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Temporal Aggregation, Causality Distortions, and a Sign Rule

1. Introduction

A number of theoretical studies have established thaet temporal aggregation leads to
misleading inference on Granger-causality (see Wei, 1990 and Marcellino, 1999 and
references therein). Gulasekaran and Abeysinghe (2002) and Gulasekaran (2003) have
derived quantitative results analytically to assess the nature of the distortions created.
Overdl the following conclusions emerge. Within a stationary framework, depending on
the parameter magnitudes, temporal aggregation may (i) create a spurious feedback loop
from a unidirectiona relation, (ii) erase a feedback loop and create a unidirectional
relation and (iii) erase the Granger-causal link altogether. The distortions magnify when
differencing is used after temporal aggregation to induce stationarity.

These findings of distortions are not much of a comfort in practice because most
avalable data series are either temporally aggregated or systematically sampled
depending on whether the variables are flows or stocks respectively. An important
finding of the Gulasekaran (2003) study is that misleading inferences are more likely at
low levels of temporal aggregation. Therefore, moving towards more disaggregated data
would not be of much help either unless the observation frequency coincides with the
causal lag. Looking for data with a frequency that coincides with the causa lag is a far-
fetched goal. Moreover, for certain variables such as GDP, thereis alimit to the increase
in the frequency of observations beyond which meaningful time series aggregates do not
exist. (See Hoover, 2001, Chapter 6 for an eloguent discussion on this.) On the other

hand, temporal aggregation creates contemporaneous correlations even when such



correlations are absent in the nonaggregate process and as tempora aggregation
increases contemporaneous correlations may be all that is left between the series. As a
result one may not find Granger-causality at all. Making causal inferences from
contemporaneous correlations is a challenging and much needed task. For better or worse
this task still remains largely in the terrain of non-sample information or beliefs of the
researcher.

Hoover (2001) has proposed a very promising methodology for causa inference
based on an intervention analysis. Using the logic that interventions such as strikes, wars,
and policy changes do not ater a true causal relationship, Hoover suggests examining
conditional and marginal distributions to see whether they are affected by interventions.
The applications he has reported, however, rely on error correction (ECM) formulations
which are unfortunately subject to the distortions of temporal aggregation. Hoover’s
approach is closely related to testing for super exogeneity (see Hendry, 1995).

Swanson and Granger (1997) have used a graphtheoretic approach advocated by
philosophers and computer scientists (see Pearl, 2000) to assign a causal ordering to
contemporaneous links in a structural vector autoregression (SVAR) model. Demiralp
and Hoover (2003) have examined the reliability of this approach and conclude that the
graph-theoretic approach combined with non-sample nformation may lead to a more
realistic causal ordering. This approach, the SVAR approach in general, faces a number
of difficulties under temporal aggregation. First, the results in Gulasekaran and
Abeysinghe (2002) and Gulasekaran (2003) indicate that though unidirectional relations
create contemporaneous correlations with an unambiguous sign, an ambiguity may arise

if the nonaggregate process is a feedback relation with a positive and negative feedback



loop. Depending on the parameter configuration of the nonaggregate process, the
contemporaneous correlation of the aggregate process may take positive, negative or zero
values from which it would be difficult to infer the actual feedback relation that exists
(see also Ericcson et al., 2001).* Second, since causal ordering is performed on the basis
of residuals of an unrestricted VAR there is a possibility that the lagged variables in the
unrestricted VAR acting as proxies for the omitted contemporaneous relations thereby
leading to distorted residual correlations. Therefore, the final causal ordering may have to
be done by estimating the full SVAR model. Third, even if the causal ordering of
contemporaneous links is done successfully, temporal aggregation may distort the
dynamics of the VAR model in such a way that the impulse responses may become
midleading (Granger, 1988; Granger and Swanson, 1992; Marcellino 1999).

Unlike dynamic relations, cointegrating relations remain invariant to temporal
aggregation (Granger, 1990; Pierse and Snell, 1995; Granger ard Siklos, 1995; Franses
and Boswijk; 1996; Marcellino, 1999). They are aso not affected by linear seasonal
filters (see Hendry, 1995, Section 15.6 and the references therein). Cointegration also
implies Gcausality (Granger, 1986) though the direction is uncertain. Establishing the
direction of causality from a cointegrating relation is an important research agenda and
some apparatus under weak exogeneity already exists for this purpose (Engle et al., 1983,
Hendry 1995, Johansen 1995). As the level of temporal aggregation increases, a
stationary VAR(p) process may tend towards VAR(0O) by absorbing al causal

information into contemporaneous links. However, a cointegrated VAR(p) process

1 For example, since early 1980s (until the onset of the Asian financial crisis) the Monetary Authority of
Singapore has used exchange rate management as a means of controlling inflation. Higher imported
inflation prompts for an appreciating exchange rate policy that in turn lowers the inflation rate. Therefore,
the two variables form a positive and negative feedback loop. However, the observed data hardly show this
relationship.



cannot shrink below VAR(1) because of the presence of unit roots.? As a result some
adjustment coefficients of the error correction model have to remain non-zero regardless
the level of temporal aggregation. Therefore, weak exogeneity under cointegration helps
not only in contemporaneous conditioning but it aso helps in Granger causality
inference.

Since it is of critical importance to make causal inference from relations that are
invariant to temporal aggregation and given the impracticality of searching for the non
aggregate forms of the data series we propose to base causal inference on highly
aggregated data series such as the annual series that are cointegrated and best modeled as
a VAR(1) process though higher order VAR models may also be entertained® (see
footnote 6 and Section 5). The objective of our study is to investigate the feasibility of
this proposal. It is worth noting that Pagan (1989) came up with a scathing criticism of
Granger causality inference because of the inconceivably contradictory results found in
the applied literature. The fragility of causal inference emanates mainly from two
sources, (i) the information set used and (ii) tempora aggregation.* The former is a
problem that all econometric models have to deal with and the latter requires devising
suitable statistical techniques that produce robust inferences regardiess the level of

temporal aggregation.

29f 1 4,1 ,,..., 1 , aretheroots of the non-aggregate autoregressive processthen | 1,1 7 ,...,1 ™ are the
roots of the aggregated process, where mis the order of aggregation (Marcellino, 1999).

3 The problem with unrestricted higher order VAR modelsis that they tend to pick noise as signal leading
to fragile inference.

* Other sources include the incorrect functional forms, in particular not accounting for the multiplicative
interaction between the variables that economic theory some times suggests.



2. Analytical Tools
Consider the ECM formulation (Johansen, 1995):

Dy, =ab¥,, +GQDy,, +GDy, , +...+ G, Dy,_(,.,) D, +& D
where vy, (t=12,..,T)isan (n" 1) vector of I(1) variables, D, contains deterministic
terms such as the constant and time trend and u, =b¢, is an (r" 1) vector of
cointegrating relations. Note that Var(e)=4a is not a diagona matrix in gereral. If we
can impose a meaningful causal ordering on the contemporaneous relations such that
B, =e, and Var(e,) =W is diagonal, where e, are the fundamental innovations, then
we can formulate a structural ECM by pre-multiplying (1) by B,. This will altera , but
not b .> The problem is that tempora aggregation alters a and G s and if this happens

in a distortionary way meaningful inference may not result even if the restrictions on By
turn out to be correct. Since our focusin this paper ison a we assume that the data series
are sufficiently temporally aggregated such that G s in the aggregated process are
practically zero and we work with the model:®

Dy, =aby,, +6. @
For the convenience of subsequent derivations we have dropped the deterministic term

from (2).

