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Abstract

This paper analyses dynamic pricing in markets with network extern-

alities. Network externalities imply demand inertia, because the size of a

network increases the usefulness of the product for consumers. Since past

sales increase current demand �rms have an incentive to set low introduct-

ory prices in order to increase prices as their networks grow. However, in

reality we observe decreasing prices. This could be due to other factors

dominating the network e¤ects. We use an experimental duopoly market

with demand inertia to isolate the e¤ect of network externalities. We �nd

that experimental prices are rather consistent with real world observations

than with theoretical predictions.
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1 Introduction

For many commodities the individual utility of consumption depends on how many

other people consume the commodity, too. In their seminal paper Katz and

Sharpiro (1985) refer to this phenomenon as network externalities. They point

out that the reason for this dependence may be due to direct physical e¤ects or

due to indirect e¤ects which they refer to as consumption externalities. Examples

for the direct physical e¤ect are communication networks like telephone or E-

mail where the usefulness of having access obviously increases with the number

of people you can communicate with. The classic example for indirect e¤ects are

computer operating systems where the number of people using it determines how

many applications are written for the system, which in turn determines how useful

the OS is for the consumer. Another prominent example is the market for video

game consoles, where the number and the quality of games developed for a system

determines the usefulness of the system to consumers.

The existence of network externalities has crucial e¤ects on conduct in and

performance of markets. Issues such as compatibility, co-ordination to technical

standards and e¤ects on pricing and quality of services create challenges for eco-

nomic theory (Economides, 1996). There is still some discussion about how sig-

ni�cant network externalities are in producing market failures.1 However, the

literature that explores adoption of technologies (Belle�amme, 1998; Kristiansen,

1996), standards and lock-in of technologies (Witt, 1997; De Bijl and Goyal, 1995),

compatibility issues (Baake and Boom, 2001), and product introduction (Katz and

Shapiro, 1992) is very extensive. We focus on another less researched aspect of

network externalities: dynamic pricing under demand inertia.

In a market where at least two competing networks coexist, which are substi-

tutes for consumers, current network size is correlated with future demand. The

larger a network is today the higher is the demand tomorrow. Consequently, future

demand is positively correlated with sales today. Network externalities imply de-

mand inertia. An example for coexisting networks is the market for game consoles.

Currently there are three non-compatible competing systems: Sony Playstation2,

1Katz and Shapiro (1994) argue that network externalities have a high signi�cance, while
in the same journal and volume Liebowitz and Margolis (1994) make their case for network
externalities being hardly a reason for market ine¢ ciencies.
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Microsoft Xbox, and Nintendo GameCube (see Schilling 2003 for an analysis of

the game console market). Coexistence of at least two standards is the rule in

the game console market since the late eighties (Sega Genesis and Nintendo SNES

until 1994, Sony Playstation and Nintendo 64 from 1996 to 1999, and the three

currently competing systems since 2001).

Demand inertia due to network externalities ceteris paribus puts pressure on

competing �rms to introduce their products with very low prices in order to in-

crease the size of their network quickly. Cabral, Salant and Woroch (1999) explore

the conditions necessary for a low introductory price being optimal for a mono-

polist operating under network externalities. We show that a low introductory

price is also optimal in a duopoly with competing networks. For a monopolist it

is optimal to increase its price over time (Bensaid and Lesne, 1996). The same

is true in our duopoly model. And in fact the introductory price of the Xbox in

November 2001 was quite low (US $299) and exactly matched the price of the

Playstation2. Estimates suggest that Microsoft lost between US $100 and $125

per unit sold.2 However, contrary to the theoretical prediction the prices for Xbox

and Playstation2 did not increase, but dropped further (Xbox: US $ 149.99 on

March 29, 2004; Playstation2: US $149 on May 4, 2004). Price cuts by one of

the two �rms are usually countered by a subsequent equivalent price cuts of the

competitor.

There are many reasons why �rms in reality may decrease prices over time:

Intertemporal price discrimination or reduced costs due to learning by doing or

scale economies are examples. The decreasing prices may be easily explained if

these forces dominate the incentives created by demand inertia. However, due

to the multiple e¤ects at work it not possible to evaluate the e¤ects of networks

externalities alone by only looking at observed pricing behaviour. We use a labor-

atory experiment to separate the e¤ect demand inertia has from other e¤ects. By

eliminating all other factors that may play a role in dynamic pricing we can be

sure that the observed e¤ect is due to demand inertia or due to idiosyncrasies of

oligopoly markets. Experimental oligopoly markets typically show a certain degree

of collusion not explained by game theory. In order to separate the network e¤ect

from ideosyncratic collusion in a repeated oligopoly we run a control treatment

2See Schilling (2003), p 16.
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with an identical market, but without demand inertia.

Reinhard Selten (1965) was the �rst to develop a comprehensive model of

oligopolistic competition with demand inertia. Our model is similar in the way

that demand inertia exists. However, in Selten�s model there is no direct strategic

interaction in any particular period as the period payo¤ does not depend on the

prices of the competitors. The interaction is only indirect as the future demand is

in�uenced by past price di¤erences. Keser (1993, 2000) implements Selten�s model

in the laboratory and compares the observed play with the equilibrium prediction.

