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Abstract

V AR models are used in practice in preference to V ARMA models due to

the di¢ cult issues involved in the identi�cation and estimation of V ARMA

models. This paper examines if V AR models are good enough for forecasting

macroeconomic variables. To answer this question, we extend the Tiao and

Tsay identi�cation procedure for V ARMA models and proposes a complete

V ARMA modelling procedure. We then examine the properties of this iden-

ti�cation procedure through simulation and used it to determine V ARMA

models for many trivariate sets of macroeconomic variables and compare the

out-of-sample forecasting performance of these models against V AR models

�tted to the same data.

Keywords: Multivariate time series models, V ARMA models, iden-
ti�cation, forecasting.
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1 Introduction

Vector autoregressive models have become the cornerstone of modern applied

macro-econometric models. Interestingly, there is no applied macro-econometric

research paper that even considers a vector autoregressive moving average,

V ARMA; model as an alternative1. The reason for this cannot be that economic

�Corresponding author. E-mail: George.Athanasopoulos@BusEco.monash.edu.au
1Although the study of V ARMA models has been on the statistical agenda for a long time,

see Hannan (1969), Tunicli¤e-Wilson (1973).
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theory implies V AR dynamics for economic variables because economic theory

rarely has any sharp implication about short-run dynamics of economic variables.

In rare situations where the theoretical model includes a dynamic adjustment

equation, one has to work hard to exclude moving average terms appearing in the

implied dynamics of the variable of interest. Even if the theoretical model implies

an autoregressive model for a variable, aggregation, say of monthly variables to

quarterly frequency, induces moving average dynamics. Also, even if we believe

that V AR is a good dynamic model for a set of variables, it implies that for any

subset of these variables, a V ARMA model, rather than a V AR model, would

be appropriate. Therefore, the apparent lack of interest in models with moving

average errors can be the result of either that they are too hard, or that pure

autoregressive models can do just as well.

Any invertible V ARMA process can be approximated by a �nite order V AR.

However, this does not imply that forecasts based on estimated long order V ARs

will be as good as those based on a V ARMA model because long order V ARs

have many parameters to estimate. We believe that the main reason for the lack

of enthusiasm for using models with moving average errors is that they are too

di¢ cult. In particular in a multivariate setting, the identi�cation and estimation

of V ARMA models are quite involved, and this is in sharp contrast to the ease

of identi�cation and estimation of V AR models. This di¢ culty in model iden-

ti�cation and estimation has so far prevented any comprehensive assessment of

the question of whether V AR models are good enough for modelling V ARMA

processes in �nite samples. One of the objective of the present paper is to do just

that.

Theoretically, there is no subtlety involved in estimation of an identi�ed

V ARMA (p; q) model. Based on the assumption of normality, the likelihood func-

tion conditional on the �rst p observations �xed and the q errors before time p+1

set to zero, is a well-de�ned function that can be calculated recursively. The exact

likelihood function can also be calculated via the Kalman �lter after the model

is written in its state space form. However, it is not possible to �t a �general�

V ARMA (p; q) to any set of observations and then try to reduce the system to a

more parsimonious one by eliminating the insigni�cant parameters. The reason is

that if the parameters of a V ARMA (p; q) satisfy certain conditions, then it will

not be identi�ed. The following simple example illustrates this point.
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Consider the following bivariate V ARMA(1; 1) process

y1;t = �11y1;t�1 + �12y2;t�1 + �11�1;t�1 + �12�2;t�1 + �1;t (1)

y2;t = �21y1;t�1 + �22y2;t�1 + �21�1;t�1 + �22�2;t�1 + �2;t

The �rst equation (and therefore the model) is not identi�ed if all parameters of

the second equation are zero, i.e., if �21 = �22 = �21 = �22 = 0. This is because in

this case y2;t�1 = �2;t�1 and therefore �12 and �12 cannot be identi�ed separately.

This problem appears in other areas of econometrics as well. In simultaneous

equations, the identi�cation of a structural equation often requires that the para-

meters in other equations of the system not lie in speci�c restricted subspaces. For

example, exclusion of an exogenous variable from a structural equation only helps

its identi�cation if that exogenous variable appears with a non-zero coe¢ cient

elsewhere in the system. Another example is in nonlinear models were identi�-

cation of some of the parameters depends on the true model not being linear.

Clearly then, it is important in these cases that we understand the identi�cation

issues, and if possible, we pre-test the required conditions for identi�cation and

determine a uniquely identi�ed structure that is likely to be estimable from the

particular data set under study.

There are several methods for identi�cation of V ARMA models. One method

is through the determination of the �Kronecker indices�and the identi�cation of

the �echelon form�of the V ARMA model (see L
::
utkepohl, 1991, or Reinsel, 1993,

for de�nition of the echelon form and the Kronecker index). In this method, esti-

mates of lag innovations are derived from a �rst stage long V AR as suggested by

Hannan and Rissanen (1982), and the Kronecker indices are determined in a sec-

ond stage using a model selection criteria (see, for example, Hannan and Diestler,

1988, and L
::
utkepohl and Poskitt, 1996). Another method, suggested by Tiao

and Tsay (1989), is to identify the �scalar components�imbedded in a V ARMA

model through a series of tests based on canonical correlations between judiciously

chosen sets of variables, and then estimate these scalar components. Our present

paper extends this methodology2, and uses it to answer the question that whether

V AR models are good enough for forecasting macroeconomic variables.

The methodology of Tiao and Tsay (1989) is based on searching for linear

combinations of variables that have simple dynamic structures. Their method,

2There are several other classes of multivariate dynamic models in the literature. These include
the dynamic factor model of Peña and Box (1987) and the multivariate version of structural time
series model of Harvey (1991).
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however, provides consistent but not e¢ cient estimates of these linear combina-

tions. Then, the remaining parameters of the identi�ed structure are estimated

based on these possibly ine¢ cient estimates of such linear combinations. Many

eminent time series analysts, such as Chat�eld, Hannan, Reinsel and Tunnicli¤e-

Wilson among others, commented on the seminal paper of Tiao and Tsay (1989),

and their comments were published in the same issue of the Journal of Royal Sta-

tistical Society. In their comments they point out that more attention should be

paid to the estimation of these linear combinations, since the ultimate purpose is

to invert from these linear combination back to the original variables under study.

This is the direction that we extend Tiao and Tsay�s methodology.

Using arti�cially generated data from simple data generating processes, we are

able to show that our extension of Tiao and Tsay works well. However, it would

be di¢ cult, if not impossible to provide a convincing answer for the question of

whether V AR models are su¢ cient for macroeconometric modelling by means of

Monte Carlo simulations. There are many di¢ culties involved in designing Monte

Carlo experiments in multivariate time series, in particular in such a way that

their results would be relevant for macroeconometric analysis (see, for example,

Vahid and Issler, 2002). Therefore, we use real macroeconomic data for our inves-

tigation and compare the out of sample performance of �tted V AR and V ARMA

models. The advantage of this method is that our results will be of direct rele-

vance for macro-economic forecasting. The drawback is that we are not able to

comment on which model produces a better impulse response function or a better

decomposition of forecast error variance because these objects are interest are not

observable.

The structure of the paper is as follows.

Section (2) provides a brief description of the scalar component methodology

of Tiao and Tsay (1989). Section (3) explains our extension of Tiao and Tsay.

Section (5) reports the accuracy of the identi�cation procedure in a small scale

simulation exercise. As an applied demonstration of the proposed identi�cation

procedure for V ARMA models, section 5 reports estimated V ARMA models

for two widely analysed data sets. Section 6 reports the results of an extensive

empirical application for out of sample forecasts for competing V ARMA and V AR

models for many three variable systems of macroeconomic aggregates. The data

used was extracted from the data set employed by Stock and Watson (1999) for

comparing linear and nonlinear univariate models for forecasting macroeconomic

time series. Finally, Section 7 concludes.
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2 The Scalar Component Methodology

The aim of exploring scalar component (SCMs) is to examine whether there are

any simplifying underlying structures for a V ARMA (p; q) process.