® Usually structural VAR modelers are estimated by imposing diagonality on W . Ideally W should be
diagonal empirically because W may truly be non-diagonal due to omitted variables and misspecified
contemporaneous links.

& Johansen (1995) argues, based on experience, that seasonally adjusted quarterly data are often well
modeled as VAR(2). If longer lags are required he suggests to look for omitted variables and increase n
instead of p. For example, consider that the n variablesare well modeled as a VAR(1) process. If we throw
away half of the variables then the remaining half requiresa VARMA(2,1) model instead of aVAR(L). If
model diagnostics do not warrant aVVAR(1) because of autoregressive effects we could still proceed with a
higher order VAR provided that the G sare empirically diagonal.



As stated earlier, cointegration (also unit roots) is invariant to temporal aggregation.
This is in genera true for static relations. Note also that if y consists of both flow and
stock variables we have to apply the same transformation, temporal aggregation or
averaging, to al the variables to keep b invariant. Therefore, it is advisable to use
temporal averaging of al the variables when both flow and stock variables enter the same

model. Since b is invariant to tempora aggregation we proceed with the assumption

that b isknown and concentrate on a.
If the n variables are partitioned into two groups such that vy, is (11" 1) and v, is

(n2” 1), ng+n=nwith a and b split conformably then the ECM can be written as

5@’11 19 9
gDthﬂ ga gbq: bg’gymlﬂ gez B (3)

Johansen (1995, Ch. 8) shows that if a, =0 then vy, isweakly exogenousfor b and a,.
Writing (3) in levels it can be seen that a, = 0(assuming b * 0) also implies the presence
of Granger causality from vy, to y, (Mosconi and Giannini, 1992) though we cannot

exclude the possibility of lagged feedback effects since they may have disappeared into
contemporaneous links. Following Hendry and Mizon (1998) Granger causality
associated with the adjustment coefficients may be referred to as causality in levels and
that associated with short-run coefficients as causality in differences. Although the
former implies the latter, the converse does not necessarily hold. Results in this study as
well as those in Gulasekaran (2003) indicate that causality in levels is more robust to
temporal aggregation compared to causality in differences. Since causality in levels bears

on weak exogeneity that forms the basis for super exogeneity which is essentia for policy



evauations the causality in levels plays an important role in practice. Since policy
variables are, in genera, subject to feedback effects, causality in differences does not

play such a useful role in policy evauations.

2.1 The sign of the adjustment coefficient

During our analysis we realized that the sign of the a coefficients plays a useful role
in signaling how temporal aggregation has affected them. Johansen (1995) draws
attention to “correct” and “wrong” signs of the adjustment coefficients in a number of
places. In this section we define the “correct sign” formally for r =1 and discuss the
consequences of “wrong sign”.

When r =1, theith equation of (2) can be written as

Yie =Y ta U, t €, (4)

where u, =g by, -
i=1
The long run equilibrium implies that u, , =0 which gives:

-1
Vi1 = F(blyﬂ.l +0,Yo 1t DY T Yy e DY)

If the system isin disequilibrium at date t - 1 then either u,_, >0 or u, , <O.



Casel: b, >0
-1
If ut-l > O ' thm yil—l >F(blylt-l + b2y2t-l Tt bi-lyi—lt-l + bi+1yi+jl_t—1 Tt bnynt-l) and

we expect a;u, , <0 in (4) in order to achieve the equilibrium. Since u,_, >0, a, hasto

be negative (a; <0).
-1
If u_, <0, then vy, <b—(b1yn.1+ D, Yo it t DY T DYt t DY)

and we expect a,u,, >0 in (4) in order to achieve the equilibrium. Since u, , <0, a,
has to be negative (a; <0).

Thus, if b, >0, then a, <0 regardless of the sign of the disequilibrium term u,_;.

Case2: b, <0

-1
lf ut-l >0’ then yit-l <b_(b1ylt-1+ b2y2t-l+"'+ bi-lyi-lt-l + bi+1yi+il.t-1 Tt bnynt-l)

and we expect a,u,, >0 in (4) in order to achieve the equilibrium. Since u, , >0, a,

has to be positive (a; >0).

-1
If u_, <0,then vy, >F(b1yn-1 0, Yot DY T Yt H DY)

and we expect a,u, , <0 in (4) in order to achieve the equilibrium. Since u, , <0, a, has
to be positive (a; >0).

Thus, if b, <0, then a, >0 regardless of the sign of the disequilibrium term, u,_,.



We can, therefore, see that the long-run equilibrium holds if the sign of a, is the
opposite of b, . We define this as the “correct sign” of the adjustment coefficient when
r =1. Since the b vector is invariant to temporal aggregation we can determine the

expected signof a, fromthat of b, under any level of temporal aggregation. Thiswill be
termed asthe “sign rule”.

The problem, however, is that the long-run equilibrium may hold even if the sign is
wrong. To see this, from then equationsin (4) obtain u, =ru, , +e, wherer =1+ab,
a=@j..a,, b=(b,,..,b,) ad e is white noise. Co-integration requires |r|<1
which implies - 2<a b <0. Notethat r measures the degree of co-integration: |r |® 0
implies a higher degree of co-integration and |r |® 1 implies a lower degree. Now
consider that the variables in the model are arranged such that the first n b coefficients
are positive and the second n, b coefficients are negative. Let b, and b, represent these
vectors and let the corresponding a vectorsbe a, and a, respectively. Assume that a,
is correctly signed with a negative sign and a, is wrongly signed with a negative sign
too. Given the inequdity - 2<afb, +asb, <0, if jab,|>fagh,| we get |r|<1 even
with the wrong sign. In other words, if the adjustment towards equilibrium is dominated
by the adjustment coefficients with the correct sign co-integration continues to hold.
However, the wrong sign lowers the degree of co-integration (increases the absolute
value of r ). How frequent the co-integration with the wrong sign is an empirical

guestion. As we shall see later the verification of this would not be easy with temporally

aggregated data.
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2.2 Bivariate Case

The sign rule seems to apply even when r >1 provided that the r cointegrating vectors
do not appear jointly in an equation. However, when they enter an equation jointly the
sign rule does not seem apply. Since the results are not very clear at this stage, in the
following analysis we confine to the case r =1 and use a bivariate system to obtain some
analytical results under temporal aggregation. We assume that the non-aggregate process

isin the form of (3) with the resulting two equations written as’

Dylt =a1ut—l +e]1 ' (5)
[)th =a 2ut-l + e2t ' (5®
where u, =b,y,,+b, Yy, . We assume that

a8y 0 _ 200s,; 0090
€1 & ||dN§gog§0 S o5

The zero contemporaneous covariance between the two error terms underlies the

assumption that the observation frequency coincides with the causal lag. As before
u =ru,, +e,, where r =1+a,b, +a,b, and e =b,e, +b,e, with zero mean and
variance s> =b/s 2 +bls?

