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Temporal Aggregation, Causality Distortions, and a Sign Rule  

 
 

1. Introduction 

A number of theoretical studies have established that temporal aggregation leads to 

misleading inference on Granger-causality (see Wei, 1990 and Marcellino, 1999 and 

references therein). Gulasekaran and Abeysinghe (2002) and Gulasekaran (2003) have 

derived quantitative results analytically to assess the nature of the distortions created. 

Overall the following conclusions emerge. Within a stationary framework, depending on 

the parameter magnitudes, temporal aggregation may (i) create a spurious feedback loop 

from a unidirectional relation, (ii) erase a feedback loop and create a unidirectional 

relation and (iii) erase the Granger-causal link altogether. The distortions magnify when 

differencing is used after temporal aggregation to induce stationarity.  

These findings of distortions are not much of a comfort in practice because most 

available data series are either temporally aggregated or systematically sampled 

depending on whether the variables are flows or stocks respectively. An important 

finding of the Gulasekaran (2003) study is that misleading inferences are more likely at 

low levels of temporal aggregation. Therefore, moving towards more disaggregated data 

would not be of much help either unless the observation frequency coincides with the 

causal lag. Looking for data with a frequency that coincides with the causal lag is a far-

fetched goal. Moreover, for certain variables such as GDP, there is a limit to the increase 

in the frequency of observations beyond which meaningful time series aggregates do not 

exist. (See Hoover, 2001, Chapter 6 for an eloquent  discussion on this.) On the other 

hand, temporal aggregation creates contemporaneous correlations even when such 
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correlations are absent in the non-aggregate process and as temporal aggregation 

increases contemporaneous correlations may be all that is left between the series. As a 

result one may not find Granger-causality at all. Making causal inferences from 

contemporaneous correlations is a challenging and much needed task. For better or worse 

this task still remains largely in the terrain of non-sample information or beliefs of the 

researcher. 

Hoover (2001) has proposed a very promising methodology for causal inference 

based on an intervention analysis. Using the logic that interventions such as strikes, wars, 

and policy changes do not alter a true causal relationship, Hoover suggests examining 

conditional and marginal distributions to see whether they are affected by interventions. 

The applications he has reported, however, rely on error correction (ECM) formulations 

which are unfortunately subject to the distortions of temporal aggregation. Hoover’s 

approach is closely related to testing for super exogeneity (see Hendry, 1995). 

Swanson and Granger (1997) have used a graph-theoretic approach advocated by 

philosophers and computer scientists (see Pearl, 2000) to assign a causal ordering to 

contemporaneous links in a structural vector autoregression (SVAR) model. Demiralp 

and Hoover (2003) have examined the reliability of this approach and conclude that the 

graph-theoretic approach combined with non-sample information may lead to a more 

realistic causal ordering. This approach, the SVAR approach in general, faces a number 

of difficulties under temporal aggregation. First, the results in Gulasekaran and 

Abeysinghe (2002) and Gulasekaran (2003) indicate that though unidirectional relations 

create contemporaneous correlations with an unambiguous sign, an ambiguity may arise 

if the non-aggregate process is a feedback relation with a positive and negative feedback 
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loop. Depending on the parameter configuration of the non-aggregate process, the 

contemporaneous correlation of the aggregate process may take positive, negative or zero 

values from which it would be difficult to infer the actual feedback relation that exists 

(see also Ericcson et al., 2001).1 Second, since causal ordering is performed on the basis 

of residuals of an unrestricted VAR there is a possibility that the lagged variables in the 

unrestricted VAR acting as proxies for the omitted contemporaneous relations thereby 

leading to distorted residual correlations. Therefore, the final causal ordering may have to 

be done by estimating the full SVAR model. Third, even if the causal ordering of 

contemporaneous links is done successfully, temporal aggregation may distort the 

dynamics of the VAR model in such a way that the impulse responses may become 

misleading (Granger, 1988; Granger and Swanson, 1992; Marcellino 1999). 

Unlike dynamic relations, cointegrating relations remain invariant to temporal 

aggregation (Granger, 1990;  Pierse and Snell, 1995; Granger and Siklos, 1995; Franses 

and Boswijk; 1996; Marcellino, 1999). They are also not affected by linear seasonal 

filters (see Hendry, 1995, Section 15.6 and the references therein). Cointegration also 

implies G-causality (Granger, 1986) though the direction is uncertain. Establishing the 

direction of causality from a cointegrating relation is an important research agenda and 

some apparatus under weak exogeneity already exists for this purpose (Engle et al., 1983, 

Hendry 1995, Johansen 1995). As the level of temporal aggregation increases, a 

stationary VAR(p) process may tend towards VAR(0) by absorbing all causal 

information into contemporaneous links. However, a cointegrated VAR(p) process 

                                                 
1  For example, since early 1980s (until the onset of the Asian financial crisis) the Monetary Authority of 
Singapore has used exchange rate management as a means of controlling inflation. Higher imported 
inflation prompts for an appreciating exchange rate policy that in turn lowers the inflation rate. Therefore, 
the two variables form a positive and negative feedback loop.  However, the observed data hardly show this 
relationship. 
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cannot shrink below  VAR(1) because of the presence of unit roots.2 As a result some 

adjustment coefficients of the error correction model have to remain non-zero regardless 

the level of temporal aggregation. Therefore, weak exogeneity under cointegration helps 

not only in contemporaneous conditioning but it also helps in Granger causality 

inference.  

Since it is of critical importance to make causal inference from relations that are 

invariant to temporal aggregation and given the impracticality of searching for the non-

aggregate forms of the data series we propose to base causal inference on highly 

aggregated data series such as the annual series that are cointegrated and best modeled as 

a VAR(1) process though higher order VAR models may also be entertained3 (see 

footnote 6 and Section 5). The objective of our study is to investigate the feasibility of 

this proposal. It is worth noting that Pagan (1989) came up with a scathing criticism of 

Granger causality inference because of the inconceivably contradictory results found in 

the applied literature. The fragility of causal inference emanates mainly from two 

sources, (i) the information set used and (ii) temporal aggregation. 4 The former is a 

problem that all econometric models have to deal with and the latter requires devising 

suitable statistical techniques that produce robust inferences regardless the level of 

temporal aggregation. 

 

 

                                                 
2  If nλλλ ,...,, 21  are the roots of the non-aggregate autoregressive process then m

n
mm λλλ ,...,, 21  are the 

roots of the aggregated process, where m is the order of aggregation (Marcellino, 1999). 
3  The problem with unrestricted higher order VAR models is that they tend to pick noise as signal leading 
to fragile inference. 
4  Other sources include the incorrect functional forms, in particular not accounting for the multiplicative 
interaction between the variables that economic theory some times suggests. 
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2. Analytical Tools 

Consider the ECM formulation (Johansen, 1995): 

ttptptttt eDyyyyy ++∆Γ++∆Γ+∆Γ+′=∆ −−−−−− φβα )1(122111 ...   (1) 

where ty ( Tt ,...,2,1= ) is an )1( ×n  vector of I(1) variables, tD  contains deterministic 

terms such as the constant and time trend and tt yu β ′=  is an )1( ×r  vector of 

cointegrating relations. Note that ∑=)( teVar  is not a diagonal matrix in general. If we 

can impose a meaningful causal ordering on the contemporaneous relations such that 

tteB ε=0  and Ωε =)( tVar  is diagonal, where tε  are the fundamental innovations, then 

we can formulate a structural ECM by pre-multiplying (1) by 0B . This will alterα , but 

not β .5  The problem is that temporal aggregation alters α  and Γ s and if this happens 

in a distortionary way meaningful inference may not result even if the restrictions on B0 

turn out to be correct. Since our focus in this paper is on α  we assume that the data series 

are sufficiently temporally aggregated such that Γ s in the aggregated process are 

practically zero and we work with the model:6  

ttt eyy +′= −1βα∆ .         (2) 

For the convenience of subsequent derivations we have dropped the deterministic term 

from (2). 

