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1 Introduction

Characterizing business cycle dynamics has since long been a topic of intense re-

search. The stylized empirical fact that recessions last much shorter but are more

severe than expansions recently has led to the application of a wide range of non-

linear time series (regression) models to macroeconomic variables such as industrial

output and (un)employment. Most studies in this area make use of aggregate, often

nationwide, variables. Relatively little attention has been given to business cycle

asymmetries in disaggregated variables, such as sector-level output or state-level

employment, although Cooper (1998), Bidarkota (1999), and Owyang, Piger and

Wall (2003) are notable exceptions.

When using disaggregated output or unemployment data, a question of prime

interest is the extent to which there is co-movement across different states or sectors,

and in particular the possible presence of common cyclical components. This issue

is usually analyzed by means of factor models, where for example state-level output

growth is decomposed into national, regional and state-specific components, see

Quah (1996), Clark (1998), Forni and Reichlin (1998) and Del Negro (2002) for

illustrations of this approach. Note that the different components in these models

typically are assumed to be independent and, more importantly, linear. Although

extensions to factor models with non-linear components may be feasible, to the best

of our knowledge this has not yet been pursued in practice. Instead, the presence and

relevance of common non-linear components is often analyzed by means of comparing

results from univariate non-linear models, as in Owyang et al. (2003) for Markov-

Switching models applied to state-level output. Such an analysis may render useful

insights, but obviously, using univariate models is not efficient as they ignore the

information contained in the common cyclical component(s).

So far, the only attempt to develop a formal methodology to investigate the

presence of common non-linear components in multivariate time series models was
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made by Anderson and Vahid (1998), building upon ideas from the literature on

common features, see Vahid and Engle (1993). A drawback of this approach might

be that it is limited to small-sized systems though, as multivariate time series models

typically become unreliable for systems consisting of many variables.

In this paper, we propose a novel approach that can be used to examine com-

mon non-linear cyclical components in possibly many disaggregated variables. For

this purpose, we develop a panel smooth transition autoregressive (STAR) model

that imposes a common regime-switching mechanism while allowing for consider-

able heterogeneity in the timing of the regime changes across series. This makes the

model particularly useful for situations where the non-linear dynamics are driven by

a common regime-switching component, but where the response to this component

can be different across variables. For example, probably all sectors in an economy

are affected by nationwide recessions, but some sectors may enter into (or get out

of) recessions earlier than others. In order to arrive at a parsimonious model, we

assume a second-level model for the parameters in the regime-switching mechanism

of the STAR model, where these are then related to, for example, sector-specific

characteristics.

It should be remarked that we completely abstain from the notion of cointegration

in our context, as this amounts to yet another additional degree of complexity. In

principle, our panel STAR model can be extended to incorporate common trends,

but we believe that the relevant statistical theory should first be derived and this is

beyond the scope of the present paper. Furthermore, with respect to our empirical

application to US sectoral output, we note that Pesaran, Pierse and Lee (1993) and

Engle and Issler (1995) find little evidence for the existence of common trends in

these series.

Our paper is organized as follows. In Section 2, we present our multi-level panel

STAR model and describe its main features. Parameter estimation is feasible but
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not straightforward and therefore we dedicate a full Section 3 to this topic. We also

briefly discuss inference in the panel STAR model in this section, and suggest several

ways to extract relevant information concerning business cycles. In Section 4, we

present our application to US industrial production in 18 manufacturing sectors,

a number that certainly cannot easily be dealt with by vector autoregressive time

series models. We document that a partially heterogeneous panel STAR model

outperforms a fully pooled model, leading to subtle differences across sectors in leads

and lags for business cycle recessions and expansions. In particular, we find that

the four sectors machinery, aerospace, primary metal and fabricated metal products

enter recessions earlier than other manufacturing sectors. In Section 5 we conclude

with several suggestions for further research.

