we

focus on the LME statistic, which requires the evaluation of the expectation of the

Hessian matrix.

While equation (1) describes the general model, the following assumptions give rise

to simplified calculations in specific cases.

Assumption 1. The transformation is given by the Box-Cox power transformation

(Box and Cox, 1964):

h(y,λ) =

⎧⎨⎩ (y
λ − 1)/λ,

log y,

if λ W= 0,
if λ = 0.

(11)

with the condition Max{|θi|}U 1, where θi = λσ ωi(γ)/(1 + ληi) with ηi = x
I
i(λ)β.

Commonly adopted functional forms under the Box-Cox transformation are λ = 1

(linear) and λ = 0 (log-linear).7 While tests of linear versus log-linear functional forms

have been the focus of many papers in the literature, we shall generalize the results to

6Bera and MacKenzie (1986) has argued for the superior small-sample performance of LME over
LMH and LMG, which has been found to be empirically supported. Also, the superior performance of
LMD over LMH and LMG in small samples has been shown in many empirical studies (see Davidson
and MacKinnon, 1983, 1984). We shall show below, however, that LMD is dominated by LME in tests
of functional form and heteroscedasticity.

7See Godfrey and Wickens (1981), Tse (1984), Davidson and MacKinnon (1985) and Baltagi (1997).
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testing for arbitrary values of λ.

It is well known that the Box-Cox power transformation works only for nonnegative

observations and it is bounded below or above when λ W= 0. An alternative transforma-
tion to circumvent this truncation problem is given by the following:

h(y,λ) =

⎧⎨⎩ (y
λ − y−λ)/(2λ),

log y,

if λ W= 0,
if λ = 0,

(12)

which is called the Dual-Power Transformation (Yang, 2002). Other proposals can be

found in Bickel and Doksum (1981), Burbidge, Magee and Robb (1988), MacKinnon

and Magee (1990), and Yeo and Johnson (2000).

Under the Box-Cox transformation, requiring Max{|θi|} to be small is equivalent to
requiring the truncation effect to be small. This is seen as follows. Since (yλi − 1)/λ =
xIi(λ)β + σωi(γ)ei, we have y

λ
i = 1+ λxIi(λ)β + λσωi(γ)ei. As yi > 0 implies y

λ
i > 0, this

in turn implies |λσωi(γ)|U 1 + λxIi(λ)β for the truncation on ei to be negligible.

The assumption below refers to the heteroscedastic structure, and has been adopted

by Breusch and Pagan (1979), among others.

Assumption 2. The weighting function satisfies ω(vi, γ) = ω(vIiγ).

A consequence of this assumption is that ωiγ(γ) = ∂ω(vi, γ)/∂γ evaluated at γ = 0

(homoscedasticity assumption) is equal to a constant multiple of vi. This assumption

incorporates many commonly used heteroscedastic models, including the multiplicative

model of Harvey (1976).

We now consider testing for functional form and heteroscedasticity jointly, with the

null hypothesis given by

H0 : γ = γ0,λ = λ0,

where γ0 and λ0 are arbitrary hypothesized values. The following theorem provides the

details for the computation of LME.
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Theorem 1. Under model (1) and Assumption 1, the LME statistic for testing

H0 : γ = γ0,λ = λ0, is given by

LME(γ0,λ0) = S
I
2(ψ̂0)

X
2DIAD, −2DIAû
−2ûIAD, ξ̂I1M(γ0,λ0)ξ̂2 + 2φ̂

IAφ̂+ 3
2
δ̂Iδ̂ − κ

~−1
S2(ψ̂0),

(13)

where D = {ωIiγ(γ0)/ωi(γ0)}n×q, A = In− (1n1nI)/n, In is an n×n identity matrix, and
κ = 4φIAθ2+2(1nIθ2)2/n with θ2 = {θ2i }. For λ0 = 0, κ = 0and various other quantities
in equation (13) can be obtained by substituting the constrained MLE into the following

n× 1 vectors:

δ = {σωi(γ0)}
φ = {ηi}
u = {ηi}
ξ1 =

l
1

2σω2i (γ0)

�
η2i − 2xIiλ(0)β

=M

ξ2 =
F
1

2σ

�
η2i − 2xIiλ(0)β

=k
.

For λ0 W= 0, the relevant quantities are:

δ = {θi/λ0},
φ = {λ−10 log(1 + λ0ηi)}
u =

+
φi − λ0δ

2
i

�
ξ1 =

l
1

ωi(γ0)

^
δi
2
+
φi
θi
+

θ3i
2λ0
− ηi
λ0σω(γ0)

− x
I
iλ(λ0)β

σωi(γ0)

�M

ξ2 =

l
ωi(γ0)

^
δi
2
+
φi
θi
+

θ3i
2λ0
− ηi
λ0σω(γ0)

− x
I
iλ(λ0)β

σωi(γ0)

�M
.