She is mainly interested in categorizing di¤erent patterns of behaviour. She is

less interested in evaluating the e¤ect demand inertia has. This is di¢ cult in her

design due to the lack of immediate interaction, which does not allow for a control

treatment where �rms compete under the same conditions, but without demand

inertia.3 The ability to do so is crucial for our research question, because we want

to compare markets with demand inertia created by network externalities with

markets that do not have network characteristics, but are identical otherwise.

The remainder of the paper is structured as follows. In the next section we

present our model. In the appendix we show how the demand function used can be

derived from simple consumption decisions for goods with network externalities.

Section 3 derives some equilibrium predictions for the model. Section 4 describes

the experimental setup, while section 5 reports the main results. We conclude in

section 6.

2 The model

In this section we develop a bare-bone model of a market with network extern-

alities. We reduce this market to its essentials and eliminate any other factor

that could have an in�uence on dynamic pricing. We use a multi-period Bertrand

duopoly with di¤erentiated products. Market demand in each period is perfectly

inelastic with a total market demand of a per period.4 The market has a lifetime

3Another problem for the isolation of demand-inertia e¤ects is the inclusion of interest pay-
ments on early periods to simulate discounting. The e¤ects of this design and the inertia can
not easily be separated.

4This rather restrictive assumption is not crucial for the qualitative results of the model, but
will prove very useful for the identi�cation of treatment e¤ects in the experiment.
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of T periods. Network externalities are captured by a state variable sti - the share

of past sales in the industry - which positively in�uences the individual period

demand. The share of past sales is de�ned as

sti :=

Pt�1
k=1 q

k
i

[t� 1] a for t > 1 (1)

where i 2 f1; 2g denotes the �rm, t gives the actual period, and qki is the quantity
sold in period k by �rm i: Note that s1i cannot be de�ned by the expression above.

So we need an initial condition which may re�ect initial beliefs of the consumers

about the quality of �rms�products. Reputation, product reviews, and advertising

may play a role.

The period sales of �rm i are de�ned as

qti := maxfstia+ ptj � pti; 0g i; j 2 f1; 2g; i 6= j (2)

where ptj and p
t
i are prices. Both �rms have the same degree of market power stem-

ming from the consumers�preferences for the di¤erent goods varieties. Di¤erences

in market power at time t only arise from di¤erent market shares sti; which only

depend on past sales. The market shares are capturing the relative size of the

network. We chose to link the bene�ts from the size of the network rather to the

market share than to the absolute past sales for two reasons. Firstly, the marginal

bene�t of today�s sales for tomorrows market power is decreasing in the past sales.

This re�ects that the marginal bene�t for the consumers from increases in network

size is believed to be decreasing. Secondly, new consumers who decide in period

t which brand to buy will put less weight on the nominal di¤erences in network

sizes if both networks are already large.

The current and future demand functions are common knowledge. So the two

�rms simultaneously choose prices pti; p
t
j in each period t after having learned the

market outcome of the previous period t � 1: They are fully aware of how the

current sales will in�uence the future market power.

We show in the appendix that the demand functions above can be derived from

consumer decisions for goods with network externalities similar to the framework

used in Katz and Shapiro (1985).
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3 Some equilibrium predictions

In this section we will establish some equilibrium predictions. We will see that in

spite of the simple structure of the model solving for the full equilibrium path is

impractical. Therefore we will establish some qualitative results only. Later on we

will use a computer algorithm to solve numerically for the equilibrium prices for

the parameters used in the experiment.

This extensive-form game has many Nash Equilibria. However, to rule out equi-

libria that contain empty threats we ad the requirement of subgame-perfectness.

We therefore use backward induction and begin with the �nal period. We have to

determine the optimal actions in the �nal period for both �rms and all possible

histories. All payo¤ relevant history is captured by the market share. Therefore,

the �rms at period T will maximize the period payo¤ for a given market share.

The payo¤s are given:

�Ti := p
T
i

�
asTi � pTi + pTj

�
i; j 2 f1; 2g; i 6= j

Then the �rst-order conditions give the following best response functions:5

bi(p
T
j ) =

asTi + p
T
j

2
i; j 2 f1; 2g; i 6= j; (3)

which gives the optimal prices:6

pT�i =
a
�
1 + sTi

�
3

(4)

pT�j =
a
�
2� sTi

�
3

(5)

We now turn to the penultimate period. At period T �1 the �rms foresee what
will happen in the last period depending on the prices they set in period T � 1:
Put di¤erently, arriving at period T � 1 the �rms know that their prices in T � 1
will cause certain period outputs. They also know how these period outputs will

in�uence their market share in period T . As they anticipate already how they and

5The second-order conditions are obviously satis�ed.
6Note that sTj = 1� sTi :
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their competitors will behave in the last period for market shares, they can will

set their prices such that the sum of the pro�ts in periods T � 1 and T will be
maximized. Firm i�s aggregate pro�t is given by

�T�1i +�Ti :=
TX

l=T�1

pli
�
asli � pli + plj

�
:

Using the anticipated equilibrium prices pT�i and pT�j for the last period we get

�T�1i +�Ti = p
T�1
i

�
asT�1i � pT�1i + pT�1j

�
+

�
a(1 + sTi )

3

�2
: (6)

Recall the de�nition of the market share and write sTi as a function of q
T�1
i and

sT�1i :

sTi =

"
TX

l=T�2

qli + q
T�1
i

#,
a [T � 1]

