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Structurally Sound Dynamic Index Futures Hedging 

 
Abstract 

Portfolio managers use index futures for a variety of reasons. Regardless of 
their motivation, they will keep a close eye on the relation between the futures 
returns and their stock portfolio returns. Whenever this relation is perceived to have 
changed, the manager will decide whether it is worthwhile to rebalance the futures-
portfolio mix accordingly. Exact measures as to when and how much rebalancing 
should occur, have not yet been established. This paper proposes a heuristic 
algorithm to dynamically update hedged portfolios. This dynamic hedging algorithm 
is based on a Reverse Order CUSUM-squared (ROC) testing procedure, proposed by 
Pesaran and Timmermann (2002), to optimally determine forecast estimation 
windows. In a comparison with standard alternatives (expanding window, EWLS 
window and rolling window), we find improvements in hedging performance, both 
in- and out-of-sample. 

 
Keywords: Reverse Order CUSUM-squared test; dynamic index futures hedging  

 
 

 

1 Introduction 
Measurement and management of price risk continue to occupy academics and practitioners 

in derivatives markets alike. Whereas price discovery and price dissemination are certainly 

important functions, the smooth and efficient transfer of risk ultimately justifies the existence 

of, and steady growth in, derivatives markets. The accurate measurement of risk is 

fundamental to correctly price derivatives assets and the development of new derivative 

markets and assets has provided fertile grounds for academic research. The plethora of 

ARCH-related volatility measurement and forecasting papers dominate any other topic area, 

not just in the derivatives literature, but in the finance literature at large. A close second 

(frequently using ARCH models) is the literature on the quest for an optimal hedge ratio to 

efficiently manage risk using derivative assets. A search for the key words hedge ratio on 

Wiley’s Journal of Futures Markets website (admittedly a somewhat biased selection criteria) 

revealed 50 published papers over the past 8 years.  

Hedging is commonly understood to be undertaken to reduce the risk of holding a 

portfolio of risky assets. This has not always been the case. The founder of modern 

derivatives research, Working (1953), considered hedging as speculating upon changes in the 

spot and futures pricing relationship. Our current understanding and interpretation of hedging 

derives from Johnson’s (1960) and Ederington’s (1979) papers where the objective of 
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hedging is to minimise total asset portfolio variance. Their methodology specifies an Optimal 

Hedge Ratio (OHR), the proportion of short futures contracts held for a long spot position, 

that maximises the agent’s expected utility. In a mean-variance framework, and a one-period 

setting, the optimal hedge ratio minimises the total variance of the hedged portfolio’s return 

and can simply be obtained from an OLS regression of unhedged portfolio returns on futures 

returns. The optimal hedge ratio is therefore also known as the minimum variance hedge ratio 

(MVHR). 

Dynamic hedging evolved from a recognition of time-variation in the conditional 

distribution of financial asset returns. Of course, this time-dependency is nowadays most 

apparent in the conditional variance – or, volatility clustering –  of many financial return 

series. In the late 1970’s and early 1980’s – the pre-ARCH era – several futures researchers 

became aware of the potential benefits of dynamic hedging. Early versions of dynamic 

hedging (see, e.g., Breeden, 1984; Ho, 1984; and Stulz, 1984) exploited the notion that only 

recent history contained relevant information for the optimal hedge ratio by intertemporally 

updating the information set, the so-called rolling window methodology.  

Post-ARCH, in the latter half of the 1980’s, it became increasingly clear that the need for 

dynamic hedging was primarily due to time-dependency in the (co-)variance of returns, not 

so much in the levels of returns. Hedging models that account for time-varying covariance 

are invariably based on an ARCH (Engle, 1982) or a GARCH specification (Bollerslev, 

1986). Prime examples of this literature, Cecchetti et al (1988) and Baillie and Myers (1991), 

find significantly reduced hedged portfolio variance, at least for short hedging horizons. 

Kroner and Sultan (1993) show that even after accounting for transaction costs, there is still a 

significant out-of-sample advantage for GARCH based currency hedging. Sim and Zurbruegg 

(2001), on the other hand, illustrate that GARCH driven changes in the stock index futures 

hedge ratio are frequent and large and may therefore incur prohibitive transaction costs. 

Simpler and less frequently updated dynamic hedging strategies, like the rolling window 

hedge, may then still be preferable. 

Yet another line of research pursued the possibility of spot-futures arbitrage whenever 

futures and/or spot prices violate the cost-of-carry relationship. The subsequent arbitrage 

flows would drive futures and/or spot prices back to their cost-of-carry equilibrium. This 

predictable component in the level of futures/spot returns is captured by error-correction 

hedging models (with or without GARCH variance processes), based on the notion of 

cointegration (see e.g., Kroner and Sultan; 1993, Brenner and Kroner, 1995; and Low et al., 

2002).  
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The choice between the static and the various dynamic hedging methodologies has direct 

implications for the size of the information set to be used in estimating the hedge ratio. The 

traditional, static hedging model would suggest to use new information whenever it becomes 

available. This expanding window method adds new observations to the estimation sample 

when time progresses, improving the efficiency of the hedge ratio estimate (see e.g., Harris 

and Shen, 2002). The simple rolling window dynamic hedging method uses relatively short 

samples. Its main drawback is that each observation in this window is assigned equal weight. 