Under H0, LME(γ0,λ0)
D→ χ2p+q.

Proof. From the expressions of the elements of the Hessian matrix given in the

Appendix, we can show that

I22(ψ) =
w
2DIAD, −2DIAu
−2uIAD, ξI1M(γ,λ)ξ2 + 1

I
nv − 2

n
(1Inu)

2

W−1
,

where u, v, ξ1 and ξ2 are n× 1 vectors with the ith element being

ui = E[ei(ψ)eiλ(ψ)],
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vi = Var[eiλ(ψ)] + E[ei(ψ)eiλλ(ψ)] + E[∂
2 log hy(yi,λ)/∂λ

2],

ξ1i = ω−1i (γ)E[eiλ(ψ)], and

ξ2i = ωi(γ)E[eiλ(ψ)],

where ei(ψ) = [h(yi,λ) − xIi(λ)β]/[σωi(γ)], and eiλ and eiλλ are the first- and second-
order partial derivatives of ei(ψ) with respect to λ. Under the Box-Cox transformation,

the case of λ = 0 follows directly from calculations using log yi = ηi+σω(γ)ei. The case

of λ W= 0 needs approximation. Note that log yi has the following expansion

λ log yi = log(1 + ληi) + θiei − 1
2
θ2i e

2
i + · · ·+

(−1)k+1
k!

θki e
k
i + · · · . (14)

We use the third-order approximation (k = 3) in our derivation. The assumption of the

theorem ensures its accuracy. With the help of Mathematica, we obtain

E[eiλ(ψ)] =

X
δi
2
+
φi
θi
+

θ3i
2λ0
− ηi
λ0σω(γ0)

− x
I
iλ(λ0)β

σωi(γ0)

~
+O(θ4i ),

Var[eiλ(ψ)] =
1

λ2

w
1

2
θ2i − 2φθ2i + φ2i

W
+O(θ4i ),

E[ei(ψ)eiλ(ψ)] =
1

λ2

p
φi − θ2i

Q
+O(θ4i ),

E[ei(ψ)eiλλ(ψ)] =
1

λ2

p
θ2i − 2φθ2i + φ2i

Q
+O(θ4i ).

Putting the above together and simplifying, we obtain the results of the theorem. The

corresponding quantities for the case of λ = 0 can also be obtained by taking the limits

of the above quantities by letting λ go to zero. #

Note that the LME statistic generally depends on the weighting function ω(·). How-
ever, under Assumption 2 and with γ0 = 0 (test of homoscedasticity), LME does not

depend on the weighting function.8 This result has been pointed out by Tse (1982)

for the cases of testing for linear versus log-linear regressions with homoscedasticity.

Theorem 1 extends the result to the general case of a Box-Cox transformation with

an arbitrary transformation parameter and an arbitrary weighting function. However,

when γ0 W= 0, LME depends on the specification of the weighting function.

8This is due to the fact that ωiγ(0) is a constant multiple of vi.
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For testing functional form only, the following theorem is applicable.

Theorem 2. Under Model (1) and Assumption 1, the LME statistic for testing

H0 : λ = λ0 takes the form

LME(λ0) = S
I
λ(ψ̂0)

}
ξ̂I1M(γ̂c,λ0)ξ̂2 + 2φ̂

IAφ̂+
3

2
δ̂Iδ̂ − κ− 2ûAD̂(D̂IAD̂)−1D̂IAû

]−1
Sλ(ψ̂0),

(15)

where the ith row of D̂ is ωIiγ(γ̂c)/ωi(γ̂c). The quantities κ, δ,φ, u, ξ1 and ξ2 are as

given in Theorem 1, but evaluated at ψ̂0 = {β̂I(γ̂c,λ0), σ̂2(γ̂c,λ0), γ̂Ic,λ0}I. Under H0,
LME(γ0)

D−→ χ2p.

Proof. This follows directly from the proof of Theorem 1.

Note that LME in Theorem 2 depends on the weighting function ω(·).
For testing heteroscedasticity only, the following theorem applies.

Theorem 3. Under Model (1), when λ is known, the LME statistic for testing

H0 : γ = γ0 is
9

LME(γ0|λ) = 1

2
gI(γ0,λ)D1(DI1D1)

−1DI1g(γ0,λ), (16)

where D1 = (1n, D) and the ith element of g(γ0,λ) is

gi(γ0,λ) =

X
h(yi,λ)− xIi(λ)β̂(γ0,λ)

ωi(γ0)σ̂(γ0,λ)

~2
− 1. (17)

Under H0, LME(γ0|λ) D−→ χ2q. When λ is unknown and is replaced by λ̂c, we have

LME(γ0|λ̂c) d
= LME(γ0|λ),

i.e., the two statistics have the same asymptotic distribution. Furthermore, if Assump-

tion 2 holds and γ0 = 0,

LME(γ0|λ̂c) = 1

2
gI(γ0, λ̂c)V1(V I1V1)

−1V I1g(γ0, λ̂c), (18)

9The notation LME(γ0|λ) emphasizes that the statistic is evaluated at λ, which is the true but
unknown transformation parameter. Note that λ is neither estimated nor tested. Thus, LME(γ0|λ) is
not an operational test statistic. In contrast, LME(γ0|λ̂c) is the LM statistic for the heteroscedasticity

parameter γ0 evaluated at λ̂c. Note that the transformation parameter λ, however, is not tested.
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where V1 = (1n, V ) and V is the n× q matrix with the ith row being vIi, in which case
LME(γ0|λ̂c) does not depend on the weighting function.