Using the demand de�nition from (2) for qT�1i and simplifying leads to

sTi = s
T�1
i +

pT�1j � pT�1i

a [T � 1]

Replacing sTi in equation (6) and simplifying gives an expression for the aggreg-

ate pro�t, which includes the anticipated behaviour in the last period and which

only depends on the prices in period T � 1:

�T�1i +�Ti = pT�1i

�
asT�1i � pT�1i + pT�1j

�
(7)

+

"
pT�1j � pT�1i + a

�
1 + sT�1i

�
[T � 1]

3 [T � 1]

#2

We see that the anticipated pro�t for the last period (the second line of 7) depends

negatively on the price chosen in period T � 1. The �rst order condition is given
by

�2pT�1i + pT�1j + asT�1i �
2
�
pT�1j � pT�1i + a

�
1 + sTi

�
[T � 1]

�
9 [T � 1]2

= 0;
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which gives to the best response function:

bi(p
T�1
j ) =

pT�1j [1� !] + asT�1i � a
�
1 + sT�1i

�
[T � 1]!

2� ! ; (8)

where

! =
2

9 [T � 1]2
:

Note that the reaction function taking into account the pro�t in the last period

di¤ers from the reaction function a myopic �rm would have by ! only. The myopic

reaction function can be obtained by setting ! = 0. To see this take (8) and set

! = 0 and compare it to the reaction function for the last period (3) where �rms

play myopically. They are identical up to the subscript of the market share.

Inspection of (8) shows that �rm i in equilibrium will set a price lower than

the myopic price pmi (s
T�1
i ) in period T � 1.

Proposition 1 In every subgame perfect equilibrium we have pT�1�i < pmi (s
T�1
i )

and pT�1�j < pmj (s
T�1
i ):

Proof. Denote the best response functions for myopic players depending on the
current market share in T � 1 as bmi (pT�1j ) and bmj (p

T�1
i ); respectively. If we can

show that bmi (p
T�1
j ) < bi(p

T�1
j ) and bmj (p

T�1
i ) < bj(p

T�1
i ) hold for all sT�1i we can

conclude that our claim is true, since all best response functions are obviously

non-decreasing in the opponents price. As bmi (p
T�1
j ) = bi(p

T�1
j ) for ! = 0 and

! > 0 we must have bmi (p
T�1
j ) > bi(p

T�1
j ) if @bi(pT�1j )=@! < 0 for all !, sT�1i , and

pT�1j : Di¤erentiating (8) and simplifying gives

@bi(p
T�1
j )

@!
=
�pT�1j + a

�
2� 2T + sT�1i [3� 2T ]

�
[2� !]2

< 0

for T � 2. Since the best response function of �rm j is obtained by swapping

indices only, the same holds for �rm j:

The next step is now to show that the equilibrium prices are smaller in T � 1
than in T independent of the initial market share and the duration of the market T .

This is conceptually easy but tedious and does not create new insights. Therefore

we sketch the proof in the appendix only.
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Proposition 2 In every subgame perfect equilibrium we have pT�1�i � pTi and

pT�1�j � pTj 8sT�1i 2 [0; 1].

Proof. See appendix
The two propositions above tell us that the price in the penultimate periode

is a) below the myopic price and b) below the price in the last period. The logic

extends naturally to earlier periods, but the increased complexity of the algebra

makes it unpractical to solve for the prices in earlier stages. We will do this using

a computer algorithm for the parameter values used in the experiment later on.

4 Experimental design

We conducted computerized laboratory experiments implementing markets with

network externalities in the sense de�ned above.7 We also ran some control ses-

sions of comparable markets without network externalities in order to isolate the

e¤ect network externalities have on dynamic pricing decisions. We asked students

enrolled in the second-year �Microeconomics 2�at the University of Adelaide to

participate. All 112 students enrolled in the course had the opportunity to parti-

cipate. Finally 94 students attended the experimental session. The students were

rewarded with a grade bonus on their �nal mark depending on the performance in

the experiment of up to 10 percent. As �Microeconomics 2�is one of the more dif-

�cult courses at Adelaide University the subjects were highly motivated. Subjects

were trying hard to secure passing the course or to get one of the few distinctions.

Using students from a single course may be viewed as problematic since the

sample is de�nitely not randomly drawn. However, most economic experiments

cannot guarantee randomness of the sample. At least we can control for the back-

ground of students and their knowledge of economics by using the students of one

course.8 We are aware that this selection gives rise to problems when generaliz-

ing the results obtained in the experiment. On the other hand, we believe that

using students from an economics course - as opposed to students from di¤erent

7We used the computer programme Z-Tree (Fischbacher, 1999) to conduct the experiment.
The Z-Tree code for the two treatments can be downloded from the authors web site.

8We exactly know the courses those students have taken. We even know about their perform-
ance in the other courses.
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courses - does not have too severe drawbacks for our experiment. Since in reality

price decisions are taken by people with backgrounds in commerce and economics

we don�t see a major problem in restricting the subject pool to students of a mi-

croeconomics course.9 However, the usual caveat about using students as subjects

applies.