2 A Multi-Level Panel STAR model

The basic smooth transition autoregressive [STAR] model, as discussed extensively in

Granger and Teräsvirta (1993), Teräsvirta (1994), Franses and van Dijk (2000), and

van Dijk, Teräsvirta and Franses (2002), embraces two regimes, where the prevailing

regime at time t is determined by the value of an observable variable st. A STAR

model of order P for a univariate time series yi,t, which may represent for example

quarterly output growth in sector i, i = 1, . . . , N and t = 1, . . . , T , is given by

yi,t = αi,0 +
P
∑

j=1

αi,jyi,t−j +G(st; γi, τi)(βi,0 +
P
∑

j=1

βi,jyi,t−j) + εi,t, (1)

or

yi,t = α′ixi,t + β
′
ixi,tG(st; γi, τi) + εi,t, (2)

where xt = (1, x̃′t)
′ with x̃t = (yt−1, . . . , yt−p)

′, αi = (αi,0, αi,1, . . . , αi,p)
′, βi is simi-

larly defined, and the properties of εi,t are discussed in detail below.

In general, the so-called transition function G(st; γi, τi) in (1) is a continuous

function that is bounded between 0 to 1. Two interpretations of the STAR model
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then are possible. On the one hand, the STAR model can be thought of as a regime-

switching model that allows for two regimes, associated with the extreme values of

the transition function, G(st; γi, τi) = 0 and G(st; γi, τi) = 1, where the transition

from one regime to the other is smooth. On the other hand, the STAR model can be

said to allow for a “continuum” of regimes, each associated with a different value of

G(st; γi, τi) between 0 and 1. In this paper we will use the two-regime interpretation.

A popular choice for G(st; γi, τi), which we also employ in the present paper, is

the logistic function

G(st; γi, τi) =
1

1 + exp(−γi(st − τi))
with γi > 0, (3)

where the parameter restriction γi > 0 is an identifying restriction. The parameter τi

in (3) can be interpreted as the threshold between the two regimes, in the sense that

the logistic function changes monotonically from 0 to 1 as the transition variable

st increases and G(st; γi, τi) = 0.5 when st = τi. The parameter γi determines

the smoothness of the change in the value of the logistic function and, thus, the

smoothness of the transition from one regime to the other. As γi →∞, the logistic

function G(st; γi, τi) approaches the indicator function I[st > τi], defined as I[A] = 1

if A is true and I[A] = 0 otherwise, and, consequently, the change of G(st; γi, τi)

from 0 to 1 becomes instantaneous at st = τi. Finally, when γi → 0, the logistic

function approaches a constant (equal to 0.5) and when γi = 0, the STAR model

reduces to a linear dynamic model with parameters (αi,j + βi,j)/2, j = 0, 1, . . . , p.

As the logistic function (3) is a monotonic transformation of the transition vari-

able st, the two regimes in the STAR model (2) are associated with small and large

values of st (relative to τi). This makes the model convenient for modelling business

cycle asymmetry where, through a suitable choice for st, the regimes of the STAR

can be related to expansions and recessions, see Teräsvirta and Anderson (1992) for

an empirical example. The value of the switching function then can be interpreted

as an indicator function of the business cycle.
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In the STAR model (2) with (3), one usually assumes that εi,t is a martingale

difference with respect to the history of the time series up to time t− 1, which is de-

noted as Ωi,t−1 = {yi,t−1, yi,t−2, . . . , yi,1−P}, that is, E[εi,t|Ωi,t−1] = 0. For simplicity,

we also assume that the conditional variance of εt is constant, E[ε2
t |Ωt−1] = σ2

i . An

extension of the STAR model which allows for (possibly asymmetric) autoregressive

conditional heteroscedasticity [ARCH] is considered in Lundbergh and Teräsvirta

(1998). For our particular application, we additionally assume that the εi,t are mu-

tually uncorrelated across time and across sectors. It is possible to allow for various

unrestricted covariance structures, but this would seriously complicate parameter

estimation. Another approach to allow for contemporaneous correlation across the

errors of the N equations is to introduce common exogenous variable z1,t, . . . , zk,t

as additional regressors in all equations, such as, for example, the world economy

growth rate, see Paap, Franses and van Dijk (2003). In the univariate context, the re-

sultant smooth transition regression (STR) model is discussed in detail in Teräsvirta

(1998).

The specification of the STAR model in (2) with (3), with no cross-equation

restrictions on the parameters αi, βi, γi and τi, i = 1, . . . , N , leads to a fully hetero-

geneous panel time series model. Furthermore, given the particular assumptions on

the shocks εi,t discussed above, the model can be estimated sector by sector and the

resulting regime-switching dynamics for each sector can subsequently be compared

and inspected for similarities and differences, as in Owyang et al. (2003).