Let w, =Dy, and w, =Dy, . For i=1,2, the variances and covariances of the non

aggregate process in (5) and (5¢ can be written as

6, (K) = E(Uy, ) = E(Uu,,) =1 's2/(A-17) "k ©)
Ee )_10 it k<0 -
Gillnc) =1k g 2 if K30

" Mamingi (1996) used thisin his Monte Carlo study.

11



1a7g, (k) +s ? it k=0

Y(k)=E(Mw,w,_ )= 8
gll( ) ( it It-k) ’:\alzgu(k) +air k_lbis i2 If k>0 ( )
9;i (- k) =95 (k)
N k-1
:i:ailr rse2 "k>0

giu(k): E(Witut-k):l ! (9)
+ai—sj+r *bs? "kEO.

Let Y, and Y, (t =1,2,..,N; T =mN) be the m-period non-overlapping aggregates of
y,and vy, respectively and let W, =DY, and W, = DY,, . We now consider estimating

the following aggregated process:

W, =a,U, , +E, (10)
WZ( :a;Ut—l+E2t (10(9
rrg-l
where U, = g u; ad E; represent non-overlapping sums of the error process.®
j=m(t -1)

The OLSestimates &, , plima; andthet statistics are given by:

aWw.u, ~ _0u@
=g, plima; == (11)
aUtz-l gy (0)
~ a’
N -
where
s? s? . \
va(d;) = o c =va(E)=g; (0+4°g,(0)- 2/g, ().  (13)

= s
ayv’ Ng, (0 °¢

8 In addition to temporal aggregation we also examined systematic sampling. In general, systematic
sampling does not lead to serious distortions in the adjustment coefficients. In the interest of space we
present the results for temporal aggregation only.

12



Using Proposition A.1 in Appendix that establishes the reationship between
covariances of the aggregated and the nonraggregate processes we get the following

relations, again for i=1,2:

g, () =@+ L+ ..+ L™)?g, (mk+(m- 1)) " k. (14)
gy (K) = (L+L+..+L™)g, (mk+(m- D) " K (15)
givi"(k) =(1+L+..+ Lm'l)4gi"iv(mk+ 2(m-1)). (16)

These expressions provide the link betweenthe parameter estimates and the t-statistics of
the aggregated process and the parameters of the nonaggregate process in order to derive

a quantitative evaluation of the impact of temporal aggregation.

3. Distortions

There are three cases of interest with regard to Granger causality in the non-aggregate
process. (i) no causality, (ii) unidirectional causality and (iii) mutua causality or
feedback. The first case clears through without a problem. If the two series are not related

in the nonaggregate pocess then a, =0, i=12, and from (9), g,,(k) =0, "k>0.
Further, from (15) g,, (k) =0, " k >0 and from (11) &, = 0. Thus, if there is no Granger

causality between the series in the nonaggregate process then there will be no Granger
causality between them in the aggregated process. In fact, this is valid for the short run

dynamics as well (Gulasekaran, 2003).

13



3.1 Unidirectional Causality in the non-aggr egate process

To evaluate this case we set a, =0 so that Granger causdlity runs from vy, to vy, and

use the normalized co- integrating vector (1,b,) . We consider m=3 and m=12 to represent
aggregating monthly data to quarterly and annual figures.® To assess the impact of the

degree of co-integration we consider values of r in the range -0.95 to 0.95. Thisis the
same as setting a,(=r - 1) within the range —1.95 to —0.05. We also vary the values of

b, within the range -20 to 20 to see whether the magnitude of b, plays any role in

creating distortions. For the computation of the t statistics we consider three
combinations of mand N given in Tables 2 and 4.*°

Co-integration implies that at least one of the adjustment coefficients has to be non
zero. As expected, &, remains negative and highly statistically significant regardless the
level of aggregation and the sample size (Tables 1 and 2). The magnitude of b, seemsto
matter when a, isvery small.

The interesting case is &, which is expected to be statistically insignificant. The
resultsfor plimd’, are given in Table 3 and thet-statistics in Table 4. Table 3 shows that
the limiting values of &, are not zero, though small in magnitude for certain cases
especially when m=3. The magnitude of both a, and b, play arole in the creation of a

nonzerod,. Nevertheless Table 4 shows that the impact of the magnitude of b,

® Since monthly data are the aggregates of daily or hourly data we have to set mto very large values which
render our analytical expressions unmanageable.

10 These sample sizes are chosen to be compatible with the Monte Carlo experimentsin Lahiri and
Mamingi (1995), Choi and Chung (1995) and Mamingi (1996). Since we computet statistics using the
limiting values of the parameter estimates we conducted a limited number of Monte Carlo experiments
(with 10,000 replications) to assess the validity of our theoretical results for the sample sizes considered.
The Monte Carlo results are the same as our theoretical results.

14



disappears from the t statistics. However, when a, is close to -1 (high degree of co-
integration) the t statistics are highly significant regardless the level of aggregation and
the sample size. An increase in m or N renders more statistically significant t statistics.

These results concur with the Monte Carlo results in Mamingi (1996).

Tables1-4

A comparison with the results in Gulasekaran and Abeysinghe (2002) for a non
cointegrated VAR indicates that the distortionary effects of temporal aggregation are
much stronger on the adjustment coefficients than on the stationary dynamics. This
means that if weak exogeneity tests are used to impose a causal ordering on the
contemporaneous relations they are more likely to go wrong with temporally aggregated

data. The most important observation, however, is that the sign of &, is the same as that

of b, though we expect the opposite. Thisis a clear indication that a distortion may have
taken place.

Another point to note is that temporal aggregation gppears to increases the degree of
cointegration, I~ =1+a,b, +d,b,. For example, when a,=-0.25, r =0.75 but " =
0.56 for m=3 and " =0.19 for m=12 regardless the magnitudeof b, (b,=1).** Asitwas
noted earlier the wrong sign lowers the degree of cointegration. In this case, however,

temporal aggregation seems to offset this effect and produces a high degree of

cointegration even with the wrong sign.

11 Note that we need more decimal placesin Tables 1 and 3 to obtain precise values of r.
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3.2 Mutual Causality in the norraggr egate process
In this case both a, and a, take nonzero vaues, therefore, the focus of our

computations is to see whether temporal aggregation renders one of them zero in the
aggregated process leading to misleading inference on causal direction. It isworth noting
that even if we correctly find that they are nonzero, this is not going to help us in
assigning a causal order to the contemporaneous link. We will have to look for a third

variable to solve the identification problem.
Since a,=(r -1-a,)/b, the computational setting in this case is a lot more
involved than the previous one. We computed a large number of tables using various

combinations of the parameter values. To conserve space we present only one table and
summarize the results. In all computations we fixed a, to the range -0.95 to -0.05.
Overall &, emerges with the correct sign and remains statistically significant.
Insignificant values occur only when |a, | is small. Table 5 presents the t statistics for &,
under one set of parameter configuration. In thistable a, is positive ard varies from cell
to cell but takes on smaller values towards the top-left corner. What the table shows is
that temporal aggregation may render small a , s either with statistically insignificant a,s
or with statistically significant &,s with a wrong (negative) sign. The latter effect
magnifies as temporal aggregation increases. In general, distorted inference do not occur

whenboth a, and a, are large in magnitude.