Overall 50 students played the duopoly market with network externalities

(treatment NE), and 44 students were assigned to the control treatment, which

consisted of a simple duopoly without network externalities (treatment No-NE). In

both treatments the subjects played two supergames of ten periods each. The sub-

jects knew that they were paired with the same opponent in both supergames.10

In every period the subjects had to enter their price choice and a guess what price

the opponent might choose. We restricted the valid prices to the range between

0 and 10. After both subjects had chosen their actions they were informed about

the market outcome (own price, opponents price, and quantities sold), their period

pro�ts. In the NE treatment we additionally displayed the new market share res-

ulting from the actions taken.

In both treatments the subjects were given detailed instructions containing

payo¤ tables and examples how to link choices and payo¤s. In the NE treatment,

we provided period-payo¤ tables for di¤erent market shares and explained how to

extrapolate the payo¤s for market shares between tabulated values. Additionally,

we carefully explained how the market share evolves depending on previous price

choices. The instructions, which were both read aloud and given to the subjects

in writing, can be found on the authors web page.

4.1 Parametrization and theoretical predictions

In order to implement the underlying model structure in the experiment we had

to choose some parameter values. We set the total market demand a to 10. Ad-

ditionally, we needed a starting value for the market share for the NE treatment.

9We ran one session with graduate (Masters and Ph.D. students) in order to see if the degree
of economic education has an in�uence. We did not �nd any striking di¤erences in behaviour.
However, the number of observations is not large enough to draw statistical inferences.
10This partner treatment design was chosen in order to obtain the maximum number of inde-

pendent observations. The loss of control due to reputation e¤ects is regarded as not problematic
for our research question.
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We decided to use a symmetric setting where the market shares are s1i = s
1
j = 1=2:

Additionally, to avoid that the market share reacts too strongly in the �rst period

we chose to set past sales to 10 units each. We can interpret this in two di¤erent

ways. Firstly, we could say that there have been two periods of competition before

the start of our experiment. Secondly, we could interpret this parameter choice

as a re�ection of some reputation the �rms have due to the customers�experience

with other goods this �rm has produced.

The baseline duopoly - treatment No-Ne - just consisted of a market where the

market shares are constant at 1=2 and do not depend on past sales. Note that the

strategic situation in all periods of No-NE is identical to the situation in the last

period of NE with market shares of 1=2. Consequently, the predicted equilibrium

prices for No-NE and all periods are given by equations (4) and (5). For our our

parameter values the optimal prices �p�1; �p
�
2 are

�p�1 = �p
�
2 = 5

The derivation of the optimal price path for the NE treatment is much more

complex. In order to solve for the equilibrium path we have to conduct backward

induction over 10 periods or use a dynamic programming recursive approach in

the spirit of Selten (1965).11 We used a computer algorithm to solve for the

equilibrium-price path. The program basically preforms backward induction.12

Figure 1 shows the predicted equilibrium price path for the NE treatment

together with the prediction for No-NE. Note that the symmetric initial market

shares lead to a symmetric predicted price path, i.e. the competitors always choose

the same price. We see that under NE we expect the price to increase from 0 at

the start to 5 in the last period, which is the equilibrium price for the No-NE

treatment. As play that deviates from the equilibrium path may lead to market

shares di¤erent from 0.5 it is necessary to �nd a way of comparing play after a

deviation from equilibrium with the optimal continuation from such a point. Here

11In our model the dynamic programming approach is more complex than in Selten (1965),
because we have a duopoly market in each period. In Selten�s model the �rms are monopolists
in each period who have to care for their future demand potentials, which depend on the past
sales of all �rms.

12The Mathematica code is available for downlod from the authors web site.
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Game Theoretical Predictions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

N-Externalities
Independence

Figure 1: Predicted price paths for the di¤erent treatments

the assumption of a perfectly inelastic demand comes into play. Perfectly elastic

demand has the implication that the average equilibrium price is independent of

the history of play. Observe that equations (4) and (5) can be used to �nd the

average price for the last period

�pT =
pT�i + pT�j

2
=
5
�
1 + sTi

�
3

+
5
�
2� sTi

�
3

= 5

The average price is independent of the history captured by the market share in

period T . This insight tells us that a pair of �rms in the NE treatment with an

average price below 5 in earlier periods than the �nal period is �ghting for market

share. A pair with an average price of 5 is playing myopically, while an average

price above 5 can be interpreted as collusion.

The logic of the equilibrium average price being independent of the current

market share in the NE treatment extends to earlier periods. This can be seen by

investigating the outcomes of the computer algorithm used to solve the supergame

or by using a dynamic programming approach, which is contained in the appendix.

Proposition 3 The equilibrium prices have the form pt�i = 
t + �tsti resulting in
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an average equilibrium price of �pt = t+�t=2; which is independent of the current

market share.

Proof. See appendix
Consequently, we can say that a pair in the NE treatment with an average

price higher than the calculated equilibrium price (for equal market shares) do

not su¢ ciently take the future pro�ts into account. This judgment can be made

independently of whether the previous play was on the equilibrium path or not.

So market shares other than the equilibrium market share �rms may have at time

t after o¤-equilibrium play does not prevent a judgement about how their prices

compare to the equilibrium price level.

The independence of the average prices from history of play makes the inter-

pretation of our results possible and gives us the possibility to compare prices

between the No-NE treatment, where market shares are �xed at 0.5, and the NE

treatment, where market shares other than 0.5 may occur due to o¤-equilibrium

play.

