
Maximal Invariant Likelihood Based Testing of  

Semi-Linear Models 

Jahar L. Bhowmik and Maxwell L. King 

Department of Econometrics and Business Statistics 

Monash University, Clayton, Victoria 3800 

Australia 

 

May 2004 

 

 

Abstract 

In this paper, we use a maximal invariant likelihood (MIL) to construct two likelihood 

ratio (LR) tests. The first involves testing for the inclusion of a non-linear regressor 

and the second involves testing of a linear regressor against the alternative of a non-

linear regressor. We report the results of a Monte Carlo experiment that compares the 

size and power properties of the traditional LR tests with those of our proposed MIL 

based LR tests. Our simulation results show that in both cases the MIL based tests 

have more accurate asymptotic critical values and better behaved (i.e., better centred) 

power curves than their classical counterparts. 
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1. Introduction 

Bhowmik and King (2002) investigated the quality of estimates of different parameters 

for selected non-linear models based on the two-step maximum MIL method and the 

traditional full maximum likelihood (FML) method. Their empirical results show that 

the estimators based on MIL are better than those based on the FML method. This 

result may also have implications for testing regression coefficients based on maximal 

invariant likelihood ratio (MILR) tests using the MIL functions. These tests might be 

expected to have better properties than those based on FML. Certainly, the simulation 

results reported by Moulton and Randolph (1989), Ara and King (1993, 1995), Ara 

(1995), Grose (1997, 1998), Rahman and King (1998) and Laskar and King (1998) 

provide evidence of improved test properties in the case of the marginal likelihood 

over the traditional likelihood.  

The likelihood ratio (LR) test is a popular hypothesis testing procedure originally from 

the work of Neyman and Pearson (1933). Unfortunately, it is not always well behaved 

in small sample sizes, at least in some cases. The classical LR test has often been 

found to have inaccurate critical values for many econometric testing problems (see for 

example Dent (1973), King (1987), Breusch and Schmidt (1988), McManus et al. 

(1994), Ara (1995) and Dobler (2002)). Ara (1995) advocated the use of marginal 

likelihood based tests in order to improve small sample accuracy. For small sample 

sizes, econometricians have found that a marginal likelihood based test is more reliable 

than its classical counterpart (LR), in terms of sizes and powers (see Corduas (1986), 

Moulton and Randolph (1989), Mukerjee (1992a, 1992b), Ara (1995) and Laskar and 

King (2001)).  
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In this paper we construct MILR tests using MIL functions to test the parameters in the 

non-linear component of non-linear models and we compare the size and power 

properties of the new tests with those of the traditional full likelihood ratio (LR) test. 

The MILR tests might be expected to be superior to the traditional LR test with respect 

to size and power given the evidence in the literature outlined above. Bhowmik and 

King (2001) derived two MIL functions for two different non-linear models and 

constructed an LBI test for one-sided alternatives. In a further study Bhowmik and 

King (2002) denoted these functions as MIL1 and MIL2 where, MIL1 stands for the 

linear model with a general non-linear component and MIL2 for a linear model with a 

regressor which is a non-linear function of unknown parameter(s). In this paper, we 

denote MILR tests derived from the MIL1 and MIL2 functions as MILR1 and MILR2 

respectively. For the general non-linear regression model, we are testing for the 

inclusion of a function that is possibly non-linear using the MILR1 test. However, for 

the more specific model, we are testing for linearity of the included component against 

the alternative of non-linearity using the MILR2 test. 

The organisation of the paper is as follows. In Section 2, we derive the MILR (MILR1 

and MILR2) and LR tests for two testing problem outlined above. In Section 3, we 

derive these tests for the three specific non-linear models studied by Bhowmik and 

King (2002). Monte Carlo experiments to investigate the size and power properties of 

these tests in the context of these three non-linear models are reported in Section 4. 

Some concluding remarks are made in the final section. 
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2. Construction of the tests 

2.1. Test for the inclusion of a non-linear regressor (LR and 

MILR1) 

In this case, we consider the following non-linear regression model  

y X g X u= + +1 1 2 2 β β( , ) u N In~ ( , )0 2σ,      (1.1) 

where y  is an n  vector,  is an ×1 X1 n q×  nonstochastic matrix of  observations on 

 variables,  is an 

n

q X 2 n p×  nonstochastic matrix of  observations on n p  variables 

and g X( ,2 2 )β  is a non-linear function of the r ×1 parameter vector β 2  and  such 

that 

X 2

g X( , )2 2 02
0β

β =
= . Note r  and p  are different for flexibility and that if 

g X( , )2 2 02
0β

β =
≠ , it can be made zero by replacing g X( , )2 2β  with 

g X g X g X*( , ) ( , ) ( , )2 2 2 2 2 2 02
β β β

β
= −

=
 and  with y y y g X* ( , )= −

=2 2 02
β

β
. We wish 

to test the hypothesis H10 2 0:β =  against H a1 2 0:β ≠ . In this case, we are testing for 

the inclusion of a function that is possibly non-linear.  

For this model and testing problem, we can derive the traditional LR test. The 

traditional full likelihood and log likelihood functions for this model are respectively 

l y X g X y X
n

1
2 2

2 1 1 2 2 1 1 2 22 1
2

= − − − ′ − −L
NM

O
QP

−
πσ

σ
β β β βc h b g b gexp ( , ) ( , )g X  (1.2) 

and  

L n y X g X1 1 2
2 2

2 1 1 2 22
2 1

2
( , , ) ln ( , )β β σ πσ

σ
β β= − − − − ′c h b g  

y X g X− −1 1 2 2β ( , )b β g .     (1.3) 

  



 5 

The LR test statistic to test H10 2 0:β =  against H a1 2 0:β ≠  is given by 

LR L L= −2 1 1 2
2

0 10 0
2( , , ) ( , )β β σ β σ      (1.4) 

where   and  are maximum likelihood estimates of β1 β 2 σ 2 β1  β 2  and  under , 

 and  are the maximum likelihood estimates of 

σ 2 H a1

β10 σ 0
2 β1  and  under , 

 is defined by equation (1.3) and  

σ 2 H10

L1 1 2
2( , , )β β σ

L n y X y X0 10 0
2

0
2

0
2 1 10 1 102

2 1
2

( , ) ln )β σ πσ
σ

β= − − − ′ −d i e j e β j   (1.5) 

where 

)
σ

β β
0

2 1 10 1 10
=

− ′ −y X y X

n
e j e j

.      (1.6) 

Bhowmik and King (2001) derived the MIL1 function which will be treated here as a 

likelihood function for the parameter vector β 2  in order to construct the MILR1 test. 

The MIL1 function is 

l m c wm
1 2

2
2

1
2 2

( ) ( ) exp{ ( , )}/β π β= −Γ { , , ( , ) ]1 1

2
2

2
1
2 2

F m a w[ β
+   

  2 1
2

3
2 22 1 1

2
2   a w F m a w( , ) [ , , ( , ) ]}β η β+    (1.7) 

and log of (1.7) is 

L m c wm
1 2

2
2

1
2 2

( ) ln ( ) ( , )/β π β= FHG
I
KJ +

−Γ + +ln{ , , ( , ) ]1 1

2
2

2
1
2 2

F m a w[ β   

  2 1
2

3
2 22 1 1

2
2   a w F m a w( , ) [ , , ( , ) ]}β η β+    (1.8) 

where  
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a w w Pg X( , ) ( , )*β β2 2= ′ 2 ,                 (1.9) 

c w b w a w( , ) ( , ) ( , )β β β
2 2

2
2

2
= − = − ′1

2 2 2 1 2 2g X M g X* *( , ) ( , )β β ,

/1 2

               
(1.10) 

w z z z= ′/ ( ) ,                 (1.11) 

η =

+
Γ

Γ

( )

( )

1
2

2

m

m ,                  (1.12) 

1F1[.,.,.] is the confluent hypergeometric function, which has the form  

1F1[ , , ] ( )
( ) !

... ( )
( ) !

c d z cz
d

c c
d d

z c
d

z
k

k

k

k

k

= + +
+
+

+ =
=

∞

∑1 1
1 2

2

0

             (1.13) 

and m n .  q= −

The MILR1 test statistic to test H10 2 0:β =  against H a1 2 0:β ≠  in model (1.1) is 

MILR L L1 2 1 2
1

0= −( )β                 (1.14) 

where is the maximum maximal invariant likelihood (MMIL1) estimate of 

parameter vector 

β 2
1

β 2  under ,  is defined by equation (1.8) and Ha L1 2
1( )β

L m m
0

21
2 2

= −ln( ( ) )/Γ π .                (1.15) 

Under appropriate regularity conditions (see Amemiya, 1985, Godfrey, 1988, or Ara, 

1995) and , these LR and MILR1 test statistics asymptotically follow a chi-square 

distribution with 

H0

r  degrees of freedom. 
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2.2. Tests of a linear regressor against a non-linear regressor (LR 

and MILR2) 

In this section we consider the following slightly more specific non-linear model, 

y X g X u= + +1 1 2 2 3β β β( , ) , ,             (1.16) u N In~ ( , )0 σ 2

where  is an X1 n q×  nonstochastic matrix,  is an X 2 n p×  nonstochastic matrix and 

g X( ,2 3)β  is a non-linear function of β 3  and . In this case, X 2 g X( , )2 3β = constant  

or more realistically a function of  when X 2 β 3 0= . Our aim is to test the hypothesis 

H20 3 0:β =  against H a2 3 0:β ≠ , where the parameter vector β 3  is of order r ×1. This 

is a case of testing for linearity against the alternative of non-linearity, in the sense that 

under , we have a linear relationship that can be estimated by OLS, but this is not 

the case under .  

H20

H a2

We can derive the traditional LR test for this testing problem. The traditional full 

likelihood and log likelihood functions for this model are respectively 

l y X
n

1 1 2 3
2 2 2

2 1 1 2 2 32 1
2

( , , , ) exp[ ( , )β β β σ πσ
σ

β β β= − − − ′−c h b gg X

]g

 

y X g X− −1 1 2 2 3β β β( , )b              (1.17) 

and 

L n y X g X1 1 2 3
2 2

2 1 1 2 2 32
2 1

2
( , , , ) ln [ ( , )β β β σ πσ

σ
β β β= − − − − ′c h b g  

y X g X− −1 1 2 2 3β β β( , )b ]g .             (1.18) 

The LR test statistic for the above model to test H20 3 0:β =  against H a2 3 0:β ≠  is 

given by 
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LR L L= −2 1 1 2 3
2

0 10 20 0
2( , , , ) ( , , )β β β σ β β σ              (1.19) 

where , ,  and  are the maximum likelihood estimates of β1 β 2 β 3 σ 2 β1 , β 2 , β 3  and 

 under , ,  and  are the maximum likelihood estimates of σ 2 H a2 β10 β 20 σ 0
2 β1 , β 2  

and  under , is defined by equation (1.18) and σ 2 H20 L1 1 2 3
2( , , , )β β β σ

L n y X g X0 10 20 0
2

0
2

0
2 1 10 20 22

2 1
2

0( , , ) ln ( , )β β σ πσ
σ

β β= − − − − ′d i e j  

y X g X− −1 10 20 2 0( , )β βe j .           (1.20) 

Bhowmik and King (2001) also derived the MIL2 function for model (1.16) which will 

be treated here as a likelihood function for the parameter β 3  in order to construct the 

MILR2 test. The MIL2 and log of this function are respectively 

l
n q

g2 3
2 2

1
2

22 1
2

( , )β σ πσ
σ

= − ′ ′y P M PyL
NM

O
QP

−
− −

c h d iexp ,             (1.21) 

and 

L n q y P M Pyg2 3
2 2

2

1
2

2 1
2

( , ) lnβ σ πσ
σ

= −
− −

− ′ ′c h d i ,            (1.22) 

where , M I g X g X g X g Xg = − ′ ′* * * *( , ){ ( , ) ( , )} ( , )2 3 2 3 2 3
1

2 3β β β − β P  is an  

matrix such that , ,  and . 

m n×

PP Im′ = ′ =P P M1 M I X X X Xn1 1 1 1
1

1= − ′ ′−( ) m n q= −

The MILR2 test statistic for model (1.16) to test H20 3 0:β =  against H a2 3 0:β ≠  is 

MILR L L2 2 2 3
1

1
2

0 10
2= −( , ) ( )β σ σ                (1.23) 
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where  and  are the MMIL2 estimates of β 3
1 σ 1

2 β 3  and  under ,  is the 

MMIL2 estimate of  under ,  is defined by equation (1.22), 

σ 2 H a2 σ 10
2

σ 2 H20 L2 3
1

1
2( , )β σ

L n q n q
0 10

2
10

21
2

2 1
2

( ) lnσ πσ= −
− −

−
− −d i ,              (1.24) 

*

σ 10
2

1
=

′ ′

− −

y P M Py

n q
g ,                 (1.25) 

M I g X g X g X g X
g m∗ = − ′ −* * * *( , ){ ( , ) ( , )} ( , )2 2 2

1
20 0 0 0 ′

)

,            (1.26) 

and . g X Pg X*( , ) ( ,2 3 2 3β β=

Under appropriate regularity conditions (see Amemiya, 1985, Godfrey, 1988 or Ara, 

1995) and , these LR and MILR2 test statistics asymptotically follow a chi-square 

distribution with 

H0

r  degrees of freedom. 