Proof. When λ is known, the evaluation of the expectation of H(ψ) is straightfor-

ward, and the derivation of equation (16) parallels that in Breusch and Pagan (1979).

However, the statistic applies to a general value of γ0, and is generally dependent on

the weighting function. To prove LME(γ0|λ̂c) and LME(γ0|λ) have the same asymptotic
distribution it is sufficient to show that DI1(g(γ0, λ̂c)− g(γ0,λ))/

√
n

p→ 0. Using Taylor

expansion, we have

1√
n
DI1(g(γ0, λ̂c)− g(γ0,λ)) d

=
1√
n
DI1gλ(γ0,λ)(λ̂c − λ).

As λ̂c− λ p→ 0, the result follows provided DI1gλ(γ0,λ)/
√
n converges to a finite random

variable. Finally, under Assumption (2), ωiγ(0) = cvi for a constant c, which leads to

equation (18). Without loss of generality, ωi(0) can be set equal to 1 so that LME(0|λ̂c)
does not depend on the weighting function. #

The theorem above provides a conditional test for heteroscedasticity with a gen-

eral weighting function (not necessarily satisfying Assumption 2). It also shows that

the Breusch-Pagan test holds when the transformation (not necessarily the Box-Cox

transformation) parameters are estimated using MLE (or any consistent estimator).

4 Some Monte Carlo results

In this section we present some Monte Carlo results for the finite-sample performance of

the tests discussed in the last section. We shall focus on the empirical size of the tests in

small samples. Power comparison can only be meaningful when the tests are corrected

for size. As finite-sample critical values are not available unless extensive simulation is

conducted, we shall not examine the power of the size-corrected tests.

Joint test of heteroscedasticity and functional form. We consider the following

data generation process (DGP) when the data transformation is only applied to the
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response variable:

h(yi,λ) = β0 + β1x1i + σ exp(γx1i)ei, i = 1, · · · , n, (19)

with x1i ∼ U(0, 25) (i.e., uniformly distributed in the interval 0 to 25), and (β0,β1) =
(25, 10). We examine the performance of LME given in Theorem 1 under the as-

sumption of the Box-Cox transformation. The following parameters are considered:

λ0 = 0, 0.2, 0.5, 0.8, 1, γ0 = 0, 0.1, 0.2, 0.3, and σ = 0.1, 0.5. Using 10,000 Monte

Carlo sample runs, we calculate the empirical relative rejection frequency (empirical

size) for the test of H0 : λ = λ0, γ = γ0.

For the case when the data transformation is applied to some regressors as well, we

consider the following DGP:

h(yi,λ) = β0 + β1x1i + β2x2i(λ) + σ exp(γ1x1i + γ2x2i)ei, i = 1, · · · , n, (20)

with x1i and x2i both generated from U(0, 25). The parameters are given by: (β0, β1,β2) =

(25, 10, 10), λ0 = 0, 0.2, 0.5, 0.8, 1, γ10 = 0, 0.1, 0.2, 0.3, γ20 = 0, 0.1, 0.2, 0.3, and

σ = 0.1, 0.5.

Table 1 summarizes the empirical size of the tests for a nominal size of five percent.

The LME, LMD, LR, LMH and LMG statistics are considered. LME is computed using

equation (13). Panel A provides the results when there is no regressor transformation,

while Panel B summarizes the cases with regressor transformation. As the relative per-

formance of the test statistics is qualitatively similar for all parameter values considered,

only a subset of the results are presented.10 We observe that the LME statistic provides

appropriate empirical size even for small sample size of n = 30. For the LMH and LMG

statistics, the over-rejection of the null hypothesis is very serious, although the perfor-

mance improves for sample size n = 80. The LMG version appears to be worse than

the LMH version. The LR statistic performs better than both LMH and LMG, but is

inferior to LME. The LMD statistic outperforms LR, LMH and LMG. Its performance

is comparable to that of LME, except for the case with regressor transformation with

n = 30 and large γ20, where there is slight over-rejection.

10Other results are available from the authors on request.
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Test of functional form. We now evaluate the finite-sample properties of the

proposed LM tests for functional form. The DGP in equations (19) and (20) are used

for the cases of without and with regressor transformation, respectively. Theorem 2 is

used for the computation of LME, and the parameter values and Monte Carlo sample

size are the same as in the case of the joint test.