5 Results

In what follows we present our main results. The three basic questions will be:

1. How do prices evolve over time compared to the theoretical prediction for

di¤erent treatments?

2. How do the prices di¤er among treatments?

3. How competitive do subjects behave under di¤erent treatments?

The �rst question is mainly concerned with the stylized fact that prices for

commodities in the real world decrease after they are introduced, while a reduced

model of network externalities predicts increasing prices. The second question asks

whether network externalities have any in�uence on pricing behaviour at all, while

the third question mainly asks if we can infer from the observed price choices what

the impact of network externalities on the degree of competition in a market is.
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5.1 Evolution of prices

The evolution of chosen prices does not even roughly match the game theoretical

prediction in both treatment.13 While the deviation from Nash Equilibrium in

the non-network treatment can be attributed to tacit collusion, it is not clear a

priori why the prices under the presence of network externalities do not follow the

predicted path. We shortly comment on the evolution of the prices in the No-NE

treatment. Then we will discuss the results for the NE treatment in more depth.

Treatment No-NE

Looking at the average prices in the standard Bertrand duopoly with di¤eren-

tiated products (�gure 2) we see that as in other experimental studies the average

prices are above the Nash Equilibrium prediction for the whole time.14 However,

prices decrease over time. So we observe slowly eroding tacit collusion. Note that

although play (particularly in early periods) exhibits considerable tacit collusion,

the subjects do by no means come close to the joint pro�t maximizing outcome,

which required both players to choose the maximum price of 10. A remarkable

result in our No-NE treatment, which is observed in repeated social dilemma ex-

periments, too, is the existence of a restart e¤ect. As the subject pairs stay the

same for both 10-period supergames and the individual periods are independent,

the whole experiment is theoretically equivalent to 20 independent periods of duo-

polistic competition. The subject do perceive the game di¤erently though. After

the �rst 10 periods of play the announcement that a new game with another 10

periods starts lets the average price return to the level of the �rst period in game

1.15 This e¤ect can be interpreted as the restart being a cue for the subjects to

newly try to establish co-operation. With the experience from the �rst game the

subjects are more successful in sustaining tacit collusion in game 2. The average

prices in game 2 are higher than in game 1. For the �rst 5 periods the average

13The raw data and the stata programmes for data analysis can be downloded from the authors
web site.
14See Huck, Normann and Oechssler (2000) for an example.
15Their is no statisticly signi�cant di¤erence of average prices within paires between the period

1 prices in game one and two. However pairs increase their prices signi�cantly between the last
stage of game 1 and the �rst stage of game 2 (one-sided Wilcoxon matched-pairs signed-ranks
test, p < :01):
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Average Prices without N-Externalities
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Figure 2: Price paths in the No-NE treatment

prices stay at the restart level (or even slightly above) before the typical erosion

of cooperation occurs. The end e¤ect is particularly strong in game 2.

In order to test that the trend of declining prices is not only present in the

aggregate, but occurs also within individual pairs we used a Wilcoxon matched-

pairs signed-ranks test. For both games the average price per pair is signi�cantly

higher in period 1 than in period 6 (one-sided Wilcoxon matched-pairs signed-

ranks test, p < :01 for game 1 and p < :04 for game 2). The average prices per

pair are signi�cantly higher in period 6 than in period 10 in game 1 (p < :03),

while the di¤erence in game 2 shows only weak signi�cance (p < :09). We now

summarize these �ndings.

Result 1 In the Bertrand duopoly without network externality, we �nd some tacit
collusion, which is eroding partially over time. Cooperation is stronger in game 2

and erosion of collusion is weaker and starts later than in game 1.

Treatment NE

Prices in the experimental markets with network externalities are far away

from the prediction as �gure (3) shows. Prices in the early rounds are much higher
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Figure 3: Price paths in the NE treatment

than subgame-perfect equilibrium predicts. However, prices are never above 5,

which documents the absence of tacit collusion in the stage games. Additionally,

in early periods for both supergames prices decline rather than increase. This is

in strong contrast to the prediction. In game 1 the average price of pairs in period

1 is signi�cantly higher than in period 6 (p < :01) and in period 10 (p < :01).

Between periods 6 and 10 there is no statistically signi�cant change. In game 2

the increased experience does not change the decreasing prices in the early periods.

Pairs set signi�cantly higher prices in period 1 than in period 6 (p < :04). For

later periods the competitors seem to increase prices a bit. The di¤erence shows

only weak signi�cance, though (p < :09).

Result 2 In contrast to the theoretical prediction, in NE treatment the average
prices per pair are decreasing in the �rst half of the supergame for both periods.

Average prices in early periods are close to the myopic Bertrand Equilibrium.

Our interpretation of this observed behaviour is the following. As humans are

not able to perform backward induction over a many stages (e.g. Selten, 1978 or

Brandts and Figueras, 2003) and our supergame is quite complex the subjects in

game 1 start o¤ near the stage game equilibrium and use a rule of thumb. This
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rule of thumb seems to consist of a heuristic that balances the trade-o¤ between

increasing the market share and forgoing short-term pro�t. The model prediction

that a higher present market share should increase the price chosen is turned into

the opposite by the subjects. A subject that puts a higher value on the market

share in its heuristic will play more aggressively independent of the present market

share and will choose a lower price. However, the market share depends negatively

on the past prices. So if our statement is true we should observe a negative

correlation between current market share and price chosen for a given expected

price of the opponent. It is important to take the opponent�s expected action into

account because without doing this we may miss-interpret a relatively high price

as myopic, while - given the expectation that the opponent will set a very high

price - it is in fact intended to be very aggressive. In order to test this we created a

variable that measures the deviation from the myopic best response to the guessed

price of the competitor. This variable captures the intention of a player. The lower

this variable is the more aggressive does the subject intend to behave.