                                                 
5  Usually structural VAR modelers are estimated by imposing diagonality on  Ω  . Ideally Ω  should be 
diagonal empirically because Ω  may truly be non-diagonal due to omitted variables and misspecified 
contemporaneous links. 
6   Johansen (1995) argues, based on experience, that seasonally adjusted quarterly data are often well 
modeled as VAR(2). If longer lags are required he suggests to look for omitted variables and increase n 
instead of p. For example, consider that the n variables are well modeled as a VAR(1) process. If we throw 
away half of the variables then the remaining half requires a VARMA(2,1) model instead of a VAR(1). If 
model diagnostics do not warrant a VAR(1) because of  autoregressive effects we could still proceed with a 
higher order VAR provided that the Γ s are empirically diagonal. 
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As stated earlier, cointegration (also unit roots) is invariant to temporal aggregation. 

This is in general true for static relations. Note also that if y consists of both flow and 

stock variables we have to apply the same transformation, temporal aggregation or 

averaging, to all the variables to keep β  invariant. Therefore, it is advisable to use 

temporal averaging of all the variables when both flow and stock variables enter the same 

model.  Since β  is invariant to temporal aggregation we proceed with the assumption 

that β  is known and concentrate on α.  

If the n variables are partitioned into two groups such that ty1 is (n1×1) and ty2 is 

(n2×1), n1+n2=n with α  and β  split conformably then the ECM can be written as 
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Johansen (1995, Ch. 8) shows that if 02 =α  then ty2  is weakly exogenous for β  and 1α . 

Writing (3) in levels it can be seen that 02 =α (assuming β ≠0) also implies the presence 

of Granger causality from ty2 to ty1  (Mosconi and Giannini, 1992) though we cannot 

exclude the possibility of lagged feedback effects since they may have disappeared into 

contemporaneous links. Following Hendry and Mizon (1998) Granger causality 

associated with the adjustment coefficients may be referred to as causality in levels and 

that associated with short-run coefficients as causality in differences. Although the 

former implies the latter, the converse does not necessarily hold. Results in this study as 

well as those in Gulasekaran (2003) indicate that causality in levels is more robust to 

temporal aggregation compared to causality in differences. Since causality in levels bears 

on weak exogeneity that forms the basis for super exogeneity which is essential for policy 
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evaluations the causality in levels plays an important role in practice. Since policy 

variables are, in general, subject to feedback effects, causality in differences does not 

play such a useful role in policy evaluations. 

 

2.1 The sign of the adjustment coefficient 

During our analysis we realized that the sign of the α coefficients plays a useful role 

in signaling how temporal aggregation has affected them. Johansen (1995) draws 

attention to “correct” and “wrong” signs of the adjustment coefficients in a number of 

places. In this section we define the “correct sign” formally for 1=r  and discuss the 

consequences of “wrong sign”.   

When 1=r , the ith equation of (2) can be written as  

 ittiitit euyy ++= −− 11 α ,       (4)   

where  ∑
=

=
n

i
itit yu

1

β .      

The long run equilibrium implies that 01 =−tu  which gives:   

 ).......(
1

11111111221111 −−++−−−−−− ++++++
−

= tnntiitiitt
i

it yyyyyy βββββ
β

.  

If the system is in disequilibrium at date 1−t  then either 01 >−tu  or 01 <−tu .  
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Case 1: 0>iβ  

If 01 >−tu , then ).......(
1

11111111221111 −−++−−−−−− ++++++
−

> tnntiitiitt
i

it yyyyyy βββββ
β

 and 

we expect 01 <−tiuα  in (4) in order to achieve the equilibrium. Since 01 >−tu , iα  has to 

be negative ( 0<iα ).  

If 01 <−tu , then ).......(
1

11111111221111 −−++−−−−−− ++++++
−

< tnntiitiitt
i

it yyyyyy βββββ
β

 

and we expect 01 >−tiuα  in (4) in order to achieve the equilibrium. Since 01 <−tu , iα  

has to be negative ( 0<iα ). 

Thus, if 0>iβ , then 0<iα  regardless of the sign of the disequilibrium term 1−tu .  

 

Case 2: 0<iβ  

If 01 >−tu , then ).......(
1

11111111221111 −−++−−−−−− ++++++
−

< tnntiitiitt
i

it yyyyyy βββββ
β

 

and we expect 01 >−tiuα  in (4) in order to achieve the equilibrium. Since 01 >−tu , iα  

has to be positive  ( 0>iα ). 

If 01 <−tu , then ).......(
1

11111111221111 −−++−−−−−− ++++++
−

> tnntiitiitt
i

it yyyyyy βββββ
β

 

and we expect 01 <−tiuα  in (4) in order to achieve the equilibrium. Since 01 <−tu , iα  has 

to be positive ( 0>iα ). 

Thus, if 0<iβ , then 0>iα  regardless of the sign of the disequilibrium term, 1−tu .  
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We can, therefore, see that the long-run equilibrium holds if the sign of iα  is the 

opposite of iβ . We define this as the “correct sign” of the adjustment coefficient when 

1=r . Since the β  vector is invariant to temporal aggregation we can determine the 

expected sign of iα  from that of iβ  under any level of temporal aggregation. This will be 

termed as the “sign rule”. 

The problem, however, is that the long-run equilibrium may hold even if the sign is 

wrong. To see this, from the n equations in (4) obtain  ttt uu ερ += −1 , where βαρ ′+=1 , 

),...,( 1 ′= nααα , ),...,( 1 ′= nβββ  and tε  is white noise. Co-integration requires 1<ρ  

which implies 02 <′<− βα . Note that ρ  measures the degree of co- integration: 0→ρ  

implies a higher degree of co- integration and 1→ρ  implies a lower degree. Now 

consider that the variables in the model are arranged such that the first n1 β  coefficients 

are positive and the second n2 β  coefficients are negative. Let 1β  and 2β represent these 

vectors and let the corresponding α vectors be 1α  and 2α  respectively. Assume that 1α  

is correctly signed with a negative sign and 2α  is wrongly signed with a negative sign 

too. Given the inequality 02 2211 <′+′<− βαβα , if 2211 βαβα ′>′  we get 1<ρ  even 

with the wrong sign. In other words, if the adjustment towards equilibrium is dominated 

by the adjustment coefficients with the correct sign co- integration continues to hold. 

