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Abstract

The single source of error state space Vector Simple Exponential Smoothing model
is introduced. A hypothesis free two-stage methodology that detects and defines the
reduced rank of a smoothing matrix is proposed. A singular value decomposition of
the smoothing matrix forms the basis of both stages.

1 Introduction

Exponential Smoothing (ES) has proved to be an effective forecasting tool (Hyndman
et al, 2002). The specification however remains essentially univariate with little devel-
opment of a multiple series approach (Harvey (1986) and Pfeffermann & Allon (1989)
are 2 exceptions). I propose a Vector Exponential Smoothing (VES) specification that
is a natural extension to the methodology. The VES approach provides the ability to
utilise information contained in alternative series whilst maintaining the successful ES
structure.

A reduced rank VES model is defined by a singular smoothing coefficient matrix.
One advantage of this reduced rank specification is the ability to capture inter-series
dependency without increasing the number of unknown parameters exponentially.

A two-stage procedure that determines the rank of the smoothing matrix and de-
fines the nature of dependency is proposed. The singular value decomposition of the
smoothing coefficient matrix forms the basis of both stages.

This paper is divided into two sections beginning with the identification of the
Vector Simple Exponential Smoothing (VSES) model. This is followed by an outline
of the procedure. The procedure naturally divides into two stages. The first stage
determines the rank of the smoothing matrix by minimising the AIC. The second stage
identifies the collinear structure of the smoothing coefficient matrix for two situations:
when the rank of the smoothing coefficient matrix is 1 and when the rank is greater
than 1.
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2 Vector Simple Exponential Smoothing

The ES methodology was first postulated by Brown (1959). Since this introduction,
ES models have proved to be a competitive forecasting tool. Recently in the IJF-M3
competition the ES methodology was very successful (Hyndman et al, 2002) proving
to be the most accurate at 6 period ahead forecasts. The state space ES methodology
was not ranked below 4 for forecasts ranging from 1 to 8 horizons. However ES has
consistently under performed with respect to long-term forecasts. The VES extension
of the methodology provides an opportunity to address this apparent shortfall. The
multivariate state space form of a simple exponential smoothing model is defined below.

Xt = St−1 + Et, Et ∼iid MV N(0,Σ)
St = St−1 + ΘEt (1)

where

• k denote the number of series;

• Xt denotes the observations of the individual series at time t, dimension k × 1;

• St denotes the state vector at time t, dimension k × 1;

• Θ denotes a k × k matrix of smoothing parameters.

The expanded form of a bivariate Vector Simple Exponential Smoothing (VSES) model
is: [

x1t

x2t

]
=

[
s1t−1

s2t−1

]
+

[
e1t

e2t

]
(2)[

s1t

s2t

]
=

[
s1t−1

s2t−1

]
+

[
θ11 θ12

θ21 θ22

] [
e1t

e2t

]
(3)

si,t = si,t−1 + θi,1e1,t + θi,2e2,t (4)

Forecasts are given by
x̂i,t(h) = si,t (5)

This model simplifies to k univariate models when Θ and Σ are both diagonal. Forecasts
are expected to be at least as accurate as the nested simple univariate ES models.

One particular advantage of the VSES model is its potential to capture a common
structure between series. In particular collinear dependency within coefficient matrices
have proved particularly useful in long-term forecasting (Engle & Yoo. 1987). The
proposed model bears some similarities with the ECM introduced by Engle & Granger
(1987). Furthermore the ability to model a collinear structure within a specific state
has inferential advantages over other multivariate time series techniques.
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2.1 Reduced rank VSES

When Θ has rank q < k it can be decomposed into two k× q matrices. (Reinsel, 1998;
Johansen, 1989):

Θ = αβT (6)

Thus β describes the column structure of Θ. Therefore when Θ is singular the state
space system (1) can be re-specified as:

Xt = HSt−1 + Et, Et ∼iid MV N(0,Σ)
St = FSt−1 + αβT Et (7)