De�nition 1 For a given k-dimensional V ARMA(p; q) process

yt = �1yt�1 + : : :+�pyt�p + �t ��1�t�1 � : : :��q�t�q; (2)

we say that a non-zero linear combination zt = �0yt; follows an SCM(p1; q1) if �

satis�es the following properties:

�0�p1 6= 0T where 0 � p1 � p; (3)

�0�l = 0T for l = p1 + 1; :::; p; (4)

�0�q1 6= 0T where 0 � q1 � q; (5)

�0�q1 = 0T for l = q1 + 1; :::; q: (6)

The scalar random variable zt depends only on lags 1 to p1 of all variables and

lags 1 to q1 of all innovations in the system. Note that the univariate representation

of this random variable is an ARMA process, but of an order di¤erent from (p1; q1).

Tiao and Tsay�s methodology starts from the most parsimonious possibility

(i.e., SCM (0; 0) which is a system white noise) and discovers k linearly indepen-

dent vectors (�1; : : : ;�k) which would rotate the V ARMA(p; q) system into a

simpler dynamic system with signi�cantly lower number of parameters. That is, if

we de�ne matrix A = (�1; : : : ;�k)
0, then transformation of a V ARMA (p; q) sys-

tem by this matrix creates another V ARMA (p; q) system in terms of transformed

variables zt = Ayt and transformed innovations ut = A�t, but there are many

zero restrictions on the AR and the MA parameter matrices of the transformed

model.

The determination of embedded scalar component models are achieved through

a series of canonical correlation tests. An SCM (0; 0) is a linear combination

that is unpredictable from the past, and the analysis of canonical correlations

between the present and the past to �nd and estimate such combinations is a

direct generalisation of Hotelling (1935) to time series. If we denote the estimated

squared canonical correlations between yt and Yh;t �
�
y0t�1; : : :y

0
t�h
�0 by b�1 <b�2 < : : : < b�k, then the likelihood ratio test statistic for at least s SCM (0; 0)
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against the alternative of less than s unpredictable components is given by

C (s) = � (n� h)
sX
i=1

ln
�
1� b�i� a~�2s�f(h�1)k+sg; (7)

and the canonical variates corresponding to insigni�cant canonical correlations

will be consistent estimates of the scalar components. As shown by Vahid and

Engle (1997) and Anderson and Vahid (1998) among others, a GMM based

test for the same hypothesis is (n� h)
Ps
i=1
b�i, which is obviously asymptotically

equivalent to the above. SCM (m; 0) can be found by similar test statistic based

on squared canonical correlations between Ym;t �
�
y0t; : : :y

0
t�m

�0 and Ym+h;t ��
y0t�1; : : :y

0
t�m�h

�0
: SCM (m; j) however are linear combinations ofYm;t that can-

not be linearly predicted from the history before t� j. Therefore, the GMM test

for this hypothesis estimates a linear combination of Ym;t that is a moving aver-

age of order j and therefore is unpredictable from Yh;t�j �
�
y0t�j�1; : : :y

0
t�j�h

�0
.

This imposes a structure on the GMM weighting matrix. The test then is a test

of overidentifying restrictions in this system. Alternatively, Tiao and Tsay (1989)

suggest the statistic

C (s) = � (n� h� j)
sX
i=1

ln

(
1�

b�i
di

)
a
~�2s�f(h�m)k+sg (8)

based on the squared canonical correlations between Ym;t and Yh;t�j . di is a

correction factor that accounts for the fact that the canonical variates in this case

can be moving averages of order j. Speci�cally

di = 1 + 2

jX
v=1

b�v �br0iYm;t�b�v �bg0iYh;t� (9)

where b�v (:) is the v order autocorrelation of its argument and br0iYm;t and bg0iYh;t
are the canonical variates corresponding to the ith canonical correlation between

Ym;t and Yh;t�j .

Since an SCM (m; j) nests all scalar components of order (� m;� j), low
order SCMs also show up when testing for higher orders. Tiao and Tsay (1989)

provide a complete set of rules that determines the order of all parsimonious

SCMs embodied in the system. They also deduce a consistent estimate of the

transformation matrix A from the estimated canonical coe¢ cients, and form the

transformed variables zt = �0yt. However this transformed system still may not

be uniquely identi�ed for the following reason.
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Criterion 2 General Elimination Rule: Suppose we found z1;t = SCM (p1; q1)

and z2;t = SCM (p2; q2) where p2 > p1 and q2 > q1. This implies that one of the

variables of the right hand side of the dynamic equation for z2;t, for example z1;t�1
can be written in terms of other variables on the right hand side of z2;t. Hence, the

parameters of the right hand side of z2;t equation are not identi�ed unless we set

some of them to zero. In fact, for each lag i = 1; :::;min(p2� p1; q2� q1); we need
to set either the coe¢ cient of z1;t�i or that of u1;t�i to zero to obtain a uniquely

identi�ed system.

3 An extension of Tiao and Tsay

A major concern of the participants in the discussion of the Tiao and Tsay (1989)

paper (see the discussion that follows the paper), was the general treatment of the

transformation matrix A. Tiao and Tsay�s general representation of the identi�ed

V ARMA (p; q) model is

zt = �
�
1zt�1 + : : :+�

�
pzt�p + ut ���

1ut�1 � : : :���
qut�q; (10)

where zt = Ayt; �
�
i = A�iA

�1;ut = A�t and �
�
i = A�iA

�1.

The comments by Professors Reinsel, Chat�eld, Tunnicli¤e-Wilson and Han-

nan amongst others can be summarised in the following concerns about the Tiao

and Tsay modelling procedure:

1. The identi�ed V ARMA(p; q) model is being stated in terms of the trans-

formed series zt and not in terms of the series of interest, the original series

yt:

2. The number of parameters to be estimated in the A matrix should be in-

cluded in the total number of parameters estimated for the model, thus

making the reduction in degrees of freedom for the estimation smaller than

what is claimed by Tiao and Tsay.

3. The Tiao and Tsay procedure calculates the transformation matrixA via the

canonical correlations analysis stated above. This calculation does not pro-

duce the most e¢ cient (although consistent) estimates for the parameters,

in particular for the case of SCM 0s with q > 0.

4. Finally, the Tiao and Tsay procedure does not produce standard errors for

the parameter estimates in A.
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In liu of these concerns we propose the following extension of the Tiao and Tsay

modelling procedure that develops identi�cation conditions for the parameters of

the matrix A in order to be able to estimate them e¢ ciently. First, we note that

the space spanned by zt�1 to zt�p is the same as the space spanned by yt�1 to

yt�p. Hence the right hand side of (10) can be written in terms of yt�1 to yt�p
without a¤ecting the restrictions implied by the scalar component orders. Hence

A does not play a substantive role on the right hand side of (10).

De�nition 3 A is identi�ed if and only if the only matrix H such that HAyt
has the same scalar component structure as Ayt is the identity matrix.

Important considerations for unique identi�cation of A are the following:

1. Each row of A can be multiplied by a constant without changing the struc-

ture of the model. Hence, we are free to normalise one parameter in each

row to 1. However, as always in such situations, there is a danger of wrongly

choosing a parameter whose true value is zero for normalisation. We ignore

this possibility for the time being, but we will return to it later.