Period 2 3 4 5 6 7 8 9 10
Game 1 ��� � �� + � �� ���� �� ���
Game 2 ���� ���� � ���� ���� �� ��� � �
* 10% level, ** 5% level, *** 1% level

Table 1: Correlation between intention to �ght andmarket share

Table 1 shows that the correlation between the deviation from the myopic best

response to the guessed price and the market share is signi�cantly negative for

many periods and never signi�cantly positive. Over all the sign of the correlation

coe¢ cient is only positive for period 5 in game 1 (highly insigni�cant with p = :39).

Note that in the �rst supergame the motive of �ghting for market share is even

dominant in the �nal period, where this cannot be explained by any future pro�t

consideration. This illustrates that subjects rather persued gaining a high market

share as a goal per se than as a way of increasing future pro�t opportunities.

The period 10 average prices in the NE treatment are for both games (4.12 in

game 1 and 4.28 in game 2) below the myopic average price of 5. In sharp contrast
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to this the average prices in the No-NE treatment lie above 5 (5.58 in game 1 and

6.02 in game 2). The picture becomes even clearer when we look at the intended

play. In the No-NE treatment subjects choose prices close to the best response

to the guessed price of the opponent in period 10. On average the chosen prices

are .11 below the best response in game 1 and only .05 below the best response

in game 2. In the NE treatment the intended play shows that subjects where still

�ghting for market share in the �nal period. In game 1 the chosen prices were

on average .64 below the best response to the guessed price of the opponent. The

di¤erence in game 2 was smaller, but still substantial with average prices being

.46 below the best response.

Result 3 Subjects use a heuristic that puts certain weights on short-term pro�t

and on market share rather than backward induction as a behavioural rule. The

price di¤erences to the myopic best responses to the expected price of the opponent

are negatively correlated with the current market share. This is consistent with a

heuristic and incompatible to backward induction.

5.2 Network externalities and competitiveness

Figures 4 and 5 compare the average prices in the treatments for game 1 and

2. It is obvious that the prices in the treatment with network externalities are

consistently lower than in the No-NE treatment (p < :01 for periods 1 to 18 and

p < :025 for the remaining two periods, one-sided Mann-Whitney U-test). We

observe that the price di¤erences are higher in game 1 (roughly 1:7) than in game

2 (between 1:8 and 3), which is no surprise as we observed that the average prices

in the No-NE treatment are generally higher in game 2, while in most periods in

the NE treatment prices are higher in game 1.

Result 4 Average prices in the No-Ne treatment are signi�cantly higher than in
the NE treatment for both games. The prices di¤er more strongly in game 2.

The setting in the No-NE treatment is relatively collusion friendly, while in

the NE treatment the network externalities introduce an additional competitive

element - the struggle for market share. So the result that in a market with modest
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Figure 4: Price di¤erences game 1

network externalities competition is higher than in a market without network

externalities is not surprising. More surprising is that the price di¤erence in the

market does not strongly decrease the closer we get to the end of the product

lifetime.16

An interesting question is to compare the predicted average e¤ects network

externalities have on distribution in theory and experiment. Are the consumers

getting a relatively better deal out of the additional competition due to network

externalities in theory or in the experiment? Ameasure is the relative bene�t of the

network externalities in the experimental sessions compared with the theoretical

bene�t. As we used a perfectly inelastic demand we cannot use consumer surplus

as a measure.17 However, we can compare the pro�ts the �rms make in theory

and practice. Since the quantities in theory and in the experiment are constant

for all rounds, we can use the average price per round as an indication how much

potential consumer surplus the �rms were able to transform into pro�ts. Table

2 shows the average prices over all rounds and �rms. We see that the absolute

16There is an end e¤ect in game two. The price di¤erence shrinks in the last round. However,
in early periods where we expect the gap to narrow with a high rate, the gap even increases.
17Note that in our model due to the perfectly inelastic demand collusion does not cause any

e¢ ciency loss.
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Average Prices in Game 2
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Figure 5: Price di¤erences in games 2

bene�t for consumers (the average price di¤erence between No-NE and NE) is in

the same range for theory and the two experimental games (2.27 versus 2.0 and

2.53, respectively); but due to tacit collusion in the No-NE treatment leading to

high average prices the relative bene�t of increased competition is smaller in the

experimental NE market than theory predicts.