Obviously, the fully heterogeneous model could amount to a huge amount of

parameters (namely N(2(1+P)+3)) to be estimated, if N (and/or P ) is reasonably

large. Hence, it is of interest to see if the panel model can be restricted to become

more parsimonious. There are at least two important reasons for imposing more

structure on the panel STAR model. First, estimating sector-specific STAR models

might not work for all sectors considered. It can happen that the likelihood function
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does not have a well-defined maximum, which makes it impossible to obtain reliable

parameter estimates. This behavior of the STAR model is well-known to practition-

ers, and in most of the cases a few outliers are found to be responsible for these

difficulties. Instead of states representing recessions and expansions, one of the two

regimes of the STAR model will then capture the outliers, see van Dijk, Lucas and

Franses (1999) for example.

Second, if the time series in the panel yi,t represent sector-level output or state-

level employment, it is obvious that their dynamics may bear close similarities,

in particular in terms of timing of the regime switches if these regimes represent

business cycle recessions and expansions, for example. To impose a common regime-

switching mechanism across panel members, one might pool the parameters in the

switching functions across the STAR models, that is, set γi = γ and τi = τ for all

i = 1, . . . , N . However, this pooling approach is rather restrictive. In particular, the

assumption that the timing of regime switches is exactly the same across all sectors

may be unrealistic. Even though all sectors in an economy probably are affected by

nationwide recessions, some sectors may enter into (or get out of) recessions earlier

than others.

In this paper we therefore propose a model specification in between the pooled

model and the fully heterogeneous model, which has these two cases occurring at

the boundaries of the model specification. The basic idea is to introduce a second

level regression model for the parameters γi and τi, which makes these a function

of observed explanatory variables, the value of which differ across sectors, and an

unobserved error term. The resulting model allows for common features across

sectors as well as for (unexplained) differences between sectors. The common features

are captured by observable sector characteristics, while the differences are captured

by random effects. To be more precise, in this paper we describe the switching
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parameters by the regression model

(

log(γi)
τi

)

= δ′wi + ηi, ηi ∼ N(0,Ση), (4)

where wi denotes a (Q × 1) vector consisting of a constant and Q − 1 observable

characteristics of sector i, and where δ is a (Q× 2) matrix of unknown coefficients.

Note that we model log(γi) instead of γi directly to ensure that γi > 0. Furthermore,

note that the specification where the switching parameters are restricted to be equal

across sectors is nested in (4). That is, in case wi only contains a constant and at

the same time Ση = 0, we obtain the pooled specification. In sum, our model allows

for meaningful flexibility in a panel time series model for non-linear data, which at

the same time allows us to examine the potential presence of common non-linear

features.

3 Parameter estimation

Estimation of the parameters in the multi-level panel STAR model (2)-(4) is not

straightforward, as the model contains a latent second level regression for the pa-

rameters γi and τi that appear in non-linear functions in the first-stage model. For

clarity, let us first restate the complete model, which reads

yi,t = α′ixi,t + β
′
ixi,tG(st; γi, τi) + εi,t, i = 1, . . . , N, (5)

(

log(γi)
τi

)

= δ′wi + ηi, (6)

ηi ∼ N(0,Ση), (7)

εi,t ∼ N(0, σ2
i ), i = 1, . . . , N. (8)

The likelihood function for this model equals L =
∏

i Li, where Li is the contribution

of sector i, which is given by

Li =

∫

ηi

∏

t

φ(ei,t(αi,βi, δ
′wi + ηi); 0, σ

2
i )φ(ηi;0,Ση)dηi, (9)
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where φ(x;µ,Σ) denotes the (bivariate) normal density function with mean µ and

covariance matrixΣ evaluated at x and where ei,t(αi,βi,θi) gives the error for sector

i and period t, given the parameters associated with the two regimes, that is αi and

βi, and the switching parameters θi = (log(γi), τi)
′. To be precise, the error is given

by

ei,t(αi,βi,θi) = yi,t −α
′
ixi,t − β

′
ixi,tG(st; γi, τi). (10)

