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Abstract

The use of the Beveridge Nelson decomposition in macroeconomic analysis involves

the truncation and estimation of inÞnite weighted sums of random variables. The

single source of error state space approach provides a simple and effective alternative

that leads to exactly the same decomposition without the inÞnite weighted sum

and the required truncation. As such it provides a useful macroeconomic tool that

simpliÞes the calculation of the relative importance of permanent and temporary

shocks.
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1. Introduction

Two stylised facts associated with most macroeconomic time series are that they exhibit

long run growth and recurrent ßuctuations around the growth path. This has often led

to exercises which decompose macroeconomic series into trend and cyclical components,

where the trend represents long run growth in the economy and the cycle represents the

business cycle. There are many different ways in which this decomposition is undertaken

(see Canova (1998) for a recent survey), and there is considerable debate about which

decomposition (if any) leads to trends and cycles that best capture the features that

economists typically associate with economic growth and business cycles.

One decomposition that has attracted considerable attention in the applied macro-

economics literature is the one Þrst proposed by Beveridge and Nelson (BN) (1981).

They deÞned the trend of an ARIMA (p, 1, q) series as the level of the long run fore-

cast of a series (minus the deterministic trend, if any), and the cycle as the difference

between the present level and the trend component. This decomposition is based on

forecasting considerations, because not only does the BN trend embody the (time t)

long run forecast of the series, but the BN cycle also embodies the forecastable mo-

mentum of the series at each point in time. A by-product of the BN decomposition is

that the innovations in the trend and the cyclical components are perfectly (and often

negatively) correlated, which allows for the possibility that the BN trend and the BN

cycle are driven by the same innovation.

The forecasting literature has a long tradition of decomposing time series into trends

and cycles, and like the macroeconomic literature, there are various ways in which

this decomposition is undertaken and debate about which way is best. One popular

decomposition that is often used in forecasting is the unobserved components (UC)

decomposition advocated by Harvey (1985), in which the innovations in the trend and

cyclical components have zero correlation by assumption. Watson (1986), Stock and

Watson (1988), and Harvey and Koopman (2000) explore some of the properties of this

decomposition. An alternative forecasting approach introduced by Ord, Koehler and

Snyder (1997) is the class of state space models with a single source of disturbance.

In these latter models, the innovations of the unobserved state components as well
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as the observations are all perfectly correlated, because they are driven by the same

disturbance. It is this similarity with the BN property that motivates the use of a single

source of error (SSOE) state space forecasting approach to estimate the trend and cycle

components of BN decomposition.

Harvey and Koopman (2000) have observed that the BN trend and cycle components

for an ARIMA(0, 1, 1) model correspond to those from the UC decomposition with

perfectly correlated disturbances. Here, we generalise this observation to point out that

the SSOE state space forecasting approach can be used to obtain the BN trend and cycle

components for any series with a ARIMA(p, 1, q) process. Previous literature, including

Miller (1988), Newbold (1990) and Morley (2002) has noted the difficulties involved

with trucating and estimating the inÞnite sums in the BN trend, and has proposed

various computational methods to overcome this problem. The main advantage of the

SSOE state space forecasting approach is that in addition to providing an easy way to

avoid the truncation of the inÞnite sum in the trend component, it also allows a very

straight-forward comparison of the variances of the trend and cycle innovations.

2. Beveridge Nelson Decomposition

Assume that yt is a I(1) variable with a Wold representation given by

∆yt = µ+ γ (L) εt, (2.1)

where µ is the long run growth or drift, γ(L) is a polynomial in the lag operator L with

γ(0) = 1 and Σ∞i=0 |γi| <∞, and εt is an iid
¡
0,σ2

¢
one-step-ahead forecast error of yt.

The process γ(L)εt can be approximated as an ARMA(p, q) process, with γ(L) =
θ(L)
φ(L) ,

θ(L) = 1 + θ1L+ θ2L
2....θqL

q and φ(L) = 1 + φ1L+ φ2L
2....φpL

p.

The h step-ahead forecast of yt (denoted by byt+h) is given by
byt+h = µh+ yt + ³Σhi=1γi

´
εt +

³
Σh+1
i=2 γi

´
εt−1 + ......... (2.2)

For large values of h , BN (1981) approximated the h step-ahead forecast as

byt+h ≈ µh+ yt + (Σ∞i=1γi) εt + (Σ
∞
i=2γi) εt−1 + ......... . (2.3)
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This shows that the long run forecast is asymptotic to a linear function (with slope µ)

of the forecast horizon h, and a stochastic intercept (which is often called �the level�).