3. Construction of the tests for three different specific 

models 

We will be considering the following three semi-linear models, namely 

K V
R

ut t
t

t= +
−

+γ β
α

 , ,              (2.1) u INt ~ ( ,0 2σ )

= = +Y f X X X X ut t t t t t+ +( , ) exp( )θ θ θ θ θ1 1 2 2 4 3 3 u INt ~ ( , )0 2σ

t t t= + +α β γ  u INt ~ ( ,0 2σ t n

, ,           (2.2) 

C U W ut , , ) = 1 2, ,..., .             (2.3) 

Model (2.1) is a non-linear money demand function used by Konstas and Khouja 

(1969), where  
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 = quantity of money demanded,  Kt

Vt = national income, 

 = rate of interest, Rt

γ , β  and α  are three unknown parameters such that 0 < < ∞α , β > 0  and γ > 0 . 

Here γ  is the nuisance parameter and β  and α  are non-linear parameters. Model 

(2.2) was given by Gallant (1975), where ,  and  are three input variables, X t1 X t2 X t3

Y f Xt t= ( , )θ  is the output variable, and θ 1 , θ 2 , θ 3  and θ 4  are unknown parameters. 

Model (2.3) is a modified model of the general consumption function from Greene 

(1997), where 

 = aggregate income, Wt

 = consumption, Ct

 = regressor of independent random variables from Ut N ( , )0 1 , 

α , β  and γ  are three unknown parameters such that α > 0, 0 1< <β  and γ > 0 . We 

are interested in estimating all parameters and we are doing it in two steps. 

Note each model has a linear and a non-linear component. Because of an identification 

problem and to avoid complex mathematical computation, we consider model (2.3) 

which is different than the general consumption function. In Greene’s model, U  is a 

vector of ones but in our case U  is an 

t

t n ×1  vector of independent random variables 

from N ( , )0 1 . There is no intercept term in model (2.3) but in the original consumption 

function (Greene 1997), α  is the intercept term. For the original consumption 

function, if γ = 0  or γ = ∞ , then α  and β  are not identifiable, and if β = 0 , then γ  

is not identifiable. For these values of the parameters, the original consumption 
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function cannot be estimated properly due to this identification problem. Hence, we 

used model (2.3). 

In this section, we derive the MILR (MILR1 and MILR2) and LR tests in the context 

of testing parameters of the non-linear component for these models with the aim of 

investigating the comparative performance of these tests. For three different models, 

firstly, we are testing for the inclusion of a function that is possibly non-linear and 

constructing the LR and MILR1 tests. Secondly, we are testing for linearity against the 

alternative of non-linearity and constructing the LR and MILR2 tests. 

Bhowmik and King (2002) derived the various likelihood functions for these three 

different non-linear models. For the money demand function of Konstas and Khouja 

(1969), the traditional full likelihood, MIL1 and the MIL2 functions are respectively 

l K V Z K Vn
1

2 2
22 1

2
= − − − ′ − −−( ) exp{ ( ( )) (/πσ

σ
γ β α γ β α    Z( ))} ,            (2.4) 

l f w m Z M Zm
11

2
2

2 1
1
2 2 2

= = − ′−( ) ( ) exp{ ( ( ) ( ))}/Γ π β
σ

α α

 { , , ( , , ) ]1F1[m a w
2

1
2 2

2 β α
+ 2 1

2
3
2 2

2

a w m a w( , , ) [ , , ( , , ) ]}β α η β α1F1 +

         
(2.5) 

and 

l f d K P M PK
n q

g21
2

1
2

22 1
2

= = − ′ ′L
NM

O
QP

−
− −

( ) expπσ
σ

c h d i ,               (2.6) 

where Z
Rt

t

( )α
α

=
−
1 , K  is an n ×1  vector, V  is an  vector, 

 

n ×1

a w w Pg Z( , , ) ( ( ), ),*β α α β= ′ g Z Z*( ( ), ) ( )α β β
σ

α= , w PK
K M K

=
′( ) /

1
1 2 , P  is an  

matrix such that , 

m n×

PP Im′ = ′ =P P M1 , , , M I V V V Vn= −1
1′ ′−( ) m n= −1
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M I PZ Z M Z Z Pg n= − ′ ′−( ){ ( ) ( )} ( )α α α α1
1 ′ ′−,  and M I V V V Vn1

1= − ′( )

Z
Rt

t

( )α
α

=
−
1 . 

The log of these functions are respectively 

L n K V Z K V Z1
2

22
2 1

2
= − − − − ′ − −ln( ) ( ( )) (πσ

σ
γ β α γ β α    ( )) ,           (2.7) 

L m Z M Zm
11

2
2

2 1
1
2 2 2

= − ′ +−ln( ( ) ) ( ( ) ( ))/Γ π β
σ

α α ln[{ , , ( , , ) ]1F1[m a w
2

1
2 2

2 β α
+

   2 1
2

3
2 2

2

a w m a w( , , ) [ , , ( , , ) ]}]β α η β α1F1 + ,   (2.8) 

and 

L n q n q K P M PKg21
2

2

1
2

2 1
2

1
2

= −
− −

−
− −

− ′ ′ln( ) ln( )π σ
σ d i .             (2.9) 

For Gallant’s (1975) model, log of the full likelihood, MIL1 and the MIL2 functions 

are respectively  

L n Y X X Z1
2

2 1 1 2 2 4 32
2 1

2
= − − − − − ′ln( ) ( ( ))πσ

σ
θ θ θ θ    

   ( (Y X X Z− − ))−θ θ θ θ1 1 2 2 4 3 ,                (2.10) 

L m Z M Z m a wm
12

2 4
2

2 3 1 3

2
3 41

2 2 2 2
1
2 2

= − ′ + +−ln( ( ) ) ( ( ) ( )} ln[{ , , ( , , ) ]/Γ π θ
σ

θ θ θ θ1F1[

2 1
2

3
2 23 4

2
3 4a w m a w( , , ) [ , , ( , , ) ]}]θ θ η θ θ1F1 +                  (2.11) 

and 

L n q n q Y P M PYg22
2

2

1
2

2 1
2

1
2

= −
− −

−
− −

− ′ ′ln( ) ln( )π σ
σ d i ,           (2.12) 

where  
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a w w Pg z( , , ) ( ( ), )*θ θ θ θ3 4 3 4= ′ ,  

g z z*( ( ), ) ( )θ θ θ
σ

θ3 4
4

3= ,  

w P Y
Y M Y

=
′

 
( ) /

1
1 2 ,  

M I X X X Xn1
1= − ′ ′−

* * * *( ) ,  

M I PZ Z M Z Z Pg n= − ′ ′( ){ ( ) ( )} ( )θ θ θ θ3 3 1 3
1

3 ′−

t t( ) exp( )

, 

X*  is an  nonstochastic matrix which is comprised of the two regressors , and 

 of model (2.2), 

n × 2 X1

X 2 Z Xθ θ3 3= 3 , Y  is a vector of order n ×1  and . m n= − 2

Similarly for the modified model of the general consumption function from Greene 

(1997), log of the full likelihood MIL1 and the MIL2 functions are respectively 

L n C U Z C U Z1
2

22
2 1

2
= − − − − ′ − −ln( ) ( ( )) (πσ

σ
α β γ α β γ    ( ))           (2.13) 

L m Z M Zm
13

2
2

2 1
1
2 2 2

= − ′ +−ln( ( ) ) ( ( ) ( ))/Γ π β
σ

γ γ ln[{ , , ( , , ) ]1F1[m a w
2

1
2 2

2 β γ
+  

2 1
2

3
2 2

2

a w m a w( , , ) [ , , ( , , ) ]}]β γ η β γ1F1 +            (2.14) 

and 

L n q n q C P M PCg23
2

2

1
2

2 1
2

1
2

= −
− −

−
− −

− ′ ′ln( ) ln( )π σ
σ d i

*

,         (2.15) 

where  

a w w Pg Z( , , ) ( ( ), )β γ γ β= ′ ,  
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g Z Z*( ( ), ) ( )γ β β
σ

γ= ,  

w PC
C M C

=
′( ) /

1
1 2 ,  

M I PW W M W W Pg n= − ′ ′( )1 ′−1

1−

, 

M I U U U Un1 = − ′ ′( ) . 

C  and U  are a vectors of order n ×1 , , and Z t( )γ =Wt
γ m n= −1. 

Using (1.4), (1.14), (1.19), (1.23) and the above log likelihood functions, we can 

construct LR, MILR1 and MILR2 tests.  

3.1. Tests for the inclusion of a non-linear regressor  

Using (1.4) and (1.14), the LR and the MILR1 tests for three different models can be 

constructed. The LR statistic for the first model defined by equation (2.1) to test 

 against  is given by H10
1 0: ,β αb g′ = H a1

1 0: ,β αb g′ ≠

LR L L= −2 1 11
2

0 0 20
2( , , , ) ( , )γ β α σ γ σ               (2.16) 

where γ , , β α  and  are the maximum likelihood estimates of σ 11
2 γ , β , α  and  

under , 

σ 2

H a1
1 γ 0  and  are the maximum likelihood estimates of σ 20

2 γ  and  under 

,  is defined by equation (2.7), 

σ 2

H10
1 L1

2( , , , )γ β α σ 11

L n n
0 0 20

2
20

2

2
2

2
( , ) )γ σ πσ= − −ln( ,               (2.17) 
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( ) ( )σ γ γ
20

2 0 0=
− ′ −K V K V

n
,                (2.18) 

and K  and V  are vectors of order n ×1 . 

For model 2 defined by equation (2.2), the LR statistic to test  

against  is given by 

H10
2

4 3 0: ,θ θb g′ =

H a1
2

4 3 0: ,θ θb g′ ≠

LR L L= −2 1 1 2 3 4 12
2

0 10 20 30
2( , , , , ) ( , , )θ θ θ θ σ θ θ σ              (2.19) 

where , , ,  and  are the maximum likelihood estimates of θ 1 θ 2 θ 3 θ 4 σ 12
2 θ 1 , θ 2 , θ 3 , 

θ 4  and  under , ,  and are the maximum likelihood estimates of σ 2 H a2
2 θ 10 θ 20 σ 30

2

θ 1 , θ 2  and  under ,  is defined by equation (2.10), σ 2 H20
2 L1 1 2 4 12

2( , , , )θ θ θ σ

L n n
0 10 20 30

2
30

2

2
2

2
( , , ) ln( )θ θ σ πσ= − − ,              (2.20) 

( ) ( )σ θ θ θ θ
30

2 10 1 20 2 10 1 20 2=
− − ′ − −Y X X Y X X

n
,             (2.21) 

in which ,  and X1 X 2 Y  are vectors of order n ×1 . 

Similarly for model 3 which is defined by equation (2.3), the LR statistic to test 

 against  is given by H10
3 0: ,β γb g′ = H a1

3 0: ,β γb g′ ≠

LR L L= −2 1 11 11 11 13
2

0 0 40
2( , , , ) ( , )α β γ σ α σ               (2.22) 

where α 11 , , β11 γ 11  and  are the maximum likelihood estimates of σ 13
2 α , β , γ  and 

 under , σ 2 H a1
3 α 0  and  are the maximum likelihood estimates of σ 40

2 α  and  

under ,  is defined by equation (2.13), 

σ 2

H10
3 L1( , , )α β γ
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L n n
0 0 40

2
40

2

2
2

2
( , ) ln( )α σ πσ= − − ,               (2.23) 

( ) ( )σ α α
40

2 =
− ′ −C U C U

n
  ,                (2.24) 

and C  and U  are as defined earlier. 

Using (1.14) we can derive the MILR1 tests for these models. For the first model 

which is defined by equation (2.1), to test  against , the 

MILR1 test statistic is 

H10
1 0: ,β αb g′ = H a1

1 0: ,β αb g′ ≠

MILR L L1 2 1 0= −( , )β α                 (2.25) 

where  and  are the MMIL1 estimates of β1 α 1 β  and α  under , and 

 are defined by equations (2.8) and (1.15), respectively. 

H a1
1 L1

1 1( , )β α

L0

To test  against  in model 2 defined by equation 

(2.2), the MILR1 test statistic is 

H10
2

4 3 0: ,θ θb g′ = H a1
2

4 3 0: ,θ θb g′ ≠

MILR L L1 2 1 3
2

4
2

0= −( , )θ θ                 (2.26) 

where  and  are the MMIL1 estimates of θ 3
2 θ 4

2 θ 3  and θ 4  under ,  

and  are defined by equations (2.11) and (1.15), respectively. 

H a1
2 L1 3

2
4

2( , )θ θ

L0

Similarly for model 3 which is defined by equation (2.3), the LR statistic to test 

 against  is H10
3 0: ,β γb g′ = H a1

3 0: ,β γb g′ ≠

MILR L L1 2 1= −∗ ∗( , )β γ 0                 (2.27) 

  



 17

where  and  are the MMIL1 estimates of β∗ γ ∗ β  and γ  under ,  and 

 are defined by equations (2.14) and (1.15), respectively. 