However, the wrong sign lowers the degree of co- integration (increases the absolute 

value of ρ ). How frequent the co- integration with the wrong sign is an empirical 

question. As we shall see later the verification of this would not be easy with temporally 

aggregated data. 
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2.2 Bivariate Case 

The sign rule seems to apply even when 1>r  provided that the r cointegrating vectors 

do not appear jointly in an equation. However, when they enter an equation jointly the 

sign rule does not seem apply. Since the results are not very clear at this stage, in the 

following analysis we confine to the case 1=r  and use a bivariate system to obtain some 

analytical results under temporal aggregation. We assume that the non-aggregate process 

is in the form of (3) with the resulting two equations written as7 

 
ttt euy 1111 +=∆ −α ,        (5) 

ttt euy 2122 +=∆ −α ,        (5′) 
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The zero contemporaneous covariance between the two error terms underlies the 

assumption that the observation frequency coincides with the causal lag. As before 

ttt uu ερ += −1 , where 22111 βαβαρ ++=  and ttt ee 2211 ββε +=  with zero mean and 

variance 2
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Let tt yw 11 ∆=  and tt yw 22 ∆= . For i=1,2, the variances and covariances of the non-

aggregate process in (5) and (5′) can be written as  
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7  Mamingi (1996) used this in his Monte Carlo study. 
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 Let τ1Y and τ2Y  ( ) ;,..,2,1 mNTN ==τ  be the m-period non-overlapping aggregates of 

ty1 and ty2  respectively and let ττ ∆ 11 YW =  and ττ ∆ 22 YW = . We now consider estimating 

the following aggregated process:  

  τττ α 11
*
11 EUW += −         (10) 

τττ α 21
*
22 EUW += −         (10′) 

where ∑
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=
1

)1(

τ

τ
τ

m

mj
juU  and τiE  represent non-overlapping sums of the error process.8  

The OLS estimates *ˆiα , *ˆlim ip α  and the t statistics are given by: 
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8 In addition to temporal aggregation we also examined systematic sampling. In general, systematic 
sampling does not lead to serious distortions in the adjustment coefficients. In the interest of space we 
present the results for temporal aggregation only. 
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Using Proposition A.1 in Appendix that establishes the relationship between 

covariances of the aggregated and the non-aggregate processes we get the following 

relations, again for i=1,2: 

  kmmkLLk u
m

U ∀−++++= − ))1(()...1()( 21 γγ .    (14) 

kmmkLLk iu
m

iU ∀−++++= − ))1(()...1()( 31 γγ     (15) 

))1(2()...1()( 41 −++++= − mmkLLk w
ii

mW
ii γγ .    (16) 

These expressions provide the link between the parameter estimates and the t-statistics of 

the aggregated process and the parameters of the non-aggregate process in order to derive 

a quantitative evaluation of the impact of temporal aggregation.  

 

 

3. Distortions 

There are three cases of interest with regard to Granger causality in the non-aggregate 

process: (i) no causality, (ii) unidirectional causality and (iii) mutual causality or 

feedback. The first case clears through without a problem. If the two series are not related 

in the non-aggregate process then ,0=iα  2,1=i , and from (9), 0,0)( >∀= kkiuγ .  

Further, from (15) 0,0)( >∀= kkiUγ  and from (11) 0ˆ * =iα . Thus, if there is no Granger 

causality between the series in the non-aggregate process then there will be no Granger 

causality between them in the aggregated process. In fact, this is valid for the short run 

dynamics as well (Gulasekaran, 2003).  
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3.1 Unidirectional Causality in the non-aggregate process 

To evaluate this case we set 02 =α  so that Granger causality runs from ty2  to ty1  and 

use the normalized co- integrating vector ),1( 2β . We consider m=3 and m=12 to represent 

aggregating monthly data to quarterly and annual figures.9 To assess the impact of the 

degree of co-integration we consider values of ρ  in the range -0.95 to 0.95. This is the 

same as setting )1(1 −= ρα  within the range –1.95 to –0.05. We also vary the values of 

2β  within the range -20 to 20 to see whether the magnitude of 2β  plays any role in 

creating distortions. For the computation of the t statistics we consider three 

combinations of m and N given in Tables 2 and 4.10 

Co-integration implies that at least one of the adjustment coefficients has to be non-

zero. As expected, *
1α̂  remains negative and highly statistically significant regardless the 

level of aggregation and the sample size (Tables 1 and 2). The magnitude of 2β  seems to 

matter when 1α  is very small.   

The interesting case is *
2α̂  which is expected to be statistically insignificant. The 

results for *
2ˆlim αp  are given in Table 3 and the t-statistics in Table 4. Table 3 shows that 

the limiting values of *
2α̂  are not zero, though small in magnitude for certain cases 

especially when m=3. The magnitude of both 1α  and 2β  play a role in the creation of a 

non-zero *
2α̂ . Nevertheless Table 4 shows that the impact of the magnitude of 2β  

                                                 
9  Since monthly data are the aggregates of daily or hourly data we have to set m to very large values which 
render our analytical expressions unmanageable. 
10 These sample sizes are chosen to be compatible with the Monte Carlo experiments in Lahiri and 
Mamingi (1995), Choi and Chung (1995) and Mamingi (1996). Since we compute t statistics using the 
limiting values of the parameter estimates we conducted a limited number of Monte Carlo experiments 
(with 10,000 replications) to assess the validity of our theoretical results for the sample sizes considered. 
The Monte Carlo results are the same as our theoretical results. 



 15 

disappears from the t statistics. However, when 1α  is close to -1 (high degree of co-

integration) the t statistics are highly significant regardless the level of aggregation and 

the sample size. An increase in m or N renders more statistically significant t statistics. 

These results concur with the Monte Carlo results in Mamingi (1996).  

================= 

Tables 1-4 

================== 

A comparison with the results in Gulasekaran and Abeysinghe (2002) for a non-

cointegrated VAR indicates that the distortionary effects of temporal aggregation are 

much stronger on the adjustment coefficients than on the stationary dynamics. This 

means that if weak exogeneity tests are used to impose a causal ordering on the 

contemporaneous relations they are more likely to go wrong with temporally aggregated 

data. The most important observa tion, however, is that the sign of *
2α̂  is the same as that 

of 2β  though we expect the opposite. This is a clear indication that a distortion may have 

taken place. 

Another point to note is that temporal aggregation appears to increases the degree of 

cointegration, 2
*
21

*
1

* ˆˆ1ˆ βαβαρ ++= . For example, when 1α =-0.25, ρ =0.75 but *ρ̂  = 

0.56 for m=3 and *ρ̂ =0.19 for m=12 regardless the magnitude of 2β  ( 1β =1).11  As it was 

noted earlier the wrong sign lowers the degree of cointegration. In this case, however, 

temporal aggregation seems to offset this effect and produces a high degree of 

cointegration even with the wrong sign.  

                                                 
11 Note that we need more decimal places in Tables 1 and 3 to obtain precise values of *ρ̂ . 
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3.2 Mutual Causality in the non-aggregate process  

In this case both 1α  and 2α  take non-zero values, therefore, the focus of our 

computations is to see whether temporal aggregation renders one of them zero in the 

aggregated process leading to misleading inference on causal direction.  It is worth noting 

that even if we correctly find that they are non-zero, this is not going to help us in 

assigning a causal order to the contemporaneous link. We will have to look for a third 

variable to solve the identification problem. 