Observations are omitted as soon they drop out of the window. On any given day, an 

observation is allocated as much importance as any other observation in the window, but the 

next day it is deemed to be of no importance and disappears from the sample altogether. Such 

an arbitrary allocation process would only be appropriate to model a truly unstable 

relationship (Pesaran and Timmermann, 2002). To avoid this particular problem, discounted 

least squares (DLS) assigns decreasing weights to ‘older,’ less timely, observations. In the 

spirit of JP Morgan’s (1996) popular EWMA volatility model, for example, Exponentially 

Weighted Least Squares (EWLS) assigns exponentially declining weights to historical 

obervations. Brooks and Chong (2001) show that an EWLS hedging model outperforms 

GARCH, implied volatility, and static hedging models.  

These static and dynamic hedging models assume that the unconditional joint 

distribution of portfolio and futures returns is stable. For perfect hedge scenarios (i.e., where 

the futures contract perfectly matches the unhedged portfolio) this assumption seems 

reasonable. The empirical hedging literature is predominantly based on perfect hedges. In 

practice, imperfect or cross-hedges are much more common. The cross hedger uses a futures 

contract whose returns are most correlated with the portfolio returns. Butterworth and 

Holmes (2001) demonstrate the instability of these cross hedges for portfolios of Investment 

Trusts hedged with FTSE 100 futures contracts. Similarly, Kavussanos and Nomikos (2000) 

investigate the BIFFEX freight futures contract – used for cross hedging the risk in 

transportation costs – and find the risk reduction to vary from a low of 4% to a maximum of 

19% (with perfect hedges this figure is commonly close to 90%). Hence, cross hedges exhibit 

higher and more volatile basis risk, see also Benet (1992). Not only is the cross hedge 

relationship less ‘robust,’ it is also prone to structural change. Consider, for example, a 

European sugar-beet farmer who wishes to hedge uncertain output prices with New York 

Board of Trade sugar-11 futures. These futures call for the delivery of cane sugar, FOB from 

any of twenty-nine countries of origin (not including EC countries). Apart from quality-
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driven distortions, the occasional change in EC agricultural policy has the potential to 

significantly (and persistently) change the futures-spot price relationship. 

 If the spot-futures relationship is subject to these structural breaks, the expanding 

window, rolling window and EWLS models are all inappropriate. None of them explicitly 

condition on structural breaks. Of course, to distinguish a “discrete” structural break from a 

continuously changing hedge ratio, we first need to identify possible structural breaks. This 

paper will follow the recently proposed Reverse-Ordered CUSUM-squared (ROC) testing 

methodology, see Pesaran and Timmermann (2002). Their procedure is based on the standard 

CUSUM-squared test of Brown et.al. (1975), which allows identification of structural breaks 

in the dataset. The ROC test reverses the order of the observations and analyses the structural 

stability of the relationship backwards in time.  

ROC models are not unique in accounting for structural breaks. Kalman filter and/or 

Markov regime switching models can also be used to capture structural breaks in the hedge 

ratio. Sarno and Valente (2000), for example, demonstrate that non-linear regime switching 

models capture the dynamics of the spot-futures relationship for stock indexes more 

effectively than an error correction model. Bai and Perron (1998, 2003) propose a least 

squares estimation procedure to test for multiple breaks, while Andreou and Ghysels (2003) 

investigate a range of change-point tests to detect multiple fundamental changes in the 

relationship between currency returns. 

The advantage of the ROC test over these alternative methods, is that the hedger only 

requires information regarding the most recent break. That is, to find the optimal forecast 

hedge ratio, the hedger should only condition the forecast on observations that occur after the 

most recent structural break. This eliminates the cumbersome procedure of testing for 

multiple (successive) structural breaks up to the most recent break in the available history of 

returns. If the variance declines after a structural break, conditioning the forecast on post-

break observations will significantly reduce forecast errors compared to rolling window and 

expanding window models. 

Of course, to choose between these hedging models, we need to judge their performance 

out-of-sample. Surprisingly few empirical hedging papers actually do this. Lin et.al. (1994) 

and Tong (1996), for example, compare various hedging models on their within-sample 

hedging effectiveness. It comes as no surprise that the more flexible parameterisation 

outperforms less ‘dynamic’ models within-sample (Butterworth and Holmes, 2000). In 

practice, hedgers need to find an optimal forecast hedge ratio and judge its performance after-

the-fact. An out-of-sample hedging strategy exposes the agent to possible change in the 
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variance-covariance relationship of spot and futures returns during the hedged period. Thus, it 

is this model risk ignored by the in-sample literature, yet faced by the hedger in practice, 

which explains the underestimation of portfolio variance. Benet (1990) finds that out-of-

sample hedging effectiveness is substantially less than within-sample effectiveness for a 

range of foreign currency portfolios. Butterworth and Holmes (2000) find that out-of-sample 

hedging effectiveness is marginally reduced for perfect hedges, but significantly reduced for 

cross hedges. Sim and Zurbruegg (2001) find that GARCH hedging models’ out-of-sample 

effectiveness diminishes as the hedger’s holding period increases.  

To summarize our aims, we evaluate a ‘simple’ dynamic hedging scheme that conditions 

on continuous changes, as well as on discrete changes in the relationship between unhedged 

portfolio and futures returns. A conditional window selection methodology will be 

implemented that recursively updates the hedge ratio through reverse ordering the 

information set, and searching for possible structural breaks. A simulation experiment 

highlights the possible benefits from expanding the information set in the absence of 

structural breaks, and restricting the information set when a structural break is encountered. 

