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1 Introduction

Seasons, cycles, and unit roots are dominant themes of time series econometrics. Having
both important policy implications and a major impact on inference, these features are
typically analyzed using the work horse autoregressive model. While inference on the au-
toregressive parameters is straightforward inference on the features of interest – seasons,
cycles and unit roots – is more complicated since they depend on the roots of the au-
toregressive polynomial. To overcome this difficulty we utilize a novel model formulation
and follow Huerta and West (1999a, 1999b) in writing the model in terms of and conduct
inference directly on the roots. Adopting a Bayesian approach, the analysis is facilitated
by assigning point mass priors on root configurations corresponding to the features of
interest.

In addition to focusing directly on the roots of the process we adopt a flexible modelling
framework. In particular we allow for uncertainty about the lag length, uncertainty about
the number and nature of unit roots while allowing for polynomial trends in the data.
The lag length is allowed to vary by letting individual roots be either null or non-null and
thus contribute to the effective lag length. Allowing the number of positive unit roots to
vary may cause trend parameters to become unidentified. We circumvent this problem
by introducing an element of model selection, treating different combinations of number
of positive unit roots and degree of the trend polynomial as distinct models.

This flexibility and ease of interpretation of the results comes at a cost. The main
complication arises because the model is nonlinear in the roots of the characteristic poly-
nomial and the posterior distribution is intractable. We use MCMC methods to analyze
the posterior distribution with the reversible jump Markov Chain Monte Carlo algorithm
of Green (1995) as a unifying computational framework.

The output of the Markov Chain contains a rich set of information on the posterior
distribution. Posterior probabilities for the presence of particular features as well as the
posterior distribution of the roots or the ordinary autoregressive parameters are easily
obtained. In doing this we can either condition on specific features being present in the
model (e.g. an AR(3) with one unit root and a constant term) or average over the different
combination of features. In the latter case we are in effect performing Bayesian model
averaging and the results are robust to model misspecification within the class of models
considered here.

The present paper extends the work of Huerta and West in three directions. Firstly
we add seasonal components which makes it possible to analyze the presence of seasonal
unit roots and stationary seasonal features. Secondly, and perhaps most importantly,
we generalize the model to allow for a polynomial trend of arbitrary degree. This is in
contrast to Huerta and West who demean the data and exclude the constant term from
the model. Their modelling framework is thus in effect only applicable to non-trending
data. Thirdly, we give a different interpretation of the prior on the features of interest
which makes it easier to specify the prior and avoids some potential pitfalls.

In related work Franses, Hoek and Paap (1997) propose a Bayesian analysis of seasonal
unit roots based on the model formulation of Hylleberg, Engle, Granger and Yoo (1990).
While computationally more demanding our approach is much more general, providing a
richer set of information about the appropriate model and offering robustness against mis-
specification through model averaging. The approach of Dejong and Whiteman ((1991b),
(1991a)) to unit root inference is similar in spirit to our work in that they consider the
posterior distribution of the largest root of the characteristic polynomial. An important
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difference is that DeJong and Whiteman do not model the roots directly, instead they
model the AR parameters and solve for the roots given these parameters.

The organization of this paper is as follows. The modelling framework is introduced
in Section 2 and a suitable prior is given in Section 3. The necessary tools for posterior
analysis by MCMC are developed in Section 4. Section 5 applies the model to data on
the Swedish GDP and Section 6 offers some closing remarks.

2 Modelling the features of interest

In most cases the features of interest correspond to single points in the parameter space.
We will thus classify the roots accordingly and later on introduce a prior adapted to
this classification. At this stage it suffices to note that a Bayesian treatment of features
that correspond to a single point in the parameter space requires a prior that assigns
point mass probabilities to each of them. Excluding explosive behavior, the roots of
the autoregressive polynomial or, equivalently, the characteristic polynomial can be null,
stationary or on the unit circle. By allowing for null roots the effective lag length can
be varied and different lag lengths explored. For the active roots the classification into
stationary roots and unit roots can be further refined by in each case considering roots
at frequencies of special interest (typically seasonal) and roots at arbitrary frequencies.
In each case the prior assigns a point mass to the particular feature thus permitting the
calculation of posterior probabilities of the feature.

There is one feature of interest that does not fit directly into this framework and that
is cycles of a general nature. An example is business cycles where the exact length of
the cycle is unknown or may vary over time. Instead of considering a single frequency
we need to focus on a range of frequencies. In this case it is not necessary to assign a
point mass to the feature and it can be accommodated in the prior for roots at arbitrary
frequencies. Still, modelling the roots directly makes inference on cycles of arbitrary
length straightforward.

2.1 Stochastic and deterministic trends

Consider the autoregression of order p with a general polynomial trend of degree g

yt =

p∑
i=1

φiyt−i +

g∑
i=0

δit
i + εt, (1)

where εt are iid N (0, σ2
ε) innovations. Given (p, g) and an adequate number of initial

values, this model may be analyzed within the standard framework of multiple regression.
The model formulation (1) is problematic in the sense that the interpretation of the

model, in terms of the implied trend behavior, depends on the presence or absence of
a real positive unit root in the lag polynomial; see Schotman and van Dijk (1991) and
Lubrano (1995) for details. For each positive real unit root introduced in the lag polyno-
mial, the interpretation of the trend parameters change. Alternatively, the model can be
parameterized as

φ (L)

(
yt −

g∑
i=0

βit
i

)
= εt

2



where the order of the dynamics does not depend on the number of positive unit roots. Un-
fortunately, the underlying problem remains and is now manifest as local non-identification
of trend parameters as a root approaches unity.