Table 2 summarizes the empirical sizes of the tests of functional form. Again, the

LME statistic performs the best, followed by LMD, LR, LMH and LMG. While LMD

performs quite well for n = 80, over-rejection can be serious for n = 30, reaching

empirical size of almost 10 percent in some cases. In contrast, while the LME statistic

shows slight over-rejection for n = 30 with regressor transformation, the over-rejection

appears to be mild.

Test of heteroscedasticity. Again the same parametric setup and DGPs are used

in the Monte Carlo experiment. Two data transformations are considered: the Box-

Cox transformation and the dual-power transformation. We compare the performance

of LME(γ0|λ), LME(γ0|λ̂c) and LR. As the expected information matrix can be easily
computed, and Theorem 3 shows that LME(γ0|λ) and LME(γ0|λ̂c) are asymptotically
equivalent, we do not consider other versions of LM statistic. As . We are in partic-

ular interested in the finite-sample performance of LME(γ0|λ̂c), as the transformation
parameter is unknown in practice.

Table 3 summarizes the results when there is no regressor transformation, while Table

4 presents the results when there is regressor transformation. The asymptotic equiva-

lence of LME(γ0|λ) and LME(γ0|λ̂c) appears to hold well in small sample, irrespective of
whether there is regressor transformation. Also, the empirical size of these tests approx-

imates well the nominal level. In comparison, the LR statistic performs rather poorly

for n = 30 when there is regressor transformation.

For each test, whether of joint hypotheses or separate hypotheses, a small scale Monte

Carlo experiment has been conducted to examine the power of the tests. For the LR,

LMD, LMH, and LMG statistics, empirical critical values are estimated by simulation.

On a size-corrected basis, we find that the empirical powers of the tests are comparable.

13



The LME statistic, however, offers an advantage that its nominal size is reliable in small

samples, and size correction by simulation is not required.

5 Conclusions

We have presented LM statistics for testing functional form and heteroscedasticity, both

jointly and separately, based on the expected information matrix. In the joint test

and the test of functional form, analytic formulae are derived assuming the Box-Cox

transformation. The tests apply to a specified functional form and heteroscedasticity

in general, and are not restricted to the cases of linear versus log-linear (or simple

difference versus percentage change) regressions with homoscedasticity. When testing for

heteroscedasticity, formulae are obtained conditional on the functional form. Replacing

the parameters of the transformation by their constrained MLE, however, does not alter

the asymptotic distribution of the test statistic. Our formulae generalize the results of

testing for homoscedasticity in the literature.

Our Monte Carlo study shows that the finite-sample performance of the expected-

information version is superior to the versions based on the double-length regression,

the observed-information and the OPG. It also performs well against the LR statistic,

providing empirical size closer to the nominal level. Due to its comparative simplicity

in computation versus the LR statistic and its superior small-sample performance, the

LME statistic is recommended. It provides convenient diagnostics for functional form

and heteroscedasticity with desirable small-sample properties.
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APPENDIX: Scores and Observed Information

For the model with a general transformation and a general weighting function, the

score function S(ψ) has the following elements:

Sβ =
1

σ2

n3
i=1

[h(yi,λ)− xIi(λ)β]xi(λ)
ω2i (γ)

Sσ2 =
1

2σ4

n3
i=1

[h(yi,λ)− xIi(λ)β]2
ω2i (γ)

− n

2σ2

Sγ =
1

σ2

n3
i=1

ωiγ(γ)

ω3i (γ)
[h(yi,λ)− xIi(λ)β]2 −

n3
i=1

ωiγ(γ)

ωi(γ)

Sλ =
n3
i=1

hyλ(yi,λ)

hy(yi,λ)
− 1

σ2

n3
i=1

[h(yi,λ)− xIi(λ)β][hλ(yi,λ)− xIiλ(λ)β]
ω2i (γ)

from which the gradient matrix can be easily formulated. The elements of the Hessian

matrix H(ψ) = ∂S(ψ)/∂ψI are given by:

Hββ = −σ−2
n3
i=1

xi(λ)x
I
i(λ)ω

−2
i (γ)

Hσ2σ2 = −σ−4
n3
i=1

e2i (ψ) +
n

2σ4

Hγγ = −
n3
i=1

^
ωiγγ (γ)

ωi(γ)
− ωiγ(γ)ω

I
iγ(γ)

ω2i (γ)

�
+

n3
i=1

e2i (ψ)

^
ωiγγ (γ)

ωi(γ)
− 3ωiγ(γ)ω

I
iγ(γ)

ω2i (γ)

�

Hλλ = −
n3
i=1

�
e2iλ(ψ) + ei(ψ)eiλλ(ψ)

=
+

n3
i=1

�
∂2 log hy(yi,λ)/(∂λ

2)
=

Hβσ2 = −σ−3
n3
i=1

ei(ψ)xi(λ)ω
−1
i (γ)

Hβγ = −2σ−1
n3
i=1

ei(ψ)xi(λ)ω
I
iγ(γ)ω

−2
i (γ)

Hβλ = σ−1
n3
i=1

[eiλ(ψ)xi(λ) + ei(ψ)xiλ(λ)]ω
−1
i (γ)

Hσ2γ = −σ−2
n3
i=1

e2i (ψ)ωiγ(γ)ω
−1
i (γ)

Hσ2λ = σ−2
n3
i=1

ei(ψ)eiλ(ψ)

Hγλ = 2
n3
i=1

ei(ψ)eiλ(ψ)ωiγ(γ)ω
−1
i (γ).