Table5
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4. How to Test for Granger causality with temporally aggregated data?
Although temporal aggregation tends to distort the adjustment coefficients, the sign rule
established in Section 2 and the computations in Section 3 show that we may still be able
to reach the correct conclusion about the causal direction based on the sign of the
adjustment coefficients. To repeat thesignrule, if b, >0, a, <0 andif b, <0, a, >0.
The results on unidirectional causality are clear-cut. The nontzero adjustment
coefficient remains highly significant regardiess the level of temporal aggregation and
carries the correct sign. An adjustment coefficient with the wrong sign clearly indicates a
causal distortion of the underlying zero coefficient. However, the presence of mutual
causation makes the inference harder because of the possibility that temporal aggregation
may erase the feedback loop and creates a unidirectional relation. Our results
nevertheless show that a strong feedback relation does not get distorted by tempora
aggregation. Furthermore, when a, isreasonably large &, always carries the correct sign
and remains statistically significant. Therefore, a proper normalization (a selection of the
dependent variable) with the help of non-sample information should make the inference

easier. Wrong sign on the other coefficients is an indicator of causal distortion.

Unfortunately we face an ambiguity here. Our results show that &, may take the wrong

sign either because a, is very small or zero or because a, genuinely carries a wrong

sign.'? Although the latter case may only be a theoretical possibility, in practice, with

temporaly aggregated data we will not be able to differentiate between these

12 Note that, as shown in Section 3, when a , takesthewrong sign its magnitude has to be smaller than

that of @ ,; to preserve co-integration.

17



possibilities. We have to rely on nonsample information to solve this identification

problem. We can, therefore, formulate the following rule as a guide.

First, determine the expected sign of the adjustment coefficients from the estimated co-
integrating vector. If the estimated adjustment coefficient appears with the correct sign
and is statistically significant then it reflects the underlying causal direction in the non-
aggregate form. If the coefficient appears with the wrong sign then a causal distortion
may have occurred and if such a conclusion is supported by non-sample information then
we may treat it as resulting from a zero or near zero coefficient in the non-aggregate

form.

5. Some Monte Carlo Results

An upshot of the above analysis is that afterall we may be better off with highly
temporally aggregated data for causality testing. The trend has been to move towards
more and more disaggregated data but with no promising outcome on Granger causality
inference. Annual data, on the other hand, are free from the effects of seasonal
adjustment and may well fit into a VAR(1) framework. Since co-integration has to render
a least one non-zero adjustment coefficient with the correct sign, the sign distortions on
the other coefficients, perhaps combined with nonsample information, would guide us in
establishing the causal direction.

To shed further light on the VAR order and the sign distortion we conducted a Monte

Carlo experiment with aVAR(2) process which in ECM formét is:

0 0.256 5 05
ay, 6 e 9(1 _ 2 allt 1 0 ab. 03:3, V1% 0 (17)
4]

gDth ;:g gyzr 10 %21 0. 25£Dyg 10 é% ;
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In this process a ,=0, therefore y, is weakly exogenous for a, and b vector. However, it
is a feedback system if f, 1 0. In the experiment we set f, to two values (0, 0.25).

Summary results based on N(O, 1) errors and 2000 replications are given in Tables 6 and
7. To see the large sample effect we set the effective sample size (N) to 480 at each level
of aggregation.

As for the VAR order selection, SBC tends to choose VAR(1) more often as m
increases. However, AIC tends to be profligate. This reflects AIC's tendency to pick
longer lags in large samples. The promising observation, however, is that the sign
distortion on &, remains unchanged regardiess the VAR order and whether f ,, is zero or
not. This indicates that we can apply the sign rule even with higher order VAR models.

The tables also show the creation of contemporaneous correlations between the error
processes that result from the shrinkage of the VAR order towards unity. It should be
noted that a co-integrated VAR(1) process in the nonaggregate form does not create
contemporaneous correlations with temporal aggregation. The contemporaneous
correlation is such a case is a clear indication of omitted variables. In other words,
contemporaneous correlation in an aggregated VAR process may be due to both temporal

aggregation and omitted variables.

Tables6and 7
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6. Applications

6.1 Exchangerate, direct vs. cross

The relationship between the three major exchange rates, US$, Deutsch Mark (DM) and
Japanese Yen, provides a good illustration of how the sign rule works under
unidirectional causality. Theoretically the direct Yen/DM rate should be the same as the
cross rate derived from US$/DM and US$HYen rates. Any deviations will open up
arbitrage opportunities for profiteering. However, some deviations may still be observed
when transaction costs are higher than the potential profits. Therefore, log(Yen/DM) —
log(US$/DM) + log(USH/Yen) forms a co-integrating relation with the co-integrating
vector (1, -1, 1). Figure 1 shows the deviations of the daily direct rate from the cross rate.
As can be expected these deviations are very small and center around zero. Somewhat
surprisingly, though, they show some heteroscedastic behavior. Both AIC and SBC pick
a VAR(1) for the three rates (Yen/DM, US$/DM, US$/Yen) al in logarithms. The
residual correlation matrix is not diagonal that reflects the systematic sampling of the
daily rates. Although the residuals are free from serial correlation, both normality and
heteroscadasticity tests fail. We ignore this and proceed to estimate the adjustment
coefficients by imposing the above co-integrating vector.”® The results (based on
Johansen ML method) are reported in Table 8. The results under both daily rates and

systematically sampled weekly rates show that only a, is nonzero. This is also what we
expect apriori. However, under temporally averaged weekly rates both a; and a, turn
out to be nonzero. Nevertheless, the wrong sign of a, provides the warning sign.

Combined with non-sample information that only a, could be non-zero we could safely

13 The estimated cointegrating vector virtually coincide with (1, -1, 1) vector under both systematic
sampling and temporal aggregation.
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conclude that non-zero a, is a result of tenporal averaging. Constraining both a, and

a, to zero also brings the estimate of a, closer to unity.

Figure 1 and Table 8

6.2 Stock Market and Car Quota Premium in Singapore

This is an interesting example because one variable is available in non-aggregate form.
To curb the car population, the Singapore government implemented a car quota system in
August 1990. To buy a new car the buyers first have to buy a piece of paper called the
certificate of entitlement. The price of this paper, known as the quota premium (QP), is
decided through a monthly bidding process. The monthly data of QP are not
contaminated by any form of aggregation or systematic sampling.

A key determinant of QP of luxury cars is the performance of the stock market,
captured by the stock price index compiled by the Stock Exchange of Singapore (Lai,
2001). Monthly data over 1990M 8-1999M4 show that these two variables (in logarithms)
are cointegrated and their relationship is well represented by a VAR(1) process with
causality running from stock price to QP. Stock prices (in log) follow a random walk.
Moreover, the two error processes are also uncorrelated (s ,, = 0). We write the ECM

formulation as:

66't1 0
A N 9

21



wherey = In(QP) and x = In(Stock price index), a, = 0. Because of the short data span

we temporally averaged data up to six months. The results for m=1 (no aggregation)
through m=6 are given in Table 9. The results show that 62 remains roughly the same as
m increases. Being a cointegrated VAR(1) with s, =0 temporal aggregation does not
create contemporaneous correlation between the residual processes (r,, remains close to
zero). However, the magnitude of &, increases steadily and remains highly significant.
The magnitude of &, also tends to increase though not steadily and becomes dtatistically
significant at the 10% level whenm=4 and m=6. If one had only the temporally averaged
data (say biannual) the wrong (negative) sign of &, provides the warning signal.