Since 212 /)1( βαρα −−=  the computational setting in this case is a lot more 

involved than the previous one. We computed a large number of tables using various 

combinations of the parameter values. To conserve space we present only one table and 

summarize the results. In all computations we fixed 1α  to the range -0.95 to -0.05. 

Overall *
1α̂  emerges with the correct sign and remains statistically significant. 

Insignificant values occur only when | 1α | is small. Table 5 presents the t statistics for *
2α̂  

under one set of parameter configuration. In this table 2α  is positive and varies from cell 

to cell but takes on smaller values towards the top-left corner. What the table shows is 

that temporal aggregation may render small 2α s either with statistically insignificant *
2α̂ s 

or with statistically significant *
2α̂ s with a wrong (negative) sign. The latter effect 

magnifies as temporal aggregation increases. In general, distorted inference do not occur 

when both 1α  and 2α  are large in magnitude.  

================ 

Table 5 

================ 
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4. How to Test for Granger causality with temporally aggregated data? 

Although temporal aggregation tends to distort the adjustment coefficients, the sign rule 

established in Section 2 and the computations in Section 3 show that we may still be able 

to reach the correct conclusion about the causal direction based on the sign of the 

adjustment coefficients. To repeat the sign rule, if 0>iβ , 0<iα  and if 0<iβ , 0>iα . 

The results on unidirectional causality are clear-cut. The non-zero adjustment 

coefficient remains highly significant regardless the level of temporal aggregation and 

carries the correct sign. An adjustment coefficient with the wrong sign clearly indicates a 

causal distortion of the underlying zero coefficient.  However, the presence of mutual 

causation makes the inference harder because of the possibility that temporal aggregation 

may erase the feedback loop and creates a unidirectional relation. Our results 

nevertheless show that a strong feedback relation does not get distorted by temporal 

aggregation. Furthermore, when 1α  is reasonably large *
1α̂  always carries the correct sign 

and remains statistically significant. Therefore, a proper normalization (a selection of the 

dependent variable) with the help of non-sample information should make the inference 

easier. Wrong sign on the other coefficients is an indicator of causal distortion. 

Unfortunately we face an ambiguity here. Our results show that *
2α̂  may take the wrong 

sign either because 2α  is very small or zero or because 2α  genuinely carries a wrong 

sign. 12 Although the latter case may only be a theoretical possibility, in practice, with 

temporally aggregated data we will not be able to differentiate between these 

                                                 
12  Note that, as shown in Section 3, when 2α  takes the wrong sign its magnitude has to be smaller than 

that of 1α to preserve co-integration. 
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possibilities. We have to rely on non-sample information to solve this identification 

problem. We can, therefore, formulate the following rule as a guide. 

 

First, determine the expected sign of the adjustment coefficients from the estimated co-

integrating vector. If the estimated adjustment coefficient appears with the correct sign 

and is statistically significant then it reflects the underlying causal direction in the non-

aggregate form. If the coefficient appears with the wrong sign then a causal distortion 

may have occurred and if such a conclusion is supported by non-sample information then 

we may treat it as resulting from a zero or near zero coefficient in the non-aggregate 

form.  

 

5. Some Monte Carlo Results 

An upshot of the above analysis is that afterall we may be better off with highly 

temporally aggregated data for causality testing. The trend has been to move towards 

more and more disaggregated data but with no promising outcome on Granger causality 

inference. Annual data, on the other hand, are free from the effects of seasonal 

adjustment and may well fit into a VAR(1) framework. Since co- integration has to render 

at least one non-zero adjustment coefficient with the correct sign, the sign distortions on 

the other coefficients, perhaps combined with non-sample information, would guide us in 

establishing the causal direction. 

To shed further light on the VAR order and the sign distortion we conducted a Monte 

Carlo experiment with a VAR(2) process which in ECM format is: 
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In this process 2α =0, therefore y2 is weakly exogenous for 1α  and β  vector. However, it 

is a feedback system if 021 ≠φ . In the experiment we set 21φ to two values (0, 0.25). 

Summary results based on N(0, I) errors and 2000 replications are given in Tables 6 and  

7. To see the large sample effect we set the effective sample size (N) to 480 at each level 

of aggregation. 

As for the VAR order selection, SBC tends to choose VAR(1) more often as m 

increases. However, AIC tends to be profligate. This reflects AIC’s tendency to pick 

longer lags in large samples. The promising observation, however, is that the sign 

distortion on *
2α̂  remains unchanged regardless the VAR order and whether 21φ  is zero or 

not. This indicates that we can apply the sign rule even with higher order VAR models.  

The tables also show the creation of contemporaneous correlations between the error 

processes that result from the shrinkage of the VAR order towards unity. It should be 

noted that a co- integrated VAR(1) process in the non-aggregate form does not create 

contemporaneous correlations with temporal aggregation. The contemporaneous 

correlation is such a case is a clear indication of omitted variables. In other words, 

contemporaneous correlation in an aggregated VAR process may be due to both temporal 

aggregation and omitted variables. 

================ 

Tables 6 and 7 

================ 
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6. Applications  

6.1 Exchange rate, direct vs. cross 

The relationship between the three major exchange rates, US$, Deutsch Mark (DM) and 

Japanese Yen, provides a good illustration of how the sign rule works under 

unidirectional causality. Theoretically the direct Yen/DM rate should be the same as the 

cross rate derived from US$/DM and US$/Yen rates. Any deviations will open up 

arbitrage opportunities for profiteering. However, some deviations may still be observed 

when transaction costs are higher than the potential profits. Therefore, log(Yen/DM) – 

log(US$/DM) + log(US$/Yen) forms a co-integrating relation with the co-integrating 

vector (1, -1, 1). Figure 1 shows the deviations of the daily direct rate from the cross rate. 

As can be expected these deviations are very small and center around zero. Somewhat 

surprisingly, though, they show some heteroscedastic behavior. Both AIC and SBC pick 

a VAR(1) for the three rates (Yen/DM, US$/DM, US$/Yen) all in logarithms. The 

residual correlation matrix is not diagonal that reflects the systematic sampling of the 

daily rates. Although the residuals are free from serial correlation, both normality and 

heteroscadasticity tests fail. We ignore this and proceed to estimate the adjustment 

coefficients by imposing the above co- integrating vector.13  The results (based on 

Johansen ML method) are reported in Table 8. The results under both daily rates and 

systematically sampled weekly rates show that only 1α  is non-zero. This is also what we 

expect apriori. However, under temporally averaged weekly rates both 1α  and 3α  turn 

out to be non-zero. Nevertheless, the wrong sign of 3α  provides the warning sign. 

Combined with non-sample information that only 1α  could be non-zero we could safely 

                                                 
13  The estimated cointegrating vector virtually coincide with (1, -1, 1) vector under both systematic 
sampling and temporal aggregation. 
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conclude that non-zero 3α  is a result of temporal averaging. Constraining both 2α  and 

3α  to zero also brings the estimate of 1α  closer to unity. 

================= 

Figure 1 and Table 8 

================= 

 

6.2 Stock Market and Car Quota Premium in Singapore  

This is an interesting example because one variable is available in non-aggregate form. 