BN (1981) used the �level� at time t of the long run forecast given by equation (2.3)

to deÞne the trend τ t by

τ t = yt + (Σ
∞
i=1γi) εt + (Σ

∞
i=2γi) εt−1 + ........ (2.4)

Taking the Þrst difference in equation (2.4) we have

τ t − τ t−1 = ∆yt + (Σ
∞
i=1γi) εt − (γ1εt−1 + γ2εt−2 + .....) , (2.5)

which in view of equation (2.1) for ∆yt reduces to

τ t − τ t−1 = µ+ γ(1)εt (2.6)

with γ(1) = Σ∞i=0γi and γ0 = 1. Hence, the trend component τ t is a random walk with

drift equal to µ and a non-autocorrelated innovation given by γ(1)εt.

The cyclical component ct is deÞned as the difference between the current level yt

and the trend τ t. From equations (2.1) and (2.6), ct is given by

ct =

µ
γ (L)− γ(1)
(1− L)

¶
εt =

µ
θ(L)− γ(1)φ(L)
φ(L)(1− L)

¶
εt =

ψ(L)

φ(L)
εt, (2.7)

where ψ0 = 1−γ(1), and the order of ψ(L) is n with n ≤ max(p− 1, q− 1) (due to the
unit root in θ(L)− γ(1)φ(L)). It is clear from equations (2.6) and (2.7) that the trend

and cycle components are driven by the same innovation, so that the innovations to the

trend and cycle are perfectly correlated.

The truncation of the inÞnite sum in equation (2.4) complicates the estimation of

the trend and cyclical components. BN evaluated their expression for τ t by setting h

equal to a suitably large positive integer, while Newbold (1990) and Miller (1988) have

derived alternative expressions for τ t to simplify their calculations of τ t. Morley (2002)

uses a state space approach to simplify the decomposition, but he doesn�t use the perfect

correlation between τ t and ct to parameterise his state space model.

4



3. Single Source of Error State Space Models

The linear single source of error state space model proposed by Snyder (1985) is given

by

yt = β
0xt−1 + et (3.1a)

and

xt = Fxt−1 + αet (3.1b)

where (3.1a) is known as the measurement equation and (3.1b) is known as the system

equation. The k vector xt represents the unobserved state of the underlying process

at the beginning of period t, α is a Þxed k vector of parameters, et is an iid
¡
0,σ2

¢
innovation, β is a Þxed k vector, and F is a Þxed k× k transition matrix. Often both β
and F depend on a set of time invariant parameters. The key feature of this speciÞcation

is that both equations are driven by the same innovation.

Snyder (1985) shows that the likelihood function associated with (3.1a) and (3.1b)

is very simple, so that it is convenient to obtain maximum likelihood estimates of the

parameters using the prediction error decomposition of the likelihood in conjunction

with a suitable version of the Kalman Þlter. Further details relating to estimation are

described in Snyder (1985) or Harvey (1989).

The above state space model is stable if the matrix (F − αβ0), also known as the
discount matrix, has eigenvalues with absolute value less than one (Ord, Koehler, and

Snyder (1997)). Letting (F − αβ0) = D , it can be shown that

xt =
∞X
j=0

Djαyt−j (3.2)

and

yt =
∞X
j=1

β0Djαyt−j + et (3.3)

Hence, when D is strictly stable, Dj −→ 0 when j −→∞, the past observations have a
declining effect as one moves further back in time. Equation (3.3) resembles Blanchard�s

(1979) �backwards� solution to a rational expectations model.
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4. Single Source of Error State Space Approach to BN Decomposition

Consider a time series yt with an approximated ARIMA(p, 1, q) process represented by

(1). The I(1) term allows the series to be broken down into its trend (τ t) and cycle (ct)

components in accordance with the BN decomposition so that

yt = τ t + ct (4.1)

with

τ t = µ+ τ t−1 + αεt and ct =
ψ(L)

φ(L)
εt, (4.2)

where α = γ(1) from equation (2.6), ψ0 = 1 − α and the order of ψ(L) is n with
n ≤ max(p− 1, q − 1) (see (equation 2.7)).