In the procedure, I fix β and estimate only α. Treating β as fixed decreases the number
of parameters to be estimated. The state equation for the bivariate model is now given
by:

s1,t = s1,t−1 + α11(β11e1,t + β12e2,t)
s2,t = s2,t−1 + α12(β11e1,t + β12e2,t) (8)

An ECM type structure is depicted when β11 and β12 have opposite signs. By applying
a svd of Θ, the rank of Θ and the composition of β can be determined.

svd(Θ) = UDV T (9)

Θ =

 u11 u12 u13

u21 u22 u23

u31 u32 u33


 d1 0 0

0 d2 0
0 0 d3


 v11 v21 v31

v12 v22 v32

v13 v23 v33


The svd (9) contains information on the rank and the column structure of Θ. Schott
(1997) defines U and V as the orthonormal bases for the column and row space of Θ
respectively. The matrix D (a diagonal matrix) contains the same number of nonzero
diagonal values as the rank of the matrix. Each value d provides a measure of the
level of information pertaining to the associated vectors of U and V . A d-value of
zero suggests there is no information. The decomposition is in decreasing order, ie.
d1 ≥ d2 ≥ d3.
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3 Two-Stage Procedure

3.1 Stage 1: Rank determination

When the rank of Θ is q (where 0 < q < k) only the first q column/row vectors of V
and U are required to specify Θ. In particular the first q columns of V are used to
specify and capture the column structure of Θ. To determine the rank of Θ sequential
evaluation of the AIC is proposed increasing the number of d-values restricted to be
zero each time. The procedure after the initial estimation of (1) and calculation of the
AIC is as follows. For j = k, k − 1, . . . , 1

1. Set the jth diagonal value (dj) to zero;

2. Recalculate Θ = UDV T

3. Recalculate Σ (from equations (1));

4. Calculate the AIC:
AIC = log(|Σ̂EE |) +

2
T

qk (10)

Compare the AICs, and select q according to the smallest AIC. The AIC comprises 2
parts. The first part ΣEE represents the accuracy of the model whilst 2

T qk penalises
the model according to the number of estimated parameters. If the rank of the Θ
matrix is q, restricting the last k − q diagonal values will not alter |ΣEE | but decrease
the penalty 2

T qk. Alternatively if the dq−1 diagonal was set to zero then |ΣEE | would
increase.

3.2 Stage 2: Linear Structure

Once the rank (q) of Θ is chosen the corresponding columns of V are used to form β.
The first q vectors of V can be employed directly to form β however this may prove
difficult to interpret. The explicit identification of which columns are linearly related
and their loading when the linear dependency is characterised as a function of one
column only is outlined below. The situation of q = 1 is considered first followed by
q > 1.
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3.2.1 q=1

A k×k matrix with a rank of 1 occurs when k−1 of the columns of Θ are proportional
to the 1 remaining column. Two examples are presented below for the bivariate VSES
model.
Example 1

Θ =

[
0.4 −0.4
0.4 −0.4

]
(11)

svd(Θ) =

[
−0.71 −0.71
−0.71 0.71

] [
0.8 0
0 0

] [
−0.71 −0.71
0.71 −0.71

]T

(12)

The linear structure captured by the first column of V is after when it is normalised
by setting the first row value to 1. Extracting and normalising the first column of V
yields:

β =

[
1

−1

]
(13)

The state equations of the VSES system (1) can then be re-expressed in terms of the
linear structure of Θ.

s1,t = s1,t−1 + α11(e1,t − e2,t)
s2,t = s2,t−1 + α12(e1,t − e2,t) (14)

The state system (14) depicts the dependency between the disturbances of both series.
The VSES model is now estimated with only 2 unknown smoothing coefficients instead
of 4.
Example 2

Θ =

[
0.35 0.7
0.15 0.3

]
(15)

svd(Θ) =

[
−0.92 −0.39
−0.39 0.92

] [
0.85 0
0 0

] [
−0.45 0.89
−0.89 −0.45

]T

(16)

Extracting and normalising the first column of V yields the following β.