To curb the car population, the Singapore government implemented a car quota system in 

August 1990. To buy a new car the buyers first have to buy a piece of paper called the 

certificate of entitlement. The price of this paper, known as the quota premium (QP), is 

decided through a monthly bidding process. The monthly data of QP are not 

contaminated by any form of aggregation or systematic sampling. 

 A key determinant of QP of luxury cars is the performance of the stock market, 

captured by the stock price index compiled by the Stock Exchange of Singapore (Lai, 

2001). Monthly data over 1990M8-1999M4 show that these two variables (in logarithms) 

are cointegrated and their relationship is well represented by a VAR(1) process with  

causality running from stock price to QP. Stock prices (in log) follow a random walk. 

Moreover, the two error processes are also uncorrelated ( 012 =σ ). We write the ECM 

formulation as: 
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where y = ln(QP) and x = ln(Stock price index), 02 =α . Because of the short data span 

we temporally averaged data up to six months. The results for m=1 (no aggregation) 

through m=6 are given in Table 9. The results show that 2β̂  remains roughly the same as 

m increases. Being a cointegrated VAR(1) with 012 =σ  temporal aggregation does not 

create contemporaneous correlation between the residual processes ( 12r  remains close to 

zero). However, the magnitude of *
1α̂  increases steadily and remains highly significant. 

The magnitude of *
2α̂  also tends to increase though not steadily and becomes statis tically 

significant at the 10% level when m=4 and m=6. If one had only the temporally averaged 

data (say biannual) the wrong (negative) sign of *
2α̂  provides the warning signal. 

Combined with the information that (log) stock prices follows a random walk one could 

safely conclude in this case that causality is unidirectional from stock prices to QP. 

================= 

Table 9 

================= 

6.3 Tax Revenue and Government Expenditure in the US 

Barro’s (1979) tax smoothing hypothesis offers an interesting contrast to Granger 

causality testing. Under the assumption that spending causes taxes Barro’s model implies 

that the income tax rate follows a random walk. If the tax rate truly follows a random 

walk, the standard Granger-causality test will fail to establish the causal direction 

embodied in Barro’s model. Since taxes following a random walk could be consistent 

with some other hypotheses, many researchers have tested the tax smoothing hypothesis 

by testing the other implications of the model, see for example, Sahasakul (1986), Huang 
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and Lin (1993) and Ghosh (1995). Hoover (2001), however, applied his intervention 

approach to test for the causal direction between taxes and spending and observed mixed 

results over different time periods. Hoover used quarterly data from 1947 to 1989 in his 

analysis. In this section we use annual data (1946-2002) and examine how cointegration 

and the sign rule shed light on the causal direction between taxes and spending.  

The data series used in this section are the following. 14  T = real federal 

government receipts (nominal series deflated by the GNP deflator, P), G = real federal 

government expenditure net of interest payments (nominal series deflated by P), Y = real 

GNP, Yy ln= , y∆ =GNP growth rate (%), π  =  ( Pln∆ )100 = inflation rate, τ  = 

(T/Y)100 = income tax rate and g = (G/Y)100 = spending rate. Data plot and ADF tests 

support the assumption that τ , g, and π  are I(1) processes. 

The literature usually focuses on the budget surplus as a ratio of GNP, τ -g. 

Figure 2 plots this data series. Although the tax smoothing hypothesis predicts τ -g to be a 

stationary series (see Huang and Lin, 1993; Ghosh, 1995)  the plot in Figure 2 casts 

doubts on the stationarity of the series. An ADF regression with two lags of ∆ (τ -g)t 

produces a t statistic of -2.62 which is insignificant at the 5% critical value of -2.92. In 

fact the τ -g series suggests some level shifts: on average a budget surplus in the period 

1946-1970, a deficit in the period 1971-1993 and a large surplus in the period 1994-2002.  

Although the budget surplus (τ -g) may not necessarily be stationary, τ  and g 

form a strong cointegrating relationship with a different cointegrating vector. An OLS 

regression of τ  on g produces highly stable recursive parameter estimates with some 

small departures occurring after 1994. Based on average recursive OLS estimates we 

                                                 
14  The data series were taken from the same source that Hoover (2001) used, National Income and Product 
Accounts as reported in CITIBASE.  
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obtain the cointegrating relation 1325.0 −−τ= ttt gz . This series is plotted in Figure 3.  

An ADF regression based on one lag of tz∆  produces a t = -4.155 which is significant at 

the 1% critical value of -3.552.  

We use the following specification to examine the adjustment coefficients 1α  and 

2α ,  1α  is expected to be negative and 2α  positive. Following Hoover (2001) we use 

ty∆  and tπ∆  to remove non-policy effects from τ∆  and g∆ .15 

 ttttttt zyg 1114312110 ε+α+π∆δ+∆δ+∆δ+τ∆δ+δ=τ∆ −−−    (19a) 

 tttttt zygg 212312110 ε+α+∆λ+∆λ+τ∆λ+λ=∆ −−−     (19b) 

FIML estimation of (19a) and (19b) produces results very similar to OLS estimates 

because the two error processes are empirically uncorrelated. We, therefore, proceed with 

OLS estimation. Figures 4 and 5 plot the recursive estimates from the two regressions. 

Figure 4 shows that the parameter estimates of the tax equation become unstable after 

1994, the period of high budget surplus.16 Nevertheless, the adjustment coefficient 

estimate 1α̂  has the correct sign and is statistically significant. The parameter estimates 

of the spending equation shown in Figure 5 are more stable even during the high-budget-

surplus period. But only the GNP growth rate and the constant term are statistically 

significant. After dropping the insignificant variables we obtain the following estimates 

over the period 1946-1994.17 

 

                                                 
15  Hoover (2001) uses taxes and spending as a ratio of potential GNP to obtain the tax rate and the 
spending rate. He then regresses the tax rate on GNP-gap and inflation rate and the spending rate on the 
GNP-gap and uses the residuals from these regressions to study the causal direction. We also tried this 
approach but the measurement errors in potential GNP seem to cause parameter instabilities. 
16  The analysis after 1994 seems to require addit ional variables in the model. 
17  The estimated equations pass the diagnostic tests available in PCGive except that the spending equation 
shows a mild heteroscadasticity. These results are not reported for brevity.  
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The adjustment coefficient in (20a) has the correct sign and highly significant. The 

adjustment coefficient in (20b) is statistically insignificant.  These results show that 

causality (in levels) runs from spending to taxes that concurs with Barro’s assumption. 

We have to note, however, that the recursive estimates of the adjustment coefficient in 

(20b), though statistically insignificant, are highly stable and bear the correct sign. Our 

previous results on the sign distortion indicate that a pure unidirectional relation produces 

an 0ˆ 2 <α  after temporal aggregation. Therefore, the correct sign of 2α̂  in (20b) seems to 

have resulted from a mild feedback system in the non-aggregate process. It should also be 

noted that (20a) clearly rejects a major implication of the tax smoothing hypothesis that 

the tax rate (adjusted for the effect of ty∆  and tπ∆ ) is a random walk.  

 

7. Concluding Remarks 

Invariance of cointegrating  relationships to temporal aggregation offers a promising path 

for Granger causality testing. In this paper we propose using the error correction 

formulation to infer the direction of causality between cointegrated variables. Temporal 

aggregation distorts both the short-run coefficients and the adjustment coefficients in an 

error correction model. Fortunately, unlike the short-run coefficients, the distortions on 

the adjustment coefficients occur with a predictable sign-distortion. Based on these 
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findings we propose a sign-rule for making causal inferences from temporally aggregated 

data.  