H a1
3 L1( , )β γ∗ ∗

L0

3.2. Tests of a linear regressor against a non-linear regressor  

Using (1.19) and (1.23), the LR and the MILR2 tests for our three different models can 

be constructed. Following (1.19), the LR statistic for the first model to test  

against  is 

H20
1 0:α =

H a2
1 0:α ≠

LR L L= −2 1 14
2

0 0 0 50
2( , , , ) ( , , )γ β α σ γ β σ               (2.28) 

where γ , , β α  and  are the maximum likelihood estimates of σ 14
2 γ , β , α  and  

under , 

σ 2

H a2
1 γ 0 ,  and  are the maximum likelihood estimates of β 0 σ 50

2 γ , β  and  

under ,  is defined by equation (2.7), 

σ 2

H20
1 L1

2( , , , )γ β α σ 14

L n n
0 0 0 50

2
50

2

2
2

2
( , , ) ln( )γ β σ πσ= − − ,              (2.29) 

( ) ( )σ γ β γ β
50

2 0 0=
− − ′ − −K V Z K V Z

n
  0 0               (2.30) 

and Z
Rt

t

=
1 . 

To test  against  in model 2 which is defined by equation (2.2), 

the LR statistic is 

H20
2

3 0:θ = H a2
2

3 0:θ ≠

LR L L= −2 1 1 2 3 4 15
2

0 10 20 40 60
2( , , , , ) ( , , , )θ θ θ θ σ θ θ θ σ             (2.31) 
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where , , ,  and  are the maximum likelihood estimates of θ 1 θ 2 θ 3 θ 4 σ 15
2 θ 1 , θ 2 , θ 3 , 

θ 4  and  under , ,  and  are the maximum likelihood estimates of σ 2 H a2
2 θ 10 θ 20 σ 50

2

θ 1 , θ 2  and  under ,  is defined by equation (2.10), σ 2 H20
2 L1 1 2 3 4 15

2( , , , , )θ θ θ θ σ

L n n
0 10 20 40 60

2
60

2

2
2

2
( , , , ) ln( )θ θ θ σ πσ= − − ,              (2.32) 

( ) ( )* *

σ θ θ θ θ θ θ
60

2 10 1 20 2 40 10 1 20 2 40=
− − − ′ − − −Y X X Z Y X X Z

n
           (2.33) 

and Z *  is an  vector of ones. n ×1

Similarly, to test  against  in model 3, the LR statistic is H20
3 0:γ = H a2

3 0:γ ≠

LR L La a a= −2 1 16
2

0 0 0 70
2( , , , ) ( , , )α β γ σ α β σ              (2.34) 

where , ,  and  are the maximum likelihood estimates of α a β a γ a σ 16
2 α , β , γ  and 

 under , σ 2 H a2
3 α 0 ,  and  are the maximum likelihood estimates of β 0 σ 70

2 α , β  and 

 under ,  is defined by equation (2.13), σ 2 H20
3 L a a a

1
2( , , , )α β γ σ 16

L n n
0 0 0 70

2
70

2

2
2

2
( , , ) ln( )α β σ πσ= − − ,              (2.35) 

( ) ( )* *

σ α β α β
70

2 0 0 0 0=
− − ′ − −C U Z C U Z

n
               (2.36) 

and Z *  is an  vector of ones. n ×1

Using logs of MIL2 functions, we can derive the MILR2 tests for these models. For 

the first model, the MILR2 test statistic to test  against  is H20
1 0:α = H a2

1 0:α ≠

MILR L L2 2 2 1 18
2

0 80
2= −( , ) ( )α σ σ                (2.37) 
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where α 1  and  are the MMIL2 estimates of σ 18
2 α  and  under ,  is the 

MMIL2 estimate of  under ,  is defined by equation (2.9), 

σ 2 H a2
1 σ 80

2

σ 2 H20
1 L1 1 18

2( , )α σ

L n q n q n q
0 80

2
80

21
2

2 1
2

1
2

( ) ln( ) ln( )σ π σ= −
− −

−
− −

−
− − ,            (2.38) 

*

σ 80
2 1 1

1
=

′ ′

− −

K P M P K

n q
g ,                 (2.39) 

M I PZ Z M Z Z P
g m* { }= − ′ ′ ′−

1 1
1

1 ,               (2.40) 

P P M I K K K Kn1 1 1
1′ = = − ′ ′−( )  

and Z
Rt

t

=
1 . 

The MILR2 test statistic to test  against  in model 2 defined by 

equation (2.2) is 

H20
2

3 0:θ = H a2
2

3 0:θ ≠

MILR L L2 2 1 3
1

19
2

0 90
2= −( , ) ( )θ σ σ                (2.41) 

where  and  are the MMIL2 estimates of θ 3
1 σ 19

2 θ 3  and  under ,  is the 

MMIL2 estimate of  under ,  is defined by equation (2.12), 

σ 2 H a2
2 σ 90

2

σ 2 H20
2 L1 3

1
19

2( , )θ σ

L n q n q n q
0 90

2
90

21
2

2 1
2

1
2

( ) ln( ) ln( )σ π σ= −
− −

−
− −

−
− − ,            (2.42) 

*

σ 90
2 2 2

1
=

′ ′

− −

Y P M P Y

n q
g ,                 (2.43) 
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M I P Z Z M Z Z P
g m*

* * * *{ }= − ′ ′ ′−
2 1

1
2 ,               (2.44) 

P P M I Y Y Y Yn2 2 1
1′ = = − ′ ′−( )  

and Z *  is an  vector of ones. n ×1

Similarly for model 3 that is defined by equation (2.3), the MILR2 statistic to test 

 against  is H20
3 0:γ = H a2

3 0:γ ≠

MILR L L2 2 1
1

21
2

0 100
2= −( , ) ( )γ σ σ                (2.45) 

where  and  are the MMIL2 estimates of γ 1 σ 21
2 γ  and  under ,  is the 

MMIL2 estimate of  under ,  is defined by equation (2.15), 

σ 2 H a2
3 σ 100

2

σ 2 H20
3 L1

1
21

2( , )γ σ

L n q n q n q
0 100

2
100

21
2

2 1
2

1
2

( ) ln( ) ln( )σ π σ= −
− −

−
− −

−
− − ,           (2.46) 

*

σ 100
2 3 3

1
=

′ ′

− −

C P M P C

n q
g ,                 (2.47) 

M I P Z Z M Z Z P
g m*

* * * *( )= − ′ ′−
3 1

1
3 ,               (2.48) 

P P M I C C C Cn3 3 1
1′ = = − ′ ′−( )  

and Z *  is an  vector of ones. n ×1

4. Monte Carlo size and power comparisons 

The aim of this section is to investigate the size and power of MIL based tests as 

compared to the classical LR test using Monte Carlo simulation. In order to compare 
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the size and power of the LR, MILR1 and MILR2 tests for testing for the inclusion of a 

function that is possibly non-linear and testing for linearity against the alternative of 

non-linearity, we used the experimental framework as outlined below. 

We have three non-linear models (non-linear in parameters) given by (2.1), (2.2) and 

(2.3). Model (2.1), is a money demand function. For the purpose of our experiment, we 

used generated data to construct the design matrix with V  and  being independent 

observations from the [0,1] uniform distribution.  

t Rt

For model (2.2), Gallant (1975), used simulated data for ,  and . In our 

study, 

X t1 X t2 X t3

  was independently generated from X t1 N ( , ),0 1  

  was independently generated from X t2 N ( , ),0 1  

X t3  was independently generated from the [0,1] uniform distribution. 

Model (2.3) is a consumption function. In our study, U  is independently generated 

from 

t

N ( , )0 1  and W  is generated from the [0,1] uniform distribution.  t

We used two sample sizes, namely n = 30  and n = 60  for each of the models. 

4.1. Experimental design 

The Monte Carlo experiment was conducted in four parts. The first part involved 

calculating sizes of different tests using asymptotic critical values at the five percent 

level. The size is the proportion of replications for which the test rejects the null 

hypothesis, using its asymptotic critical value, when the test statistics are calculated 

from the data generated under the null hypothesis. This process enables us to see 
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whether the use of different MIL (MIL1 and MIL2) based tests in the context of non-

linear regression models can have better sizes than those based on the traditional full 

likelihood function. In the second part, the Monte Carlo method was used to estimate 

critical values of each of the tests in order to compare sizes and powers of all tests at 

the same significance level. This was done as follows. For each combination of a range 

of different parameter values under the null hypothesis, values of the dependent 

variable were generated and the test statistic calculated. For each set of 2000 

replications, the 95th percentile of the test statistic was taken as the simulated critical 

value (CV) for that particular combination of parameter values. Across all parameter 

combinations, the final simulated CV is the largest CV because at that point the size of 

the test will be 0.05 and not greater than 0.05 at other points. In the third part, sizes of 

different tests for each of the models were calculated using these simulated critical 

values. In fourth part, powers of all the tests were calculated using the simulated 

critical values. 

The experimental design was conducted for two types of testing problems for three 

different non-linear models given by equations (2.1), (2.2) and (2.3). For our two 

general but different non-linear models we want to test the null hypotheses  and 

 against the alternatives  and  respectively, i.e. for  we want to test for 

the inclusion of a function that is possibly non-linear and for  we test for linearity 

against the alternative of non-linearity. First, we consider  against  for the 

three different models. To calculate these two test statistics for model (2.1), data was 

generated for 36 different sets of values for 

H10

H20 H a1 H a2 H10

H20

H10 H a1

γ  and  under , namely, the 

combinations of  

σ 2 H10
1
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γ = 0.25, 0.35, 0.40, 0.55, 0.70, 0.80, 0.90, 1.00, 1.50, 1.75, 2.00, 2.50 

and 0.05, 0.25, 0.75. σ 2 =

To overcome problems with local maxima, we used five different sets of starting 

values for γ , β , α  and  and these were (0.05, 0.02, 0.05, 0.05), (0.5, 0.05, 0.07, 

0.3), , (1.9, 0.5, 0.5, 0.75) and (2.75, 0.9, 0.75, 0.95) for FML and 

σ 2

(1.2,  0.2,  0.1, 0.5)

( , )β α (0.05,  0.1),  (0.1,  0.3),  (0.3,  0.7),  (0.7,  0.8) = , and (0.9, 0.9) for MMIL1.  

For model (2.2), data was generated for 36 different sets of values for θ 1 , θ 2  and  

under . These were 

σ 2

H10
2

( , , )θ θ σ1 2
2 =  (− 1, 1, 0.05), (− 1, 1, 0.25) (− 1, 1, 0.9), (− 0.85, 0.5, 0.05), 

( 0.85, 0.5, 0.25), ( 0.85, 0.5, 0.9), (− − − 0.75, − 0.25, 0.05), ( 0.75, 0.25, 

0.25), ( 0.75, 0.25, 0.9), (

− −

− − − 0.5, 0.5, 0.05), (− 0.5, 0.5, 0.25), ( 0.5, 0.5, 

0.9), ( 0.5, 0.75, 0.05), (

−

− − 0.5, 0.75, 0.25), (− 0.5, 0.75, 0.9), ( 0.25, 0.5, 

0.05), ( 0.25, 0.5, 0.25), (

− −

− − − 0.25, − 0.5, 0.9), (0.5, 0.25, 0.05), (0.5, 0.25, 

0.25), (0.5, 0.25, 0.9), (0.5, 0.5, 0.05), (0.5, 0.5, 0.25), (0.5, 0.5, 0.9), (0.75, 

0.25, 0.05), (0.75, 0.25, 0.25), (0.75, 0.25, 0.9), (0.75, 0.75, 0.05), (0.75, 0.75, 

0.25), (0.75, 0.75, 0.9), (1, 0.25, 0.05), (1, 0.25, 0.25), (1, 0.25, 0.9), (1, 1, 

0.05), (1, 1, 0.25), (1, 1, 0.9). 

−

− −

Again to overcome the problems with local maxima, we used five different sets of 

starting values for θ 1 , θ 2 , θ 3 , θ 4  and  and these were (σ 2 − 1, − 1, 1.3, 1, 0.05), 

, (

− −

( . ,  . ,  . ,  . ,  . )− − − −0 75 0 75 0 9 0 75 0 25 − 0.2, − 0.3, − 0.5, − 0.2, 0.5), (0.45, 0.45, 0.5, 
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0.5, 0.75), and (1, 1, 1.2, 1, 0.95), for FML and (θ 3 , θ 4 ) = (− 1, − 1), ( 0.5, 0.5), 

(0.25, 0.25), (0.5, 0.5) and (1, 1) for MMIL1. 

− −

For model (2.3), data was generated for 36 different sets of values for α  and  under 

, namely, the combinations of  

σ 2

H10
3

α = 0.20, 0.50, 0.75, 0.85, 1, 1.50, 1.75, 2, 2.50, 2.75, 3, 3.50 

and 0.05, 0.25, 0.75. σ =2

To overcome problems with local maxima, we used five different sets of starting 

values for α , β , γ  and  and these were (0.05, 0.05, 0.5, 0.05), (0.5, 0.07, 0.75, 

0.25), (1.2, 0.1, 1, 0.5), (1.9, 0.5, 1.2, 0.75) and (3, 0.85, 1.5, 0.95) for FML and 

σ 2

( ,   ) =  (0.05,  0.1),  (0.1,  0.5),  (0.5,  0.75),  (0.75,  1) β γ  and (0.85, 1.5) for MMIL1.  