2. Any linear combination of an SCM (p1; q1) and an SCM (p2; q2) is an

SCM (max fp1; p2g ;max fq1; q2g). Therefore if there is a single SCM whose

autoregressive order is the smallest of all other SCMs in the system, the cor-

responding row of A is uniquely identi�ed. This is because any combination

of other SCMs with this one produces an SCM with a longer autoregres-

sive order and changes the structure. By the same token, if there is a single

SCM with minimal moving average order, the row of A corresponding to it

is uniquely identi�ed.

3. In all cases where there are two embedded scalar components with nested

orders, i.e., p1 � p2 and q1 � q2 arbitrary multiples of SCM (p1; q1) can be

added to the SCM (p2; q2) without changing the structure. This means that

the row of A corresponding to the SCM (p2; q2) is not identi�ed in this case.

To achieve identi�cation, if the parameter in the ith column of the row of

A corresponding to the SCM (p1; q1) is normalised to 1, the parameter in

the same position in the row of A corresponding to SCM (p2; q2) should be

restricted to zero.

The following example highlights the above points.
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Example 4 Consider a trivariate stationary process yt which has been identi-
�ed by the Tiao and Tsay identi�cation process to have three scalar components:

z1;t s SCM(1; 1); z2;t s SCM(1; 0) and z3;t s SCM(0; 0): Hence the scalar

components speci�cation of the V ARMA(1; 1) is

Ayt = �1yt�1 + "t ��1"t�1;

thus,264 a11 a12 a13

a21 a22 a23

a31 a32 a33

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

0 0 0

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 0

0 0 0

0 0 0

375 "t�1
(11)

The parameter �(1)13 is set to zero because of the "general rule of elimination"

explained in the criterion (2) above.

Ignoring the A matrix, the parsimony of this model is exaggerated, in the sense

that it seems to have ten parameters less than a V ARMA (1; 1). However this

is not the case, as the commentators to Tiao and Tsay�s paper have pointed out.

The parameters in A have to be estimated. However not all nine parameters in A

are free parameters. Firstly, one parameter per row, say diagonal elements, can

be normalised to one.264 1 a12 a13

a21 1 a23

a31 a32 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

0 0 0

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 0

0 0 0

0 0 0

375 "t�1
(12)

The third equation is now uniquely identi�ed, because no combination of the

other two equations can be added to it and keep its SCM (0; 0) structure. However

since an SCM (0; 0) in nested in an SCM (1; 0) and SCM (1; 1), the third rule

above tells us that a13 and a23 can be set to zero without changing the structure,

which leads to264 1 a12 0

a21 1 0

a31 a32 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

0 0 0

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 0

0 0 0

0 0 0

375 "t�1:
(13)

The same rule again implies that we can set a12 to zero without changing the
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structure,264 1 0 0

a21 1 0

a31 a32 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

0 0 0

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 0

0 0 0

0 0 0

375 "t�1:
(14)

Hence in fact the real reduction in the number of parameters is 10� 3 = 7.

Before moving to estimation, we must discuss the possibility of normalising

a zero parameter to 1. To safeguard against this possibility, our procedure adds

tests of predictability using subsets of variables. Starting from the SCM with the

smallest order, we leave one variable out, say the kth one and test if an SCM of

the minimal order can be found using the k� 1 variables alone. If test is rejected,
then we normalise the coe¢ cient of the kth variable to 1 and set the corresponding

coe¢ cients in all other SCMs that nest this one to zero. If test points out that

we can form the SCM using the �rst k � 1 variables only, the coe¢ cient of the
kth variable in this SCM is zero, and it should not be normalised to 1. It is worth

noting that this extra zero restriction adds to the restrictions discovered before.

We then leave variable k � 1 out and test if the SCM could be formed from the

�rst k� 2 variables only, and so on. These tests are all GMM tests with suitably

chosen weighting matrices given by the structure of the system.

4 A Complete V ARMA (p; q) Modelling Process

Having presented in detail the proposed extension of the Tiao and Tsay identi�-

cation process, we next propose a complete modelling process for V ARMA (p; q)

models. This process consists of three stages. stage I identi�es the scalar compo-

nent structure of the V ARMA model as in Tiao and Tsay (1989). Stage II we

applies the proposed extension in dealing with the transformation matrix A and

stage III estimate the identi�ed model.

4.1 Stage I: Identi�cation of the Scalar Components

Stage I consists of two steps.

Step 1: Determining an overall tentative order In step I, an overall tenta-

tive order for the V ARMA (p; q) process is speci�ed via the canonical correlations

based statistic, C (s), of equation (8).
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Choice of h In practice h controls the e¤ective sample size in the estimation

of the canonical correlations. Thus the lower the h the larger the e¤ective sample

size. However we have to keep in mind that h has to be at least as large as3 m.

Therefore as in Tiao and Tsay (1989) we also recommend h = m for this �rst step

of the �rst stage of the identi�cation procedure.

The test statistic C(s) is arranged in a two-way table, referred to by Tiao and

Tsay as the criterion table, for m; j = 0; 1; : : :. From the criterion table we can

read the overall tentative order of the V ARMA (p; q) process yt; by searching for

the lower right rectangular pattern of insigni�cant C (s) 4:

Step 2: Identifying individual orders of SCMs Given the overall tentative

order of the model we now identify individual zit s SCM (pi; qi) orders, again via

the C (s) statistic. The hierarchical process starts from testing for the simplest

possible white noise scalar components, i.e., z1t s SCM (0; 0) and then the test

is applied sequentially for i = 1; ::; k for each m; j = 0; 1; : : :.

Choice of h For this section Tiao and Tsay suggest h = m+ (q � j) at the
position (m; j). Their intuition is, that given the overall tentative order of the

model speci�ed in step 1 (say V ARMA (p; q)) each series is serially uncorrelated

after lag q.

These results are again summarised in a two way tabulation in what Tiao

and Tsay refer to as the root table. The root table presents the number of zero

eigenvalues found for each order by applying the above test5

A note on exchangeable models In multivariate time series analysis, there

are pathological cases where a process can be represented either as a �nite V AR (p)

or a �nite VMA (q) process.

Example 5 For example the bivariate process

yt =

"
a a

�a �a

#
yt�1 + "t (15)

3 If h < m then the autocovariance matrix we are considering is by design of reduced rank.
See Tiao and Tsay (1989) for further details.

4For examples of the criterion table please refer to section (6).
5For examples of the root table see the examples of section (6). For further examples see Tiao

and Tsay (1989).
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can be equivalently represented as

yt =

"
a a

�a �a

#
"t�1 + "t: (16)

As we have already identi�ed in this case the �rst presentation, equation (15),

implies an SCM (0; 0) and a SCM (1; 0). The second presentation, equation (16),

implies an SCM (0; 0) and a SCM (0; 1) : These exchangeable models produce a

recognisable pattern in the root table. Having recognised this, we choose one of the

two possibilities (we prefer the autoregressive over the moving average components

as it simpli�es the estimation procedure) and proceed. This does not pose any

potential loss6.

Summary of Stage I of the identi�cation process Stage I of the proposed

modelling process consists of two steps. In step one we identify the overall maximal

order (p; q) of the V ARMA model. Then conditional on this, in step 2 we identify

the individual orders of the embedded SCMs.

4.2 Stage II: Dealing with the transformation matrix A

In stage II of the identi�cation process we apply the proposed extension of section

(3) to identify the structure of the transformation matrix A.