Causal inference based on cointegration should be referred to as causality in 

levels as opposed to causality in differences found in the short-run coefficients (Hendry 

and Mizon, 1998). As we discussed in the text, causality found in the short-run 

coefficients, regardless the distortions due to temporal aggregation, is less useful for 

policy analyses because policy variables in general show feedback effects. Causality in 

levels, however, plays an important role in policy evaluations because of its connection to 

super-exogeniety. 
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Appendix: The relationship between covariances of aggregate and non-aggregate 

processes 
 

Temporal aggregation involves the construction of non-overlapping sums that can easily 

be obtained by defining the overlapping sum t
m yLL )...1( 1−+++  and then systematically 

sampling this variable at every mth interval to obtain the aggregated variable τY  = 

τm
m yLL )...1( 1−+++ , (τ =1,2,…,N; T=mN). Let t

d
t yLw )1( −=  and ττ YLW d)1( −= . The 

following result extends the univariate case considered by Stram and Wei (1986). (See 

Gulasekaran (2003) for further details.) 

 

Proposition A.1 

The covariance between the temporally aggregated series Wiτ and Wjτ-k  can be expressed 

in terms of the covariance between the non-aggregate series itw  and kjtw −  as, for 0≥k : 

))1)(1(()...1(  )( 212 −++++++= ++− mdmkLLLk j
w
ij

ddmW
ij

ji γγ    (A.1) 

))1)(1(()...1(   )( )1(212 −++++++= +− mdmkLLLk i
w
ii

dmW
ii

i γγ    (A.2) 

where ),()( kji
W
ij WWCovk −= ττγ , ),()( kjtit

w
ij wwCovk −=γ , L operates on the index of )(kijγ  

such that )1()( −= kkL ijij γγ , )()( kk W
ji

W
ij −= γγ  and id  and jd  are integers representing 

orders of differencing applied to ith and jth series respectively. 
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Proof 

 
Note that τYL)1( −  = 1−− ττ YY  = τm
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Table 1: Unidirectional Causality: *

1ˆlim αp  when 02 =α , 11 =β  and 11 αρ +=  
 

1α across/ 

2β  down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05 
m=3 

-20 -2.06 -2.31 -2.43 -2.29 -2.00 -1.63 -1.20 -0.67 -0.15 
-10 -2.05 -2.31 -2.43 -2.28 -1.99 -1.63 -1.19 -0.67 -0.15 
-8 -2.05 -2.30 -2.42 -2.27 -1.98 -1.62 -1.19 -0.66 -0.15 
-6 -2.05 -2.29 -2.40 -2.26 -1.97 -1.61 -1.19 -0.66 -0.15 
-4 -2.04 -2.26 -2.36 -2.22 -1.94 -1.59 -1.17 -0.65 -0.14 
-2 -2.02 -2.14 -2.19 -2.05 -1.80 -1.49 -1.10 -0.62 -0.14 
-1 -1.96 -1.88 -1.81 -1.68 -1.50 -1.26 -0.96 -0.55 -0.12 

m=12 
-20 -7.76 -9.18 -8.88 -7.81 -6.49 -5.05 -3.56 -2.01 -0.53 
-10 -7.71 -9.12 -8.82 -7.76 -6.45 -5.02 -3.54 -2.00 -0.53 
-8 -7.67 -9.08 -8.78 -7.72 -6.42 -5.00 -3.52 -2.00 -0.53 
-6 -7.59 -8.99 -8.69 -7.64 -6.35 -4.95 -3.49 -1.98 -0.53 
-4 -7.38 -8.73 -8.44 -7.43 -6.18 -4.82 -3.41 -1.94 -0.52 
-2 -6.44 -7.58 -7.33 -6.47 -5.40 -4.24 -3.04 -1.77 -0.49 
-1 -4.44 -5.15 -4.98 -4.42 -3.75 -3.02 -2.25 -1.41 -0.43 

  These values are the same for 2β >0. 
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Table 2: Unidirectional Causality: )ˆ( *

1αt  when 02 =α , 11 =β and 11 αρ +=  

1α across/ 

2β  down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05 
Panel 1: T=150, m=3, N=50 

-20 -13.6 -8.0 -7.9 -8.4 -9.2 -10.5 -12.9 -18.2 -31.2 
-10 -13.6 -8.0 -7.9 -8.4 -9.2 -10.5 -12.7 -17.5 -20.5 
-8 -13.6 -8.0 -7.9 -8.4 -9.2 -10.5 -12.6 -17.1 -17.2 
-6 -13.7 -8.0 -7.8 -8.4 -9.2 -10.4 -12.5 -16.2 -13.4 
-4 -13.8 -8.0 -7.8 -8.3 -9.1 -10.2 -12.0 -14.3 -9.3 
-2 -14.4 -7.9 -7.5 -7.9 -8.6 -9.4 -10.3 -9.9 -4.9 
-1 -16.4 -8.1 -7.1 -7.2 -7.7 -8.1 -7.9 -6.3 -2.8 

Panel 2: T=600, m=12, N=50 
-20 -4.5 -5.4 -5.8 -6.0 -6.3 -6.5 -6.9 -8.2 -16.2 
-10 -4.4 -5.3 -5.8 -6.0 -6.2 -6.4 -6.8 -8.1 -15.6 
-8 -4.4 -5.3 -5.8 -6.0 -6.2 -6.4 -6.8 -8.1 -15.1 
-6 -4.4 -5.3 -5.7 -6.0 -6.1 -6.4 -6.8 -8.0 -14.4 
-4 -4.4 -5.1 -5.6 -5.8 -6.0 -6.3 -6.7 -7.9 -12.7 
-2 -4.0 -4.7 -5.1 -5.3 -5.5 -5.8 -6.2 -7.4 -8.7 
-1 -3.4 -3.8 -4.1 -4.3 -4.5 -4.8 -5.3 -6.5 -5.4 

Panel 3: T=600, m=3, N=200 
-20 -27.2 -16.0 -15.8 -16.9 -18.4 -21.0 -25.7 -36.3 -62.4 
-10 -27.3 -16.0 -15.8 -16.9 -18.4 -21.0 -25.5 -35.0 -41.0 
-8 -27.3 -16.0 -15.8 -16.8 -18.4 -20.9 -25.3 -34.1 -34.3 
-6 -27.4 -16.0 -15.7 -16.8 -18.3 -20.8 -24.9 -32.3 -26.8 
-4 -27.6 -16.0 -15.5 -16.5 -18.1 -20.3 -24.0 -28.5 -18.6 
-2 -28.8 -15.9 -15.0 -15.8 -17.1 -18.9 -20.7 -19.8 -9.8 
-1 -32.8 -16.2 -14.2 -14.5 -15.3 -16.1 -15.8 -12.5 -5.6 

These values are the same for 2β >0. 
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Table 3: Unidirectional Causality: *
2ˆlim αp  when 02 =α , 11 =β  and 11 αρ +=  