Substituting equations (4.2) into (4.1) gives

yt = µ+τ t−1+αεt−φ1ct−1−φ2ct−2− ....−φpct−p+ψ0εt+ψ1εt−1+ .....+ψnεt−n, (4.3)

which reßects the intuition that since yt comprises of two components (i.e. the trend

(τ t) and cycle (ct)), the one-step-ahead forecast error εt of output should equal the sum

of the forecast errors of the two components, which are αεt and (1− α)εt respectively.
Letting φ∗p(L) = −φ1L − φ2L

2.... − φpLpand ψ∗n(L) = ψ1L + ψ2L
2.... + ψnL

n, the

measurement equation for the single source of error state space approach can be written

as

yt = µ+ τ t−1 + φ
∗
p(L)ct + ψ

∗
n(L)εt + εt (4.4a)

and the state or transition equations are

τ t = µ+ τ t−1 + αεt (4.4b)

and

ct = φ
∗
p(L)ct + ψ

∗
n(L)εt + (1− α)εt. (4.4c)

The formulation of equations (4.4b) and (4.4c), which form the state transition equa-

tion in (3.1b), are somewhat similar to the UC decompositions in Watson (1986), Stock

and Watson (1988), and Harvey and Koopman (2000). However, a critical difference

6



is that the two equations are driven by the same innovation and are perfectly corre-

lated, unlike the UC decomposition in which the trend and cycle disturbances have zero

correlation.

In practice, if α < 1 then the trend and cycle will have perfect positive correlation

and both components will share in the variation of the data. However, if α > 1, then

the innovations in the trend and cycle will have perfect negative correlation, and the

trend will generate most of the variation in the data since |α| will then be greater than
|1− α|. Morley, Nelson and Zivot (2003) observed this latter situation for real US GDP.

5. Applications

We illustrate the use of the single source error state space approach to compute the

Beveridge Nelson trend/cycle decompositions for ARIMA(0,1,1), ARIMA(1,1,0) and

ARIMA(2,1,2) models of the logarithms of real output for the United States, the United

Kingdom and Australia. The US models coincide with those used by Stock and Watson

(1988) in their study of the importance of the trend component in real US GNP, and we

broaden the scope to include decompositions for UK and Australia to demonstrate the

relative importance of trends in other countries. We use quarterly GNP data for the

USA (from 1947:1 to 2003:1) , and quarterly GDP data for the UK and Australia (from

1960:1 to 2003:1). Our parameter of interest is α, which is Campbell and Mankiw�s

(1987) persistence measure that predicts the long run increase in GNP/GDP resulting

from a 1% shock in GNP/GDP in one quarter. Since researchers are often interested in

the fraction of the variance in the quarterly change in real output that can be attributed

to changes in its stochastic trend, we use our computed BN trends to calculate Stock

and Watson�s (1988) R2 measure of this ratio. The empirical results are presented in

Table 1, and we outline details relating to the SSOE state space formulation below.

5.1. ARIMA(0,1,1) model

The BN trend and cycle components for an ARIMA(0, 1, 1) model are well known to be

τ t = µ+ τ t−1 + αεt and
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ct = (1− α)εt,

where, in terms of the ARMA coefficients for ∆yt, α = γ(1) = 1 + θ1. These equations

can be cast into single source of error state space form with

yt = µ+
h
1 0

i " τ t−1

ct−1

#
+ εt

as the measurement equation and"
τ t

ct

#
=

"
µ

0

#
+

"
1 0

0 0

#"
τ t−1

ct−1

#
+

"
α

1− α

#
εt.

Forecasts for these state space equations can be computed by using a suitable version

of the Kalman Þlter and the maximum likelihood estimates of the parameters obtained

using the prediction error decomposition of the likelihood function The eigenvalues

of the discount matrix (F − αβ0) (from equation 8) need to be within the unit circle

to ensure stability, and this condition is satisÞed for each of the three decompositions

undertaken here.

The estimated αs and implied variance ratios for USA, UK and Australian output

are shown in Table1. Here it is interesting to note that while α > 1 for the USA,

implying that innovations to the trend and cycle are negatively correlated in this case,

the same is not true for the UK and Australia. Turning to the R2 measures of the

fraction of the variance in the quarterly change in real output that can be attributed to

changes in its stochastic trend, we see that trend makes a relatively lower contribution

in the USA, than it does in the UK and Australia.