Similarly we investigated the properties of our test of  against  for the above 

models. To calculate the LR and the MILR2 tests in the context of model (2.1), data 

was generated for 36 different sets of values for 

H20 H a2

γ , β  and  under , namely, the 

combinations of  

σ 2 H20
1

( , )γ β = (0.3, 0.05), (0.3, 0.1), (0.4, 0.08), (0.5, 0.05), (0.5, 0.1), (0.7, 0.08), 

(0.7, 0.1), (0.7, 0.12), (1, 0.01), (1.4, 0.06), (1.5, 0.08), (1.75, 0.08) 

and 0.05, 0.25, 0.75. σ =2

To overcome the problems with local maxima, we used five different sets of starting 

values for γ , β , α  and  and these were (0.2, 0.05, 0.05, 0.05), (0.5, 0.07, 0.2, σ 2
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0.25), (0.95, 0.1, 0.5, 0.5), (1.5, 0.5, 0.75, 0.75) and (2.5, 0.85, 1.5, 0.95) for FML and 

, and (0.4, 0.95) for MMIL2. ( , )α σ 2 = (0.05,  0.05),  (0.1,  0.3),  (0.2,  0.5),  (0.3,  0.75) 

For model (2.2), data was generated for 36 different sets of values for θ 1 , θ 2 , θ 4  and 

 under . These were the combinations of  σ 2 H20
2

( , , )θ θ θ1 2 4 = ( 1, 1, 0.75), (− − 0.85, 0.50, 0.50), (− 0.75, 0.25, 0.50), 

( 0.50, 0.50, 0.75), ( 0.50, 0.75, 0.50), (

− −

− − − − 0.25, − 0.50, 0.25), (0.50, 0.25, 

0.05), (0.50, 0.50, 0.25), (0.75, 0.25, 0.50), (0.75, 0.75, 0.75), (1, 0.25, 0.50), 

(1, 1, 0.25) 

−

− −

and 0.05, 0.25, 0.90. σ =2

Again to overcome the problems with local maxima, we used five different sets of 

starting values θ 1 , θ 2 , θ 3 , θ 4  and  and these were (σ 2 − 1, − 1, 1.3, 1, 0.05), 

, (

− −

( . , . , . , . , .0 75 0 75 0 9 0 75 0 25    − − − ) − 0.2, − 0.3, − 0.5, − 0.2, 0.5), (0.45, 0.45, 0.5, 

0.5, 0.75), and (1, 1, 1.2, 1, 0.95), for FML and (θ 3 , ) = (σ 2 − 1, 0.05), (− 0.75, 0.25), 

( 0.5, 0.5), (0.25, 0.75) and (1, 0.95) for MMIL2.  −

For model (2.3), data was generated for 33 different sets of values for α , β  and  

under , namely, the combinations of  

σ 2

H20
3

( , )α β = (0.25, 0.25), (0.5, 0.25), (0.5, 0.5), (1, 0.25), (1.5, 0.25), (1.5, 0.5), 

(1.5, 0.85), (2.5, 0.25), (2.5,0.5), (2.5, 0.75), (3, 0.25) 

and 0.05, 0.25, 0.75. σ =2
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To overcome problems with local maxima, we used five different sets of starting 

values for α , β , γ  and  and these were (0.05, 0.05, 0.5, 0.05), (0.5, 0.07, 0.75, 

0.25), (1.2, 0.1, 1, 0.5), (1.9, 0.5, 1.2, 0.75) and (3, 0.85, 1.5, 0.95) for FML and 

, and (1.75, 0.95) for MMIL2.  

σ 2

( , )γ σ 2 = (0.2,  0.05),  (0.5,  0.25),  (0.75,  5),  (0.95,  0.75)

For each case, 2000 iterations were used to simulate the distributions of the test 

statistics. We used two sample sizes, n = 30  and n = 60 . In order to maximize the 

likelihood functions (full likelihood and MIL), the Gauss (see Aptech, 1995 and 

Gauss, 1998) Co-optimisation routine was used.  

4.2. Size results for asymptotic critical values 

The estimated sizes of the LR, MILR1 and MILR2 tests for the three different specific 

models based on their asymptotic critical values are presented in Tables 6.1-6.6. As 

2,000 replications were used, estimated sizes in the range of 0.0405-0.0596 are not 

significantly different from their nominal level of 0.05 at the five percent level. In all 

tables, a star denotes an estimated size that is significantly different from 0.05 at the 

five percent level. 

The results in Tables 1-6 reflect that most of the sizes of all the tests based on classical 

likelihood and MIL are significantly higher or lower than the nominal size at the 5% 

level. These results also show that in general, the estimated size for any of the MIL 

functions is typically closer to 0.05 than the corresponding estimated size for the 

classical likelihood function. We observe that there is generally an appreciable 

improvement in accuracy when an MIL is used in place of the classical approach, 

especially if it is the MIL1 function. 
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Table 1 shows the size results for model (2.1) to test  against . An analysis of 

the results shows that the overall average values of the absolute differences of 

estimated sizes of the LR and MILR1 tests for 

H10
1 H a1

1

n = 30  from the nominal size 0.05 are 

0.125 and 0.026, respectively. When n = 60 , these are 0.093 and 0.026, respectively. 

For model (2.2) when testing  against  the overall average values of the 

absolute differences of estimated sizes of the LR and MILR1 tests for  are 0.087 

and 0.022, respectively. When n

H10
2 H a1

2

n = 30

= 60 , these are 0.055 and 0.023, respectively. 

Similarly, for model (2.3), when testing  against , these are 0.027 and 0.015, 

for . When , these are 0.023 and 0.015, respectively.  

H10
3 H a1

3

n = 30 n = 60

Table 4 shows the size results for model (2.1) to test  against . In this case, 

the overall average values of the absolute differences of estimated sizes of the LR and 

MILR2 tests for 

H20
1 H a2

1

n = 30  from the nominal size 0.05 are 0.015 and 0.016 respectively, 

and for n , they are both 0.016. The results reported in Table 5 show that for 

testing  against , the overall average values of the absolute differences of 

estimated sizes of the LR and MILR2 tests for 

= 60

H20
2 H a2

2

n = 30  are both 0.011. When , 

they are both 0.013. Similarly, for model (2.3), when testing  against  for 

, these are 0.022 and 0.018, and when 

n = 60

H20
3 H a2

3

n = 30 n = 60 , these are 0.021 and 0.019 

respectively. These results show that the overall average values of the estimated sizes 

of the MILR1 test are generally closer to the nominal size 0.05 than the corresponding 

estimated sizes of the classical LR test, particularly for n = 30 . On the other hand, the 

overall average estimated sizes of the MILR2 and LR tests are almost always similar. 
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The maximum and minimum absolute differences of estimated sizes of LR and MILR 

tests from the nominal size 0.05 can also be observed from the results in Tables 6.1-

6.6. For model (2.1) when testing  against , we observe that for , the 

maximum absolute differences of estimated sizes of the LR and MILR1 tests from the 

nominal size 0.05 are 0.142 and 0.038, respectively. The corresponding minimum 

absolute differences are 0.113, and 0.013, respectively. When n

H10
1 H a1

1 n = 30

= 60 , 0.104 and 0.036 

are the maximum absolute differences respectively, and the corresponding minimum 

absolute differences are 0.083 and 0.014, respectively. For model (2.2) when testing 

 against , for , the maximum absolute differences are 0.100 and 0.036 

and the minimum absolute differences are 0.080 and 0.014, respectively. Similarly, for 

model (2.3) when testing  against , the corresponding maximum absolute 

differences for  are 0.032 and 0.021 and the minimum absolute differences are 

0.019 and 0.009, respectively. For 

H10
2 H a1

2 n = 30

H10
3 H a1

3

n = 30

n = 60 , these are 0.026, 0.019 and 0.014, 0.008, 

respectively. These results show that the maximum and the minimum absolute 

differences of the classical LR test are typically larger than the MILR1 test. For the 

cases between maximum and minimum, we also observe that the absolute differences 

for the classical LR test are generally larger than for the MILR1 test. Therefore, the use 

of MIL based tests results in improved size as compared to the use of the LR test. 

The absolute maximum differences of estimated sizes of LR tests for models (2.1), 

(2.2) and (2.3) to test  against  at the nominal size of 0.05, are respectively 

0.039, 0.010, 0.014, based on classical likelihood and 0.016, 0.009, 0.011 based on 

MIL2. These occur when n . The corresponding minimum absolute differences 

are 0.023, 0.018, 0.030 and 0.021, 0.017, 0.023, respectively. When , the 

H20 H a2

= 30

n = 60
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absolute maximum differences of estimated sizes of the LR test and MILR2 tests for 

these three models are 0.002, 0.008, 0.015, and 0.007, 0.005, 0.008, respectively. The 

corresponding minimum absolute differences are 0.021, 0.016, 0.028, and 0.020, 

0.016, 0.024, respectively. These results show that the maximum and the minimum 

absolute differences for the LR test are generally larger than those for the MILR2 test. 

The overall average values of estimated sizes of the LR and MILR1 tests for model 

(2.1) when n  are 0.175 and 0.076 respectively, and for n= 30 = 60 , these are 0.143 

and 0.076, respectively. For model (2.2) and n = 30 , the average values of estimated 

sizes of the LR and MILR1 tests are 0.137 and 0.072, respectively, and for , 

these are 0.105 and 0.073 respectively. Similarly for model (2.3), the overall average 

estimated sizes of the LR and MILR1 tests are 0.077 and 0.065 for n  and 0.073 

and 0.065, respectively, for . For these models, the average values of estimated 

sizes for n  are respectively 0.035, 0.039, 0.028, for the LR and 0.034, 0.039, 

0.032 for the MILR2. When , these are 0.034, 0.037, 0.029, and 0.034, 0.037, 

0.031, respectively.  

n = 60

= 30

n = 60

= 30

n = 60

These results show that the average, maximum and minimum absolute differences for 

all the tests based on classical likelihood are, in general, large compared to those based 

on MIL functions. These results also confirm the poorer performance of the LR test 

compared to the MILR (MILR1 and MILR2) tests, with respect to size based on 

asymptotic critical values. Among the MILR tests, the MILR1 test is best, with the 

smallest average, maximum and minimum absolute differences. 

In most of the cases, the LR tests have sizes significantly higher or lower than those of 

the MILR tests, and there is a clear sign of improvement as n  increases from  to 30

  



 30

60

n = 30

. With respect to the MIL based tests, the estimated sizes of the MILR1 and MILR2 

tests are closer to their nominal size as compared to the LR test, especially for . 

We observe that for both sample sizes ( n = 30 n and = 60 ), the MILR1 test typically 

produced better size results, compared to the traditional LR test. However, for n , 

in most of the cases, the traditional LR test produced better size results compared to 

the MILR2 test. 

= 60

On the whole, sizes of the LR tests based on MIL functions are better than those based 

on the classical likelihood. Therefore, it seems very clear that the use of MIL improves 

the accuracy of the LR test at least for n = 30  and this likelihood does reasonably well 

in testing problems. 

4.3. Size results for simulated critical values 

The estimated sizes of the LR, MILR1 and MILR2 tests for the three different specific 

models, based on their simulated critical values, are presented in Tables 7-12.  

The results in Tables 7-12 reflect that the estimated size results of the MILR tests are, 

in general, closer to 0.05 than the corresponding estimated size for the classical LR 

test. Table 7 shows the size results for model (2.1) when testing  against . A 

thorough analysis shows that the ranges of the estimated sizes of the LR and MILR1 

tests for n  are 0.039-0.050 and 0.042-0.050, respectively. The overall average 

values of the estimated sizes are 0.045 and 0.047, respectively. When n , the 

ranges are both 0.040-0.050, and the overall average values are both 0.046. For model 

(2.2), when testing  against , 0.035-0.050 and 0.040-0.050 are the ranges of 

the estimated sizes of the LR and MILR1 tests for 

H10
1 H a1

1

= 30

= 60

H10
2 H a1

2

n = 30 . While, the overall average 
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values of the estimated sizes are 0.044 and 0.047, respectively. When n , the 

ranges are 0.045-0.050 and 0.046-0.050 respectively, and the averages are both 0.048. 

Similarly, the ranges of the estimated sizes of these tests for n

= 60

= 30 , when testing  

against , are 0.039-0.050, and 0.042-0.050 respectively. The overall averages are 

0.044 and 0.045 respectively. For 

H10
3

H a1
3

n = 60 , the ranges are 0.040-0.050, and 0.041-0.050 

respectively and the averages are 0.044 and 0.045, respectively. These results are as 

might be expected. 