Theory Game 1 Game 2
No-NE 5:00 6:30 6:64
NE 2:73 4:30 4:11
Bene�t of NE absolute 2:27 2:00 2:53
Bene�t of NE relative 45:5% 31:8% 38:1%

Table 2: Average prices over all rounds

Result 5 Increased competition due to network externalities reduces average prices
approximately by the amount the theory predicts. The relative price-reduction is

smaller in the experimental markets, though.
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6 Conclusion

Markets with network externalities are characterized by demand inertia. This

demand inertia creates an incentive for �rms producing competing products to

set low introductory prices for their products as they seek to increase the size of

their network. Optimal prices increase when the market matures as the incent-

ive to �ght for market share gets weaker the closer the market gets to the end

of the product cycle. In reality we usually do not observe increasing prices when

markets with network externalities mature. However, this could be due to other

countervailing e¤ects dominating. These e¤ects could be intertemporal price dis-

crimination, increasing returns to scale due to learning by doing, or decreasing

demand. In order to be able to determine the e¤ect of demand inertia created by

network externalities on dynamic prices we conducted a laboratory experiment.

In the experimental setup we excluded all possible factors that may play a role

in dynamic pricing, but demand inertia. Additionally, we ran a control treatment

where network externalities were absent. This gave us the opportunity to isolate

the e¤ect of demand inertia on dynamic pricing.

We found that as theory predicts that the average prices are lower if network

externalities are present. However, average prices under network externalities in

accordance with the real world decrease if subjects are not experienced. The-

ory predicts increasing prices. Even if subjects gain some experience prices still

decrease over time in young markets. They only increase slightly when markets

mature. We attribute this deviation from the theoretical prediction to the inability

of subjects to conduct backward induction over a long and rather complicated su-

pergame. We suggest that subjects instead use a rule of thumb that mitigates the

trade-o¤ between current pro�t and future pro�t potential depending on the mar-

ket share. This rule of thumb seems to be surprisingly stable over time. Intended

aggressiveness of play is positively correlated with the market share throughout the

supergame. This means that people that play aggressively at the beginning of the

game do not cash in on their obtained high market share in later periods, but stick

to their rule of thumb and continue to play aggressively. This suggests that people

are not only not able to perform backward induction, but have also problems to

at least intuitively follow the logic of intertemporal pro�t maximization.
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A Derivation of the inverse demand function

In this appendix we demonstrate how the speci�c demand function used in the

text can be derived from simple (speci�c) preferences for di¤erentiated goods and

network sizes. For comparable preferences we get similar results for the inverse

demand functions. We chose this speci�c setting to keep the inverse demand

functions as simple as possible.

Assume that consumers purchase one unit of the good per period. Every period

a consumers are active in the market. They decide which brand to buy by compar-

ing the net surplus the goods are creating. As the goods are not homogeneous the

consumers ceteris paribus prefer one of the brands. Denote the surplus a certain

consumer k derives from consuming the product of �rm i as �ki . De�ne the addi-

tional surplus � for consumer from the network of product i as half the average

sales of good i per past period:

�i :=
t�1X
l=1

qti

,
2(t� 1)

This can be interpreted in two ways:

1. The consumer learns some quality aspects of the good from the number of

previous sales.

2. The consumer cares only for number of sales in the actual period (valued at

1/2 monetary unit each) and forms expectations according to the average

past sales.18

Then the total net surplus of consuming good i is given by:

CSki := �
k
i + �

k
i � pi

18In the equilibrium of a symmetric duopoly these expectations are rational and we have a
rational expectation eqilibrium as both �rms sell a=2 in every period.
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So consumer k will purchase good i whenever CSki > CS
k
j or

��k > pi � pj �
t�1X
l=1

�
qti � qtj

�,
2[t� 1]

where ��k is given by �ki � �kj : Suppose that the di¤erences between values ��k

for the di¤erentiated products is distributed uniformly on the interval [�a=2; a=2].
Then for given prices and network sizes the number of consumers buying good j

is given by

qtj = aF

 
pi � pj �

t�1X
l=1

�
qti � qtj

�,
2[t� 1]

!
=

= �1=2a+ pi � pj �
t�1X
l=1

�
qti � qtj

�,
2[t� 1]

Recall that
Pt�1

l=1 q
t
i = at �

Pt�1
l=1 q

t
j; since past total sales of all brands are equal

to ta. Replacing
Pt�1

l=1 q
t
i gives

qtj = pi � pj +
1

t� 1

t�1X
l=1

qtj =

= astj + pi � pj;

which is the inverse demand function we use. The demand for �rm i is just

a� qtj = ast1 + pj � pi:

B Proof of proposition 1

This proof is conceptually easy, but quite tedious. We only sketch the proof and

omit some intermediate calculations.

Proof. We use the best response functions (2) in order to compute the equilibrium
prices in the penultimate stage. This gives the following equilibrium price for player

i :

pT�1�i = a
�41 + 3sT�1i [T � 1]2 [9T � 11] + 3T [41 + T [9T � 35]]

3 [T � 1] [23 + 27T [T � 2]]
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Note that pT�1�j is found by just replacing the index. Using those equilibrium

prices and the law of motion for the market share we can compute the equilibrium

price in the �nal period as a function of the market share in period T � 1 and
subtract the equilibrium price obtained above:

pT�1�i � pT�i =
a

3

"
1

T � 1 �
6
�
2sT�1i � 1

�
[T � 1]

23 + 27T (T � 2)

#
Further inspection shows that this converges to 0 when T approaches in�nity.

Additionally, the roots for T are all smaller than 2 (T1=2 = 1� 2=
q
33� 12sT�1i ).

As T 2 [2;1) we know that pT�1�i � pT�i � 0 for all sT�1i if we �nd a valid T such

that pT�1�i �pT�i > 0 holds. For T = 2 we get pT�1�i �pT�i = a
�
29� 12sT�1i

�
=69 > 0.