Now, for the Box-Cox transformation, we have hy(y,λ) = y
λ−1, hyλ(y,λ) = yλ−1 log y,

hyλλ(y,λ) = y
λ−1(log y)2, and

hλ(y,λ) =

l
1
λ
[1 + λh(y,λ)] log y − 1

λ
h(y,λ), λ W= 0,

1
2
(log y)2, λ = 0,
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hλλ(y,λ) =

l
hλ(y,λ)(log y − 1

λ
) + 1

λ2
[h(y,λ)− log y], λ W= 0,

1
3
(log y)3, λ = 0.

For the dual-power transformation of Yang (2002), we have hy(y,λ) =
1
2
[yλ−1 + y−λ−1],

hyλ(y,λ) =
1
2
(yλ−1 − y−λ−1) log y, hyλλ(y,λ) = 1

2
(yλ−1 + y−λ−1)(log y)2, and

hλ(y,λ) =

l
1
2λ
(yλ + y−λ) log y − 1

λ
h(y,λ), λ W= 0,

0, λ = 0,

hλλ(y,λ) =

l
h(y,λ)(log y)2 − 2

λ
hλ(y,λ) λ W= 0,

1
3
(log y)3, λ = 0.

These partial derivatives are also available for other transformations such as Yeo and

Johnson (2000),
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Table 1. Empirical size (%) for joint tests of functional form and heteroscedasticity,
H0: γ = γ0,λ = λ0, at α = 5% with σ = 0.1

n = 30 n = 80
λ0 γ10 γ20 LME LMD LR LMH LMG LME LMD LR LMH LMG

A: Without regressor transformation

0.0 0.1 4.41 4.84 6.87 11.76 17.22 5.01 5.32 5.80 7.44 11.08
0.2 0.1 5.12 5.75 7.67 12.66 17.65 4.68 5.02 5.68 7.21 10.97
0.5 0.1 4.85 5.68 7.74 12.33 18.16 4.89 5.19 5.77 7.13 10.43
0.8 0.1 4.82 5.65 7.53 12.49 17.72 4.35 4.74 5.19 6.74 10.72
1.0 0.1 5.00 5.86 8.01 12.81 17.88 5.01 5.27 5.84 7.45 11.02

0.0 0.2 4.93 5.48 7.27 12.29 18.01 5.17 5.43 5.86 7.37 10.87
0.2 0.2 5.00 5.73 7.63 12.32 17.35 4.96 5.32 5.90 7.37 10.78
0.5 0.2 4.77 5.47 7.36 12.58 17.95 4.94 5.30 5.89 7.31 11.06
0.8 0.2 5.01 5.77 7.53 12.24 17.96 4.34 4.76 5.40 6.76 10.27
1.0 0.2 4.84 5.41 7.34 12.32 17.58 4.87 5.32 5.83 7.37 11.04

B: With regressor transformation

0.0 0.0 0.1 5.07 6.39 11.87 22.73 26.52 5.02 5.53 6.92 10.07 16.16
0.2 0.0 0.1 4.76 5.87 11.55 21.39 26.23 4.81 5.43 6.59 9.61 15.92
0.5 0.0 0.1 4.39 5.46 10.76 20.94 24.27 4.75 5.41 6.50 9.00 15.33
0.8 0.0 0.1 4.92 5.49 11.82 21.17 24.53 5.01 5.21 6.69 9.32 15.28
1.0 0.0 0.1 4.61 5.27 11.50 20.67 24.45 5.07 5.13 6.68 8.70 15.12

0.0 0.0 0.2 5.47 6.65 11.44 22.74 27.66 5.22 6.02 7.21 10.60 17.24
0.2 0.0 0.2 5.06 6.40 11.85 21.83 27.40 4.96 5.74 7.14 10.23 16.12
0.5 0.0 0.2 4.94 6.19 12.17 22.33 26.58 4.91 5.21 6.52 9.43 15.30
0.8 0.0 0.2 4.54 5.97 12.42 22.13 24.62 4.59 5.05 6.50 9.11 15.33
1.0 0.0 0.2 4.98 5.70 11.99 21.87 24.51 4.84 5.19 6.62 9.09 15.66