4.3 Stage III: Likelihood Estimation

In stage III the parameters of the uniquely identi�ed structures are then esti-

mated via maximum likelihood. The canonical correlation procedure produces

good starting values for the parameters, in particular for the SCMs with no mov-

ing average components. Alternatively, lagged innovations can be estimated from

a long V AR and used for obtaining initial estimates for the parameters. The max-

imum likelihood procedure provides estimates and estimated standard errors for

all parameters, including the free parameters of A. All usual considerations that

ease the estimation of structural forms, are also valid here and should de�nitely

be exploited in estimation

6 In the extensive empirical application of section (7) in many models we had exchangeable
models. Both alternatives were applied and evaluated in a forecast error sense and there did not
seem to be much di¤erence between the alternatives.
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5 Simulation

The aim of the following simulations is to explore the performance of both stages

of the identi�cation process. Also the simulations help the reader develop a better

understanding of the proposed representation of the V ARMA (p; q) models, and

other ideas on these models as developed in this study.

5.1 Performance of Stage I of the Identi�cation procedure

To evaluate the performance of the �rst stage of the identi�cation process we have

generated data from various V ARMA (p; q) models, for varying sample sizes and

performed the �rst stage of the identi�cation process on the generated data series.

The models have been presented and the identi�cation results have been tabulated

in what follows. To assist the reader with reading and analysing the simulation

results, we have created table (1), were we brie�y describe the role of each column

of the tables the simulation results are presented in.

Table 1: Description of tables exploring stage I of the identi�cation procedure

Column Label Description
1 N Number of observations generated.

2 M.O. Percentage of times the procedure correctly identi�es the

maximum (p; q) order of the model.

3-6 SCM (pi; qi) Each column shows possible SCMs the identi�cation

procedure could identify, as these are nested within the

maximum (p; q) order.

0� 1 2 3 Each of these sub-columns shows the number of possible

SCMs of order (pi; qi) the procedure could possibly identify

(recall k = 3, i.e., maximum three SCMs can be identi�ed for

each order).
� Signi�es the correct number of scalar components of order

(pi; qi) the procedure should identify.

7 E.O. Percentage of times the procedure correctly identi�es the

exact order, i.e., identi�es correctly every individual

SCM (pi; qi) for i = 1; : : : ; k; of the V ARMA (p; q) model.
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It should be mentioned that due to the complex and long process of reading o¤ the

criterion and root tables only 50 iterations were performed for each of the models.

The two most important columns of the tables are the maximum order and the

exact order columns although as we have already mentioned the exact order found

here is not �nal as this is recon�rmed in stage II. Having given a general description

for each of the tables that follow we next present the simulation results for each

of the seven models we have simulated from.

5.1.1 V AR (1) and VMA (1)

The simulation process starts from two simple, restricted7 V AMRA (p; q) ;models.

First the V AR (1) process,

yt =

264 0:5 �0:6 0:7

0:6 0:7 �0:4
0:3 0:6 0:4

375yt�1 + "t: (17)

From table (2) one can see that the identi�cation procedure does very well in

identifying both the maximum and the exact order of the model even with very

small samples of N = 50 observations.

Table 2: VARMA(1,0)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0� 1 2 3 0� 1 2 3 0 1 2 3� 0� 1 2 3

50 100 100 - - - 100 - - - 2 - 6 92 92 6 - 2 92
200 100 100 - - - 100 - - - 2 - 2 96 96 2 - 2 96

The second simple process we look at is the VMA(1) or V ARMA (0; 1).

yt = "t �

264 0:5 �0:6 0:7

0:6 0:7 �0:4
0:3 0:6 0:4

375 "t�1: (18)

Table (3) indicates that the identi�cation procedure does well in identifying the

maximum order of the process being a (0; 1) and improves with identifying the

exact order as the sample size increases. Here we see that the process has di¢ culty

in identifying the exact order as it should show no SCM (1; 0) but it tends to �nd

one.
7Restricted in the sence that one of either p or q is set to zero.
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Remark 6 This is a regular observation from our simulations (the few recorded

and the many non-recorded). The identi�cation process has some di¢ culty dis-

tinguishing between an AR (1) and an MA (1) which also commonly observed in

univariate ARMA (p; q) modelling, as this depends on the strength of second order

correlations and beyond. This aspect of the identi�cation procedure improves as

the sample size increases.

Table 3: VARMA(0,1)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0� 1 2 3 0 1 2 3� 0� 1 2 3 0� 1 2 3

50 88 48 46 6 - - 14 42 36 24 38 32 6 100 - - - 2
100 96 84 16 - - - - 20 80 36 46 18 - 100 - - � 36
150 96 92 8 - - - - 12 88 40 54 6 - 100 - - � 40
200 94 100 - - - - - 8 92 50 50 - - 100 - - � 50
400 98 100 - - - - - 2 98 88 10 - 2 100 - - - 88

5.1.2 V ARMA (p; q)

The third model we simulate from is a V ARMA (1; 1) which comprises of three

scalar components of orders, (0; 0) ; (1; 0) and (1; 1) ; as shown in equation (19).

From the representation one can see in application the proposed extension of

section (3) ; as we have imposed the necessary restrictions on elements of A. Also

since there are SMCs where both p1 > p2 and q1 > q2 (namely SCM (1; 1) and

SCM (0; 0)) one can also see in application the generalised rule of elimination of

criterion (2) as we have set �(1)13 = 0
8.

264 1 0 0

0:6 1 0

0:4 0:7 1

375yt =
264 0:5 0:6 �0:4
0:2 0:7 0:5

0 0 0

375yt�1+"t�
264 0:5 0:7 0

0 0 0

0 0 0

375 "t�1; (19)
The results of the simulations of this process (presented in table (4)) show that

the identi�cation process does well in identifying both the maximum order and

the exact order even for sample sizes of 150 observations.

Next we have again simulated from a similar V ARMA (1; 1) as in (19), how-

ever the second scalar component is a moving average component rather than an

8These rules can also be observed in all the models that follow. However we will not comment
any further on these, as we purely revert our attention to the simulation results.
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Table 4: VARMA(1,1) - SCM(1,1) SCM(1,0) SCM(0,0)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0 1� 2 3 0� 1 2 3 0 1� 2 3 0 1� 2 3

50 36 - 98 2 - 12 52 36 - 6 56 38 - 96 4 - - 4
100 88 2 98 - - 58 38 4 - 2 90 8 - 46 52 2 - 52
150 94 2 98 - - 84 16 - - 4 92 4 - 20 78 2 - 78
200 96 2 98 - - 98 2 - - - 98 2 - 6 94 - - 94
400 100 6 94 - - 94 6 - - 6 88 6 - 8 86 6 - 86

autoregressive component.

264 1 0 0

0:6 1 0

0:4 0:7 1

375yt =
264 0:5 0:6 �0:4

0 0 0

0 0 0

375yt�1 + "t �
264 0:5 0:7 0

0:2 0:7 0:5

0 0 0

375 "t�1;
(20)

As one can see from table (5) the identi�cation procedure does well in all sample

sizes above 150 in identifying the maximal order however it does �nd it a little

harder in pinning down the exact order.