1α across/ 

2β  down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05 
m=3 

-20 -0.01 -0.04 -0.06 -0.06 -0.05 -0.04 -0.02 -0.01 -0.00 
-10 -0.02 -0.09 -0.12 -0.12 -0.10 -0.07 -0.05 -0.02 -0.00 
-8 -0.02 -0.11 -0.15 -0.15 -0.12 -0.09 -0.06 -0.03 -0.01 
-6 -0.03 -0.14 -0.20 -0.20 -0.16 -0.12 -0.08 -0.04 -0.01 
-4 -0.05 -0.21 -0.29 -0.29 -0.24 -0.17 -0.11 -0.05 -0.01 
-2 -0.08 -0.35 -0.50 -0.49 -0.40 -0.30 -0.19 -0.09 -0.02 
-1 -0.10 -0.44 -0.63 -0.61 -0.50 -0.37 -0.24 -0.12 -0.02 
1 0.10 0.44 0.63 0.61 0.50 0.37 0.24 0.12 0.02 
2 0.08 0.35 0.50 0.49 0.40 0.30 0.19 0.09 0.02 
4 0.05 0.21 0.29 0.29 0.24 0.17 0.11 0.05 0.01 
6 0.03 0.14 0.20 0.20 0.16 0.12 0.08 0.04 0.01 
8 0.02 0.11 0.15 0.15 0.12 0.09 0.06 0.03 0.01 

10 0.02 0.09 0.12 0.12 0.10 0.07 0.05 0.02 0.00 
20 0.01 0.04 0.06 0.06 0.05 0.04 0.02 0.01 0.00 

m=12 
-20 -0.33 -0.40 -0.39 -0.34 -0.27 -0.20 -0.13 -0.06 -0.01 
-10 -0.66 -0.80 -0.78 -0.67 -0.54 -0.40 -0.26 -0.12 -0.02 
-8 -0.82 -1.00 -0.97 -0.84 -0.68 -0.50 -0.32 -0.15 -0.03 
-6 -1.08 -1.31 -1.27 -1.10 -0.89 -0.66 -0.43 -0.19 -0.03 
-4 -1.57 -1.91 -1.85 -1.60 -1.29 -0.96 -0.62 -0.28 -0.05 
-2 -2.67 -3.24 -3.14 -2.72 -2.20 -1.63 -1.05 -0.48 -0.08 
-1 -3.34 -4.05 -3.93 -3.40 -2.75 -2.04 -1.31 -0.60 -0.10 
1 3.34 4.05 3.93 3.40 2.75 2.04 1.31 0.60 0.10 
2 2.67 3.24 3.14 2.72 2.20 1.63 1.05 0.48 0.08 
4 1.57 1.91 1.85 1.60 1.29 0.96 0.62 0.28 0.05 
6 1.08 1.31 1.27 1.10 0.89 0.66 0.43 0.19 0.03 
8 0.82 1.00 0.97 0.84 0.68 0.50 0.32 0.15 0.03 

10 0.66 0.80 0.78 0.67 0.54 0.40 0.26 0.12 0.02 
20 0.33 0.40 0.39 0.34 0.27 0.20 0.13 0.06 0.01 
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Table 4: Unidirectional Causality: )ˆ( *
2αt  when 02 =α , 11 =β and 11 αρ +=  

1α across/ 

2β  down -1.95 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 -0.05 
Panel 1: T=150, m=3, N=50 

-20 -1.1 -2.4 -3.1 -3.2 -3.1 -2.7 -2.2 -1.6 -0.7 
-10 -1.1 -2.4 -3.1 -3.2 -3.0 -2.7 -2.2 -1.5 -0.7 
-8 -1.1 -2.4 -3.1 -3.2 -3.0 -2.7 -2.2 -1.5 -0.7 
-6 -1.0 -2.3 -3.1 -3.2 -3.0 -2.6 -2.2 -1.5 -0.7 
-4 -1.0 -2.3 -3.0 -3.1 -3.0 -2.6 -2.1 -1.5 -0.7 
-2 -1.0 -2.1 -2.7 -2.9 -2.7 -2.3 -2.0 -1.4 -0.6 
-1 -0.7 -1.7 -2.1 -2.2 -2.1 -1.8 -1.5 -1.1 -0.5 
1 0.7 1.7 2.1 2.2 2.1 1.8 1.5 1.1 0.5 
2 1.0 2.1 2.7 2.9 2.7 2.3 2.0 1.4 0.6 
4 1.0 2.3 3.0 3.1 3.0 2.6 2.1 1.5 0.7 
6 1.0 2.3 3.1 3.2 3.0 2.6 2.2 1.5 0.7 
8 1.1 2.4 3.1 3.2 3.0 2.7 2.2 1.5 0.7 

10 1.1 2.4 3.1 3.2 3.0 2.7 2.2 1.5 0.7 
20 1.1 2.4 3.1 3.2 3.1 2.7 2.2 1.6 0.7 

Panel 2: T=600, m=12, N=50 
-40 -3.7 -4.5 -4.8 -4.9 -4.8 -4.6 -4.1 -3.2 -1.6 
-20 -3.7 -4.5 -4.8 -4.9 -4.8 -4.6 -4.1 -3.2 -1.6 
-10 -3.6 -4.4 -4.8 -4.8 -4.8 -4.5 -4.1 -3.2 -1.6 
-8 -3.6 -4.4 -4.8 -4.8 -4.8 -4.5 -4.1 -3.2 -1.5 
-6 -3.6 -4.4 -4.7 -4.8 -4.7 -4.5 -4.1 -3.2 -1.5 
-4 -3.5 -4.2 -4.6 -4.6 -4.6 -4.4 -4.0 -3.1 -1.5 
-2 -3.2 -3.9 -4.1 -4.1 -4.1 -3.9 -3.6 -2.9 -1.4 
-1 -2.4 -2.9 -3.1 -3.1 -3.1 -2.9 -2.7 -2.2 -1.1 
1 2.4 2.9 3.1 3.1 3.1 2.9 2.7 2.2 1.1 
2 3.2 3.9 4.1 4.1 4.1 3.9 3.6 2.9 1.4 
4 3.5 4.2 4.6 4.6 4.6 4.4 4.0 3.1 1.5 
6 3.6 4.4 4.7 4.8 4.7 4.5 4.1 3.2 1.5 
8 3.6 4.4 4.8 4.8 4.8 4.5 4.1 3.2 1.5 

10 3.6 4.4 4.8 4.8 4.8 4.5 4.1 3.2 1.6 
20 3.7 4.5 4.8 4.9 4.8 4.6 4.1 3.2 1.6 

Panel 3: T=600, m=3, N=200 
-20 -2.1 -4.8 -6.3 -6.5 -6.1 -5.4 -4.4 -3.1 -1.3 
-10 -2.1 -4.8 -6.3 -6.5 -6.0 -5.4 -4.4 -3.0 -1.3 
-8 -2.1 -4.8 -6.3 -6.5 -6.0 -5.4 -4.4 -3.0 -1.3 
-6 -2.0 -4.7 -6.1 -6.4 -6.0 -5.3 -4.4 -3.0 -1.3 
-4 -2.0 -4.7 -6.0 -6.3 -5.9 -5.1 -4.2 -3.0 -1.3 
-2 -1.9 -4.2 -5.5 -5.7 -5.4 -4.7 -3.9 -2.8 -1.2 
-1 -1.5 -3.3 -4.2 -4.4 -4.1 -3.7 -3.0 -2.2 -1.0 
1 1.5 3.3 4.2 4.4 4.1 3.7 3.0 2.2 1.0 
2 1.9 4.2 5.5 5.7 5.4 4.7 3.9 2.8 1.2 
4 2.0 4.7 6.0 6.3 5.9 5.1 4.2 3.0 1.3 
6 2.0 4.7 6.1 6.4 6.0 5.3 4.4 3.0 1.3 
8 2.1 4.8 6.3 6.5 6.0 5.4 4.4 3.0 1.3 