Combined with the information that (log) stock prices follows a random walk one could

safely conclude in this case that causality is unidirectional from stock prices to QP.

Table9

6.3 Tax Revenue and Government Expenditure in the US

Barro’'s (1979) tax smoothing hypothesis offers an interesting contrast to Granger
causality testing. Under the assumption that spending causes taxes Barro’s model implies
that the income tax rate follows a random walk. If the tax rate truly follows a random
walk, the standard Granger-causality test will fail to establish the causa direction
embodied in Barro's model. Since taxes following a random walk could be consistent
with some other hypotheses, many researchers have tested the tax smoothing hypothesis

by testing the other implications of the model, see for example, Sahasakul (1986), Huang
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and Lin (1993) and Ghosh (1995). Hoover (2001), however, applied his intervention
approach to test for the causal direction between taxes and spending and observed mixed
results over different time periods. Hoover used quarterly data from 1947 to 1989 in his
analysis. In this section we use annual data (1946-2002) and examine how cointegration
and the sign rule shed light on the causal direction between taxes and spending.

The data series used in this section are the following.'* T = red federa
government receipts (nomina series deflated by the GNP deflator, P), G = real federal
government expenditure net of interest payments (nominal series deflated by P), Y =red
GNP, y=InY, Dy=GNP growth rate (%), p = (DInP)100 = inflation rate, t =
(T/Y)100 = income tax rate and g = (G/Y)100 = spending rate. Data plot and ADF tests
support the assumptionthat t , g, and p arel(1) processes.

The literature usually focuses on the budget surplus as a ratio of GNP, t -g.
Figure 2 plots this data series. Although the tax smoothing hypothesis predictst -gto bea
stationary series (see Huang and Lin, 1993; Ghosh, 1995) the plot in Figure 2 casts
doubts on the stationarity of the series. An ADF regression with two lags of D(t -Q);
produces at statistic of -2.62 which is insignificant at the 5% critical value of -2.92. In
fact the t -g series suggests some level shifts: on average a budget surplus in the period
1946-1970, a deficit in the period 1971-1993 and a large surplus in the period 1994-2002.

Although the budget surplus (t -g) may not necessarily be stationary, t and g
form a strong cointegrating relationship with a different cointegrating vector. An OLS
regression of t on g produces highly stable recursive parameter estimates with some

small departures occurring after 1994. Based on average recursive OLS estimates we

1% The data series were taken from the same source that Hoover (2001) used, National Income and Product
Accountsasreported in CITIBASE
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obtain the cointegrating relation z, =t, - 0.25g, - 13. This series is plotted in Figure 3.
An ADF regression based on one lag of Dz, produces at =-4.155 which is significant at
the 1% critical value of -3.552.

We use the following specification to examine the adjustment coefficients a, and
a,, a, isexpected to be negative and a, positive. Following Hoover (2001) we use
Dy, and Dp, to remove non-policy effects from Dt and Dg .*°

bt, =d, +d,Dx, , +d,Dg, , +d;Dy, +d,Dp, +a,z_, +e, (19a)

Dg, =1,+!,Dt,, +1,Dg,, +! Dy, +a,z_, +e, (19b)
FIML estimation of (19a) and (19b) produces results very similar to OLS estimates
because the two error processes are empirically uncorrelated. We, therefore, proceed with
OLS estimation. Figures 4 and 5 plot the recursive estimates from the two regressions.
Figure 4 shows that the parameter estimates of the tax equation become unstable after
1994, the period of high budget surplus.’® Nevertheless, the adjustment coefficient
estimate a, has the correct sign and is statistically significant. The parameter estimates
of the spending equation shown in Figure 5 are more stable even during the high-budget-
surplus period. But only the GNP growth rate and the constant term are statistically

significant. After dropping the insignificant variables we obtain the following estimates

over the period 1946-1994.%7

15 Hoover (2001) uses taxes and spending as aratio of potential GNP to obtain the tax rate and the
spending rate. He then regresses the tax rate on GNP-gap and inflation rate and the spending rate on the
GNP-gap and uses the residual s from these regressions to study the causal direction. We also tried this
ag)proach but the measurement errors in potential GNP seem to cause parameter instabilities.

1% The analysis after 1994 seems to require additional variablesin the model.

17 The estimated equations pass the diagnostic tests available in PCGive except that the spending equation
shows amild heteroscadasticity. These results are not reported for brevity.
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Dt, =-0.06+0.42Dt | +0.16Dg, , + 0.09Dy, +0.12Dp, - 0.65z,_,
(-037)(351)  (228)  (244)  (277) (-4.34) (20a)
R’ =071 §, =050

Dy, =0.52- 0.14Dy, +0.197_,
(237) (-297) (122 20
R? = 0.32, §2 =0.68

The adjustment coefficient in (20a) has the correct sign and highly significant. The
adjustment coefficient in (20b) is satistically insignificant. These results show that
causality (in levels) runs from spending to taxes that concurs with Barro’s assumption.
We have to note, however, that the recursive estimates of the adjustment coefficient in
(20b), though statistically insignificant, are highly stable and bear the correct sign. Our
previous results on the sign distortion indicate that a pure unidirectional relation produces
an a, <0 after temporal aggregation. Therefore, the correct sign of a, in (20b) seemsto
have resulted from a mild feedback system in the nonaggregate process. It should also be
noted that (20a) clearly rejects a major implication of the tax smoothing hypothesis that

the tax rate (adjusted for the effect of Dy, and Dp, ) is arandom walk.

7. Concluding Remarks

Invariance of cointegrating relationships to temporal aggregation offers a promising path
for Granger causality testing. In this paper we propose using the error correction
formulation to infer the direction of causality between cointegrated variables. Temporal
aggregation distorts both the short-run coefficients and the adjustment coefficients in an
error correction model. Fortunately, unlike the short-run coefficients, the distortions on

the adjustment coefficients occur with a predictable sign-distortion. Based on these
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findings we propose asignrule for making causal inferences from temporally aggregated
data.

Causal inference based on cointegration should be referred to as causdity in
levels as opposed to causality in differences found in the short-run coefficients (Hendry
and Mizon, 1998). As we discussed in the text, causality found in the short-run
coefficients, regardless the distortions due to tempora aggregation, is less useful for
policy analyses because policy variables in general show feedback effects. Causality in

levels, however, plays an important role in policy evaluations because of its connection to

super-exogeniety.
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Appendix: The relationship between covariances of aggregate and non-aggregate
pr ocesses

Temporal aggregation involves the construction of non-overlapping sums that can easily
be obtained by defining the overlapping sum (1+ L +...+L™")y, and then systematically
sampling this variable at every mth interval to obtain the aggregated variable Y, =
@+ L+..+L™Yy, ,(t =12,...,N; T=mN). Let w, =(1- L)*y, and W =(1- L)Y, . The

following result extends the univariate case considered by Stram and Wei (1986). (See

Gulasekaran (2003) for further details.)