β =

[
1
2

]
(17)

This results in the following system where α11 and α12 are the only smoothing coeffi-
cients to be estimated.

s1,t = s1,t−1 + α11(e1,t + 2e2,t)
s2,t = s2,t−1 + α12(e1,t + 2e2,t) (18)

For a general k×k matrix with rank 1 the above procedure of extracting and normalising
the first column of V provides a simple and effective way of defining linear dependence
in Θ, and in specifying β.
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3.2.2 1 < q < k

When Θ has rank q the first q column vectors of V are used to specify β. The linear
structure of Θ can be determined by the following procedure if the linear dependency
can be characterised in terms of one column only. An example of Θ corresponding to
a 3× 3 smoothing matrix where the third column is double the first column is used to
illustrate the procedure.

Θ =

 0.13 0.75 0.26
0.69 0.17 1.38
0.86 0.33 1.72

 (19)

1. Calculate the svd of Θ;

svd(Θ) =

 −0.17 0.98 −0.10
−0.61 −0.18 −0.77
−0.77 −0.07 0.63


 2.53 0 0

0 0.70 0
0 0 0


 −0.44 −0.09 0.89
−0.19 0.98 0.00
−0.88 −0.17 −0.45


2. Extract any two of the vectors of V that correspond to nonzero values of D.

(Selecting the first two vectors is recommended).

V·,1:2 =

 −0.44 −0.09
−0.19 0.98
−0.88 −0.17

 (20)

Denote these vectors as ν·1 and ν·2 respectively:

ν·1 =

 −0.44
−0.19
−0.88

 , ν·2 =

 −0.09
0.98

−0.17


3. Calculate the individual row ratios of the two vectors.

κ =
ν·1
ν·2

(21)

κ =
ν·1
ν·2

=

 5.14
−0.19

5.14

 (22)

4. By examining the values in κ the linearly dependent columns are identified. It is
shown below that equivalent numbers indicate linearly dependent columns. When
all the values within κ are unique this indicates the matrix has an alternative lin-
ear structure from the one currently investigated. (In this case it is recommended
that β be defined as the first q columns of V ). Examining κ shows that the 1st

and 3rd columns of Θ are linearly dependent (ie. the row ratios are identical).
Furthermore the value -0.19 is different from 5.14 suggesting the second column
of Θ is linearly independent. As numerical inaccuracies and statistical uncer-
tainty exist the detection of which columns are related in general is determined
by the κ values that are the closest. (The difference between the values should
be approximately zero.)

6



5. Based on the above examination the two dimensional row space of Θ can be
defined. The ordering of the two vectors is inconsequential. One vector will
capture the linear dependency between the first and third columns only whilst
the remaining vector will denote the linearly unique contribution of the second
column. The linear relationship between the first and third columns is more
interpretable if one of the values in the original vector (v·1) is normalised (v∗·1).
The contribution of the second column should also be normalised.

v·1 =

 −0.44
−0.19
−0.88

 , v∗·1 =

 1.00
0.43
2.00

 (23)

6. Define β to be the rectangular matrix that corresponds to the linear structure
that has been identified, namely the third column is double the first and the
second column is linearly independent of both columns. It is recommended that
β should be orthogonal.

Θ =

 0.13 0.75 0.26
0.69 0.17 1.38
0.86 0.33 1.72

 =

 0.13 0.75
0.69 0.17
0.86 0.33

 [
1 0 2
0 1 0

]

The model can now be re-estimated using the decomposition of equation (6)
holding β fixed. Due to the reduction in the number of parameters to be estimated
this is expected to increase the efficiency. Furthermore evidence suggests long-
term forecasts may also improve as a result of such a linear structure.

s1,t = s1,t−1 + α11(e1,t + 2e3,t) + α21e2,t

s2,t = s2,t−1 + α12(e1,t + 2e3,t) + α22e2,t (24)
s3,t = s3,t−1 + α11(e1,t + 2e3,t) + α23e2,t

3.2.3 Proof

The verification of steps 3 to 6 are considered in terms of a general matrix of dimension
k×k. The svd defined as a set of linear equations is the key. The objective is to express
the individual values of v·i as functions of Θ and di and thus verifying the steps 3 to 6.