Table 5: VARMA(1,1) - SCM(1,1) SCM(0,1) SCM(0,0)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0 1� 2 3 0 1� 2 3 0� 1 2 3 0 1� 2 3

50 28 - 88 12 - 4 60 36 - 12 56 32 - 98 2 - - 2
100 68 2 96 2 - 2 96 2 - 16 70 14 - 88 12 - - 12
150 76 2 98 - - 8 88 4 - 8 90 - - 86 14 - - 8
200 92 2 98 - - 2 96 2 - 22 78 - - 76 24 - - 22
400 96 2 98 - - 6 92 2 - 62 38 - - 42 52 6 - 52
700 98 8 92 - - 4 90 6 - 78 22 - - 24 72 4 - 72

The last two models we simulate from are again V ARMA (1; 1)models however

we allow for the nature of them to be a little more complex than before as we

increase the orders of the individual pi and qi�s. The results and the models are

shown below.264 1 0 0

0:4 1 0

0 �0:6 1

375yt =
264 0:7 �0:6 0:4

0:6 �0:5 �0:4
0:3 �0:6 0:4

375yt�1+"t�
264 0:7 0:4 �0:6

0 0 0

0 0 0

375 "t�1
(21)
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Table 6: VARMA(1,1) - SCM(1,1) SCM(1,0) SCM(1,0)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0� 1 2 3 0� 1 2 3 0 1 2� 3 0 1� 2 3

50 52 90 10 - - 6 30 50 14 - 14 60 26 98 2 - - 2
100 96 100 - - - 10 82 8 - 2 - 96 2 88 10 2 - 10
150 92 100 - - - 18 80 2 - - 4 96 - 82 18 - - 18
200 98 100 - - - 20 80 - - - 8 92 - 72 28 - - 20
400 94 100 - - - 64 36 - - - - 100 - 38 62 - - 62
700 96 100 - - - 78 22 - - - 4 94 - 24 72 2 2 72

264 1 0 0

0 1 0

0:5 �0:7 1

375yt =
264 0:7 �0:5 0:7

0:6 0:3 0:6

0 0 0

375yt�1 + "t �
264 0:5 �0:6 0

0:6 0:7 0

0 0 0

375 "t�1:
(22)

Table 7: VARMA(1,1) - SCM(1,1) SCM(1,1) SCM(0,0)

N M.O. SCM (0; 0) SCM (0; 1) SCM (1; 0) SCM (1; 1) E.O.
0 1� 2 3 0� 1 2 3 0� 1 2 3 0 1 2� 3

50 40 8 92 - - 8 42 46 - 28 58 14 - 80 18 2 - 2
100 88 6 94 - - 24 70 6 - 66 32 2 - 28 62 10 - 10
150 94 2 98 - - 44 54 2 - 88 12 - - 2 68 30 - 44
200 92 6 94 - - 58 36 6 - 92 8 - - 8 44 48 - 48
400 94 6 94 - - 76 22 2 - 94 6 - - 4 24 72 - 72
700 98 6 94 - - 92 8 - - 94 6 - - - 8 92 - 92

5.2 Performance of Stage II of the Identi�cation procedure.

The following three models are examples where the second stage of the identi�ca-

tion process contributes to the identi�cation procedure as a whole. These models

have been used in Stage I of the simulation exercise, but now have extra restric-

tions on the transformation matrix A to re�ect the need of this second stage of

the identi�cation process. Lets take for example model (M1)264 1 0 0

0:6 1 0

0:4 0 1

375yt =
264 0:5 0:6 �0:4
0:2 0:7 0:5

0 0 0

375yt�1 + "t �
264 0:5 0:7 0

0 0 0

0 0 0

375 "t�1: (M1)
Stage I should identify an overall V ARMA (1; 1) with three scalar components
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of orders (1; 1) ; (1; 0) and (0; 0) : Applying the restriction process of section (3)

we �nd that there should be a white noise scalar component which is a result

of a linear combination of all three series y1;t, y2;t and y3;t. Thus from there we

would proceed by normalising one of the coe¢ cients of any one of the series to one.

However observing the data generating mechanism of model (M1), the coe¢ cient

of y2;t is zero and if we normalised on this we would set it "incorrectly" to one, thus

setting a zero parameter to something non-zero. Table (8), in column two under

the heading M1, re�ects the results of the test procedure of actually identifying

that there is a linear combination of only the two components, y1;t and y3;t; that

loads as a SCM (0; 0).

Next model (M2) is a continuation of model three and additional to the initial

restriction of two components being a SCM (0; 0) we have that y2;t on its own is a

SCM (1; 0). Again the test performance, for both tests, is presented in table (8)

under the heading (M2).

264 1 0 0

0 1 0

0:4 0 1

375yt =
264 0:5 0:6 �0:4
0:2 0:7 0:5

0 0 0

375yt�1 + "t �
264 0:5 0:7 0

0 0 0

0 0 0

375 "t�1 (M2)
Finally the next model is a V ARMA (1; 1) with three scalar components of

orders (1; 1) ; (1; 0) and (1; 0) : The test of the second stage of the identi�cation

process performs considerably well (as shown in table (8)) in identifying that y3;t
on its own as a SCM (1; 0) and does not need to be linearly combined with another

series as stage I of the identi�cation process would have indicated.

264 1 0 0

0:4 1 0

0 0 1

375yt =
264 0:7 �0:6 0:4

0:6 �0:5 �0:4
0:3 �0:6 0:4

375yt�1 + "t �
264 0:7 0:4 �0:6

0 0 0

0 0 0

375 "t�1
(M3)

5.3 General Comments

From the simulations performed (for both stages of the identi�cation procedure)

one can make a couple of general observations. Firstly the identi�cation procedure

employed here is based on a sequence of hypothesis tests, and hence the overall

size of the procedure is larger than the level of signi�cance of each test. Also, as

long as the level of signi�cance is kept constant for all sample sizes the procedure
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Table 8: Identi�cation Simulation - Stage II

N M1 M2 M3
y1;t + a13y3;t y1;t + a13y3;t y2;t y3;t

s s s s
SCM (0; 0) SCM (0; 0) SCM (1; 0) SCM (1; 0)

50 86 80 64 78
100 86 88 66 72
150 86 90 78 78
200 92 88 84 84
400 84 92 80 72

is not consistent, in the sense that there is always a �xed probability of type I

error even if the sample size goes to in�nity. Secondly for the order of models

investigated here, sample sizes of fewer than N = 150 observations seem to be

inappropriately small to be modelled using this procedure.

6 Examples

The following two examples fully illustrate in an empirical sense the complete

methodology outlined in section (4).

6.1 US �our price data

This data set has been previously analysed and modelled by Tiao and Tsay (1989),

Grubb (1992) and L
::
utkepohl and Poskitt (1996). The data consists of three series

with N = 100 observations each on monthly �our price indices for the cities of,

Bu¤alo, Minneapolis, and Kansas City. As in Tiao and Tsay (1989) we are looking

at the logarithms of the series plotted in �gure (1).

In the �rst stage of the identi�cation process we read of the criterion table (

table (9)) and �nd possible maximum orders of V ARMA (1; 1) or V AR (2).Since

the primary goal of this paper is V ARMA (p; q) modelling we proceed with the

overall order being V ARMA (1; 1). The individual orders of the SMCs identi�ed

from the �rst stage of the identi�cation process when persisting with an overall

order of V ARMA (1; 1) can be read of the root table, table (10), in which we �nd

that there are two scalar components of order (1; 0) and one of order (1; 1).
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Figure 1: US Flour Prices
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Table 9: Criterion Table

j
m 0 1 2 3 4

0 34:17 5:8 3:0 2:11 1:68
1 2:38 0:44 0:49 0:22 0:34
2 0:25 0:58 0:60 0:49 0:46
3 0:37 0:46 0:67 0:53 0:58
4 0:73 0:62 0:57 0:70 0:77

The statistics are normalised by the
corresponding 5% �2 critical values

One possible representation of the V ARMA (p; q) model identi�ed having ap-

plied the rules of section (3) would be264 1 0 0

a21 1 0

0 a32 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

�
(1)
31 �

(1)
32 �

(1)
33

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 �

(1)
13

0 0 0

0 0 0

375 "t�1
(23)

Testing for the appropriate normalisations we �nd that normalising the diag-

onal parameters of A to one is not a problem. Further than that we �nd that

the y3t on its own loads as an SCM (1; 0) thus we can set a32 = 0. The resulting

estimated V ARMA (1; 1) model is shown in table (11). At the bottom of column

1 in table (11), we check for the appropriateness of the model by applying the test
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Table 10: Root Table

j
m 0 1 2 3 4

0 0 0 1 1 1
1 2 3 3 3 3
2 3 5 6 6 6
3 3 6 8 9 9
4 3 6 9 11 12

statistic C (s) of section (2) shown in equation (8) to the residuals. The criterion

table shows that three white noise processes are identi�ed, i.e., the residuals follow

a vector white noise process.