Proposition A.1

The covariance between the temporally aggregated series Wiy and W;.x can be expressed

in terms of the covariance between the non-aggregate series w, and w;,_, as, for k3 O:
g (K) = @+ L+ L2 +...+ L") ™ g (mk + (d, +1)(m- 1)) (A.1)
g¥ (k)= @+ L+L2+..+ L") Dg¥(mk + (d, +1)(m- 1)) (A.2)
where gi¥ (k) = Cov(W,, W, _,.). g;'(k) =Cov(w,,w,_) . L operateson theindex of g; (k)
such that Lg; (k) =g; (k- 1), gi (K)=0/ (- k) and d; and d; are integers representing

orders of differencing applied to ith and jth series respectively.
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Pr oof

Note that (1- L)Y, = Y, -Y, = (1+ |_+___+L"“)ymt - (A+L+..+ Lm'l)ym(t_l) =

e
(1- L™) 1+ L+...+L™Y)y . . Therefore, W =(1- L)*Y, = 1- L™ @+ L+...+L™ Yy,
=(L+L+..+L™H"w_.Let F=L" bethelead operator such that Fz =z, andlet cs
and e be the coefficient of LS of the polynomia (1+L+---+L™")%*" and
@A+ L+---+ L™ respectively.

;' (k) =EW,W, ]
m- + m-1yd; +
SE[@+ L+ + L™ tw @+ L+ + L™

= E[(Cowim FCWig. g T C(d, +1)(m—1)Wir'rt - (d;+1)(m-1) )

im0
(&Wimt-mk + €Wjng i1 + “€d;+)(m 1) Wimt - mk- (d;+1)(m y)

= Go[€gy (MK) +egy (MK +1) +---+ & 1T (MK +(d; +1)(M- 1))]
+c (69 (k- 1)+ g (k) +-- + €4 )1y G (MK +(d; +1)(M- 1) - I]

+C(di+l)(m—1)[eogi}lv(rTi(_ (di +1)(m' 1))+e_|_gi‘jN(nk_ (di +1)(m' 1)' 1)“'+
e(dj+1)(m1)gi}N(n1( - (di +1)(m' 1) + (dj +1)(m' 1))]

=G [@+F +-- F™H) 5 g (mK)]+ [+ F +- F™ ) g (mk - D] +---+
+C(di+l)(m—1)[(1+ e Fm—l)diﬂgi}N(n'k' (d. +D)(m- 1)]

= (U F o+ FTH O e,gy (mk) + G0y (MK = 1)+ 4 G0y (MK - (d; +2)(m- 1))
_ (1+ Fdet Fm.l)(djﬂ) (l+ L4ee+ Lml)(di+1)gi}'v(nk)
=F OV LT g (i)

=L+ L) g (mk+ (d; +D(m- D).
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Table 1: Unidirectional Causdlity: plima; when a, =0, b,=1and r =1+a,

a, across/
b, down -1.95 -1.75 -15 -1.25 | -10 [ 075 | -05 | -0.25 | -0.05
m=3
-20 -2.06 -2.31 243 | -229 | -2.00 | -1.63 | -1.20 | -0.67 | -0.15
-10 -2.05 -2.31 243 | -228 | -1.99 | -1.63 | -1.19 | -0.67 | -0.15
-8 -2.05 -2.30 242 | 227 | -1.98 | -1.62 | -1.19 | -0.66 | -0.15
-6 -2.05 -2.29 240 | -226 | -1.97 | 161 | -1.19 | -0.66 | -0.15
-4 -2.04 -2.26 236 | -222 | -1.94 | 159 | -1.17 | -0.65 | -0.14
-2 -2.02 -2.14 219 | -2.05 | -1.80 | -1.49 | -1.10 | -0.62 | -0.14
-1 -1.96 -1.88 -1.81 | -1.68 | -1.50 | -1.26 | -0.96 | -0.55 | -0.12
m=12
-20 -7.76 -9.18 -8.88 | -7.81 | -6.49 | -5.05 | -3.56 | -2.01 | -0.53
-10 -7.71 -9.12 -882 | -7.76 | -6.45 | -5.02 | -3.54 | -2.00 | -0.53
-8 -7.67 -9.08 -8.78 | -7.72 | 6.42 | -5.00 | -3.52 | -2.00 | -0.53
-6 -7.59 -8.99 869 | -7.64 | 6.35 | -495 | -349 | -1.98 | -0.53
-4 -7.38 -8.73 844 | -743 | 6.18 | 482 | -341 | -1.94 | -0.52
-2 -6.44 -7.58 -7.33 | 647 | 540 | 424 | -3.04 | -1.77 | -0.49
-1 -4.44 -5.15 498 | -442 | -375 | -3.02 | 225 | -1.41 | -0.43

These values are the samefor b, >0.
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Table 2: Unidirectional Causdity: t(d;) when a, =0, b, =1and r =1+a,

a, across/

b, down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05

Panel 1: T=150, m=3, N=50
-20 -13.6 -8.0 -7.9 -8.4 9.2 | -105 [ -129 -18.2 -31.2
-10 -13.6 -8.0 -7.9 -8.4 9.2 | -105 [ -12.7 -17.5 -20.5
-8 -13.6 -8.0 -7.9 -8.4 9.2 | -105 [ -12.6 -17.1 -17.2
-6 -13.7 -8.0 -7.8 -8.4 9.2 | -104 | -125 -16.2 -13.4
-4 -13.8 -8.0 -7.8 -8.3 9.1 | -102 | -12.0 -14.3 -9.3
-2 -14.4 -7.9 -7.5 -7.9 -8.6 -9.4 -10.3 -9.9 -4.9
-1 -16.4 -8.1 -7.1 -7.2 -7.7 -8.1 -7.9 -6.3 -2.8

Panel 2: T=600, m=12, N=50
-20 -4.5 -5.4 -5.8 -6.0 -6.3 -6.5 -6.9 -8.2 -16.2
-10 -4.4 -5.3 -5.8 -6.0 -6.2 -6.4 -6.8 -8.1 -15.6
-8 -4.4 -5.3 -5.8 -6.0 -6.2 -6.4 -6.8 -8.1 -15.1
-6 -4.4 -5.3 -5.7 -6.0 -6.1 -6.4 -6.8 -8.0 -14.4
-4 -4.4 -5.1 -5.6 -5.8 -6.0 -6.3 -6.7 -7.9 -12.7
-2 -4.0 -4.7 -5.1 -5.3 -5.5 -5.8 -6.2 -7.4 -8.7
-1 -3.4 -3.8 -4.1 -4.3 -4.5 -4.8 -5.3 -6.5 -5.4