The svd of any matrix is equivalent to the eigenvalue decomposition of the matrix’s
quadratics: ΘΘT and ΘT Θ. The first quadratic ΘΘT is associated with the eigenvectors
of U whilst ΘT Θ is associated with the eigenvectors of V (where U and V are given
in equation (9)). The D matrix contains the positive square roots of the eigenvalues
of either quadratic (eigenvalues of ΘT Θ and ΘΘT are equivalent). By presenting the
eigenvalue decomposition as a set of linear equations individual expressions for each
loading v·i can be derived.

ΘT Θv·i = div·i (25)

The key to this proof is the special structure of ΘT Θ. Let Θ denote a k × k matrix
characterised by the pth column being proportional to the jth column by a factor of
ρ. The verification relies on the structure in the quadratic ΘT Θ. It is shown that the
linear structure of ΘT Θ reflects the column structure of Θ.
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The structure of ΘT Θ is easily verified by re-parameterising Θ in terms of it
columns.

Θ = [θ·1 θ·2 . . . θ·j . . . ρθ·j . . . θ·k] (26)

ΘT Θ =



θT
·1

θT
·2

. . .
θT
·j

. . .
ρθT

·j
. . .
θT
·k


[θ·1 θ·2 . . . θ·j . . . ρθ·j . . . θ·k] (27)

Combining the result derived in equation (27) with equation (25) results in (θ̃i = θT
·i θ·i):

θ̃1

θ̃2
...
θ̃j
...

ρθ̃j
...
θ̃k


v·i = div·i (28)

The jth and pth equations of the above systems are:

θ̃jv·i = divji (29)
ρθ̃jv·i = divpi (30)

Rearranging equation (29) in terms of vji yields:

vji =
θ̃jv·i
di

(31)

Substituting equation (31) into equation (30) (solving for the right hand side of equation
(30)) proves the proportional relationship in Θ is mirrored in the values of v·i (for
di 6= 0)

vpi = ρvji (32)

Therefore calculating the elements of κ (equation (33)) reveals the vectors that are
linear dependent on one another.

κ =
vp1

vp2
=

ρvj1

ρvj2
=

vj1

vj2
(33)

This derivation proves that linear structures can be detected and determined through
the svd of Θ. Furthermore it may be possible to parameterise the relationship through
the calculation and inference of κ (equations (21) & (33). The loading can then in turn
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be defined by normalising (step 6 of the procedure) κ with respect to the dependent
columns (ie. rearranging equation 32).

ρ =
vpi

vji
(34)

3.3 Implementation Summary

1. Estimate the VSES model.

2. Calculate the AIC.

3. Calculate the svd of Θ.

4. Stage 1

(a) Recalculate Θ from the svd after setting the smallest diagonal (dk)of D to
zero.

(b) Calculate the AIC from the re-estimated Σ matrix.
(c) Repeat steps (a) and (b) for di, where i = k − 1, . . . 1.
(d) Select q according to the smallest AIC.

5. Stage 2

(a) Extract the first 2 column vectors of V .
(b) Calculate κ and search for equivalent values.
(c) Define β according to relationships in κ.

6. Re-estimate the re-specified VSES model.

In practice it may be appropriate to skip stage 2 if the rank of Θ is 1 or the underlying
linear structure is not deemed to be important.

4 Conclusion

The preceding analysis provides insight into the specification and diagnosing of reduced
rank VSES models. The VES methodology is presented in its simplest form. VES
and its reduced rank forms offer a viable alternative to other multivariate forecasting
approaches. The ability to model common component behaviour without complicated
routines makes this approach very attractive.

Research detailing the various forms of the VES methodology is needed and will
establish it as a credible multivariate forecasting tool. Furthermore the detection of
linear dependency characterised by more than one column also needs to be investigated.
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