5.2. ARIMA(1,1,0) model

For an ARIMA(1, 1, 0) model the trend component is the same as above, although in

this case α = 1
1+φ1

in terms of the ARMA coefficients for ∆yt. The cycle component is

given by

ct = −φ1ct−1 + (1− α)εt.
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Arranging the model into state space form, the measurement equation is

yt = µ+
h
1 −φ1

i " τ t−1

ct−1

#
+ εt

and the transition equation is"
τ t

ct

#
=

"
µ

0

#
+

"
1 0

0 −φ1

#"
τ t−1

ct−1

#
+

"
α

1− α

#
εt.

Estimation of the state space model imposes the identity that φ1 =
1−α
α (which

arises from the observation that α = 1
1+φ1

), and the results are reported in Table 1.

As above, appropriate stability conditions (in terms of the eigenvalues for the discount

matrix) are satisÞed for each country. The results are very similar to those for the

ARIMA(0,1,1) model in that α > 1 for the USA, while α < 1 for the UK and Australia.

Also, the implied R2 for the USA is much smaller than those for the UK and Australia,

reßecting comparitively less noisy cycles in the latter countries.

5.3. ARIMA(2,1,2) model

The ARIMA(2,1,2) model of output has been used by Morley, Nelson and Zivot (2003)

for US GDP, and it is the model that is chosen using standard model selection criteria

for the USA and Australia. As usual, the trend component is given by equation (4.2),

while the cycle component is given by

ct = −φ1ct−1 − φ2ct−2 + θ1εt−1 + (1− α)εt. (5.5)

In this case α = 1+θ1+θ2
1+φ1+φ2

in terms of the ARMA coefficients for ∆yt, although this

relationship does not affect the following estimation.

The model can be cast into a single source of error state space form with

yt = µ+
h
1 −φ1 −φ2 θ1

i

τ t−1

ct−1

ct−2

εt−1

+ εt
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being the measurement equation, and
τ t

ct

ct−1

εt

 =

µ

0

0

0

+

1 0 0 0

0 −φ1 −φ2 θ1

0 1 0 0

0 0 0 0




τ t−1

ct−1

ct−2

εt−1

+


α

1− α
0

1

 εt
being the transition equation.

Estimated results are presented in Table 1 below. As above, appropriate stability

conditions (in terms of the eigenvalues for the discount matrix) are satisÞed for US and

UK and very close to unity for Australia. In the case of the UK real GDP, some of the

estimated parameters are insigniÞcantly different to zero. The UK cycle component in

equation (5.5) is simpliÞed to its parsimonious ARIMA(2, 1, 2) form by making θ1 =

0, removing the MA term. The overall results are very similar to those found for

the ARIMA(0,1,1) and ARIMA(1,1,0) models, although the estimated α for Australia

and the UK is now greater than one. Once again, the results suggest that the trend

component in the US decomposition is relatively less important than the corresponding

trends in the UK and Australian decompositions.

6. Conclusion

In this paper a single source of error state space approach has been proposed to exactly

compute the trend and cyclical components of the BN decomposition in accordance

with the original BN property that the two components are perfectly correlated. This

approach offers a simple and straight forward formulation of both the trend and cyclical

components in state space form to Þt the required ARIMA model. It also highlights

and conÞrms that the forecast error is solely contributed by the correlated innovations

of these two components and hence, provides a basis to analyse the dynamics between

the trend and cycle in the data generating process which is driven by the value of the

long run multiplier α.
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Table 1

Measures of the importance of trend in real log GNP/GDP

Univariate

Statistical

Model

Long-run change in GNP

predicted from a 1% shock change

in GNP in one quarter (α∗)

Variance ratios

R2

US GNP Data from 1947:I to 2003:I

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

1.2701
(0.0552)1

1.5226
(0.0.1464)

1.2653
(0.1459)

0.9339

0.8817

0.8458

UK GDP Data from 1960:I to 2003:I

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

0.9945
(0.0724)

0.9940
(0.0759)

1.2267
(0.1587)

0.9999

0.9999

0.9686

Australia GDP Data from 1960:I to 2003:I

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

0.9594
(0.0758)

0.9604
(0.0702)

1.0394
(0.0356)

0.9983

0.9983

0.9552

1std. error in parenthesis

∗estimates of α.Estimates of other coefficients can be requested from authors

The R2 statistic is obtained by regressing the quarterly change in GNP against the change in the BN trend
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