We apply this methodology to a perfect hedge scenario as well as two cross hedge scenarios 

for stock indices traded on the Hong Kong Stock Exchange. We find that the ROC hedging 

model marginally outperforms the alternative hedging models for the cross hedge. For the 

perfect hedge, however, a static hedging strategy still dominates all the dynamic alternatives. 

The next section discusses the structural break identification methodology and its 

implementation for stock index futures hedging purposes. Section 3 first summarizes the data 

from the Hong Kong Exchanges, and then presents and discusses the empirical results of our 

dynamic hedging scheme and finally draws comparisons with common alternatives. We 

conclude this paper with a range of extensions and a discussion of the shortcomings of our 

approach. 

 

2 Structural break methodology 
 
We start with the standard hedged portfolio model (Johnson, 1960; Stein, 1961; and 

Ederington, 1979), where the unhedged portfolio returns (RP ) and the futures returns (RF ) 

are related as follows 

TtRR tPtPtFtPtPtP ,...,1,,,,,, =++= σεβα      (1) 
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where ε is a standard normally distributed innovation. The conditional beta – better known as 

the optimal hedge ratio (OHR)1 – is given by  
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which gives us the basic regression model 

tttt ZY εθ +′=                      (3) 

where at time t, Yt is the observation on the standardized unhedged portfolio return, Zt is the 

column vector of observations on the regressors (a constant and the standardized futures 

return), and θt = (At ,Bt) . This standardization satisfies to some extent the restrictions on the 

robustness of the CUSUM of squares test described below, see e.g., Andreou and Ghysels 

(2003). Note that the (OHR) beta parameter has now been ‘transformed’ into a conditional 

correlation coefficient between futures and unhedged portfolio returns. Also note that (3) is 

possibly misspecified if, as the literature suggests, spot and futures prices are cointegrated. In 

that scenario, Zt  should include an error correction term (and possibly lagged standardized 

unhedged portfolio and lagged standardized futures returns), see e.g., Myers and Thompson, 

(1989). We consider this possibility in the empirical application, but keep the notation as 

general as possible at this stage. 

The notation suggests that the pricing relationship (3) is possibly time-varying – beyond 

the already captured time-variation in volatility. Time-variation can either occur as a level 

shift (a time-varying constant), as a slope shift (tracking error), or as both. We can specify 

several hypotheses to test the assumption of time-variation. Our benchmark scenario is a 

time-invariant relationship. If we reject the benchmark, we distinguish a further two 

possibilities. The relationship is either continuously time-dependent, or it is occasionally 

(discretely) time-dependent. The previous section has alluded to abundant empirical evidence 

of time variation. The models used to capture this time-variability are typically based on the 

                                                           
1 Or, alternatively, the minimum variance hedge ratio (MVHR). 
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assumption of continuous time-dependency (and not surprisingly – given the predominance 

of perfect hedge applications – focus on the intertemporal variability in the slope parameter).  

The Pesaran and Timmermann (2002) ROC procedure is similar to Brown, Durbin and 

Evans’ (1975) Cusum of Squares test, except that the order of the observations is reversed in 

time (from the most recent observation T, to past observation τ): 

( ) ( )ττττττ zzzzZyyyyY TTTTTT ,,...,,~,,...,,~
11,11, +−+− =′=′  

which allows us to estimate recursively (in reverse order) by OLS 
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and the cusum-square statistics  
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To compare this test statistic with an appropriate critical value, we resort to Edgerton and 

Wells (1994). They show that the standard results in Durbin (1969) are not sufficient for large 

sample sizes (>100) and provide the following asymptotic approximation to the critical 

values.  

( ) ( ) ( )
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where a1(α), a2(α), a3(α) are given for different significance levels, α (see Edgerton and Wells, 

1994, p.360). 

Where ζτ,T exceeds the relevant critical value cT,α, we label τ=τ* as a structural break 

and condition the forecast hedge ratio on the sample t=τ*+1,...,T.  Given this conditionally 

updated hedge ratio forecast, we can then estimate the out-of-sample performance of the 

hedge over the next x time periods (i.e., days), by measuring the hedging error (HE) as 

( ) xiRBRHE iTFTiTPiT ,...,1ˆ
,, =−= +

∗
++ τ       (9) 
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where the hedger’s objective is to minimize the variance of HE. The hedger will judge the 

performance of this breakpoint-optimized hedging scheme against the following three 