6.2 US �nancial data

The data for this empirical application consists of three US quarterly time series

with N = 173 observations each:

1. Real US GDP growth rate calculated as.

y1;t = 100�� ln (GDP )

2. Interest rate spread

y2;t = long-term interest rate � short-term interest rate

3. Money Growth

y3;t = 100�� ln (M3)

The three series are plotted in �gure (2).

In the �rst stage of the identi�cation process we can read of the criterion table

and we �nd possible maximum orders a V ARMA (1; 1) or a V AR (2).

Once again we persist with the V ARMA (1; 1) overall order and reading of

the root table, table (13) ; we �nd two scalar components of order (1; 0) and one

of order (1; 1).
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Table 11: Estimation results for the log of the Flour Price Data

Unrestricted V ARMA Restricted V ARMA

bA
2664

1 0 0

�0:521
(�20:1)a

1 0

0 0 1

3775
2664

1 0 0

�0:523
(�20:5)

1 0

0 0 1

3775
bcT h

0:199
(5:835)

0:116
(3:64)

0:336
(7:352)

i h
0:202
(7:38)

0:118
(4:9)

0:341
(10:77)

i

b�1
26664

1:078
(33:781)

�0:392
(�11:392)

0:273
(10:641)

�0:454
(�17:149)

0:741
(27:607)

0:168
(8:728)

0:012
(0:183)

�0:297
(�4:979)

1:217
(45:304)

37775
26664

1:069
(43:85)

�0:382
(�15:2)

0:272
(12:43)

�0:461
(�17:72)

0:747
(30:08)

0:166
(8:96)

0 �0:283
(�12:4)

1:215
(53:5)

37775

b�1

2664
�0:616
(�4:455)

0:812
(10:383)

0:122
(1:588)

0 0 0

0 0 0

3775
2664
�0:615
(�20:97)

0:814
(26:16)

0:121
(4:21)

0 0 0

0 0 0

3775
b�

24 1:977
1:012 0:648
1:998 1:119 2:571

35� 10�3
24 1:977
1:009 0:645
1:998 1:116 2:572

35� 10�3

Res C.T.b

j
m 0 1 2 3

0 0:6c 0:43 0:38 0:42
1 0:44 0:56 0:41 0:41
2 0:38 0:45 0:56 0:51
3 0:57 0:51 0:54 0:56

a t statistics in parentheses
b Criterion table for the residuals from the unrestricted model
c The statistics are normalised by the corresponding 5% �2 critical values

Table 12: Criterion Table

j
m 0 1 2 3 4

0 28:23 5:54 2:61 1:61 1:49
1 1:15 0:83 0:28 1:18 1:06
2 0:64 0:3 0:91 0:81 0:77
3 0:37 0:94 0:57 0:88 0:81
4 1:51 0:98 0:93 0:83 0:76

The statistics are normalised by the
corresponding 5% �2 critical values
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Figure 2: US Financial Data
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Table 13: Root Table

j
m 0 1 2 3 4

0 0 0 1 1 1
1 2 3 3 3 3
2 3 5 6 6 6
3 3 6 8 9 9
4 3 6 9 11 12

Again a possible representation of the model is,264 1 0 0

a21 1 0

0 a32 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

�
(1)
31 �

(1)
32 �

(1)
33

375yt�1 + "t �
264 �

(1)
11 �

(1)
12 �

(1)
13

0 0 0

0 0 0

375 "t�1:
(24)

Testing for the normalisations applied above we �nd that y1;t and y3;t can be

modelled as an SCM (1; 0) thus we change the order of the equations for the model

and write264 1 0 0

0 1 0

0 0 1

375yt =
264 �

(1)
11 �

(1)
12 �

(1)
13

�
(1)
21 �

(1)
22 �

(1)
23

�
(1)
31 �

(1)
32 �

(1)
33

375yt�1+"t�
264 0 0 0

�
(1)
21 �

(1)
22 �

(1)
23

0 0 0

375 "t�1 (25)
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Table (14) shows the estimation results.

Table 14: Estimation results for the log of the Flour Price Data

Unrestricted V ARMA Restricted V ARMA

bA
2664

1 0 0

0 1 0

0 0 1

3775
2664

1 0 0

0 1 0

0 0 1

3775
bcT h

0:105
(0:486)

0:482
(1:911)

0:391
(4:151)

i h
0:356
(3:723)

0:481
(4:721)

0:348
(4:188)

i
b�1

26664
0:271
(3:583)

0:170
(3:038)

0:129
(1:566)

�0:392
(�2:7261)

0:881
(4:613)

0:004
(0:046)

�0:026
(�0:516)

�0:021
(�0:6251)

0:825
(9:536)

37775
26664

0:299
(4:043)

0:155
(2:802)

0

�0:389
(�3:325)

0:887
(16:763)

0

0 0 0:821
(19:846)

37775

b�1

2664
0 0 0

0:346
(2:347)

0:226
(2:027)

�0:140
(�1:269)

0 0 0

3775
2664

0 0 0

0 0:329
(2:692)

0:205
(1:964)

0 0 0

3775
b�

24 0:633
�4:377� 10�2 0:298
4:943� 10�2 2:338� 10�2 0:265

35 24 0:647
�5:009� 10�2 0:302
5:002� 10�2 2:28� 10�2 0:266

35

Res C.T.b

j
m 0 1 2 3

0 0:36c 0:63 0:25 0:43
1 0:59 0:46 0:43 0:66
2 0:23 0:42 0:56 0:68
3 0:40 0:67 0:68 0:69

a t statistics in parentheses
b Criterion table for the residuals from the unrestricted model
c The statistics are normalised by the corresponding 5% �2 critical values

7 Application to Macro-Economic Data

The aim of this section is to actually apply our modelling strategy to more than

just one or two data sets, and to analyse how this modelling strategy performs

in a forecasting sense. We run a forecasting race for forecasting real macroeco-

nomic data, between V AR (p) models selected via model selection criteria, and

V ARMA (p; q) models identi�ed via the proposed modelling strategy.
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7.1 Data

The data employed in this paper are 40 monthly macroeconomic time series from

1959:1-1998:12 (i.e. N = 480 observations) extracted from the Stock and Watson

(1999) data set (also used in Watson, 2001). The series fall within eight general

categories of economic activity: (i) Output and Real Income; (ii) Employment and

Unemployment; (iii) Consumption, Manufacturing, Retail Sales and Housing; (iv)

Real Inventories and Sales; (v) Prices and Wages; (vi) Money and Credit; (vii)

Interest Rates; (viii) Exchange Rates, Stock Prices and Volume. The data was

transformed in various ways replicating the transformations in Stock and Watson

(1999) and Watson (2001) (see appendix A).

The initial aim of the modelling process was to randomly select any trivariate

(k = 3) system of the series from the Stock and Watson data set and model it.

Soon enough it was discovered that many series caused problems. For example

when we employed series which were transformed to the second order di¤erence

of the logarithms, these returned negative roots in the moving average coe¢ cients

close to unity, which is a sign of over-di¤erencing. Thus we have systematically

chosen series to avoid these types of problems. We have created in total seventy

trivariate systems, and what we can claim is that the trivariate systems we have

constructed include at least one combination from each of the eight categories

(i.e., at least one combination from (i) ; (ii) and (iii), at least one from (i) ; (ii)

and (iv).and so on).