Parameter estimates may be obtained by maximizing the log-likelihood function
∑N

i=1 logLi. This maximization problem poses two difficulties however. First of all,

the likelihood function contains many parameters. As we allow the AR-parameters

to be different across sectors, we have 2(1 + P ) + 1 parameters per sector, com-

prising two intercepts, P AR-parameters for each regime, and the error variance

σ2
i . Furthermore, we have 2Q parameters relating the switching parameters to the

sector characteristics. Finally, we have three parameters contained in Ση. Directly

maximizing the likelihood over all parameters therefore is very difficult. To cir-

cumvent this problem, we concentrate the likelihood function with respect to the

sector-specific variables, see for example Davidson and MacKinnon (1993) for a gen-

eral discussion on likelihood concentration. Such a concentration approach is often

used in estimating STAR models for single series, see van Dijk et al. (2002). In our

case, concentrating the likelihood is more complicated as we also have to deal with

the stochastic nature of the switching parameters.

The second problem in maximizing the likelihood is the fact that calculating the

likelihood function requires solving N two-dimensional integrals, one for each sector.

Numerical integration may seem to be a good solution as for each sector we have

to integrate over only two dimensions. However, when using numerical integration

it is not possible to concentrate the likelihood for the sector-specific parameters.

We would then have to maximize the complex likelihood function over a very large

number of parameters. Moreover, the calculation of the likelihood function will
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probably be very time-consuming due to the numerical integration.

For the above-mentioned reasons, we will instead use simulation to approximate

the likelihood, see Gourieroux and Monfort (1993), Lee (1995) and Hajivassiliou and

Ruud (1994) for discussions of Simulated Maximum Likelihood [SML] estimation.

The resulting simulated likelihood is in turn concentrated with respect to the sector-

specific parameters. Finally, we numerically optimize the concentrated simulated

likelihood over δ and Ση. We end up with an estimation routine that can be labeled

as “Concentrated Simulated Maximum Likelihood”.

3.1 Concentrated Simulated Maximum Likelihood

We approximate the likelihood contribution of sector i by simulation

L̃i =
1

L

L
∑

l=1

∏

t

φ(ei,t(αi,βi, δ
′wi +Σ

1/2
η η̃i,l); 0, σ

2
i ) (11)

where η̃i,l, l = 1, . . . , L denotes a draw from N(0, I) and where Σ1/2
η denotes the

Choleski decomposition of Ση such that Σ1/2
η η̃i,l ∼ N(0,Ση). Next, we concentrate

(11) with respect to αi,βi and σ2
i . To simplify the notation, we denote the error

associated with the l-th draw as ei,t,l ≡ ei,t(αi,βi, δ
′wi+Σ

1/2
η η̃i,l). Given δ and Ση,

the objective is to find the optimum of the (simulated) likelihood contribution of

sector i with respect to αi,βi and σ2
i . That is, we need to solve

max
αi,βi,σ

2
i

1

L

L
∑

l=1

∏

t

φ(ei,t,l; 0, σ
2
i ) (12)

which is equivalent to

max
αi,βi,σ

2
i

1

L

∑

l

exp

(

∑

t

log φ(ei,t,l; 0, σ
2
i )

)

(13)

The first order conditions for (13) can be compactly written as

1

L

∑

l

∑

t

wi,l
ei,t,l
σ2
i

x′i,t,l = 02P+1, (14)

1

L

∑

l

∑

t

wi,l

2σ2
i

(
e2
i,t,l

σ2
i

− 1) = 0, (15)
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where 0n denotes a n× 1 vector of zeros and

xi,t,l = ([1, G(st; γi, τi)]⊗ [1, yi,t−1, . . . , yi,t−p]),

wi,l =
∏

t

φ(ei,t,l; 0, σ
2
i ).

For numerical stability, we compute wi,l as wi,l = exp (
∑

t log φ(ei,t,l; 0, σ
2
i )) and, as

only the relative size of wi,l is important, we can use wi,l = exp (
∑

t log φ(ei,t,l; 0, σ
2
i ) + κ),

where κ is a fixed arbitrary constant, which can be chosen such that we avoid taking

the exponent of a very small number.

Loosely speaking, wi,l gives the relative importance of the l-th simulation draw.