0.0 0.0 0.3 5.13 6.72 11.99 23.06 28.32 5.53 6.48 7.82 11.56 18.08
0.2 0.0 0.3 5.20 7.11 11.74 22.47 28.60 4.79 5.53 6.93 10.59 16.63
0.5 0.0 0.3 4.93 6.51 11.99 22.73 27.18 5.31 6.11 7.45 10.75 17.05
0.8 0.0 0.3 5.08 6.39 12.03 22.83 25.39 5.01 5.44 7.19 9.72 15.61
1.0 0.0 0.3 5.10 6.24 12.08 22.10 24.29 5.16 5.58 6.96 9.48 15.95

0.0 0.1 0.1 5.35 6.13 9.88 21.20 25.59 4.86 5.01 6.57 9.25 15.55
0.2 0.1 0.1 4.86 5.65 10.91 20.61 25.95 4.82 5.25 6.27 8.95 15.09
0.5 0.1 0.1 4.88 4.97 10.29 19.50 23.04 4.92 5.31 6.63 9.04 14.90
0.8 0.1 0.1 5.02 4.93 10.34 19.27 23.28 5.20 5.50 6.78 9.14 15.29
1.0 0.1 0.1 5.32 5.60 10.93 19.29 23.95 5.23 5.67 6.76 8.63 14.86

0.0 0.1 0.2 5.23 6.25 10.11 21.29 25.73 5.45 5.73 6.93 9.74 16.22
0.2 0.1 0.2 5.19 6.27 11.32 22.12 27.06 4.70 5.10 6.40 8.92 14.90
0.5 0.1 0.2 5.40 6.02 11.19 20.86 24.08 4.91 5.12 6.71 9.32 14.91
0.8 0.1 0.2 5.40 5.45 10.92 20.62 22.99 5.42 5.48 6.89 9.53 15.45
1.0 0.1 0.2 5.30 5.34 11.20 20.05 22.98 5.10 5.09 6.83 9.18 15.32

0.0 0.1 0.3 5.77 6.91 11.67 23.00 27.99 5.21 5.56 6.98 10.46 16.62
0.2 0.1 0.3 5.95 6.96 11.92 23.18 29.08 5.52 6.12 7.62 11.16 17.46
0.5 0.1 0.3 5.30 6.28 11.47 22.26 26.01 4.96 5.31 6.93 10.21 16.41
0.8 0.1 0.3 5.46 6.20 10.93 20.56 24.02 5.19 5.48 6.76 9.64 15.95
1.0 0.1 0.3 5.31 6.18 11.37 21.02 23.82 5.03 4.98 6.55 9.28 15.70
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Table 2. Empirical size (%) for tests of functional form, H0: λ = λ0, at α = 5%
with σ = 0.1

n = 30 n = 80
λ0 γ1 γ2 LME LMD LR LMH LMG LME LMD LR LMH LMG

A: Without regressor transformation

0.0 0.1 5.65 6.75 7.45 10.43 12.74 4.61 4.96 5.11 6.38 7.72
0.2 0.1 5.67 6.90 7.80 11.24 13.12 4.78 5.19 5.39 6.53 7.76
0.5 0.1 5.05 6.36 7.17 10.67 12.51 5.15 5.63 5.85 6.86 8.32
0.8 0.1 5.36 6.81 7.65 11.31 12.80 5.10 5.48 5.68 6.68 8.01
1.0 0.1 5.94 7.17 8.04 11.39 13.26 4.87 5.31 5.49 6.47 8.10

0.0 0.2 5.48 6.33 7.00 9.75 12.71 5.19 5.57 5.77 6.77 7.99
0.2 0.2 5.38 6.77 7.64 11.15 13.65 5.56 5.93 6.14 7.32 8.94
0.5 0.2 5.68 6.81 7.75 11.23 13.61 5.37 5.75 5.88 6.86 8.47
0.8 0.2 5.60 6.92 7.69 11.26 13.70 5.23 5.56 5.71 6.82 8.25
1.0 0.2 5.48 6.78 7.79 11.19 13.17 5.01 5.47 5.63 6.50 8.08

B: With regressor transformation

0.0 0.0 0.1 6.09 8.30 9.04 15.57 21.19 5.54 6.29 6.52 8.41 11.95
0.2 0.0 0.1 5.52 8.04 9.64 15.88 20.11 5.29 6.14 6.33 8.35 11.38
0.5 0.0 0.1 5.81 8.20 9.91 15.73 19.08 5.07 5.53 6.16 7.76 9.99
0.8 0.0 0.1 5.85 7.33 8.99 13.34 15.58 5.19 5.89 6.21 7.55 9.57
1.0 0.0 0.1 5.74 6.94 8.98 12.53 14.61 5.30 5.72 6.18 7.29 9.35