7.2 V AR models

Two V AR models are selected for each set of the three variables using Akaike

Information Criterion (AIC) and Schwarz Criterion (SC) :

AIC (p) = ln
���b�" (p)���+ 2� pk2

N
;

and

SC (p) = ln
���b�" (p)���+ ln (N)� pk2

N
;

where b�" (p) is the estimated variance-covariance matrix of the errors of the
V AR (p) model, k is the dimensionality of the system, thus making pk2 the num-

ber of free parameters to be estimated. For N � 8 the SC is a more strict criterion
than the AIC, due to the penalty factor of ln (N), thus selecting more parsimo-

nious models. The unrestricted V AR (p) models are estimated via equation by

equation Ordinary Least Squares (OLS) and the restricted models are e¢ ciently
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estimated via Seemingly Unrelated Regressions (Zellner, 1962) estimation proce-

dure.

7.3 Forecasting and Results

Each series has been divided into two subsamples. The �rst subsample which is

often referred to as the test (or initialisation see Makridakis et. al., 1998) sample,

contains the �rst 25 years worth of data (i.e., N1 = 300). The second subsample

referred to as the hold-out sample contains the last 15 year worth of data (i.e.,

N2 = 180). Each model is estimated within the test sample and we perform out-

of-sample forecasting in the hold-out sample. The out-of-sample forecast horizon

ranges from h = 1 to 15 step ahead forecasts9. We forecast each horizon in a N1
moving window manner. That is, once the model is estimated we �t the model

in y1 to yN1 and forecast all out-of-sample horizons beyond this point. Then we

move the �tting window along and �t it to y2 to yN1+1. As yN1+1 is now observed

we forecast all out-of-sample horizons beyond this point and so on. Thus for each

forecast horizon h, there are N2 � h+ 1 forecasts available for forecast evaluation
purposes. We attempt to summarise the performance of the competing models in

the next two sections.

For each of the forecast horizons we consider two popular measures of fore-

casting accuracy. The �rst is the determinant of the forecast mean squared error

matrix (jFMSEj), and the second is the trace of the forecast mean squared error
matrix (tr (FMSE)). It should be mentioned that both the test and hold-out

sample observations have been standardised by the estimated standard deviation

that comes from the test sample making the variances of the forecast errors of the

three series directly comparable and therefore making tr (FMSE) a legitimate

measure for forecast accuracy. These measures have been compared in the two

following ways.

7.3.1 Percentage better (PB)

This measure reports counts of the number of times each model has produced

a smaller forecast error measure for each of the forecast horizons. The counts

have been graphed in three dimensional bar charts in appendix (B) ; see �gures

(3) to (7) : Also see tables (15) to (18) in appendix (C) for the raw �gures. The

9We are trying to keep the forecast horizons as compatible as possible with other forecasting
competitions such as the M1 and M3 (see Makridakis and Hibbon 1979, Makridakis and Hibbon
2000).
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�rst observation one can make from the graphs is that their is only one instance

(h = 3 for the tr (FSME) of the unrestricted models) that the V ARMA models

are outperformed by the V AR selected by SC. For all the other forecast horizons

and accuracy measures the V ARMA models dominate.

Another observation one can make is that the V ARMA models seem to im-

prove their performance over the V ARmodels in the longer term forecast horizons.

As advocates of the V ARMA model we were hoping that this would be the case.

We expected10 the more parsimonious V ARMA models, which can be approxi-

mated by long V ARs, to outperform in a forecasting sense these long V ARs11.

For both accuracy measures, of both restricted and unrestricted models, the

V ARMAmodels perform better at least �fty percent (50%) of the time for forecast

horizons of more than six or seven steps ahead. The importance of the 50% �gure

is that if we had some way of selecting the best of the V AR models (from either

AIC or BIC) the V ARMA models will still dominate.

7.3.2 Average of the ratios of the forecast errors

Tables (19) to (22) in appendix (D) show the average ratio of the forecast error

measures of the V ARs over the V ARMA models. For example table (19) present

the ratio,

Ratioh =
1

M

mX
i=1

jFMSE (V AR)ij
jFMSE (V ARMA)ij

,

for each of the forecast horizons h = 1; : : : ; 15, where M is the number of data

sets considered. Thus �gures grater than one show how much worst the V ARs

selected by either AIC or SC perform in comparison to the V ARMA models for

that particular horizon.

The reason we observe these ratios as well as the PB counts above, is that it

is possible that one model is best in more than 50% of the times, say 80%, but

in all those cases other alternatives are close to it. However, in the 20% of cases

that this model is not the best, it may make huge errors. In such a case, a user

who is risk averse would not use this model, because when the model is wrong, it

is badly wrong. The average of the ratios gives us this extra information.

Moreover, we take the ratios �rst and then average them afterwards, rather

than average the det (FSME) over allM data sets and then �nd the ratio, because

di¤erent sets of variables may have di¤erent degrees of predictability.
10Reference of Tunicli¤e-Wilson who states exactly this.
11Various forecasting studies (see the references to the M competitions) and experts advertise

the moto of parsimony for better forecasting performance.
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The �gures show that for each of the forecast horizons the V ARMA models

outperform the V ARs. Moreover these tables con�rm the observation made above

about the V ARMA models performing better in the longer horizon forecasts as

we see the average ratio measure increases the further out we forecast.

8 Summary and future direction

This paper suggests an extension to Tiao and Tsay�s methodology for identi�ca-

tion of V ARMA models in the direction foreseen by researchers who commented

on the original work of Tiao and Tsay. The simulations are based on a very small

number of repetitions, due to the complex and time consuming nature of the

process of identi�cation. However they do present the reader with some insight

to the performance and the usefulness of each stage of the proposed identi�ca-

tion process. The empirical section is split in two parts. Firstly, it presents two

examples of applying the proposed V ARMA modelling process in full. Secondly

it includes an extensive empirical application, using many sets of macroeconomic

variables from the Stock and Watson(1999) data set, to perform out-of-sample

forecasting comparisons between estimated V AR and V ARMA models. From

the empirical application we �nd that there are many cases in out-of sample fore-

casting where the V ARMA models outperform their V AR counterparts. This

conclusion is stronger when we concentrate on the longer term forecast horizons.

Thus from this study we can conclude that there is great scope in investing more

time for the development of the V ARMA models, in an empirical sense. That is

to develop these models in a way that empirical econometrician can consider them

as alternatives to other multivariate modelling techniques.
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A Data Summary

This appendix lists the time series employed in this paper. The series have been

directly downloaded from Mark Watson�s web page. The names (mnemonics)

given to each series and the brief description following the series name have been

replicated as in Watson (2001). The superscript index on the series name is

the transformation code which corresponds to: (1) level of the series
�
y1t
�
, (2)

�rst di¤erence
�
y2t = �yt = yt � yt�1

�
and (3) �rst di¤erence of the logarithm

i.e. series transformed to growth rates
�
y3t = 100 �� ln yt

�
. Also the following

abbreviations appear in the brief data descriptions: SA = seasonally adjusted;

SAAR = seasonally adjusted at an annual rate; NSA = not seasonally adjusted.