As wi,l depends on αi, βi and σ2
i a closed-form solution of the problem in (14)-

(15) is difficult to find. However, it turns out that it can quite easily be solved

iteratively. Given starting values for αi, βi and σ2
i , we first calculate wi,l. If we

ignore the dependence of wi,l on the parameters, the first order conditions (14)-

(15) become a special case of a weighted least squares [WLS] problem. Denoting

xi,l = (x′i,1,l, . . . ,x
′
i,T,l)

′ and yi = (yi,1, . . . , yi,T )
′ , we obtain

(

α̂i

β̂i

)

=

(

1

L

L
∑

l=1

wi,lx
′
i,lxi,l

)−1(

1

L

L
∑

l=1

wi,lx
′
i,lyi

)

(16)

σ̂2
i =

1
L

∑

l

∑

twi,lei,t,l
T
L

∑

l wi,l

. (17)

Given these estimates we can update the weights wi,l, l = 1, . . . , L. This WLS

procedure is then iterated until convergence of the sector-specific parameters. At

this point, we have found the optimal parameters α̂i, β̂i and σ̂2
i given values for δ

and Ση.

Finally, to obtain estimates of δ andΣη, we maximize the concentrated likelihood

over these parameters. For each evaluation of the concentrated likelihood, we repeat

the WLS procedure described above to obtain conditional estimates of α̂i, β̂i and σ̂
2
i .

However, in the numerical optimization routine the parameter values in consecutive

iterations tend to be close together so that only few iterations will be necessary to
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achieve convergence.

Under the usual regularity conditions, the Simulated Maximum Likelihood esti-

mator is consistent for N → ∞ and L → ∞, see Hajivassiliou and Ruud (1994).

Furthermore, the SML estimator is asymptotically efficient and normally distributed,

where the asymptotic covariance matrix is equal to the inverse of the information

matrix. Note that, to estimate the variance of the parameters of the switching

function, we only have to calculate the Hessian of the concentrated likelihood, see

Davidson and MacKinnon (1993). The estimated covariance matrix equals

V̂ar(ϑ) =

(

∂2Lc

∂ϑ′∂ϑ′

)−1

(18)

where ϑ contains the parameters in δ and Ση and where Lc denotes the concentrated

likelihood function.

3.2 Conditional inference

Often one is interested in the value of the switching function G(st; γi, τi) for a partic-

ular sector at a point in time given the sector characteristics wi. For this purpose,

in our multi-level panel data model we can use the unconditional expectation of

G(st; γi, τi) assuming the model parameters are known and fixed. This expectation

equals Eηi
[G(st; δ

′wi+ηi)]. On the other hand, we can also consider the conditional

expectation Eηi
[G(st; δ

′wi + ηi)|yi]. In this conditional expectation, the expected

level of the switching function is calculated conditional on the observed time series.

Hence, the conditional expectation of G(st; γi, τi) can differ across sectors even when

they have equal observed characteristics wi.

The unconditional expectation of G(st; γi, τi) can easily be calculated using sim-

ulation as follows,

Eηi
[G(st; δ

′wi + ηi)] =

∫

ηi

G(st; δ
′wi + ηi)φ(ηi; 0,Ση)dηi

=
1

L

∑

l

G(st; δ
′wi + ηi,l), (19)
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where ηi,l is a draw from N(0,Ση).

The conditional expectation of G(st; γi, τi) is more difficult to compute, as one

needs to consider

Eηi
[G(st; δ

′wi + ηi)|yi] =

∫

ηi

G(st; δ
′wi + ηi)g(ηi|yi)dηi

=

∫

ηi
G(st; δ

′wi + ηi)g(yi|ηi)φ(ηi;0,Ση)dηi
∫

ηi
g(yi|ηi)φ(ηi;0,Ση)dηi

=
1
L

∑

lG(st; δ
′wi + ηi,l)wi,l

1
L

∑

l wi,l

, (20)

with wi,l the weights as defined earlier and where, in general, g(x|z) denotes the

density function of x given z.

4 US sectoral production

We consider quarterly growth rates in industrial production for 18 main manufactur-

ing sectors at the three-digit level1 in the new North American Industry Classification

System (NAICS) over the period 1972Q1-2002Q4.2 The sectors are listed in Table 1.