standard alternatives. The expanding sample estimator 

( ) ( ) 1,1,
1

1,1,
~~~~,...,1ˆ

TTTTT YZZZTt ′′==
−

θ                  (10) 

which assumes intertemporally constant hedge ratios and the availability of additional 

information over time improves the efficiency of the long-term optimal hedge ratio. The 

rolling sample estimator 

( ) ( ) λλλλλθ −−
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1

,,
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which assumes a continuously (smoothly) changing time-varying hedge ratio and the 

intertemporal variability is captured by estimating the hedge ratio over a (relatively) short 

sample of λ days. A well known shortcoming of the rolling estimator is its equal weighting of 

old and recent past observations. Therefore, we also consider the exponentially weighted least 

squares estimator where the weights w decline exponentially the further they are back in time, 

by choosing an appropriate parameter ω 
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which is a straightforward exercise. 

Before we implement our break point identification methodology, we revisit the cost-of-

carry index futures pricing relationship.  
( )( )                    (13) tTqr

tTt ePF −−∗ ×

× =,

where F* is the theoretical futures price, P is the unhedged index portfolio “price”, r is an 

appropriate risk free rate of return, q is the dividend yield of the stocks in the index, and Tx is 

the maturity date of the futures contract. Due to convergence between the spot and futures 

prices towards maturity, the basis will go to zero, and the hedge ratio should go to one. This 

causes the time dimension effect, see e.g. Castelino (1992), where the OHR is low for hedges 

lifted far from futures contract maturity and increases monotonically towards maturity. The 

cost-of-carry relation implies a cointegration relationship between the futures and spot price, 

appropriately adjusted by the time-proportional basis (or cost-of-carry), see Brenner and 

Kroner (1995). The time invariant hedging model fails to account for the ‘time dimension.’ 

We isolate this predictable dynamic variation from the random variation in the hedge ratio. 

We can either use the cost-of-carry relation in (13) as a cointegrating relation and specify an 
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error correction variable in Zt accordingly. Alternatively, we can use theoretical futures 

returns, ( )∗
−

∗=∗ TtTttF FFR ,1,, ln , as the dependent variable Yt. We choose the latter. 

The implementation of our methodology is now summarized as follows. First, choose a 

“training” sample, e.g., the first year of daily observations on futures and portfolio returns. 

Second, pre-whiten the unhedged portfolio and futures returns. There is some evidence that 

daily stock index returns display significant and persistent autocorrelation in both levels and 

in volatility. Hence, we pre-whiten the raw returns with an ARMA(1,1)-GARCH(1,1) filter. 

The standardized returns might still display excess kurtosis. To further normalize the series, 

we therefore also apply an extremal filter. Once we are satisfied with the standardized 

returns, we then proceed in the third stage by estimating the most recent breakpoint with the 

ROC procedure. If we detect evidence of a structural break in the training sample, we then 

estimate the dynamic hedge ratio in the fourth stage over the optimized estimation window. If 

we do not find evidence of a structural break, we simply use the complete training sample as 

our estimation window for the initial hedge ratio. In the fifth stage we move x days forward, 

the updating/rebalancing frequency, and compute the out-of-sample hedging error from T+1 

to T+x, according to (9). Then, we return to stage 2 and reiterate the procedure until we arrive 

at the most recent observation. Finally, in stage six, we compute the variance of the 

accumulated series of hedging errors and express this as the hedged risk reduction, or 

hedging performance HP 
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The implementation is identical for the competing models (expanding, rolling, EWLS), 

except that stage 3 is now ignored. Finally, we compare the HPs of the competing models. 

To illustrate the theoretical performance of our methodology, we conduct the following 

experiment. We generate 2,100 (correlated) futures and unhedged portfolio returns 
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by drawing independent innovations εF ,εP from standard normal distributions. We select the 

following three hedging regimes 
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and choose a training sample of size 250, a rebalancing frequency x of 5 days, a rolling 

window size λ of 30 days, and an EWLS weight parameter ω of 0.99. We assess the impact 

of noise-to-signal variations by scaling the variance of the noise in the portfolio returns by a 

factor κ  (taking values of 0.05, 0.1 and 0.5). To illustrate the impact of the standardization in 

stage 2, we also experiment with GARCH-type conditional variance in futures and portfolio 

returns 
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We choose 

 6.0,3.0,1.0 ,1,11100 ====== PF,P,F,P,F α ββααα  

The results are summarized in Table I. For comparative purposes, we also included a static 

(buy and hold, B&H) hedging strategy where the hedge ratio is determined once on the basis 

of the training sample and kept in place for the full sample period ( t = 251,..2100). Low et al. 

(2002) find that a static hedging strategy is less sensitive to estimation and model error and 

therefore outperforms their dynamic hedging strategies. Performance is measured by the 

percentage reduction in risk (as measured by the variance of returns) of the hedged portfolio 

relative to the unhedged portfolio. 

INSERT TABLE I 

The impact of noise is immediately obvious when comparing the three panels for different 