Table 10 shows the size results for model (2.1) when testing  against . In this 

case, the ranges of the estimated sizes of the LR and MILR2 tests for  are 

0.021-0.050 and 0.032-0.050, respectively. The overall average values of the estimated 

sizes of these tests for  are 0.033 and 0.037, respectively. When , 0.034-

0.050 and 0.039-0.050 are the ranges of the estimated sizes for these tests. Also, the 

overall averages are both 0.045. For testing  against , results reported in 

Table 11 show that the ranges of the estimated sizes of the LR and MILR2 tests for 

 are 0.026-0.050 and 0.033-0.050, respectively. The average values of the 

estimated sizes are 0.033 and 0.041, respectively. While, 0.040-0.050 and 0.038-0.050 

are the ranges of the estimated sizes of these tests for 

H20
1 H a2

1

n = 30

n = 30 n = 60

H20
2 H a2

2

n = 30

n = 60 , and the overall averages 

are 0.043 and 0.041, respectively. Similarly, for testing  against , when 

, the ranges of the estimated sizes of these tests are 0.027-0.050 and 0.032-

0.050, respectively, and the overall averages are 0.035 and 0.039, respectively. When 

, the ranges are 0.042-0.050 and 0.039-0.050, respectively, and the overall 

averages are both 0.044.  

H20
3 H a2

3

n = 30

n = 60
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The above results show that the average values of the estimated sizes of all the tests 

based on MIL (MIL1 and MIL2) functions are larger compared to those based on the 

classical likelihood function, except for a few exceptions. We also observe that the 

ranges of the estimated sizes of the tests based on MIL functions are typically smaller 

compared to those of their classical counterpart. Therefore, the overall results show 

that there is a slight improvement in size results when an MIL based test is used in 

place of the classical approach, although the differences are typically not significant.  

4.4. Power results for simulated critical values 

Estimated powers of the LR, MILR1 and MILR2 tests for the three different specific 

models using simulated critical values at the five percent level are presented in Tables 

13-18. Generally, the powers of all tests increase as the sample size increases, ceteris 

paribus. 

From Tables 13-18, we observe that there is typically an improvement in the power 

results of the MILR tests when compared to those of the traditional LR test. Over half 

of the unrestricted parameter space, the MILR tests have higher power than the LR 

test. A feature of the results is the wide fluctuation in powers for the LR test. Some of 

the estimated powers of this test are less than 0.05, indicating that it is a biased test. 

Table 13 shows the power results for model (2.1) when testing  against . An 

analysis shows that the overall average values of the estimated powers of the LR and 

MILR1 tests for n  are 0.262 and 0.302, respectively. When n , these are 

0.562 and 0.560, respectively. The ranges of the estimated powers of the LR and 

MILR1 tests for n

H10
1 H a1

1

= 30 = 60

= 30  are 0.119-0.645 and 0.152-0.657, respectively. When , n = 60
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0.188-0.998 and 0.202-0.975 are the respective ranges of the estimated powers of these 

tests. For model (2.2) and testing  against , the overall average values of the 

estimated powers of the LR and MILR1 tests for 

H10
2 H a1

2

n = 30  are 0.415 and 0.431, 

respectively. When , these are 0.565 and 0.568, respectively. For n , the 

ranges of the estimated powers of these tests are 0.059-0.962 and 0.097-0.958, 

respectively. When , these are 0.093-0.985 and 0.133-0.964, respectively. 

Similarly, for model (2.3) and testing  against , the overall average values of 

the estimated powers are 0.347 and 0.367, for n

n = 60 = 30

n = 60

H10
3 H a1

3

= 30  and when n = 60  these are 0.490 

and 0.491, respectively. The ranges of the estimated powers are 0.036-0.985 and 

0.062-0.977, for  and when nn = 30 = 60  these are 0.047-0.977 and 0.082-0.954, 

respectively. In this case, four of the estimated power results of the LR test are less 

than 0.05.  

The overall average estimated powers of the LR and MILR2 tests for model (2.1), 

when , are 0.375 and 0.386 respectively. For n = 30 n = 60 , these are 0.694 and 0.692, 

respectively. When n , the ranges of the estimated powers for the LR and MILR2 

tests are 0.060-0.998 and 0.105-0.898, respectively. For 

= 30

n = 60 , these are 0.324-0.998 

and 0.339-0.980, respectively. For model (2.2) and n = 30 , overall average estimated 

powers of the LR and MILR2 tests are 0.177 and 0.180, respectively, and for , 

these are 0.267 and 0.266, respectively. In this case, the ranges of the estimated powers 

of these tests for 

n = 60

n = 30  are 0.036-0.765 and 0.042-0.724, respectively. When , 

these are 0.049-0.908 and 0.054-0.894, respectively. Similarly for model (2.3), overall 

average values of estimated powers of the LR and MILR2 tests are 0.177 and 0.180 for 

, and 0.356 and 0.370, respectively, when 

n = 60

n = 30 n = 60 . The ranges of the estimated 
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powers of these tests are 0.064-0.968 and 0.076-0.944, for n = 30  and when  

these are 0.076-0.985 and 0.080-0.961, respectively. In this case, for model (2.2), five 

of the estimated powers of the LR test and three of the MILR2 test are less than 0.05. 

n = 60

These results indicate that the average power of all the tests based on classical 

likelihood are smaller compared to those based on MIL functions, especially for 

. We also observe that the ranges of the estimated powers of the tests based on 

MIL functions are typically smaller compared to those of their classical counterpart. 

We notice that in most of the cases, the lower limit of the ranges of the estimated 

powers of the LR test is smaller than for the MILR tests. Therefore, it is clear from the 

results that the use of MIL functions results in power curves that are better centred 

around . In some cases, there is no improvement in power for the MILR2 test over 

the classical LR test, particularly when 

n = 30

H0

n = 60 . On the whole, the performance of LR 

tests based on MIL functions is generally better than those based on the classical 

likelihood function. For , in most of the cases, average power results of the LR 

tests based on MIL functions are not better than the classical likelihood based test. 

n = 60

Hence, our results indicate that the use of MIL based tests typically results in increased 

power under the alternative hypothesis with a few exceptions, at least for n . We 

observe that the power of a MIL based test increases at a fairly even rate as one moves 

away from the null, no matter in which direction. This is not the case for the classical 

LR test which is clearly biased in small samples. 

= 30
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5. Concluding remarks 

In this paper, we derived the LR tests based on MIL functions in the context of two 

different general non-linear models. A Monte Carlo experiment was used to investigate 

the properties of these tests in the context of three specific non-linear models. The size 

results reflect that sizes of the MILR tests are closer to the nominal size, compared to 

the LR test, particularly for . In terms of power, we conclude that an MIL based 

test is more reliable than its classical counterpart. In general, all the tests based on MIL 

functions typically have more accurate sizes and better-centred power curves, 

compared to those based on the classical likelihood function, particularly for . 

Moreover, Evans and King (1985), Corduas (1986), Ara and King (1993), Ara (1995), 

Rahman and King (1994,1998), Laskar (1998) and Laskar and King (1998, 2001) have 

found that the marginal likelihood based tests have more accurate asymptotic critical 

values than their classical counterparts. From Ara’s (1995) finding, we also know that 

the marginal likelihood and the maximal invariant function are equivalent. Our 

simulation study of likelihood-based tests confirm that the MIL based LR tests 

(MILR1 and MILR2) produce better small sample properties with respect to size and 

power in non-linear regression models. Therefore, we conclude that in the non-linear 

regression model, the MILR tests have better small sample properties than the classical 

LR test.  

n = 30

n = 30
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Table 1 Estimated sizes for testing  against  with H10
1 0: ,β αb g′ = H a1

1 0: ,β αb g′ ≠ n = 30  and n = 60  for model (3.1) based on the LR 

and MILR1 tests using asymptotic critical values at the 5% significance level 

Parameter                                        n = 30  

value                                                      .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

      γ                LR            MILR1          LR          MILR1           LR          MILR1 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

     LR            MILR1          LR          MILR1        LR           MILR1 

0.25 0.169* 0.067* 0.176* 0.070* 0.160* 0.078* 0.143* 0.065* 0.147* 0.069* 0.133* 0.077* 

0.35 0.170* 0.063* 0.178* 0.076* 0.170* 0.080* 0.138* 0.071* 0.151* 0.075* 0.139* 0.080* 

0.40            0.174* 0.067* 0.181* 0.074* 0.170* 0.083* 0.141* 0.065* 0.146* 0.077* 0.136* 0.082*

0.50            0.180* 0.066* 0.176* 0.073* 0.173* 0.086* 0.142* 0.064* 0.150* 0.072* 0.137* 0.084*

0.70            0.172* 0.068* 0.176* 0.075* 0.172* 0.087* 0.142* 0.067* 0.147* 0.082* 0.143* 0.086*

0.80            0.167* 0.073* 0.177* 0.078* 0.176* 0.086* 0.133* 0.071* 0.141* 0.079* 0.143* 0.083*

0.90            0.167* 0.063* 0.174* 0.071* 0.175* 0.079* 0.138* 0.072* 0.150* 0.081* 0.143* 0.085*

1.00            0.163* 0.071* 0.178* 0.080* 0.173* 0.088* 0.134* 0.068* 0.147* 0.079* 0.141* 0.084*

1.50            0.175* 0.075* 0.182* 0.077* 0.179* 0.085* 0.136* 0.072* 0.150* 0.080* 0.151* 0.084*

1.75            0.175* 0.073* 0.188* 0.079* 0.177* 0.083* 0.137* 0.069* 0.152* 0.077* 0.149* 0.081*

2.00            0.164* 0.074* 0.186* 0.079* 0.184* 0.085* 0.140* 0.070* 0.152* 0.076* 0.154* 0.083*

2.50            0.165* 0.067* 0.192* 0.081* 0.186* 0.088* 0.136* 0.066* 0.147* 0.080* 0.149* 0.086*

Average             0.170* 0.069* 0.180* 0.076* 0.175* 0.084* 0.138* 0.068* 0.148* 0.077* 0.143* 0.083*

Overall average for , LR = 0.175*, MILR1 = 0.0768* n = 30 Overall average for n = 60 , LR = 0.l43*, MILR1 = 0.076* 

  



 41

Table 2 Estimated sizes for testing  against  with H10
2

4 3 0:( , )θ θ ′ = H a1
2

4 3 0:( , )θ θ ′ ≠ n = 30  and n = 60  for model (3.2) based on the 

LR and MILR1 tests using asymptotic critical values at the 5% significance level 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

θ 1            θ 2            LR        MILR1         LR          MILR1          LR        MILR1

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

    LR            MILR1         LR        MILR1          LR         MILR1 

-1 1 0.138*         0.064* 0.139* 0.067* 0.141* 0.071* 0.104* 0.069* 0.103* 0.072* 0.106* 0.081*

-0.85 0.5 0.135*         0.065* 0.135* 0.073* 0.130* 0.078* 0.101* 0.064* 0.101* 0.071* 0.105* 0.077*

-0.75 -0.25 0.135*         0.067* 0.133* 0.071* 0.139* 0.074* 0.102* 0.063* 0.101* 0.072* 0.106* 0.079*

-0.5 0.5 0.133*         0.069* 0.133* 0.074* 0.138* 0.077* 0.106* 0.065* 0.102* 0.073* 0.106* 0.078*

-0.5 0.75 0.137*         0.072* 0.137* 0.079* 0.138* 0.083* 0.104* 0.068* 0.102* 0.077* 0.105* 0.084*

-0.25 -0.5 0.137*         0.067* 0.137* 0.075* 0.139* 0.077* 0.103* 0.066* 0.103* 0.072* 0.106* 0.083*

0.5 0.25 0.134*         0.071* 0.136* 0.073* 0.138* 0.075* 0.105* 0.069* 0.105* 0.069* 0.106* 0.081*

0.5 0.5 0.135*         0.068* 0.135* 0.070* 0.138* 0.074* 0.105* 0.066* 0.107* 0.067* 0.106* 0.074*

0.75 0.25 0.135*         0.067* 0.136* 0.069* 0.135* 0.072* 0.105* 0.067* 0.107* 0.068* 0.106* 0.078*

0.75 0.75 0.135*         0.068* 0.136* 0.070* 0.135* 0.086* 0.105* 0.066* 0.107* 0.068* 0.106* 0.079*

1          0.25 0.136* 0.067* 0.138* 0.071* 0.138* 0.073* 0.105* 0.068* 0.106* 0.071* 0.107* 0.081*

1         -1 0.150* 0.072* 0.148* 0.074* 0.143* 0.080* 0.103* 0.070* 0.106* 0.074* 0.105* 0.080*

Average            0.137* 0.068* 0.137* 0.072* 0.138* 0.077* 0.104* 0.067* 0.104* 0.071* 0.106* 0.080*

Overall average for , LR = 0.137* MILR1 = 0.072* n = 30 Overall average for n = 60 , LR = 0.105* MILR1 = 0.073* 
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Table 3 Estimated sizes for testing  against  with H10
3 0: ,β γb g′ = H a1

3 0: ,β γb g′ ≠ n = 30  and n = 60  for model (3.3) based on the LR 

and MILR1 tests using asymptotic critical values at the 5% significance level 

Parameter                                        n = 30  

value                                                      .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

      α                LR            MILR1        LR          MILR1           LR          MILR1 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

     LR            MILR1          LR          MILR1        LR           MILR1 

0.20             0.070* 0.059 0.070* 0.064* 0.069* 0.065* 0.064* 0.064* 0.065* 0.066* 0.066* 0.065*

0.50             0.075* 0.065* 0.073* 0.067* 0.072* 0.069* 0.070* 0.066* 0.072* 0.067* 0.071* 0.066*