In addition, we obtain industry characteristics using the NBER-CES Manufacturing

Industry Database, containing data on output, employment, payroll and other input

costs, investment, capital stocks, TFP, and various industry-specific price indexes.3

Finally, we decide to use the term spread, computed as the difference between the

10-year Treasury bond rate and the 3-month T-bill rate, lagged two quarters as

transition variable st in all STAR models reported below. This choice is motivated

by the general finding that the term spread is among the most powerful US business

cycle indicators, see Estrella and Mishkin (1998), among many others.

1We exclude the sectors “Wood products”, “Computers and electronic products” from the anal-
ysis.

2See http://www.census.gov/epcd/www/naics.html for more information about NAICS and
its relation to the US Standard Industrial Classification (SIC).

3See http://www.nber.org/nberces/nbprod96.htm and Bartelsman and Gray (1996) for de-
tailed information.
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We start with estimating univariate STAR models for each of the 18 sectors,

which can be interpreted as components in a fully heterogeneous panel STAR model

(2)-(3) with no cross-equation restrictions on the parameters γi and τi. For simplicity,

we impose an identical autoregressive order P in the STAR models for all sectors.

We set P = 4 as this is the value preferred by conventional information criteria such

as the Akaike and Schwarz criteria for most sectors.

It turns out that it is extremely difficult to obtain reliable parameter estimates for

some sector-specific STAR models. Figure 1 shows the surfaces of the (concentrated)

log-likelihood function for the sectors “Paper”, “Food, beverage and tobacco”, “Elec-

trical equipment” and “Chemical” as functions of log(γi) and τi. These graphs reveal

the reason for these difficulties in estimation: the log-likelihood is essentially flat in

the direction of log(γi), and especially for the sectors “Paper” and “Food, beverage

and tobacco” a maximum is not well-defined. This illustrates the point made in

Section 2, that univariate STAR models may be difficult to estimate, and (partial)

pooling may be necessary. Detailed estimation results of the univariate STAR mod-

els are not shown here to save space, but these are available upon request from the

corresponding author.

Our model selection strategy now proceeds as follows. First we test whether the

restriction τi = τ or γi = γ can be imposed. To this end we compare the likelihood

values of the sector-specific model to the likelihood of a model in which one of the

two restrictions is imposed. A difficulty in this testing is that, as mentioned earlier,

sector-specific estimates can not be obtained for some sectors. Proper Likelihood

Ratio testing is therefore not possible. Instead, we apply these tests in a more infor-

mal manner to see whether there is evidence of differences in switching parameters

or not. For the sectors for which proper estimates can not be found we use the maxi-

mum of likelihood function over a grid of reasonable parameter values. The p-values

of the tests should therefore not be taken literally. We find that the restriction τi = τ
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cannot be maintained (p-value = 0.0000). There is however no strong evidence that

the γ parameter differs across sectors (p-value = 0.120). Next we estimate our two-

level model where we only allow the thresholds (τi) to differ across sectors. Among

the different sector characteristics we explore as possible explanatory variables in

the level-2 model (6), total 5-factor productivity (TFP5) was found to be the most

discriminatory. This model can be formally tested against a model in which both

switching parameters are pooled. This restriction corresponds to setting and σ2
η and

the parameter corresponding to the factor productivity to zero. This restriction is

rejected at the 5%-level (p-value 0.0432).4 Hence, our preferred model is a “partial”

multi-level panel STAR model, where the slope parameter in the transition functions

is pooled, while the threshold variable can differ across sectors according to the value

of TFP5.

Tables 1 and 2 give the parameter estimates of the preferred model. Of par-

ticular interest, of course, are the parameter estimates of the level-2 model for τi,

which show that the threshold between the two regimes varies positively with total

factor productivity. Given that recessions are associated with small values of the

term spread and, hence, values of the logistic function close to 0, this shows that

sectors with higher total factor productivity are likely to enter recessions faster. The

second column of Table 1 shows that this is the case for the sectors “Machinery”,

“Aerospace”, “Primary metal” and “Fabricated metal products”. These sectors ap-

pear to be particularly sensitive to common cyclical movements and might be used

to signal the onset of nationwide recessions.