κ values. When κ increases, the correlation between portfolio and futures returns declines, 

effectively weakening the cross-hedge. The hedging error increases, hedging performance 

declines, and the buy and hold strategy looks increasingly promising.  

INSERT FIGURE 1 

In addition to overall performance, it is also worthwhile to illustrate the structural break 

detection ability of the hedging strategies. Figure 1, top panel, shows the ROC-optimal 

estimation window size hedge ratios for three different scenarios (note that breaks were 

‘inserted’ at observations 500 and 1500). Figure 1, bottom panel, shows the matching ROC-

optimal hedge ratios for the same three scenarios. 

 

4 Empirical Results  
We apply our structural break methodology to a sample of Hong Kong index portfolios 

over a period from the 3rd of January 1994 to the 29th of July 2003. We consider the 33-stock 
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Hang Seng Index (HSI) and its companion derivatives contract, the Hang Seng Index Futures 

(HSIF), as well as the 20-stock Hang Seng Commerce and Industry Index (HSCI), and the 4-

stock Hang Seng Finance Index (HSF). A total of 2,247 daily closing prices were obtained 

from DataStream for each of the Hang Seng indices. The futures contracts are for the nearest 

maturity with rollover to the next nearest maturity on the last business day prior to the 

maturity month. Rollover returns were excluded from the sample. After eliminating a few 

data errors, we are left with 2,087 daily returns. 

The HSI comprises the 33 largest stocks by market capitalisation, and is value weighted by 

the stocks’ market capitalisation. The HSCI is a market-capitalisation weighted index of 

those constituents of the HSI active in the Commerce and Industry sector. Similarly, the HSF 

is a market-capitalisation weighted index of those constituents of the HSI active in the 

Finance sector. The constituents of the HSI, and hence also of the HSCI and HSF, are 

selected by the Stock Exchange of Hong Kong. Their inclusion is subject to review (and 

hence exclusion) at a quarterly frequency. On the final day of our sample (29 July 2003), the 

HSCI comprised 20 individual stocks, while the HSF comprised only 4 stocks. In/Exclusions 

to each index over the course of our sample are reported in Appendix 1. 

The HSI is the underlying index for the Hang Seng Index Futures contract, that is also 

traded within the Hong Kong Exchanges network on the Exchange’s Automated Trading 

System. A HSIF contract matures on the second last business day of each calendar month, 

with settlement occurring on the final business day of that month.  The closing prices used in 

this paper are those recorded for the nearby futures contract. The HSIF contract is an actively 

traded security with deep liquidity in the nearby contract. The contract multiplier for the 

HSIF is HK$50 per index point. There are no matching futures contracts for the HSCI and 

HSF indices. The HSIF is the obvious candidate for cross-hedging both sub-indices. 

Transaction costs for the HSIF have recently undergone considerable change, with the 

commission fee becoming freely negotiable, as of 30 May 20032.  However, as this change 

only came into effect for the final two months of the sample, the relevant transaction costs are 

those levied prior to 30 May 2003.  These trading costs are an exchange fee of HK$10 per 

contract per side, an SFC levy of HK$1 per contract per side, an Investor Compensation Levy 

of HK$0.50 per contract per side, and a minimum commission of HK$60. This gives a total 

transaction cost for trading one HSIF contract equal to HK$71.50. 

 

                                                           
2 We only consider futures transaction costs, as this paper focuses on the activities of hedgers. 
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INSERT FIGURE 2 AND TABLE II 

 
 

The index levels of the HSI, HSCI, HSF and HSIF over the sample period are displayed in 

Figure 2 and descriptive statistics for the full sample are given in Table II. The HSCI and HSI 

indices track each other reasonably closely, the gap between the two distinctly widening 

towards the end of our sample period. The clear outlier is of course the HSF index with the 

most notable divergence occurring from 2000 onwards. These patterns suggest that the HSIF 

would be a reasonable instrument to cross-hedge the HSCI, but much less so for the HSF. 

Table II highlights the atypical behaviour of the HSF return series. The HSF series has the 

lowest standard deviation – although not significantly less than the HSI – and the highest 

(only positive) mean. It is also the most kurtotic series. All four series share significant 

excess kurtosis which, not surprisingly leads to a rejection of normality according to the 

Jarque Bera test. Note in particular the enormous values of the maximum/minimum returns. 

Whereas the mean and standard deviation are annualized figures, the extremes are daily 

figures. This equates to 10 standard deviation events! The ARCH test (null of no ARCH) is 

significantly rejected for all four series, as is the Breusch-Godfrey serial correlation test (null 

of no serial correlation). 

 

INSERT FIGURE 3 

 

To illustrate the volatility clusters, we estimate a GARCH(1,1) specification for the full 

sample of HSI returns and plot the conditional standard deviations in Figure 3. The Asian 

crisis and its aftermath (in particular the intervention by the Hong Kong Authority) is very 

evident. There is also some evidence of a (short-lived) volatility increase post-Y2K. The most 

recent volatility surge (in our sample period) is related to the September 11, 2001 events. The 

volatility patterns are rather similar for the other (HSCI, HSF and HSIF) series. There is 

strong evidence of volatility clustering which suggests that the dynamic hedging 

methodologies might outperform the static hedging methodology. 

We start our hedging exercise on the 21st of February 1995 (hedging decision time T), 