0.75             0.077* 0.063* 0.075* 0.065* 0.074* 0.069* 0.072* 0.062* 0.070* 0.065* 0.069* 0.068*

0.85             0.080* 0.061* 0.075* 0.066* 0.073* 0.070* 0.073* 0.060* 0.071* 0.064* 0.069* 0.067*

1             0.078* 0.065* 0.075* 0.066* 0.074* 0.068* 0.073* 0.063* 0.070* 0.066* 0.070* 0.066*

1.50             0.080* 0.064* 0.078* 0.066* 0.075* 0.068* 0.075* 0.062* 0.072* 0.065* 0.072* 0.067*

1.75             0.077* 0.063* 0.078* 0.066* 0.077* 0.067* 0.076* 0.060* 0.074* 0.064* 0.072* 0.067*

2             0.077* 0.062* 0.079* 0.067* 0.077* 0.069* 0.075* 0.061* 0.074* 0.063* 0.073* 0.068*

2.50             0.077* 0.060* 0.080* 0.065* 0.078* 0.071* 0.075* 0.058 0.075* 0.064* 0.073* 0.069*

2.75             0.075* 0.059 0.080* 0.064* 0.079* 0.068* 0.076* 0.061* 0.076* 0.066* 0.075* 0.067*

3             0.080* 0.059 0.081* 0.065* 0.079* 0.068* 0.076* 0.060* 0.075* 0.063* 0.076* 0.067*

3.50             0.081* 0.062* 0.082* 0.067* 0.081* 0.071* 0.076* 0.061* 0.076* 0.065* 0.075* 0.069*

Average             0.077* 0.062* 0.077* 0.066* 0.076* 0.069* 0.073* 0.062* 0.073* 0.065* 0.072* 0.067*

Overall average for , LR = 0.077*, MILR1 = 0.065* n = 30 Overall average for n = 60 , LR = 0.073*, MILR1 = 0.065* 
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Table 4 Estimated sizes for testing  against  with  and H20
1 0:α = H a2

1 0:α ≠ n = 30 n = 60  for model (3.1) based on the LR and 

MILR2 tests using asymptotic critical values at the 5% significance level 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

γ            β            LR        MILR2         LR          MILR2          LR        MILR2 

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR            MILR2         LR        MILR2          LR         MILR2 

0.3          0.05 0.029* 0.030* 0.031* 0.032* 0.027* 0.045 0.033* 0.034* 0.032* 0.033* 0.031* 0.034*

0.3             0.1 0.029* 0.029* 0.029* 0.030* 0.032* 0.033* 0.035* 0.036* 0.034* 0.035* 0.032* 0.031*

0.4          0.08 0.029* 0.030* 0.030* 0.030* 0.032* 0.033* 0.035* 0.035* 0.033* 0.034* 0.032* 0.030*

0.5          0.05 0.029* 0.030* 0.031* 0.034* 0.045 0.039* 0.036* 0.035* 0.035* 0.032* 0.034* 0.031*

0.5             0.1 0.029* 0.029* 0.029* 0.030* 0.031* 0.032* 0.034* 0.035* 0.033* 0.030* 0.031* 0.035*

0.7          0.08 0.029* 0.030* 0.030* 0.032* 0.031* 0.034* 0.034* 0.036* 0.033* 0.033* 0.032* 0.030*

0.7 0.1 0.029*        0.030* 0.029* 0.033* 0.032* 0.033* 0.035* 0.037* 0.034* 0.032* 0.033* 0.035* 

0.7          0.03 0.031* 0.032* 0.047 0.037* 0.089* 0.039* 0.048 0.039* 0.043* 0.037* 0.040* 0.037*

1 0.01 0.029*        0.033* 0.061* 0.060* 0.073* 0.066* 0.034* 0.035* 0.035* 0.043 0.040* 0.036* 

1.4          0.06 0.029* 0.030* 0.031* 0.033* 0.035* 0.037* 0.034* 0.033* 0.033* 0.034* 0.031* 0.030*

1.5          0.08 0.029* 0.030* 0.030* 0.033* 0.032* 0.034* 0.033* 0.034* 0.032* 0.031* 0.031* 0.030*

1.75           0.08 0.029* 0.031* 0.030* 0.032* 0.031* 0.033* 0.033* 0.035* 0.031* 0.032* 0.029* 0.030*

Average        0.029 0.030 0.034 0.035 0.041 0.038 0.035* 0.035* 0.034* 0.034* 0.033* 0.032*

Overall average for , LR = 0.035*, MILR2 = 0.034* n = 30 Overall average for n = 60 , LR = 0.034*, MILR2 = 0.034* 
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Table 5 Estimated sizes for testing  against  with  and H20
2

3 0:θ = H a2
2

3 0:θ ≠ n = 30 n = 60  for model (3.2) based on the LR and 

MILR2 tests using asymptotic critical values at the 5% significance level 

n = 30  

       Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

  θ 1          θ 2         θ 4        LR          MILR2       LR         MILR2         LR           MILR2 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

    LR        MILR2      LR        MILR2           LR           MILR2 

-1 1           0.75 0.032* 0.033* 0.033* 0.034* 0.035* 0.036* 0.034* 0.034* 0.035* 0.035* 0.038* 0.035*

-0.85 0.50            0.50 0.033* 0.034* 0.034* 0.034* 0.042 0.043 0.035* 0.034* 0.037* 0.034* 0.039* 0.035*

-0.75 -0.25            -0.50 0.033* 0.033* 0.033* 0.033* 0.040* 0.040* 0.037* 0.034* 0.036* 0.034* 0.038* 0.037*

-0.50 0.50            -0.75 0.033* 0.033* 0.034* 0.034* 0.034* 0.035* 0.038* 0.039* 0.035* 0.035* 0.037* 0.037*

-0.50 0.75            0.50 0.033* 0.033* 0.034* 0.033* 0.042 0.042 0.035* 0.034* 0.037* 0.034* 0.040* 0.036*

-0.25 -0.50            0.25 0.034* 0.034* 0.044 0.044 0.051 0.052 0.035* 0.035* 0.041 0.040* 0.035* 0.042

0.50 0.25            0.05 0.054 0.055 0.054 0.055 0.060* 0.059 0.035* 0.040* 0.038* 0.055 0.042 0.042

0.50 0.50             0.25 0.034* 0.033* 0.044 0.043 0.048 0.050 0.035* 0.035* 0.041 0.040* 0.035* 0.041

0.75 0.25            0.50 0.033* 0.033* 0.034* 0.035* 0.041 0.042 0.035* 0.034* 0.037* 0.035* 0.039* 0.036*

0.75 0.75 0.75           0.032* 0.033* 0.033* 0.033* 0.035* 0.036* 0.035* 0.034* 0.035* 0.035* 0.037* 0.037*

1            0.25 -0.50 0.033* 0.034* 0.033* 0.034* 0.039* 0.040* 0.037* 0.037* 0.036* 0.036* 0.039* 0.038*

1           -1 -0.25 0.034* 0.035* 0.041 0.042 0.052 0.051 0.035* 0.034* 0.034* 0.034* 0.041 0.039*

Average 0.035*          0.035* 0.038* 0.038* 0.043 0.044 0.036* 0.035* 0.037* 0.037* 0.038* 0.038* 

Overall average for n = 30 , LR = 0.039*, MILR2 = 0.039* Overall average for n = 60 , LR = 0.037*, MILR2 = 0.037* 
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Table 6 Estimated sizes for testing  against  with  and H20
3 0:γ = H a2

3 0:γ ≠ n = 30 n = 60  for model (3.3) based on the LR and 

MILR2 tests using asymptotic critical values at the 5% significance level 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

α            β            LR        MILR2         LR          MILR2          LR        MILR2 

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR            MILR2         LR        MILR2          LR         MILR2 

0.25 0.25 0.025*         0.027* 0.036* 0.036* 0.030* 0.039* 0.027* 0.027* 0.030* 0.031* 0.035* 0.041

0.5 0.25 0.025*         0.027* 0.036* 0.037* 0.031* 0.039* 0.027* 0.027* 0.030* 0.032* 0.035* 0.042

0.5 0.5 0.026*        0.030* 0.025* 0.029* 0.030* 0.032* 0.029* 0.026* 0.028* 0.027* 0.029* 0.031* 

1 0.25 0.025* 0.027* 0.035*  0.036* 0.031* 0.039* 0.027* 0.032* 0.030* 0.032* 0.035* 0.041 

1.5 0.25 0.025*         0.027* 0.036* 0.036* 0.031* 0.039* 0.027* 0.027* 0.030* 0.032* 0.035* 0.041

1.5 0.5 0.026*        0.030* 0.025* 0.029* 0.030* 0.032* 0.029* 0.026* 0.028* 0.027* 0.029* 0.031* 

1.5 0.85 0.026*        0.031* 0.022* 0.030* 0.020* 0.029* 0.030* 0.026* 0.026* 0.027* 0.022* 0.027* 

2.5 0.25 0.025*         0.027* 0.036* 0.036* 0.031* 0.039* 0.027* 0.027* 0.030* 0.032* 0.035* 0.042

2.5 0.5 0.026*        0.030* 0.024* 0.029* 0.030* 0.032* 0.029* 0.026* 0.028* 0.027* 0.029* 0.031* 

2.5          0.75 0.026* 0.031* 0.024* 0.029* 0.020* 0.031* 0.020* 0.027* 0.027* 0.026* 0.022* 0.029*

3              0.25 0.025 0.027* 0.035* 0.036* 0.030* 0.039* 0.030* 0.027* 0.030* 0.032* 0.035* 0.042

Average 0.025* 0.029*          0.030* 0.033* 0.029* 0.035* 0.027* 0.027* 0.029* 0.030* 0.031* 0.036* 

Overall average for , LR = 0.028*, MILR2 = 0.032* n = 30 Overall average for n = 60 , LR = 0.029*, MILR2 = 0.031* 
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Table 7 Estimated sizes for testing  against  with H10
1 0: ,β αb g′ = H a1

1 0: ,β αb g′ ≠ n = 30  and n = 60  for model (3.1) based on the LR 

and MILR1 tests using simulated critical values at the 5% significance level 

Parameter                                        n = 30  

value                                                      .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

      γ                LR            MILR1          LR          MILR1           LR          MILR1 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

     LR            MILR1          LR          MILR1        LR           MILR1 

0.25            0.045 0.046 0.045 0.046 0.043 0.046 0.040 0.040 0.045 0.047 0.047 0.045

0.35            0.045 0.047 0.045 0.047 0.046 0.048 0.047 0.046 0.047 0.048 0.048 0.046

0.40            0.044 0.047 0.046 0.047 0.043 0.046 0.047 0.045 0.047 0.047 0.047 0.045

0.50            0.045 0.047 0.046 0.047 0.046 0.047 0.046 0.045 0.047 0.046 0.048 0.046

0.70            0.044 0.046 0.050 0.046 0.048 0.050 0.044 0.044 0.049 0.047 0.049 0.046

0.80            0.047 0.049 0.048 0.048 0.045 0.047 0.045 0.044 0.048 0.047 0.047 0.048

0.90            0.046 0.048 0.046 0.047 0.047 0.048 0.043 0.045 0.045 0.046 0.045 0.044

1.00            0.043 0.045 0.048 0.049 0.048 0.049 0.044 0.045 0.048 0.047 0.048 0.050

1.50            0.045 0.047 0.046 0.047 0.046 0.050 0.042 0.043 0.047 0.045 0.049 0.047

1.75            0.045 0.047 0.045 0.046 0.047 0.048 0.048 0.046 0.047 0.046 0.047 0.046

2.00            0.039* 0.042 0.043 0.047 0.044 0.047 0.047 0.047 0.044 0.045 0.045 0.044

2.50            0.041 0.044 0.042 0.045 0.043 0.047 0.042 0.043 0.045 0.047 0.048 0.046

Average             0.044 0.046 0.046 0.047 0.046 0.048 0.045 0.044 0.047 0.047 0.047 0.046

Overall average for n = 30 , LR = 0.045, MILR1 = 0.047 Overall average for n = 60 , LR = 0.046, MILR1 = 0.046 
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Table 8 Estimated sizes for testing  against  with H10
2

4 3 0:( , )θ θ ′ = H a1
2

4 3 0:( , )θ θ ′ ≠ n = 30  and n = 60  for model (3.2) based on the 

LR and MILR1 tests using simulated critical values at the 5% significance level 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

θ 1            θ 2            LR        MILR1         LR          MILR1          LR        MILR1

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

    LR            MILR1         LR        MILR1          LR         MILR1 

-1 1 0.048            0.049 0.041 0.045 0.035 0.040 0.046 0.047 0.048 0.047 0.048 0.049

-0.85 0.5 0.046            0.048 0.047 0.048 0.048 0.049 0.047 0.046 0.047 0.046 0.048 0.046

-0.75 -0.25 0.048            0.049 0.049 0.049 0.050 0.048 0.047 0.047 0.049 0.048 0.048 0.048

-0.5 0.5 0.046            0.050 0.044 0.048 0.039 0.044 0.047 0.046 0.049 0.049 0.049 0.049

-0.5 0.75 0.048            0.049 0.043 0.045 0.038 0.043 0.048 0.047 0.048 0.047 0.049 0.048