0.0 0.0 0.2 6.28 9.04 9.70 16.12 25.15 5.52 6.20 6.40 8.81 13.10
0.2 0.0 0.2 6.05 8.70 10.33 16.85 25.08 5.10 6.12 6.28 8.39 11.94
0.5 0.0 0.2 5.81 8.28 10.13 15.89 22.96 5.82 6.07 6.88 8.61 11.19
0.8 0.0 0.2 6.03 8.07 9.96 15.05 19.16 5.24 5.63 6.50 8.11 10.51
1.0 0.0 0.2 5.91 7.93 9.60 13.74 16.45 5.50 5.63 6.65 7.99 10.01

0.0 0.0 0.3 6.37 9.32 10.50 17.45 29.16 5.82 6.66 6.78 9.81 14.83
0.2 0.0 0.3 7.03 9.86 10.97 17.22 28.61 5.42 6.44 6.79 9.37 14.01
0.5 0.0 0.3 6.58 9.46 11.00 17.50 28.58 5.40 6.23 6.75 9.23 12.39
0.8 0.0 0.3 6.54 8.90 10.81 16.47 24.34 5.67 6.11 6.91 9.00 11.27
1.0 0.0 0.3 6.27 8.15 10.57 15.51 20.76 5.37 6.21 6.66 8.41 10.32

0.0 0.1 0.1 5.82 7.91 9.04 15.22 21.93 5.49 6.18 6.31 8.21 11.63
0.2 0.1 0.1 5.50 7.39 9.03 14.71 21.11 5.15 5.79 6.43 8.09 11.34
0.5 0.1 0.1 6.07 8.00 9.55 14.56 19.38 5.35 5.97 6.47 8.15 10.52
0.8 0.1 0.1 5.63 7.26 8.80 12.71 15.54 5.15 5.38 6.29 7.57 10.06
1.0 0.1 0.1 5.69 7.57 9.19 12.96 15.37 5.32 5.27 6.58 7.96 9.62

0.0 0.1 0.2 6.23 8.43 9.33 15.85 24.62 5.21 6.13 6.33 8.57 13.09
0.2 0.1 0.2 6.59 8.90 10.56 16.29 25.62 5.35 6.22 6.53 8.65 12.53
0.5 0.1 0.2 5.92 7.81 9.78 15.43 22.64 5.71 6.33 7.08 9.29 11.49
0.8 0.1 0.2 5.92 8.43 9.87 13.91 17.27 5.55 6.49 6.78 8.38 10.89
1.0 0.1 0.2 6.06 7.67 9.22 12.71 15.45 5.39 6.13 6.53 8.07 10.53

0.0 0.1 0.3 6.13 8.91 9.70 16.25 28.07 5.93 6.83 6.83 10.04 15.04
0.2 0.1 0.3 6.56 9.13 10.43 16.70 28.76 5.44 6.54 6.98 9.79 13.93
0.5 0.1 0.3 6.18 8.39 10.35 16.50 26.65 5.58 6.45 7.16 9.62 12.90
0.8 0.1 0.3 6.42 8.52 10.73 15.89 21.94 5.58 6.45 7.14 9.22 11.81
1.0 0.1 0.3 6.84 8.71 10.98 15.24 18.94 5.27 6.36 6.60 8.55 10.72
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Table 3. Empirical size (%) for tests of heteroscedasticity, H0 : γ = γ0,
at α = 5%, without regressor transformation, with σ = 0.1

n = 30 n = 80

λ γ0 LME(λ) LME(λ̂) LR LME(λ) LME(λ̂) LR

A: Box-Cox transformation

0.0 0.0 4.00 3.89 8.18 4.76 4.58 6.87
0.2 0.0 3.87 3.51 6.83 4.66 4.81 5.71
0.5 0.0 3.92 3.77 7.34 4.51 4.48 5.36
0.8 0.0 4.43 4.29 8.14 4.81 4.76 5.58
1.0 0.0 4.28 4.17 7.59 4.48 4.47 5.39

0.0 0.1 4.07 3.98 8.08 4.88 4.94 7.40
0.2 0.1 4.25 4.18 7.46 4.77 4.75 5.68
0.5 0.1 4.21 4.04 7.08 4.44 4.48 5.26
0.8 0.1 3.95 3.92 7.33 4.40 4.40 5.04
1.0 0.1 4.37 4.09 7.50 4.59 4.54 5.49

0.0 0.2 4.31 4.13 8.06 4.61 4.63 6.50
0.2 0.2 4.35 4.00 7.27 4.94 4.91 5.64
0.5 0.2 4.16 3.77 7.01 4.76 4.96 5.67
0.8 0.2 4.35 4.21 7.27 4.42 4.46 5.44
1.0 0.2 3.79 3.63 7.03 4.64 4.97 5.65

B: Dual-power transformation

0.0 0.0 4.00 4.06 6.66 4.76 4.64 5.45
0.2 0.0 3.87 3.51 6.84 4.66 4.83 5.68
0.5 0.0 3.92 3.78 7.35 4.51 4.49 5.37
0.8 0.0 4.43 4.29 8.16 4.81 4.76 5.58
1.0 0.0 4.28 4.17 7.59 4.48 4.47 5.40