Panel 3: T=600, m=3, N=200
-20 -27.2 -16.0 -15.8 -16.9 | -184 | -21.0 [ -25.7 -36.3 -62.4
-10 -27.3 -16.0 -15.8 -16.9 | -184 | -21.0 [ -255 -35.0 -41.0
-8 -27.3 -16.0 -15.8 -16.8 | -184 | -20.9 [ -25.3 -34.1 -34.3
-6 -27.4 -16.0 -15.7 -16.8 | -18.3 | -20.8 [ -24.9 -32.3 -26.8
-4 -27.6 -16.0 -15.5 -16.5 | -18.1 | -20.3 [ -24.0 -28.5 -18.6
-2 -28.8 -15.9 -15.0 -15.8 | -17.1 | -189 [ -20.7 -19.8 -9.8
-1 -32.8 -16.2 -14.2 -145 | -153 | -16.1 | -15.8 -12.5 -5.6

These values are the samefor b, >0.
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Table 3: Unidirectional Causality: plimd, whena, =0, b, =1 and r =1+a,
a, across/
b, down | 3905 | 75 | 15 | -1.25| 10 | 075 | 05 | -025 | -0.05
m=3
-20 0.01 | 004 | -006 [ -0.06 [ -0.05 [ -0.04 | -0.02 [ -0.01 [ -0.00
10 0.02 | 009 | -012 | -012 | -0.10 [ -0.07 | -0.05 | -0.02 | -0.00
-8 0.02 | 011 | 015 | 015 | -0.12 | -0.09 | -0.06 | -0.03 | -0.01
-6 0.03 | 014 | -020 | 020 | -0.16 | 0.12 | -0.08 | -0.04 | -0.01
-4 005 | -021 | -029 | 029 | 024 | -0.17 | -0.11 | -0.05 | -0.01
-2 0.08 | 035 | -050 | 049 | -0.40 | -0.30 | -0.19 | -0.09 | -0.02
-1 010 | 044 | 063 | 061 | -050 | 037 | -0.24 | 012 | -0.02
1 0.10 0.44 063 | 061 | 050 | 037 | 024 | 012 | 002
2 0.08 035 050 | 049 | 040 | 030 | 019 | 009 | 002
4 0.05 021 029 | 029 | 024 | 017 | 011 | 005 | 001
6 0.03 0.14 020 | 020 | 016 | 012 | 008 | 004 | 001
8 0.02 011 015 | 015 | 012 | 009 | 006 | 003 | 001
10 0.02 0.09 012 [ 012 | 010 | 007 | 005 [ 002 | 000
20 0.01 0.04 006 | 006 | 005 | 004 | 002 | 001 | 000
m=12

-20 033 | 040 | -039 [ 034 | -0.27 [ 0.20 | -0.13 [ -0.06 [ -0.01
-10 066 | 080 | -078 | 067 | -0.54 | 040 | -0.26 | 012 | -0.02
-8 0.82 | -1.00 | -097 | 084 | -0.68 | 050 | -0.32 | -0.15 | -0.03
-6 1.08 | -1.31 | -127 | -110 | -0.89 | -0.66 | -0.43 | -0.19 | -0.03
-4 157 | 191 | -185 | -1.60 | -1.29 | -0.96 | -0.62 | -0.28 | -0.05
2 267 | -324 | 314 | 272 | -2.20 | -1.63 | -1.05 | -0.48 | -0.08
-1 334 | 405 | 393 | 340 | -2.75 | 2.04 | -1.31 | 060 | -0.10
1 334 4.05 393 | 340 | 275 | 204 | 131 | 060 | 010
2 267 324 314 | 272 | 220 | 163 | 105 | 048 | 008
4 157 191 18 | 160 | 129 | 096 | 062 | 028 | 005
6 1.08 131 127 | 110 | 089 | 066 | 043 | 019 | 003
8 0.82 1.00 097 | 084 | 068 | 050 | 032 | 015 | 003
10 0.66 0.80 078 | 067 | 054 | 040 | 026 | 012 | 002
20 033 0.40 039 | 034 | 027 | 020 | 013 | 006 | 001




Table4: Unidirectional Causdlity:t(@,) whena, =0, b, =land r =1+a,

a, across/

bz down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05

Panel 1: T=150, m=3, N=50
-20 -1.1 2.4 -3.1 -3.2 -3.1 2.7 2.2 -1.6 -0.7
-10 -1.1 2.4 -3.1 -3.2 -3.0 2.7 2.2 -1.5 -0.7
-8 -1.1 2.4 -3.1 -3.2 -3.0 2.7 2.2 -1.5 -0.7
-6 -1.0 -2.3 -3.1 -3.2 -3.0 -2.6 2.2 -1.5 -0.7
-4 -1.0 -2.3 -3.0 3.1 -3.0 -2.6 2.1 -1.5 -0.7
-2 -1.0 2.1 2.7 -2.9 2.7 -2.3 -2.0 -1.4 -0.6
-1 -0.7 -1.7 2.1 2.2 2.1 -1.8 -1.5 -1.1 -0.5
1 0.7 1.7 2.1 2.2 2.1 1.8 15 1.1 0.5
2 1.0 2.1 2.7 2.9 2.7 2.3 2.0 1.4 0.6
4 1.0 2.3 3.0 3.1 3.0 2.6 2.1 15 0.7
6 1.0 2.3 3.1 3.2 3.0 2.6 2.2 15 0.7
8 1.1 2.4 3.1 3.2 3.0 2.7 2.2 15 0.7
10 1.1 2.4 3.1 3.2 3.0 2.7 2.2 15 0.7
20 1.1 2.4 3.1 3.2 3.1 2.7 2.2 1.6 0.7

Panel 2: T=600, m=12, N=50
-40 -3.7 -4.5 -4.8 -4.9 -4.8 -4.6 4.1 -3.2 -1.6
-20 -3.7 -4.5 -4.8 -4.9 -4.8 -4.6 4.1 -3.2 -1.6
-10 -3.6 -4.4 -4.8 -4.8 -4.8 -4.5 4.1 -3.2 -1.6
-8 -3.6 -4.4 -4.8 -4.8 -4.8 -4.5 4.1 -3.2 -1.5
-6 -3.6 -4.4 -4.7 -4.8 -4.7 -4.5 4.1 -3.2 -1.5
-4 -3.5 -4.2 -4.6 -4.6 -4.6 -4.4 -4.0 -3.1 -1.5
-2 -3.2 -3.9 -4.1 4.1 -4.1 -3.9 -3.6 -2.9 -1.4
-1 2.4 -2.9 -3.1 3.1 -3.1 -2.9 2.7 2.2 -1.1
1 2.4 2.9 3.1 3.1 3.1 2.9 2.7 2.2 1.1
2 3.2 3.9 4.1 4.1 4.1 3.9 3.6 2.9 1.4
4 3.5 4.2 4.6 4.6 4.6 4.4 4.0 3.1 15
6 3.6 4.4 47 4.8 4.7 45 4.1 3.2 15
8 3.6 4.4 4.8 4.8 4.8 45 4.1 3.2 15
10 3.6 4.4 4.8 4.8 4.8 45 4.1 3.2 1.6
20 3.7 45 4.8 49 4.8 4.6 4.1 3.2 1.6