This point is further illustrated by Figure 2, showing the conditional expectation

of the transition functions G(st; γi; τi) for all sectors in the multi-level panel STAR

model. In fact, these plots reveal several interesting findings. First, note that the

4As the restriction on the variance parameter has an one-sided alternative (σ2
η = 0 versus

σ2
η > 0) the critical value of the joint test is not standard. The distribution of the test statistic is

1
2
χ2(1) + 1

2
χ2(2) instead of χ2(2), see Wolak (1989, pp. 19-20)
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regimes G(st; γi; τi) = 0 and G(st; γi; τi) = 1 correspond quite closely with business

cycle recessions and expansions, respectively, as dated by the NBER. Second, these

graphs show that the four aforementioned sectors generally enter recessions slightly

before the other sectors. Third, only the sectors Primary metal, Aerospace, and

Apparel and leather appear to experience a regime switch around 1990. Apparently,

this shallow final recession of the previous century did not affect all sectors in the

economy equally. This last point also illustrates the potential use of the conditional

expectation of G(st; γi, τi) given the time series yi for inference. Even though the

expected value of the threshold τi for “Apparel and leather” is close to the sector-

average (see the entries in Table 1), the conditional expectation of the transition

function as shown in Figure G(st; γi; τi) = 0 shows that this sector did experience

a regime switch around 1990 not shared by other sectors with comparable values of

total factor productivity such as “Motor vehicles and parts” and “Paper” (for which

the expected value of τi is close to -1.10 as well).

5 Conclusion

In this paper we have developed a multi-level panel smooth transition autoregressive

model, which is capable of describing joint regime-switching behavior in time series

variables while allowing for heterogeneity in the exact timing of the regime changes.

This makes the model particularly useful for situations where the non-linear dynam-

ics are driven by a common regime-switching component, but where the response to

this component can be different across variables. For example, probably all sectors

in an economy are affected by nationwide recessions, but some sectors may enter into

(and get out off) recessions earlier than others. By using a second-level model for

the parameters that appear in the regime-switching mechanism, the model is kept

relatively parsimonious.

Our application of the model to US sector-level industrial production demon-
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strates its potential. We see that fully pooling is not effective in understanding

possible common non-linear features across the series, and that a fully heteroge-

neous model introduces estimation problems for 4 out of the 18 series. Hence, our

restrictions due to the second-level regression model for the parameters in the in-

dividual regime-switching functions not only allows for interpretability but it also

facilitates empirical analysis.

Several topics for further research are worth considering. Further applications

of the model to, for example, state-level output or employment are necessary to es-

tablish its usefulness. The model may also be used to address the question whether

forecasts of aggregate industrial production constructed from the panel model are

more accurate than those obtained from a univariate (non-linear) model for the

aggregate, as documented for example by Lee (1997) in the case of linear models.

Finally, the model could be extended to incorporate idiosyncratic cyclical compo-

nents.
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Table 1: Estimates of parameters in panel STAR model for quarterly growth rates of US sectoral production

Sector E[log γi] E[τi] αi,0 αi,1 αi,2 αi,3 αi,4 βi,0 βi,1 βi,2 βi,3 βi,4 log(σ2
i )