(i) Output and Income

1. IP3 Industrial Production: Total Index (1992=100,SA)

2. IPP3 Industrial Production: Products, Total (1992=100,SA)

3. IPF3 Industrial Production: Final Products (1992=100,SA)

4. IPC3 Industrial Production: Consumer Goods (1992=100,SA)

5. IPUT3 Industrial Production: Utilities (1992=100,SA)

6. PMP1 NAPM Production Index (Percent)

7. GMPYQ3 Personal Income (Chained) (series #52) (Bil 92$, SAAR)

(ii) Employment and Hours

8. LHUR1 Unemployment Rate: All Workers, 16 Years & over (%,SA)

9. LPHRM1 Avg. weekly hrs. of Production Wkrs.: Mfg., Manufacturing. (SA)

10. LPMOSA1 Avg. weekly hrs. of Production Wkrs.: Mfg., Overtime Hrs. (SA)

11. PMEMP1 NAPM Employment Index (Percent)

(iii) Consumption, Manufacturing and Retail Sales, and Housing

12. MSMTQ3 Manufacturing & Trade: Total (Mil of Chained 1992 Dollars) (SA)

13. MSMQ3 Manufacturing & Trade: Manufacturing, Total (Mil of Chained $1992 SA)

14. MSDQ3 Manufacturing & Trade: Manufacturing, Durable Goods (Mil of Chained $1992 SA)

15. MSNQ3 Manufacturing & Trade: Manufacturing, Nondurable Goods (Mil of Ch. $1992 SA)

16. WTQ3 Merchant Wholesalers: Total (Mil of Chained 1992 Dollars) (SA)

17. WTDQ3 Merchant Wholesalers: Durable Goods Total (Mil of Chained 1992 Dollars) (SA)

18. WTNQ3 Merchant Wholesalers: Nondurable Goods Total (Mil of Chained $1992 SA)

19. RTQ3 Retail Trade: Total (Mil of Chained 1992 Dollars) (SA)

20. RTNQ3 Retail Trade: Nondurable Goods (Mil of Chained 1992 Dollars) (SA)

21. CMCQ3 Personal Consumption Expend (Chained) - Total (Bil $92, SAAR)
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(iv) Real Inventories and Inventory-Sales Ratios

22. IVMFGQ3 Inventories, Business, Manufacturing (Mil of Chained 1992 Dollars) (SA)

23. IVMFDQ3 Inventories, Business Durables (Mil of Chained 1992 Dollars) (SA)

24. IVMFNQ3 Inventories, Business Nondurables (Mil of Chained 1992 Dollars) (SA)

25. IVSRQ2 Ratio for Manufacturing & Trade: Inventory/Sales (Chained 1992 Dollars) (SA)

26. IVSRMQ2 Ratio for Manufacturing & Trade: Manufacturing Inventory/Sales (87$) (SA)

27. IVSRWQ2 Ratio for Manufacturing & Trade: Wholesaler; Inventory/Sales (87$) (SA)

28. IVSRRQ2 Ratio for Manufacturing & Trade: Retail Trade; Inventory/Sales (87$) (SA)

29. MOCMQ3 New Orders (net) - Consumer Goods & Materials, 1992 Dollars (BCI)

30. MDOQ3 New Orders, Durable Goods Industries, 1992 Dollars (BCI)

(v) Prices and Wages

31. PMCP1 NAPM Commodity Prices Index (Percent)

(vi) Money and Credit Quantity Aggregates

32. FM2DQ3 Money Supply - M2 in 1992 Dollars (BCI)

33. FCLNQ3 Commercial & Industrial Loans Outstanding in 1992 Dollars (BCI)

(vii) Interest Rates

34. FYGM32 Interest Rate: US Treasury Bills, Sec Mkt, 3-MO. (% p.a. NSA)

35. FYGM62 Interest Rate: US Treasury Bills, Sec Mkt, 6-MO. (% p.a. NSA)

36. FYGT12 Interest Rate: US Treasury Const Maturities, 1-YR. (% p.a. NSA)

37. FYGT102 Interest Rate: US Treasury Const Maturities, 10-YR. (% p.a. NSA)

38. TBSPR1 Term Spread FYGT10-FYGT1

(viii) Exchange Rates, Stock Prices and Volume

39. FSNCOM3 NYSE Common Stock Prices Index: Composite (12/31/65=50)

40. FSPCOM3 S&P�s Common Stock Prices Index: Composite (1941-43=10)
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B Percentage Better Counts (Graphs)

Figure 3: PB counts for jFMSEj for the Unrestricted Models
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Figure 4: PB counts for jFMSEj for the Restricted Models
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Figure 5: PB counts for tr (FMSE) for the Unrestricted Models
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Figure 6: PB counts for tr (FMSE) for the Restricted Models
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C Percentage Better Counts (Raw Data)

Table 15: PB Counts for det(FMSE) of Unrestricted models

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V ARMA 43a 41 41.5 53 50 48.5 58.5 61 61 65.5 63 61.5 61 60 56
V AR (AIC) 28.5 23 27 24 23 28.5 18.5 19 19 15.5 17 17 16 19 21
V AR (SC) 28.5 36 31.5 23 27 23 23 20 20 19 20 21.5 23 21 23

Table 16: PB Counts for det(FMSE) of Restricted models

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V ARMA 49a 45.5 40 51 51.5 53 59 51 53 50 53 49 49 49 47
V AR (AIC) 30 29 33 30 31.5 28.5 25.5 29 27 29 25.5 25.5 31 30 30
V AR (SC) 21 25.5 27 19 17 18.5 15.5 20 20 21 21.5 25.5 20 21 23

Table 17: PB Counts for tr(FMSE) of Unrestricted models

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V ARMA 49a 41 37 47 51.5 50 56 56 57 63 63 57 57 56 53
V AR (AIC) 24 20 23 23 17 23 13 13 14 11 14 16 17 17 18.5
V AR (SC) 27 39 40 30 31.5 27 31 31 29 26 23 27 26 27 28.5

Table 18: PB Counts for det(FMSE) of Restricted models

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V ARMA 51.5a 47 48.5 53 57 49 54 53 53 50 50 46 50 51 49
V AR (AIC) 27 21.5 23 23 24 31 23 26 26 27 29 31 29 29 30
V AR (SC) 21.5 31.5 28.5 24 19 20 23 21 21 23 21 23 21 20 21

a Figures are rounded to the nearest .5 �gure
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D Average Ratios

Table 19: Average Ratio of det(FTSE) of VAR over VARMA for Unrestricted
models

Forecast Horizon (h) Av. of Forecast Horizon
1 2 3 4 6 8 12 15 1-4 1-8 1-12 1-15

V AR (AIC) 1.058 1.079 1.059 1.078 1.079 1.08 1.087 1.08 1.069 1.075 1.078 1.08
V AR (SC) 1.043 1.055 1.062 1.099 1.112 1.11 1.099 1.087 1.065 1.089 1.094 1.094

Table 20: Average Ratio of det(FTSE) of VAR over VARMA for Restricted models

Forecast Horizon (h) Av. of Forecast Horizon
1 2 3 4 6 8 12 15 1-4 1-8 1-12 1-15

V AR (AIC) 1.022 1.03 1.03 1.031 1.028 1.027 1.032 1.035 1.028 1.028 1.029 1.03
V AR (SC) 1.011 1.01 1.013 1.021 1.023 1.025 1.029 1.031 1.014 1.019 1.022 1.024

Table 21: Average Ratio of tr(FTSE) of VAR over VARMA for Unrestricted
models

Forecast Horizon (h) Av. of Forecast Horizon
1 2 3 4 6 8 12 15 1-4 1-8 1-12 1-15

V AR (AIC) 1.034 1.051 1.036 1.055 1.061 1.065 1.071 1.064 1.044 1.054 1.059 1.061
V AR (SC) 1.039 1.053 1.069 1.106 1.125 1.123 1.113 1.1 1.067 1.096 1.103 1.103

Table 22: Average Ratio of tr(FTSE) of VAR over VARMA for Restricted models

Forecast Horizon (h) Av. of Forecast Horizon
1 2 3 4 6 8 12 15 1-4 1-8 1-12 1-15

V AR (AIC) 1.024 1.031 1.03 1.031 1.021 1.016 1.019 1.024 1.029 1.025 1.022 1.022
V AR (SC) 1.017 1.02 1.024 1.03 1.03 1.03 1.034 1.037 1.023 1.026 1.028 1.03
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