Panel 3: T=600, m=3, N=200
-20 2.1 -4.8 -6.3 -6.5 -6.1 5.4 -4.4 -3.1 -1.3
-10 2.1 -4.8 -6.3 -6.5 -6.0 5.4 -4.4 -3.0 -1.3
-8 2.1 -4.8 -6.3 -6.5 -6.0 5.4 -4.4 -3.0 -1.3
-6 -2.0 -4.7 -6.1 -6.4 -6.0 -5.3 -4.4 -3.0 -1.3
-4 -2.0 -4.7 -6.0 -6.3 -5.9 5.1 -4.2 -3.0 -1.3
-2 -1.9 -4.2 -5.5 5.7 5.4 -4.7 -3.9 -2.8 -1.2
-1 -1.5 -3.3 -4.2 -4.4 -4.1 -3.7 -3.0 2.2 -1.0
1 15 3.3 4.2 4.4 4.1 3.7 3.0 2.2 1.0
2 1.9 4.2 5.5 5.7 5.4 47 3.9 2.8 1.2
4 2.0 47 6.0 6.3 5.9 5.1 4.2 3.0 1.3
6 2.0 47 6.1 6.4 6.0 5.3 4.4 3.0 1.3
8 2.1 4.8 6.3 6.5 6.0 5.4 4.4 3.0 1.3
10 2.1 4.8 6.3 6.5 6.0 5.4 4.4 3.0 1.3
20 2.1 4.8 6.3 6.5 6.1 5.4 4.4 3.1 1.3
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Table5: Mutual Causality: t(d,) when b, =1, r =0 anda, =(r -1- a,)/b,

a, across/
b, down | 095 | 085 | -075 -0.65 | -0.55 | -0.45 -0.35 -0.25 -0.15 -0.05
Panel 1: T=150, m=3, N=50
-20 29| -23 -1.8 -1.2]  -04 0.4 15 2.8 4.2 6.0
-10 29| -23 -1.8 11 -04 0.5 1.6 2.8 4.3 6.0
-8 28| -23 -1.8 11| -03 0.5 1.6 2.9 4.3 6.1
-6 28| -23 -1.7 11| -03 0.6 1.6 2.9 4.4 6.1
-4 27| 22 -1.6 -1.0| -0.2 0.7 1.8 3.1 4.5 6.1
-2 24| -18 -1.2 -0.4 0.4 15 25 3.7 5.1 6.4
-1 -1.7]  -09 0.0 1.0 2.1 3.2 4.3 5.4 6.4 7.3
Panel 2: T=600, m=12, N=50
-20 47| -45 -4.4 41| -37 -3.3 -2.6 -1.6 0.1 3.6
-10 47| -45 -4.3 40| -37 -3.2 -2.5 -1.5 0.3 3.3
-8 46| -45 4.2 40| -36 -3.1 2.4 -1.3 0.3 3.2
-6 46| 44 4.2 -39| -35 -3.0 2.2 -1.2 0.5 3.0
-4 45| 42 -4.0 37| -32 -2.6 -1.8 0.7 0.9 2.9
-2 40| -36 -3.2 27| 21 -1.2 0.3 0.8 2.0 3.1
-1 28| -22 -1.5 0.7 0.2 1.2 2.1 2.9 3.6 4.2
Panel 3: T=600, m=3, N=200
-20 57| 47 -3.6 23| -08 0.9 3.0 5.6 8.5 121
-10 57| 47 -3.6 22| -08 1.0 3.1 5.6 8.6 12.1
-8 56| -47 -3.6 22| -07 1.0 3.1 5.7 8.6 12.2
-6 56| -46 -3.5 21| -07 11 3.2 5.8 8.7 12.2
-4 55| -45 -3.2 -19| -03 15 3.6 6.1 8.9 12.3
-2 48| -37 -2.3 -0.8 0.9 2.9 5.0 7.5 10.2 12.9
-1 34| -18 0.0 2.0 4.1 6.3 8.6 10.8 12.8 145

For b2 >0 the table entries are the same with the opposite sign.
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Table 6: Monte Carlo Results based on VAR(2): f ,,=0

AIC choice of VAR order, %

SBC choice of VAR order ,%

% of negative &,

Average contemporaneous
correlation between residuals

VAR(D) [ VARQ) [ VARQ) | VAR(®) [ VAR() | VAR®3) | VARD) [ VAR(Q) | VARQ) | VAR(Q) | VAR(2) | VAR(Q3)
m= 0.0 8.3 91.8 0.0 80.9 19.1 915 100 94.7 0.620 0.640 0.650
m=12 4.0 82.8 13.3 73.3 26.7 0.0 100 100 100 0.978 0.977 0.977
m=60 6.0 80.0 13.1 79.7 20.4 0.0 100 99.95 99.8 0.999 0.999 0.999
Table 7: Monte Carlo Results based on VAR(2): f,,=0.25

AIC choice of VAR order, % | SBC choice of VAR order ,% % of negative &, Average contemporaneous

correlation between residuals

VAR(D) [ VARQ) | VARQ) | VAR [ VAR() | VAR®3) | VARD) [ VAR(Q) | VARQ) | VAR(Q) | VAR(2) | VAR(Q3)
m= 0 0 100 0 17.4 82.7 100 100 100 0.850 0.780 0.780
m=12 12 87.2 11.7 52.8 47.2 0 100 100 100 0.991 0.991 0.991
m=60 | 40.9 51.8 7.4 97.8 2.25 0 100 100 100 0.999 0.999 0.999
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Table 8. Estimated adjustment coefficients
Cointegrating relation: log(Y en/DM)-log(USHDM)+og(US$H'Y en)

Adjustment Daily rates Weekly rates Weekly rates
coefficients End of period Average
a, -0.917 -0.889 -1.940
(0.015) (0.236) (0.202)
a, -0.046 -0.116 -0.326
(0.025) (0.152) (0.182)
a, 0.050 -0.254 0.666
(0.037) (0.258) (0.301)
Sample size 922 184 184

Note: Numbers in parentheses are standard errors. * indicates the absolute values bigger than
2SE. If a, ad a, areredtricted to zero the estimates of a, in columns 3 and 4 move closer

to minus unity.

Table 9. Estimates for car quota premium and stock price example

AK

A~

a, b, ro N
m=1 -0.191 (0.048) -0.003 (0.007) -371 -0.02 104
m=2 -0.230 (0.062) -0.016 (0.013) -356 -0.10 51
m=3 -0.342(0.093) -0.015(0.021) -374 -0.02 34
m=4 -0.368 (0.109) -0.046 (0.026) -2.79  0.12 25
m=5 -0.483(0.133) -0.027 (0.036) -3.06 -0.04 20
m=6 -0.572(0.095) -0.088 (0.044) -325 -0.01 16

r;, isthe contemporaneous correlation of residuals. N isthe effective sample size. The
numbersin parentheses are standard errors.
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Figure 1. Deviations of logarithms of daily Yen/DM direct rate from the cross rate
(July 3, 1995 — Dec 31, 1998)
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Figure 2. Budget surplus as aratio of GNP (%)
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Figure 3. Cointegrating relation between tax rate and spending rate

40




0.75
0.50

0.00

/\/—\_,\/ 02f
01

0.25

Dtax_1 0.3k Y——— —

0.0

Note: Outer lines show the 2SE confidence bands. The error correction termis Z_;.

Figure 4. OLS recursive estimates of the tax equation.
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Figure 5. OL S recursive estimates of the spending equation.
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