0.0 0.1 4.04 3.85 7.18 4.83 4.83 5.88
0.2 0.1 4.41 4.27 7.14 4.75 4.87 5.61
0.5 0.1 4.40 4.36 7.15 4.61 4.48 5.37
0.8 0.1 4.04 4.14 7.10 4.40 4.49 5.13
1.0 0.1 4.43 4.33 7.36 4.63 4.65 5.57

0.0 0.2 4.50 4.35 7.02 4.62 4.78 5.51
0.2 0.2 4.69 4.64 7.40 4.91 4.97 5.77
0.5 0.2 4.22 4.46 7.17 4.94 5.09 5.81
0.8 0.2 4.63 4.83 7.42 4.46 4.63 5.43
1.0 0.2 4.12 4.29 6.99 4.79 4.95 5.71
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Table 4. Empirical size (%) for tests of heteroscedasticity, H0 : γ = γ0,
at α = 5%, with regressor transformation, with σ = 0.1

n = 30 n = 80

λ γ10 γ20 LME(λ) LME(λ̂) LR LME(λ) LME(λ̂) LR

A: Box-Cox transformation

0.0 0.0 0.0 4.09 4.30 10.19 4.60 4.67 6.58
0.2 0.0 0.0 4.40 4.58 11.28 4.27 4.43 6.65
0.5 0.0 0.0 4.42 4.65 11.04 4.37 4.43 6.19
0.8 0.0 0.0 4.22 4.43 10.35 4.47 4.41 6.33
1.0 0.0 0.0 4.02 4.50 10.31 4.57 4.58 6.64

0.0 0.0 0.2 4.31 5.86 11.96 5.45 5.73 8.08
0.2 0.0 0.2 4.87 5.98 12.45 4.91 5.37 7.10
0.5 0.0 0.2 4.53 5.43 12.40 4.85 4.98 6.41
0.8 0.0 0.2 4.72 5.41 12.29 4.79 4.91 6.81
1.0 0.0 0.2 4.13 4.67 11.48 4.63 5.00 7.02

0.0 0.2 0.0 4.65 5.06 10.14 5.16 4.98 7.30
0.2 0.2 0.0 4.34 4.89 11.78 4.96 4.98 7.05
0.5 0.2 0.0 4.42 4.66 11.34 5.34 5.31 7.04
0.8 0.2 0.0 4.11 4.86 11.31 4.65 4.74 6.84
1.0 0.2 0.0 4.58 4.95 11.91 4.62 4.55 6.66

0.0 0.2 0.2 5.57 6.13 12.25 5.13 5.39 7.70
0.2 0.2 0.2 5.21 6.23 13.29 4.81 5.29 7.34
0.5 0.2 0.2 5.35 5.97 13.87 5.01 5.47 7.47
0.8 0.2 0.2 5.06 5.71 13.15 5.10 5.48 7.40
1.0 0.2 0.2 4.90 5.50 12.97 5.12 5.27 7.32

B: Dual-power transformation

0.0 0.0 0.0 3.60 3.85 10.28 4.75 4.68 5.63
0.2 0.0 0.0 3.96 4.32 11.05 4.50 4.68 6.57
0.5 0.0 0.0 4.37 4.68 12.56 4.76 5.01 6.80
0.8 0.0 0.0 3.77 4.42 12.02 5.02 5.30 6.64
1.0 0.0 0.0 4.04 4.59 11.89 4.91 5.10 6.73

0.0 0.0 0.2 5.00 5.77 11.13 4.63 4.65 6.66
0.2 0.0 0.2 5.10 6.43 12.33 5.05 5.48 7.22
0.5 0.0 0.2 5.81 6.72 14.16 5.22 5.83 7.85
0.8 0.0 0.2 5.90 6.66 14.58 5.40 6.04 7.63
1.0 0.0 0.2 5.59 5.85 13.69 5.23 5.74 7.59

0.0 0.2 0.0 4.14 4.16 9.21 4.92 5.04 6.25
0.2 0.2 0.0 4.83 4.95 10.34 5.01 5.04 6.62
0.5 0.2 0.0 4.71 4.99 10.57 4.79 5.09 6.74
0.8 0.2 0.0 4.20 4.84 10.47 4.92 5.28 6.45
1.0 0.2 0.0 4.35 4.98 10.70 4.87 5.06 6.92

0.0 0.2 0.2 5.52 5.82 9.63 5.21 5.84 6.76
0.2 0.2 0.2 5.84 6.58 11.24 5.46 5.87 7.19
0.5 0.2 0.2 5.64 6.40 11.44 5.38 5.94 7.44
0.8 0.2 0.2 5.53 6.79 10.76 5.38 5.83 7.42
1.0 0.2 0.2 5.37 6.54 10.90 5.60 6.11 7.48
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