allowing for a ‘training’ sample of 250 daily returns (t=1,…T). The hedge will be updated on 

a weekly basis, so the initial hedging decision at T will remain in place until T+5. The time 

line looks as follows: 
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1   τ   T        T+5  ……   N 

 

The window size [τ,T] will be determined for the different optimization methods. Parameter 

τ  is fixed at observation 1 for the expanding window, while for the rolling methodology, we 

choose a fixed window size of 30 business days, τ  = T-29 . We also choose a weighting 

parameter for the EWLS scheme that “matches” the initial GARCH(1,1) pattern estimated 

over the training sample. Hence, a parameter ω = 0.99 in (12) generates a similar half-life of 

shocks as the estimated GARCH parameters for the portfolio return series, i.e., a short 

effective estimation window with a large weight on the most recent observations.  

We standardise the portfolio and futures return series by estimating an ARMA(1,1)-

GARCH(1,1) specification over the full history available at optimization time T+ i (i = 

0,5,10,….,N), i.e., over a window [1,T+i]. A sample of the recursive standardisation 

parameters is given in Figure 4. 

 

INSERT FIGURE 4 

 

For the ARMA(1,1) parameters, the first order autoregressive parameter – top panel – is 

significantly positive for the portfolio returns (converging to about 0.04), but not for the 

futures returns. This feature is rather typical for stock index portfolio returns. The first order 

moving average parameter was never significantly different from zero. The GARCH 

parameters were all significant. The middle panel illustrates the recursive empirical estimates 

for the α1-parameter in (16) for the portfolio and futures returns, respectively. Its value varies 

between 0.06 and 0.1 with a few significant jumps in March 1996, October 1997, and 

September 2001. These events are also reflected in the GARCH-implied recursive 

unconditional standard deviation estimates in the bottom panel. The three events cause 

obvious jumps in the level of volatility, but perhaps more imporant is the observation of 

persistently higher volatility after October 1997. A final observation on Figure 4 is the higher 

level of volatility in futures returns (the gap widening after 1999), and the smoother evolution 

of the immediate impact α1-parameter for futures returns. 

Having standardised the returns, we then test for structural breaks τ̂  to optimize the 

estimation window [τ̂ ,T+i] following the ROC procedure.  
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INSERT FIGURES 5 AND 6 

 

Figures 5 and 6 illustrate our findings for the HSI(coc-adjusted returns) and HSF(coc-

adjusted returns) vis-à-vis the HSIF returns. For the perfect hedge (HSI), we find limited 

evidence of structural breaks. The only clear candidate (τ̂  = 22 March 2000) is detected on 

the optimization date T = 8 May 2001. The estimation window therefore increases reasonably 

smoothly to almost 1,000 observations until that break date when it drops back to about 250 

observations. For the imperfect hedge (HSF), there seems to be more distinct evidence of 

structural breaks identified as 12 January 1995, 6 August 1996, 7 March 2000, and 5 

November 2001. Note that none of these structural break dates coincide with (or are near) the 

index composition change dates listed in the Appendix. The optimized window sizes (T-τ̂ ) 

are given in Figure 6. 

Based on these optimized window sizes, we then compute the ROC-optimized hedge 

ratios and compare those with alternative methodologies. The dynamic hedge ratios are 

illustrated in Figure 7 for the imperfect hedge, HSF-HSIF (coc-adjusted returns). The static 

buy&hold hedge ratio is 0.85. The expanding window hedge ratio is fairly stable, dropping 

from 0.85 to 0.79. The ROC hedge ratio is much more variable with a particularly noteworthy 

drop in January 2000 to 0.46, and remains persistently below the expanding hedge ratio after 

that date. The rolling hedge ratio is, hardly surprising, very volatile with enormous short-

lived swings. The EWLS hedge ratio behaves like a moving average of the rolling hedge 

ratio. 

 

INSERT FIGURE 7 

 

Our final step is to incorporate transaction costs in the dynamic hedging optimization. The 

basic idea is straightforward: the investor will tradeoff the (non-linear) benefits from 

rebalancing the hedge against the (linear) costs involved. This suggests the existence of a 

threshold deviation between the existing hedge ratio and the optimized hedge ratio. The 

implementation of this tradeoff depends on the hedger’s attitude to risk. We follow Masters 

(2003), who defines a rebalancing trigger point TH as  

PFTFTP
T BB

CTH
σσσ

γ
ˆ2ˆ

2
222 −+

=                  (17) 
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where γ is the risk tolerance parameter (expressed as a percentage), C is the transaction cost 

(expressed as a percentage of the futures contract value), and the denominator is the variance 

of the hedged portfolio return. Hence, the benefit from hedging is a positive function of the 

hedger’s risk aversion (the inverse of γ) and of the reduction in portfolio variance. Lafuente 

and Novales (2003) use a similar mean-variance utility setup, but express the benefits from 

hedging in terms of utility changes. 

Whenever the optimal hedge ratio adjustment, TTiTT BBBB ˆ/ˆˆ∆ −= −

TB̂

, exceeds the 

threshold TH at rebalancing date T, the futures position is adjusted to . Otherwise, the 

existing hedge position is maintained at  until the next rebalancing date T+i. Note that 

we abstract from the opportunity for the hedger to realign the hedge whenever a rollover 

occurs into the next nearest futures maturity contract. The transaction cost adjusted dynamic 

hedge ratios are given in the bottom panel of Figure 7. Given our choice of parameters 