-0.25 -0.5 0.048            0.049 0.048 0.049 0.047 0.048 0.046 0.047 0.048 0.048 0.048 0.047

0.5 0.25 0.048            0.049 0.038 0.043 0.041 0.045 0.048 0.047 0.046 0.047 0.049 0.048

0.5 0.5 0.047            0.049 0.043 0.046 0.042 0.046 0.045 0.047 0.048 0.048 0.049 0.048

0.75 0.25 0.047            0.048 0.043 0.046 0.041 0.044 0.046 0.047 0.048 0.048 0.049 0.048

0.75 0.75 0.048            0.049 0.047 0.049 0.043 0.047 0.047 0.048 0.048 0.048 0.049 0.050

1             0.25 0.047 0.048 0.043 0.047 0.040 0.043 0.047 0.047 0.048 0.048 0.049 0.047

1           -1 0.046 0.047 0.042 0.045 0.039 0.042 0.047 0.047 0.049 0.048 0.050 0.048

Average             0.047 0.049 0.044 0.047 0.042 0.045 0.047 0.047 0.048 0.048 0.049 0.048

Overall average for n = 30 , LR = 0.044, MILR1 = 0.047 Overall average for n = 60 , LR = 0.048, MILR1 = 0.048 
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Table 9 Estimated sizes for testing  against  with H10
3 0: ,β γb g′ = H a1

3 0: ,β γb g′ ≠ n = 30  and n = 60  for model (3.3) based on the LR 

and MILR1 tests using simulated critical values at the 5% significance level 

Parameter                                        n = 30  

value                                                      .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

      α                LR            MILR1          LR        MILR1           LR          MILR1 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

     LR            MILR1          LR          MILR1        LR           MILR1 

0.20             0.039* 0.043 0.040 0.044 0.041 0.044 0.040* 0.042 0.041 0.043 0.041 0.042

0.50             0.043 0.045 0.044 0.046 0.045 0.046 0.046 0.045 0.048 0.047 0.049 0.048

0.75             0.043 0.045 0.044 0.045 0.044 0.045 0.043 0.044 0.042 0.047 0.041 0.042

0.85             0.045 0.047 0.045 0.046 0.043 0.045 0.045 0.045 0.045 0.044 0.042 0.043

1             0.040* 0.042 0.044 0.046 0.043 0.046 0.041 0.042 0.044 0.044 0.042 0.044

1.50             0.043 0.045 0.044 0.045 0.045 0.046 0.042 0.042 0.047 0.046 0.046 0.045

1.75             0.045 0.047 0.046 0.048 0.045 0.047 0.048 0.047 0.046 0.046 0.045 0.046

2             0.048 0.050 0.043 0.044 0.043 0.044 0.048 0.050 0.042 0.042 0.042 0.045

2.50             0.042 0.044 0.043 0.044 0.043 0.046 0.041 0.041 0.042 0.042 0.050 0.045

2.75             0.045 0.047 0.046 0.048 0.047 0.047 0.048 0.047 0.047 0.047 0.048 0.046

3             0.039* 0.042 0.043 0.044 0.043 0.044 0.041 0.042 0.042 0.042 0.043 0.047

3.50             0.050 0.049 0.044 0.045 0.044 0.045 0.043 0.042 0.044 0.044 0.044 0.046

Average             0.044 0.046 0.044 0.045 0.044 0.045 0.044 0.044 0.044 0.044 0.044 0.045

Overall average for n = 30 , LR = 0.044, MILR1 = 0.045 Overall average for n = 60 , LR = 0.044, MILR1 = 0.045 
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Table 10 Estimated sizes for testing  against  with  and H20
1 0:α = H a2

1 0:α ≠ n = 30 n = 60  for model (3.1) based on the LR and 

MILR2 tests using simulated critical values at the 5% significance level 

Sizes 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

γ            β            LR        MILR2         LR          MILR2          LR        MILR2 

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR            MILR2         LR        MILR2          LR         MILR2 

0.3           0.05 0.030* 0.035* 0.031* 0.032* 0.047 0.050 0.048 0.043 0.047 0.043 0.046 0.040*

0.3           0.1 0.029* 0.034* 0.031* 0.035* 0.032* 0.035* 0.038* 0.044 0.040* 0.046 0.039* 0.040*

0.4           0.08 0.030* 0.035* 0.032* 0.037* 0.032* 0.034* 0.047 0.047 0.049 0.044 0.046 0.043

0.5           0.05 0.029* 0.035* 0.032* 0.034* 0.039* 0.041 0.046 0.045 0.047 0.044 0.047 0.048

0.5             0.1 0.030* 0.034* 0.031* 0.035* 0.033* 0.034* 0.037* 0.047 0.039* 0.040* 0.040* 0.043

0.7           0.08 0.030* 0.035* 0.032* 0.037* 0.031* 0.033* 0.049 0.047 0.048 0.047 0.048 0.045

0.7 0.1 0.030*        0.034* 0.031* 0.035* 0.032* 0.034* 0.048 0.049 0.049 0.048 0.048 0.044

0.7          0.12 0.030* 0.034* 0.030* 0.035* 0.031* 0.035* 0.046 0.050 0.034* 0.045* 0.038* 0.039*

1 0.01 0.021*         0.034* 0.042 0.045 0.050 0.047 0.043 0.045 0.047 0.044 0.050 0.043

1.4           0.06 0.035* 0.039* 0.034* 0.035* 0.035* 0.037* 0.044 0.047 0.046 0.045 0.045 0.045

1.5           0.08 0.030* 0.035* 0.032* 0.037* 0.032* 0.034* 0.045 0.047 0.045 0.044 0.049 0.045

1.75             0.08 0.036* 0.044 0.039* 0.043 0.041 0.044 0.047 0.046 0.045 0.047 0.048 0.046

Average 0.030* 0.036*          0.033* 0.037* 0.036* 0.038* 0.045 0.046 0.045 0.045 0.045 0.043

Overall average for , LR = 0.033*, MILR2 = 0.037* n = 30 Overall average for n = 60 , LR = 0.045, MILR2 = 0.045 
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Table 11 Estimated sizes for testing  against  with  and H20
2

3 0:θ = H a2
2

3 0:θ ≠ n = 30 n = 60  for model (3.2) based on the LR and 

MILR2 tests using simulated critical values at the 5% significance level 

n = 30  

       Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

  θ 1          θ 2         θ 4        LR          MILR2       LR         MILR2         LR           MILR2 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

    LR        MILR2      LR        MILR2           LR           MILR2 

-1 1             0.75 0.027* 0.035* 0.026* 0.041 0.030* 0.041 0.043 0.042 0.041 0.039* 0.041 0.039*

-0.85 0.50             0.50 0.028* 0.041 0.028* 0.043 0.036* 0.044 0.042 0.040* 0.041 0.038* 0.043 0.039*

-0.75 -0.25              -0.50 0.029* 0.042 0.031* 0.038* 0.037* 0.044 0.043 0.041 0.044 0.040* 0.044 0.040*

-0.50 0.50             -0.75 0.029* 0.042 0.028* 0.041 0.031* 0.038* 0.042 0.038* 0.042 0.039* 0.043 0.040*

-0.50 0.75             0.50 0.028* 0.033* 0.028* 0.034* 0.036* 0.039* 0.042 0.040* 0.040* 0.039* 0.044 0.042

-0.25 -0.50             0.25 0.026* 0.044 0.038* 0.049 0.045 0.050 0.040* 0.041 0.046 0.043 0.045 0.044

0.50 0.25              0.05 0.048 0.048 0.047 0.049 0.050 0.049 0.042 0.044 0.044 0.046 0.050 0.050

0.50 0.50              0.25 0.034* 0.044 0.038* 0.045 0.045 0.047 0.040* 0.041 0.045 0.043 0.043 0.042

0.75 0.25              0.50 0.028* 0.034* 0.028* 0.035* 0.036* 0.040* 0.042 0.043 0.041 0.042 0.044 0.043

0.75 0.75 0.75             0.027* 0.035* 0.026* 0.042 0.030* 0.044 0.043 0.044 0.041 0.040* 0.041 0.040*

1             0.25 -0.50 0.029* 0.036* 0.031* 0.039* 0.037* 0.043 0.043 0.040* 0.044 0.043 0.043 0.042

1            -1 -0.25 0.029* 0.034* 0.031* 0.039* 0.037* 0.042 0.042 0.039* 0.044 0.042 0.044 0.043

Average 0.030*         0.039* 0.032* 0.041 0.038* 0.043 0.042 0.041 0.043 0.041 0.044 0.042

Overall average for n = 30 , LR = 0.033*, MILR2 = 0.041 Overall average for n = 60 , LR = 0.043, MILR2 = 0.041 
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Table 12 Estimated sizes for testing  against  with  and H20
3 0:γ = H a2

3 0:γ ≠ n = 30 n = 60  for model (3.3) based on the LR and 

MILR2 tests using simulated critical values at the 5% significance level 

n = 30  

Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

α            β            LR        MILR2         LR          MILR2          LR        MILR2 

n = 60  

                                           .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR            MILR2         LR        MILR2          LR         MILR2 

0.25 0.25 0.028*         0.036* 0.045 0.047 0.036* 0.040 0.042 0.039* 0.044 0.045 0.046 0.046

0.5 0.25 0.027*         0.032* 0.043 0.044 0.047 0.049 0.042 0.040* 0.044 0.043 0.047 0.050

0.5 0.5 0.027*        0.035* 0.029* 0.033* 0.041 0.042 0.044 0.042 0.043 0.044 0.044 0.045

1 0.25 0.027* 0.032* 0.042 0.044 0.047 0.050 0.042  0.043 0.044 0.045 0.047 0.049 

1.5 0.25 0.027*         0.032* 0.042 0.044 0.047 0.049 0.042 0.040* 0.044 0.045 0.050 0.048

1.5 0.5 0.027*        0.035* 0.029* 0.033* 0.042 0.043 0.044 0.043 0.042 0.044 0.044 0.045

1.5 0.85 0.027*        0.036* 0.027* 0.035* 0.029* 0.032* 0.044 0.045 0.042 0.043 0.043 0.041

2.5 0.25 0.027*         0.032* 0.042 0.044 0.050 0.049 0.042 0.042 0.044 0.039* 0.048 0.049

2.5 0.5 0.027*        0.035* 0.029* 0.033* 0.041 0.042 0.044 0.039* 0.043 0.042 0.044 0.045

2.5           0.75 0.027* 0.036* 0.027* 0.034* 0.031* 0.033* 0.044 0.043 0.042 0.044 0.043 0.041

3           0.25 0.027* 0.032* 0.042 0.044 0.047 0.049 0.042 0.041 0.044 0.045 0.047 0.049

Average 0.027* 0.034*          0.036* 0.040* 0.042 0.043 0.043 0.042 0.043 0.044 0.046 0.046

Overall average for n = 30 , LR = 0.035, MILR2 = 0.039 Overall average for n = 60 , LR = 0.044, MILR2 = 0.044 
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Table 13 Estimated powers for testing  against  with H10
1 0: ,β αb g′ = H a1

1 0: ,β αb g′ ≠ n = 30  and n = 60  for model (3.1) based on the 

LR and MILR1 tests using simulated critical values at the 5% significance level 

n = 30  

       Parameter value                                        .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

   γ         β              α        LR         MILR1      LR         MILR1         LR           MILR1 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR         MILR1      LR         MILR1      LR          MILR1 

0.25               0.1 0.03 0.183 0.257 0.186 0.224 0.198 0.232 0.232 0.255 0.405 0.411 0.509 0.578

0.35               0.08 0.012 0.135 0.235 0.192 0.205 0.183 0.231 0.188 0.202 0.390 0.411 0.512 0.498

0.40               0.05 0.01 0.276 0.401 0.206 0.241 0.219 0.241 0.847 0.856 0.614 0.625 0.483 0.495

0.50               0.03 0.20 0.577 0.603 0.121 0.162 0.232 0.254 0.990 0.895 0.998 0.905 0.997 0.975

0.70           0.369    0.03 0.15 0.437 0.442 0.265 0.312 0.198 0.226 0.954 0.865 0.402 0.257 0.263

0.80               0.20 0.025 0.140 0.201 0.119 0.175 0.125 0.152 0.342 0.365 0.355 0.360 0.401 0.455

0.90 0.01              0.30 0.645 0.657 0.355 0.450 0.254 0.266 0.772 0.765 0.780 0.775 0.805 0.758

1.00               0.05 0.04 0.204 0.235 0.165 0.221 0.162 0.195 0.612 0.635 0.627 0.63 0.730 0.698

1.50 0.15 0.01             0.532 0.556 0.385 0.430 0.257 0.280 0.657 0.637 0.674 0.668 0.700 0.685

1.75               0.08 0.06 0.255 0.308 0.227 0.254 0.205 0.244 0.340 0.355 0.36 0.375 0.524 0.535

2.00               0.04 0.09 0.309 0.330 0.256 0.322 0.205 0.213 0.405 0.452 0.422 0.435 0.53 0.545

2.50               0.03 0.08 0.360 0.421 0.352 0.363 0.320 0.334 0.465 0.470 0.472 0.482 0.502 0.505

Average             0.338 0.387 0.236 0.280 0.213 0.239 0.567 0.563 0.539 0.540 0.579 0.583