Nonmetallic mineral products 4.61 -1.13 -2.44 0.06 0.52 0.88 -0.18 3.06 0.13 -0.55 -0.79 0.07 1.15
Primary metal 4.61 -1.06 -1.48 0.89 -0.03 0.10 -0.26 1.98 -0.81 0.05 -0.14 0.16 2.85
Fabricated metal products 4.61 -1.07 -1.41 0.80 0.35 0.20 -0.05 1.84 -0.27 -0.52 -0.03 -0.14 0.58
Machinery 4.61 -1.01 -2.46 0.39 0.96 0.30 -0.18 2.72 0.36 -1.04 -0.27 -0.01 1.12
Electrical equipments 4.61 -1.13 -2.75 0.71 0.26 1.55 -0.48 3.29 -0.27 -0.34 -1.41 0.26 1.16
Motor vehicles and parts 4.61 -1.08 -7.29 -0.03 -0.15 0.00 -0.08 9.30 0.00 -0.08 0.04 0.08 3.36
Aerospace and other misc. transportation 4.61 -1.05 -0.99 0.20 0.00 0.31 0.11 1.10 0.23 0.12 -0.13 -0.20 1.42
Furniture and related products 4.61 -1.13 -1.41 0.76 -0.06 -0.06 0.06 2.09 -0.39 -0.01 0.11 -0.14 1.22
Miscellaneous 4.61 -1.10 -0.61 0.94 -0.93 0.86 -0.64 1.49 -0.65 0.85 -0.91 0.52 0.52
Food, beverage, and tobacco 4.61 -1.08 0.00 0.56 -0.33 0.00 -0.47 0.47 -0.55 0.35 0.03 0.20 -0.16
Textile and product mills 4.61 -1.17 -2.43 0.35 0.17 0.20 -0.62 2.83 0.18 -0.57 0.01 0.36 1.48
Apparel and leather 4.61 -1.10 -0.87 0.35 -0.63 1.04 -0.86 0.69 0.25 0.52 -1.33 0.99 0.80
Paper 4.61 -1.10 -0.37 0.59 -0.06 -0.29 -0.71 0.96 -0.42 -0.02 0.09 0.65 1.17
Printing and support 4.61 -1.13 -0.54 0.58 0.05 0.49 -0.07 1.13 -0.41 0.15 -0.40 -0.09 0.59
Petroleum and coal products 4.61 -1.07 -2.05 0.17 0.57 0.27 -0.10 2.66 -0.32 -0.46 -0.37 -0.10 1.45
Chemical 4.61 -1.17 -0.90 0.86 -0.15 -0.05 -0.33 1.64 -0.52 0.04 0.05 0.25 0.61
Plastics and rubber products 4.61 -1.20 -2.46 0.34 0.61 0.09 0.12 4.02 -0.18 -0.90 -0.06 -0.26 1.88
Other manufacturing (non-NAICS) 4.61 -1.13 -0.18 0.47 0.44 -0.03 0.00 0.38 -0.11 -0.48 0.17 0.07 0.26

Notes: The table reports concentrated SML estimates of the multi-level panel STAR model (5)-(8), for quarterly growth rates in 18 manufacturing sectors for the
period 1972Q1-2002Q4, where the term spread lagged two quarters is used as transition variable, total (5-)factor productivity is used as regressor in the level-2
model for the threshold parameter τi, and the slope parameter γi is pooled across sectors.
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Table 2: Estimates of parameters in
level-2 model in panel STAR model for
quarterly growth rates of US sectoral
production

Intercept TFP5
√

diagΣη

log γi 4.607 0 0
(2.198) – –

τi -2.041 0.973 0.1097
(0.690) (0.714) (0.0375)

Notes: The table reports concentrated SML es-
timates of the level-2 model (6) in the panel
STAR model for quarterly growth rates in 18
manufacturing sectors for the period 1972Q1-
2002Q4, where the term spread lagged two
quarters is used as transition variable. Total (5-
)factor productivity (TFP5) is used as regressor
in the level-2 model for the threshold parameter
τi, and the slope parameter γi is pooled across
sectors.
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Figure 1: Concentrated log likelihood surfaces for sector-specific STAR models.

21



1970 1980 1990 2000

0.5

1.0 Nonmetallic mineral products

1970 1980 1990 2000

0.5

1.0
Primary metal

1970 1980 1990 2000

0.5

1.0
Fabricated metal products

1970 1980 1990 2000

0.5

1.0 Machinery

1970 1980 1990 2000

0.5

1.0 Electrical equip., appl. and comp.

1970 1980 1990 2000

0.5

1.0 Motor vehicles and parts

1970 1980 1990 2000

0.5

1.0
Aerospace and misc. transp. equipment

1970 1980 1990 2000

0.5

1.0
Furniture and related products

1970 1980 1990 2000

0.5

1.0 Miscellaneous

1970 1980 1990 2000

0.5

1.0
Food, beverage and tobacco products

1970 1980 1990 2000

0.5

1.0
Textile and product mills

1970 1980 1990 2000

0.5

1.0 Apparel and leather

1970 1980 1990 2000

0.5

1.0 Paper

1970 1980 1990 2000

0.5

1.0 Printing and support

1970 1980 1990 2000

0.5

1.0 Petroleum and coal products

1970 1980 1990 2000

0.5

1.0 Chemical

1970 1980 1990 2000

0.5

1.0Plastics and rubber products

1970 1980 1990 2000

0.5

1.0 Other manufacturing (non−NAICS)

Figure 2: Conditional expectation of switching function.
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