γ (=0.05) and C (=0.02), we find that little rebalancing adjustment remains in the hedge ratio. 

Of course, these parameter values were chosen in a rather ad hoc fashion. 

iTB −

Another noteworthy feature of the optimization exercise is illustrated in Figure 8, which 

compares the precision of the hedge ratio estimates for the different optimization procedures.  

 

INSERT FIGURE 8 

 

As we would expect, the precision of the expanding window hedge ratio dominates the 

alternatives. The ROC window hedge ratio is less precise at times when the window is ‘reset’ 

due to an identified structural break, but then improves in efficiency when the window is 

subsequently expanded. The rolling windows are particularly inefficient with standard errors 

more than three times as large, and while the EWLS hedge ratios are generally more efficient 

than the ROC hedge ratios, they are less efficient than the expanding window hedge ratios. 

Which leaves us with the question, is dynamic hedging worthwhile? Or, to quote the 

conclusion in Brooks, Burke and Persand (2003, p.733): “Thus, whilst the benefit from 

engaging in hedging is clear, it does not matter which package you use to calculate the OHRs 

and you are just as well not to bother with MGARCH models at all but to stick to OLS!”  

 

INSERT FIGURE 9 
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Figure 9 tracks the cumulative out-of-sample performance of the ROC method and 

compares this against the Buy&Hold performance. Performance is measure by the hedged 

portfolio standard deviation of returns. For the perfect hedge (HSI-coc), the static Buy&Hold 

strategy clearly outperforms the ROC dynamic alternative, with dynamic performance 

deteriorating after January 1998. For the cross hedge (HSF-coc), the dynamic ROC hedge 

outperforms the static Buy&Hold alternative, although the benefits only occur after January 

2000. This coincides with the dating of the only significant rebalance in the hedge after 

adjusting for transaction costs. To further identify these benefits, we also computed the daily 

performance difference (ROC – B&H), which is given in the bottom panel. All the dynamic 

hedging gains seem to be clustered around January-February 2000, while the static hedge was 

clearly outperforming the dynamic hedge in the aftermath of October 1997. 

 

INSERT TABLE III 

 

Table III formalizes the hedging performance results. Performance is expressed by the 

standard deviation of the hedged portfolio returns and by the hedging performance measure,  

defined in (14). Entries in bold print indicate the ‘best’ performer. For the perfect HSI-HSIF 

hedge, the static Buy&Hold hedging strategy outperforms the dynamic alternatives. For the 

imperfect HSCI-HSIF hedge, the dynamic EWLS hedging strategy very marginally 

outperforms the dynamic and static alternatives. For the imperfect HSF-HSIF hedge, the 

dynamic ROC model hedge outperforms the dynamic and static alternatives. The latter 

outperformance is still marginal, but larger than for the other imperfect hedge. The results are 

consistent whether we use raw returns or cost-of-carry adjusted returns. The comparative 

hedging performance changes somewhat when hedge ratios are only adjusted when the 

change exceeds the threshold in (17). For the (near)perfect hedges, any distinction disappears, 

and static buy&hold hedging is preferred. For the cross hedge (HSF coc), however, the ROC 

model performs better than before, while the dynamic alternatives fare worse. 

 

5 Conclusion 
A clearly outperforming dynamic hedging strategy remains elusive as ever. Despite 

overwhelming evidence of time-varying behaviour in the variance-covariance matrix of 

portfolio and futures returns, it is still diffult to capture this in a ‘profitable’ manner for out-

of-sample hedging. This paper proposes a comprehensive, yet simple, dynamic hedging 
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model. Through careful selection of the estimation sample size, the ROC model strikes a 

balance between the efficiency gains from expanding windows and the precision gains from 

rolling or EWLS windows. Selection occurs on the basis of running recursive regressions on 

reverse ordered observations and computing CUSUM-squared tests.  

We compare the performance of this ROC hedging model against common dynamic 

hedging alternatives including the rolling window and EWLS models. We also compare ROC 

performance against the static buy-and-hold strategy. To enhance the practical value of the 

exercise, we compare on out-of-sample hedging effectiveness, and also operationalise 

transaction cost restrictions to excessive rebalancing. With a simulation experiment, we 

highlight the possible benefits obtained by the ROC model. These benefits do, however, 

disappear when the noise to signal ratio (that is, the ‘perfection’) of the hedge relationship 

dimishes. That is unfortunately somewhat of a “catch-22” since we also know that the 

dynamic models are only really useful for cross hedge scenarios. Our empirical results for the 

Hang Seng stock indices verify this result. For a (near)perfect hedge scenario (HSI and 

HSCI), there is very little evidence of any dynamic strategy significantly outperforming the 

simple buy-and-hold strategy. For a genuine cross hedge scenario (HSF), there is limited 

evidence of the ROC model outperforming the dynamic alternatives as well as the static 

alternative. The gain, however, is small.  
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Figure 1: ROC Optimized Estimation Windows and Hedge Ratios 

0

100

200

300

400

500

600

700

800

900

250 500 750 1000 1250 1500 1750 2000
rebalancing date

estimation window 
size

ROC(0.05)
ROC(0.5)
ROC(0.5&GARCH)

 
 

0.5

0.6

0.7

0.8

0.9

1

1.1

250 500 750 1000 1250 1500 1750 2000
rebalancing date

hedge ratio

ROC(0.05)
ROC(0.5)
ROC(0.5&GARCH)

 
 

 
 

 21



 

Figure 2: Closing Prices Data plot for Hang Seng Indices, 1994-2003 