Overall average for n = 30 , LR = 0.262, MILR1 = 0.302 Overall average for n = 60 , LR = 0.562, MILR1 = 0.562 
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Table 14 Estimated powers for testing  against  with H10
2

4 3 0:( , )θ θ ′ = H10
2

4 3 0:( , )θ θ ′ ≠ n = 30  and n = 60  for model (3.2) based on the 

LR and MILR1 tests using simulated critical values at the 5% significance level 

         n = 30  

Parameter value                                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

     θ 1          θ 2        θ 3           θ 4            LR       MILR1    LR       MILR1    LR      MILR1 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

  LR          MILR1       LR           MILR1       LR        MILR1 

-1 1 -0.50          0.5 0.955 0.958 0.949 0.912 0.432 0.408 0.978 0.964 0.985 0.884 0.742 0.701

-0.85 0.50 -0.65          0.25 0.670 0.708 0.588 0.613 0.344 0.367 0.890 0.876 0.635 0.668 0.433 0.441

-0.75 -0.25 0.75          0.05 0.295 0.336 0.085 0.192 0.059 0.097 0.617 0.649 0.158 0.260 0.127 0.133

-0.5 0.50 -0.05          0.35 0.940 0.936 0.479 0.468 0.331 0.322 0.965 0.952 0.92 0.902 0.626 0.598

-0.5 0.75 -0.50          0.20 0.900 0.920 0.274 0.291 0.101 0.133 0.956 0.945 0.859 0.862 0.165 0.203

-0.25 -0.5 -0.75          0.15 0.556 0.571 0.153 0.171 0.073 0.113 0.846 0.872 0.241 0.255 0.093 0.136

0.5 0.25 0.05          0.15 0.863 0.881 0.253 0.283 0.093 0.119 0.926 0.930 0.487 0.463 0.163 0.175

0.5 0.50 -0.15          0.25 0.891 0.902 0.516 0.545 0.171 0.202 0.903 0.950 0.857 0.848 0.317 0.297

0.75 0.25 -0.15          0.25 0.962 0.924 0.517 0.475 0.170 0.191 0.975 0.944 0.857 0.861 0.316 0.319

0.75 0.75 0.50          0.05 0.229 0.242 0.175 0.211 0.155 0.172 0.475 0.483 0.277 0.291 0.257 0.261

1            0.25 0.15 0.05 0.162 0.201 0.166 0.192 0.154 0.167 0.321 0.339 0.195 0.191 0.158 0.174

1            -1 0.15 0.15 0.893 0.913 0.274 0.292 0.097 0.103 0.908 0.911 0.542 0.529 0.181 0.192

Average           0.693 0.708 0.369 0.387 0.182 0.200 0.813 0.818 0.584 0.585 0.298 0.303

Overall average for n = 30 , LR = 0.415, MILR1 = 0.431 Overall average for n = 60 , LR = 0.565, MILR1 = 0.568 
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Table 15 Estimated powers for testing  against  with H10
3 0: ,β γb g′ = H a1

3 0: ,β γb g′ ≠ n = 30  and n = 60  for model (3.3) based on the 

LR and MILR1 tests using simulated critical values at the 5% significance level 

n = 30  

       Parameter value                                        .  σ 2 0 05= . σ 2 0 25= . σ 2 0 90=

    α        β             γ              LR          MILR1     LR          MILR1     LR        MILR1 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 90=

    LR         MILR1       LR         MILR1        LR          MILR1 

0.20 0.12              0.30 0.478 0.512 0.124 0.146 0.057 0.081 0.855 0.863 0.235 0.247 0.104 0.116

0.50 0.25              1.1 0.857 0.832 0.248 0.273 0.109 0.131 0.975 0.952 0.483 0.461 0.177 0.142

0.75 0.10              0.50 0.301 0.419 0.082 0.101 0.047 0.077 0.587 0.651 0.143 0.162 0.080 0.107

0.85 0.015 0.05             0.845 0.867 0.224 0.249 0.095 0.113 0.958 0.944 0.471 0.510 0.171 0.184

1 0.05              0.10 0.127 0.175 0.046 0.062 0.036 0.071 0.254 0.291 0.083 0.113 0.047 0.082

1.50 0.20              0.75 0.774 0.741 0.196 0.244 0.088 0.102 0.978 0.954 0.411 0.402 0.152 0.161

1.75 0.10              0.50 0.303 0.334 0.088 0.109 0.055 0.085 0.588 0.634 0.145 0.156 0.086 0.109

2 0.30              1.15 0.945 0.922 0.346 0.372 0.132 0.174 0.958 0.946 0.618 0.519 0.238 0.211

2.50               0.40 1.50 0.965 0.934 0.485 0.461 0.18 0.217 0.968 0.941 0.781 0.776 0.331 0.328

2.75               0.20 0.05 0.963 0.938 0.39 0.411 0.163 0.205 0.976 0.943 0.736 0.73 0.430 0.417

3               0.20 1.50 0.582 0.612 0.147 0.151 0.072 0.104 0.865 0.859 0.257 0.263 0.113 0.185

3.50               0.50 1.50 0.985 0.977 0.691 0.702 0.278 0.315 0.977 0.954 0.929 0.903 0.495 0.475

Average             0.677 0.689 0.256 0.273 0.109 0.140 0.828 0.828 0.441 0.437 0.202 0.210

Overall average for n = 30 , LR = 0.347, MILR1 = 0.367 Over all average for n = 60 , LR = 0.490, MILR1 = 0.491 
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Table 16 Estimated powers for testing  against  with  and H20
1 0:α = H a2

1 0:α ≠ n = 30 n = 60  for model (3.1) based on the LR and 

MILR1 tests using simulated critical values at the 5% significance level 

n = 30  

       Parameter value                                       .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

   γ        β            α          LR        MILR2       LR         MILR2         LR           MILR2 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR        MILR2      LR        MILR2           LR           MILR2 

0.3               0.05 0.2 0.942 0.876 0.295 0.316 0.121 0.136 0.977 0.963 0.651 0.712 0.553 0.535

0.3               0.1 0.5 0.641 0.633 0.225 0.251 0.167 0.188 0.982 0.921 0.780 0.791 0.324 0.346

0.4               0.08 0.03 0.535 0.559 0.386 0.363 0.281 0.301 0.771 0.752 0.637 0.691 0.566 0.549

0.5               0.05 0.02 0.300 0.362 0.317 0.338 0.332 0.315 0.428 0.365 0.407 0.356 0.400 0.339

0.5               0.1 0.4 0.102 0.135 0.100 0.121 0.060 0.105 0.655 0.712 0.521 0.535 0.499 0.473

0.7               0.08 0.35 0.251 0.318 0.185 0.209 0.157 0.177 0.723 0.765 0.611 0.633 0.587 0.615

0.7 0.1              0.045 0.639 0.652 0.531 0.556 0.515 0.498 0.979 0.980 0.983 0.986 0.979 0.940

0.7               0.12 0.4 0.156 0.207 0.156 0.199 0.130 0.163 0.554 0.569 0.502 0.541 0.448 0.457

1 0.01              0.1 0.998 0.898 0.937 0.746 0.429 0.401 0.998 0.946 0.952 0.933 0.623 0.657

1.4               0.06 0.04 0.401 0.445 0.39 0.435 0.365 0.390 0.765 0.772 0.780 0.768 0.742 0.733

1.5               0.08 0.015 0.379 0.443 0.436 0.442 0.434 0.427 0.998 0.929 0.874 0.862 0.649 0.707

1.75               0.08 0.07 0.425 0.446 0.400 0.430 0.395 0.420 0.650 0.655 0.701 0.711 0.735 0.720

Average             0.481 0.498 0.363 0.367 0.282 0.293 0.790 0.777 0.700 0.710 0.592 0.589

Overall average for n = 30 , LR = 0.375, MILR2 = 0.386 Overall average for n = 60 , LR = 0.694, MILR2 = 0.692 

 

 

  



 56

Table 17 Estimated powers for testing  against  with H20
2

3 0:θ = H a2
2

3 0:θ ≠ n = 30  and n = 60  for model (3.2) based on the LR and 

MILR2 tests using simulated critical values at the 5% significance level 

n = 30  

Parameter value                                                        .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

     θ 1          θ 2        θ 3           θ 4          LR        MILR2    LR       MILR2     LR      MILR2 

n = 60  

                                         .  σ 2 0 05= . σ 2 0 25= . σ 2 0 9=

   LR          MILR2        LR           MILR2     LR        MILR2 

-1 1             -0.75 0.75 0.765 0.724 0.190 0.201 0.077 0.076 0.908 0.894 0.287 0.264 0.095 0.084

-0.85 0.50            -0.50 0.50 0.228 0.242 0.067 0.07 0.048 0.046 0.371 0.424 0.089 0.112 0.054 0.062

-0.75 -0.25            0.50 -0.50 0.567 0.558 0.130 0.135 0.056 0.058 0.814 0.774 0.230 0.221 0.086 0.074

-0.50 0.50            0.25 -0.75 0.261 0.273 0.069 0.076 0.044 0.046 0.466 0.491 0.108 0.113 0.062 0.065

-0.50 0.75             0.50 0.50 0.574 0.564 0.131 0.127 0.063 0.060 0.823 0.791 0.248 0.228 0.103 0.093

-0.25 -0.50            0.75 0.25 0.440 0.452 0.103 0.101 0.057 0.058 0.697 0.733 0.199 0.179 0.087 0.090

0.50 0.25            -1.75 0.05 0.315 0.331 0.081 0.102 0.054 0.053 0.574 0.592 0.161 0.193 0.074 0.069

0.50 0.50            -0.75 0.25 0.114 0.126 0.058 0.059 0.053 0.054 0.164 0.181 0.067 0.072 0.049 0.054

0.75 0.25            -0.50 0.50 0.228 0.245 0.067 0.071 0.047 0.053 0.371 0.354 0.089 0.103 0.053 0.056

0.75 0.75 0.25            0.75 0.277 0.289 0.073 0.078 0.041 0.049 0.455 0.422 0.128 0.115 0.064 0.069

1              0.25 0.25 -0.50 0.123 0.141 0.045 0.053 0.036 0.042 0.214 0.224 0.070 0.109 0.053 0.057

1              -1 0.90 -0.25 0.67 0.634 0.158 0.152 0.065 0.063 0.906 0.838 0.297 0.301 0.107 0.087

Average 0.380          0.382 0.098 0.102 0.053 0.055 0.564 0.560 0.164 0.168 0.074 0.072

Overall average for n = 30 , LR = 0.177, MILR2 = 0.180 Overall average for n = 60 , LR = 0.267, MILR2 = 0.266 
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Table 18 Estimated powers for testing  against  with  and H20
3 0:γ = H a2

3 0:γ ≠ n = 30 n = 60  for model (3.3) based on the LR and 

MILR2 tests using simulated critical values at the 5% significance level 

n = 30  

       Parameter value                                        .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    α         β          γ        LR         MILR2      LR         MILR2         LR           MILR2 

n = 60  

                                     .  σ 2 0 05= . σ 2 0 25= . σ 2 0 75=

    LR         MILR2      LR         MILR2      LR          MILR2 

0.25 0.25 0.25 0.244            0.352 0.102 0.099 0.0695 0.076 0.253 0.291 0.106 0.171 0.076 0.080

0.25 0.25 0.5 0.391            0.413 0.138 0.146 0.081 0.101 0.458 0.477 0.153 0.184 0.094 0.105

0.5 0.25              1.1 0.514 0.522 0.161 0.176 0.089 0.112 0.669 0.695 0.224 0.231 0.127 0.130

0.5 0.5              1.2 0.962 0.934 0.441 0.496 0.193 0.209 0.984 0.961 0.594 0.575 0.272 0.244

1 0.25              0.5 0.391 0.378 0.137 0.146 0.089 0.098 0.458 0.473 0.153 0.159 0.099 0.105

1.5 0.25              0.25 0.224 0.294 0.107 0.133 0.064 0.091 0.249 0.253 0.112 0.121 0.084 0.101

1.5 0.5              1.1 0.962 0.938 0.437 0.447 0.195 0.197 0.982 0.934 0.580 0.604 0.269 0.272

1.5 0.85              0.75 0.896 0.884 0.808 0.872 0.372 0.332 0.980 0.926 0.878 0.846 0.488 0.442

2.5 0.25              0.5 0.391 0.418 0.138 0.146 0.081 0.101 0.458 0.533 0.153 0.170 0.094 0.105

2.5 0.5              1 0.968 0.944 0.427 0.455 0.169 0.177 0.985 0.937 0.562 0.566 0.245 0.248

2.5               0.75 0.75 0.958 0.890 0.703 0.721 0.324 0.339 0.974 0.909 0.802 0.758 0.410 0.395

3               0.25 0.5 0.388 0.434 0.131 0.153 0.064 0.102 0.452 0.485 0.153 0.161 0.100 0.096

Average             0.607 0.617 0.311 0.333 0.149 0.161 0.659 0.656 0.373 0.379 0.197 0.194

Overall average for n = 30 , LR = 0.177, MILR2 = 0.180 Overall average for n = 60 , LR = 0.356, MILR2 = 0.370 
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