C Dynamic programming approach to prove pro-

position 2

In this section we outline the dynamic programming solution of the NE-game. We

assume functional forms for prices and continuation payo¤ and show that these

assumptions are correct. The derivation of the average price in the main text uses

these functional forms.

Step 1: solve the last stage. Optimal prices are

pT�i =
a
�
1 + sTi

�
3

(9)

pT�j =
a
�
1 + sTj

�
3

(10)

Stage payo¤s are
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�T�i =
�
pT�i
�2
=

"
a
�
1 + sTi

�
3

#2
(11)

�T�i =
�
pT�j
�2
=

"
a
�
1 + sTj

�
3

#2
(12)

Step 2: The law of motion for the state variable

st+1i = sti +
ptj � pti
a [1 + t]

(13)

Step 3: Guessing functional forms for the recursion

pt�i = �tsti + 
t (14)

�̂ti = �t
�
sti
�2
+ �tsti + �

t (15)

The functional forms proposed do de�nitively work for the last round:

�T =
a

3

T =
a

3

�T =
ha
3

i2
�T =

2a

3

�T =
ha
3

i2
Step 4: Bellman equation

�̂ti = �
t
i + �̂

t+1
i (16)

Di¤erentiating (16) with respect to pi and using (13) gives:
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@�̂ti
@pti

= �2pti + ptj + asti +
@st+1i

@pti

@�̂t+1i

@st+1i

=

= �2pti + ptj + asti �
1

a [1 + t]

@�̂t+1i

@st+1i

(17)

We can use the recursion relation from (15) to write the �rst-order conditions (17)

as

@�̂ti
@pti

= �2pti + ptj + asti �
2�t+1

h
sti +

ptj�pti
a[1+t]

i
+ �t+1

a [1 + t]
= 0

Step 5: Solving for the prices By solving for the parameters of the optimal

prices we �nd:

pt�i = sti
Y t+1 [aY t+1 � 2�t+1]
3Y t+1 � 4�t+1 +

2a�t+1Y t+1 + [2�t+1 + 3�t+1] [Y t+1]
2

4�t+1Y t+1 � 3 [Y t+1]3

+
�a [Y t+1]3 � 4�t+1 [�t+1 + �t+1]

4�t+1Y t+1 � 3 [Y t+1]3
(18)

where Y t = at and recursively

Y t = Y t+1 � a: (19)

The proposed functional form is correct, since pt�i is an a¢ ne function of the market

share. We can get the coe¢ cient for the optimal price from (18):

�t =
Y t+1 [aY t+1 � 2�t+1]
3Y t+1 � 4�t+1 (20)

t =
2a�t+1Y t+1+ [2�t+1 + 3�t+1] [Y t+1]

2

4�t+1Y t+1 � 3 [Y t+1]3

+
�a [Y t+1]3 � 4�t+1 [�t+1 + �t+1]

4�t+1Y t+1 � 3 [Y t+1]3
(21)
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Note that by de�nition from equation (14) the average price �pt is independent

from the current market share if our functional forms are correct:

�pt = �t=2 + t (22)

Step 6: The equilibrium motion for the market share from equations

(13) and (14) we can derive the equilibrium market share recursively:

st+1i = sti +
[1� 2sti]�t

Y t+1
(23)

This tells us that the game has a steady state at a market share of 1/2.

Step 7: Check the functional form for the pro�ts Note that the future

pro�t only depends on the market share. So we have to �nd out how the future

pro�t varies with the market share. Di¤erentiating the total future pro�t at time

t from (16) with respect to sti gives:

@�̂ti
@sti

=
@�ti
@sti

+
@�ti
@pti

@pti
@sti

+
@�ti
@ptj

@ptj
@sti

+
@�̂t+1i

@st+1i

@st+1i

@sti

Using our previous results and assumptions about functional forms from (14), (15),

and (23) makes it possible to develop the previous equation

@�̂ti
@sti

= apti +
�
�3pti + ptj + asti

�
�t +

@�̂t+1i

@st+1i

�
1� 2�t

�
=

= apti +
�
�4�tsti + �t � 2t + asti

�
�t +

@�̂t+1i

@st+1i

�
1� 2�t

�
=

=
�
�4�tsti + �t � 2t + 2asti

�
�t + at +�

1� 2�t
� �
2�t+1st+1i + �t+1

�
=

�
�4�tsti + �t � 2t + 2asti

�
�t + at +�

1� 2�t
� �
2�t+1

�
sti +

�
1� 2sti

�
�t
�
+ �t+1

�
(24)

Our result from (24) is linear in sti. So we can see that integration leads to the

form we proposed. We get the following recursive relationships:
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�t =
�
1 + 4

�
�t � 1

�
�t
�
�t+1 + a�t � 2

�
�t
�2

(25)

�t =
�
1� 2�t

�
�t+1 + at + �t

�
�t + 2�t+1 � 4�t�t+1 � 2t

�
(26)

With the recursive relations (20), (21), (19), (23), (25), and (26) we have de�ned

the subgame-perfect equilibrium-behaviour of the �rms. Furthermore, we have

shown that the functional forms assumed are correct and the average price (de�ned

in 22) is independent from the current market share.
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