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HSF = Hang Seng Finance Index, HSCI = Hang Seng Commerce & Industry Index, HSI = Hang Seng Index. 

 

Figure 3: Conditional Standard Deviation for the Hang Seng Index, 1994-2003 
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Conditional standard deviations obtained from fitting a GARCH(1,1) specification to HSI returns. 
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Figure 4: Recursive Parameter Estimates  
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Portfolio refers to the HSI return series, while Futures refers to the HSIF return series. The recursive 
unconditional standard deviations are computed as  
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Figure 5: Structural Break Identification  
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Figure 6: Optimized Window Size  
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Figure 7: Hedge Ratios 
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 Figure 8: Standard Errors of Hedge Ratios 
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Figure 9: Out-of-sample Performance  
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TABLE I 

Out-of-Sample Hedging Performance 

 Sample Size Methodology 

 ROC EXPAND ROLLING EWLS B&H 

 κ = 0.05 
No GARCH 95.29 87.51 95.26 93.71 87.33 
GARCH 95.04 83.54 94.99 92.62 83.45 
GARCH_STD 71.94 69.15 71.99 71.61 69.39 

 κ = 0.1 
No GARCH 91.52 85.66 91.48 90.61 85.51 
GARCH 91.13 82.47 91.02 89.86 82.44 
GARCH_STD 71.92 69.39 72.02 71.67 69.81 

 κ = 0.5 
No GARCH 62.25 61.02 61.99 62.45 61.01 
GARCH 60.18 60.13 59.69 61.20 60.23 
GARCH_STD 58.40 59.59 58.05 59.80 58.53 
 
Note: Hedging performance is measured by the percentage reduction in risk (the variance of returns) of the 
hedged portfolio relative to the unhedged portfolio risk. The No GARCH scenario is based on i.i.d. innovations 
in portfolio and futures returns. The GARCH scenario is based on GARCH innovations in portfolio and futures 
returns. The GARCH_STD scenario is based on GARCH-standardized innovations in portfolio and futures 
returns. The value for κ relates to the strength of the correlation between portfolio and futures returns (with 
increasing κ indicating a decrease in correlation).  

 28



 
TABLE II 

Full Sample Descriptive Statistics 
 HSI HSCI HSF HSIF

Mean -5.82% -11.68% 4.25% -9.23%

Standard Deviation 29.08% 34.68% 28.61% 33.41%

Skewness -0.016 0.076* -0.207* 0.332* 

Excess Kurtosis 8.473* 6.032* 12.123* 10.244* 

Minimum -14.73% -13.40% -17.69% -16.09%

Maximum 17.25% 18.42% 18.00% 22.98%

Jarque Bera 6212.16* 3149.74* 12734.67* 9119.83* 

ARCH-LM(5) 447.40* 283.25* 614.70* 417.40* 

BG-LM(12) 20.38* 33.13* 26.50* 27.83* 

 
Note: Mean and Standard Deviation of returns are annualized figures. Minimum and Maximum returns are daily 
figures. Significance at the 5% confidence level is indicated with an asterisk. For Skewness and Excess 
Kurtosis, the null hypothesis is a value of zero. For the Jarque Bera test, the null hypothesis is normality based 
on the skewness and excess kurtosis measures. For the ARCH LM(5) test, the null hypothesis is no serial 
correlation up to lag 5 in the squared returns. For the Breusch-Godfrey LM(12) test, the null hypothesis is no 
serial correlation up to lag 12 in the returns. 
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TABLE III 

Dynamic Hedging Performance 
 

 Dynamic Optimization Method 

 Unhedged Buy&Hold Expanding Rolling EWLS ROC 

Hedge Ratios Estimated for Raw Returns 

HIS 28.881 
 

8.585
(0.912) 

8.831
(0.907) 

9.009
(0.903) 

8.987 
(0.903) 

8.954
(0.904) 

HSCI 34.988 
 

14.676
(0.824) 

14.740
(0.823) 

14.790
(0.821) 

14.587 
(0.826) 

14.708
(0.823) 

HSF 28.492 
 

15.581
(0.701) 

15.674
(0.697) 

15.951
(0.687) 

15.569 
(0.701) 

15.253
(0.713) 

Hedge Ratios Estimated for Cost-of-Carry Adjusted Returns 

HSI(coc) 28.726 
 

8.590
(0.911) 

8.860
(0.905) 

9.039
(0.901) 

9.008 
(0.902) 

8.973
(0.902) 

HSCI(coc) 34.835 
 

14.617
(0.824) 

14.677
(0.822) 

14.775
(0.820) 

14.536 
(0.826) 

14.651
(0.823) 

HSF(coc) 28.351 
 

15.581
(0.698) 

15.669
(0.695) 

15.957
(0.683) 

15.562 
(0.699) 

15.250
(0.711) 

Transaction Cost Adjusted Hedge Ratios Estimated for Cost-of-Carry Adjusted Returns 

HSI(coc) 28.726 
 

8.590
(0.911) 

8.858
(0.905) 

8.333
(0.916) 

8.684 
(0.909) 

8.590
(0.911) 

HSCI(coc) 34.835 
 

14.617
(0.824) 

14.617
(0.824) 

15.145
(0.811) 

14.637 
(0.823) 

14.617
(0.824) 

HSF(coc) 28.351 
 

15.581
(0.698) 

15.865
(0.687) 

16.005
(0.681) 

15.672 
(0.694) 

15.158
(0.714) 

 
Note: The cell entries give the standard deviation of hedged portfolio returns for each of the four dynamic hedge 
ratio optimization methods, as well as the standard deviation of static buy&hold and unhedged portfolio returns. 
The numbers between parentheses give the matching hedging performance measures. Hedging performance is 
measured by the percentage reduction in risk (the variance of returns) of the hedged portfolio relative to the 
unhedged portfolio risk. 
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Appendix:  
The Hang Seng indices have undergone a number of changes in composition over the period 
1994 until 2003. Table A1 lists the inclusion/exclusion dates for each of the three considered 
indices. 
 

Table A1: Alterations to the Hang Seng indices over the sample period 

 HSI HSCI HSF 

Date No. Of 

Stocks 

Change No. Of 

Stocks 

Change No. Of 

Stocks 

Change 

30th November 1994 33 +4, -4 15 + 3 3 - 

28th February 1995 33 +3, -3 17 + 2 3 - 

30th August 1996 33 +2, -2 17 +1, -1 3 - 

31st July 1997 33 +2, -2 17 +2, -2 3 - 

27th January 1998 33 +2, -2 17 +2, -2 3 - 

6th December 1999 33 +3, -3 16 +2, -3 3 - 

2nd August 2000 33 +2, -2 17 +2, -1 3 - 

1st June 2001 33 +2, -2 17 +2, -2 3 - 

31st July 2001 33 +1, -1 18 +1 3 - 

2nd December 2002 33 +2, -2 20 +2 4 +1 

Note: The change columns indicate how many stocks were added (+) and/or removed (-) from the index. 
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