10 2.1 4.8 6.3 6.5 6.0 5.4 4.4 3.0 1.3 
20 2.1 4.8 6.3 6.5 6.1 5.4 4.4 3.1 1.3 



 36 

Table 5: Mutual Causality: )ˆ( *
2αt  when 11 =β , 0=ρ  and 212 /)1( βαρα −−=  

1α across/ 

2β  down -0.95 -0.85 -0.75 -0.65 -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 
Panel 1: T=150, m=3, N=50 

-20 -2.9 -2.3 -1.8 -1.2 -0.4 0.4 1.5 2.8 4.2 6.0 
-10 -2.9 -2.3 -1.8 -1.1 -0.4 0.5 1.6 2.8 4.3 6.0 
-8 -2.8 -2.3 -1.8 -1.1 -0.3 0.5 1.6 2.9 4.3 6.1 
-6 -2.8 -2.3 -1.7 -1.1 -0.3 0.6 1.6 2.9 4.4 6.1 
-4 -2.7 -2.2 -1.6 -1.0 -0.2 0.7 1.8 3.1 4.5 6.1 
-2 -2.4 -1.8 -1.2 -0.4 0.4 1.5 2.5 3.7 5.1 6.4 
-1 -1.7 -0.9 0.0 1.0 2.1 3.2 4.3 5.4 6.4 7.3 

Panel 2: T=600, m=12, N=50 
-20 -4.7 -4.5 -4.4 -4.1 -3.7 -3.3 -2.6 -1.6 0.1 3.6 
-10 -4.7 -4.5 -4.3 -4.0 -3.7 -3.2 -2.5 -1.5 0.3 3.3 
-8 -4.6 -4.5 -4.2 -4.0 -3.6 -3.1 -2.4 -1.3 0.3 3.2 
-6 -4.6 -4.4 -4.2 -3.9 -3.5 -3.0 -2.2 -1.2 0.5 3.0 
-4 -4.5 -4.2 -4.0 -3.7 -3.2 -2.6 -1.8 -0.7 0.9 2.9 
-2 -4.0 -3.6 -3.2 -2.7 -2.1 -1.2 -0.3 0.8 2.0 3.1 
-1 -2.8 -2.2 -1.5 -0.7 0.2 1.2 2.1 2.9 3.6 4.2 

Panel 3: T=600, m=3, N=200 
-20 -5.7 -4.7 -3.6 -2.3 -0.8 0.9 3.0 5.6 8.5 12.1 
-10 -5.7 -4.7 -3.6 -2.2 -0.8 1.0 3.1 5.6 8.6 12.1 
-8 -5.6 -4.7 -3.6 -2.2 -0.7 1.0 3.1 5.7 8.6 12.2 
-6 -5.6 -4.6 -3.5 -2.1 -0.7 1.1 3.2 5.8 8.7 12.2 
-4 -5.5 -4.5 -3.2 -1.9 -0.3 1.5 3.6 6.1 8.9 12.3 
-2 -4.8 -3.7 -2.3 -0.8 0.9 2.9 5.0 7.5 10.2 12.9 
-1 -3.4 -1.8 0.0 2.0 4.1 6.3 8.6 10.8 12.8 14.5 

For 2β >0 the table entries are the same with the opposite sign.
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Table 6: Monte Carlo Results based on VAR(2): 21φ =0 
 AIC choice of VAR order, % SBC choice of VAR order ,% % of negative *

2α̂  Average contemporaneous 
correlation between residuals 

 VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) 
m=3 0.0 8.3 91.8 0.0 80.9 19.1 91.5 100 94.7 0.620 0.640 0.650 
m=12 4.0 82.8 13.3 73.3 26.7 0.0 100 100 100 0.978 0.977 0.977 
m=60 6.0 80.0 13.1 79.7 20.4 0.0 100 99.95 99.8 0.999 0.999 0.999 
 
 
 
Table 7: Monte Carlo Results based on VAR(2): 21φ =0.25 
 AIC choice of VAR order, % SBC choice of VAR order ,% % of negative *

2α̂  Average contemporaneous 
correlation between residuals 

 VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) VAR(1) VAR(2) VAR(3) 
m=3 0 0 100 0 17.4 82.7 100 100 100 0.850 0.780 0.780 
m=12 1.2 87.2 11.7 52.8 47.2 0 100 100 100 0.991 0.991 0.991 
m=60 40.9 51.8 7.4 97.8 2.25 0 100 100 100 0.999 0.999 0.999 
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Table 8.  Estimated adjustment coefficients  
Cointegrating relation: log(Yen/DM)- log(US$/DM)+log(US$/Yen) 

 
Adjustment  
coefficients 

Daily rates Weekly rates 
 End of period  

Weekly rates 
Average  

1α  -0.917* 

(0.015) 
-0.889* 

(0.236) 
-1.940* 

(0.202) 

2α  -0.046 
(0.025) 

-0.116 
(0.152) 

-0.326 
(0.182) 

3α  0.050 
(0.037) 

-0.254 
(0.258) 

0.666* 

(0.301) 
Sample size 922 184 184 

Note: Numbers in parentheses are standard errors. * indicates the absolute values bigger than 
2SE. If 2α  and 3α  are restricted to zero the estimates of 1α  in columns 3 and 4 move closer 
to minus unity. 
 
 
 

Table 9. Estimates for car quota premium and stock price example 

 
*
1α̂  *

2α̂  2β̂  12r  N 

m=1 -0.191 (0.048) -0.003 (0.007) -3.71 -0.02 104 
m=2 -0.230 (0.062) -0.016 (0.013) -3.56 -0.10 51 
m=3 -0.342 (0.093) -0.015 (0.021) -3.74 -0.02 34 
m=4 -0.368 (0.109) -0.046 (0.026) -2.79 0.12 25 
m=5 -0.483 (0.133) -0.027 (0.036) -3.06 -0.04 20 
m=6 -0.572 (0.095) -0.088 (0.044) -3.25 -0.01 16 

12r  is the contemporaneous correlation of residuals. N is the effective sample size. The 
numbers in parentheses are standard errors. 
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Figure 1. Deviations of logarithms of daily Yen/DM direct rate from the cross rate  
(July 3, 1995 – Dec 31, 1998) 
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Figure 2. Budget surplus as a ratio of GNP (%) 
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Figure 3. Cointegrating relation between tax rate and spending rate 
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Note: Outer lines show the 2SE confidence bands. The error correction term is  1−tz . 

 

Figure 4. OLS recursive estimates of the tax equation.  
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Note: Outer lines show the 2SE confidence bands. The error correction term is 1−tz . 

 

Figure 5. OLS recursive estimates of the spending equation. 

 