In line with our approach of modelling the features of interest directly we address the
problem by explicitly treating each combination of the differencing order, d, and degree
of the trend polynomial, g, as giving rise to distinct models with different interpretations.
Decomposing φ (L) into (1− L)d Ψ (L) where the positive unit roots are excluded from
Ψ (L) we can rewrite the model as

(1− L)d yt = τ ′
tβd,g + υt, (2)

Ψ (L) υt = εt,

where τt = (t0, t1, . . . , tg)
′
and g is implicitly redefined by subtracting d. This allow us

to treat the stochastic and deterministic trends separately. In the posterior analysis we
can then condition on a specific choice of d and g or average over them for a more robust
analysis of the other features of interest.

While this solves the identification problem it is still the case that the data will be
less and less informative about the constant term as the largest root of Ψ (L) approaches
unity. There is still the possibility of near non-identification and we will need to account
for this in the prior specification.

2.2 Dynamics

Factoring the seasonal differencing polynomial

1− LS = (1− L)
(
1 + L+ . . .+ LS−1

)
we obtain the seasonal unit roots as −1 and exp

(
± ikπ

S/2

)
, k = 1, . . . , S/2− 1 for S even.

For the less common case of S odd the seasonal roots are instead given by exp
(
± ikπ

S/2

)
,

k = 1, . . . , (S − 1) /2. In either case, we can add one real root and a set of complex roots
to our collection of model features. Stationary seasonal dynamics is also of interest and
we allow for complex roots at the seasonal frequencies with modulus less than unity. The
set of roots is completed by adding stationary real roots and stationary complex roots
with arbitrary modulus and frequency.

Since complex roots must appear in conjugate pairs the modelling exercise will be
simplified if we treat real and complex roots separately. The lag polynomial Ψ (L) will
thus be taken to consist of a maximum of r real roots and c complex root pairs for a
total maximum order of p = r + 2c. Each of the r real roots may be either a null root,
a stationary root or a negative unit root. Similarly each of the c complex pairs may be
null, have an arbitrary frequency with arbitrary stationary modulus, seasonal frequency
with stationary modulus or be a seasonal unit root.

It is convenient to parameterize the stationary lag polynomial Ψ (L) in terms of the
roots of the characteristic polynomials,

Ψ (L) =
r∏

j=1

(1− ρjL)
c∏

j=1

(
1− 2mjajL+m2

jL
2
)
.

For the real roots the possible states are then null, ρj = 0, stationary, 0 < |ρj| < 1 or a neg-
ative unit root, ρj = −1. For the complex pairs of roots, mj exp (±iω) , we have null roots,
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mj = 0, stationary roots, 0 < mj < 1 or unit roots, mj = 1. For the non-null roots the
modulus are combined with the seasonal frequencies, ωj ∈ {2kπ/S, k = 1, . . . , S/2− 1}
or an arbitrary frequency, 0 < ωj < π to obtain the full set of complex roots. For ease of
notation we let aj = cosωj.

2.3 The likelihood

The parametrization in terms of the roots simplifies the identification, interpretation, and
introduction of interesting features. However, while the general form of the likelihood does
not change, the root parameters appear in a non-trivial multiplicative way. Conducting
joint inference on the full set of parameters is thus complicated. On the other hand, the
likelihood is amenable to conditional inference and we can divide the problem into smaller,
simple, parts that – provided this structure is maintained by the prior – naturally leads
to a MCMC algorithm for analyzing the posterior distribution. In this process, filtering
plays an important role.

Given the differencing order, d, and the degree of the polynomial trend, g, define the
trend vector τt = (t0, t1, . . . , tg) and ỹt = (1− L)d yt. Then, for inference on the trend
coefficient vector, conditional on the roots of Ψ (L) the model in (2) reduces to

y∗t = τ ∗′
t βd,g + εt, (3)

y∗t = Ψ (L) ỹt, τ
∗′
t = Ψ (L) τ ′

t

a standard linear regression model.
Conversely, for inference on the roots of the lag polynomial Ψ (L), conditional on βd,g,

let ut = (ỹt − τ ′
tβd,g) be the centered appropriately differenced data. For a real root ρi,

conditional on all else, define

zt =
∏
j 6=i

(1− ρjL)
c∏

j=1

(
1− 2mjajL+m2

jL
2
)
ut (4)

and conditional inference on ρi can be conducted in

(1− ρiL) zt = εt,

an autoregressive process of order one with known variance σ2
ε . Similarly for a complex

pair, mi exp (±iωi), define

zt =
r∏

j=1

(1− ρjL)
∏
j 6=i

(
1− 2mjajL+m2

jL
2
)
ut. (5)

Then, conditional on all but the complex pair the model reduces to(
1− φ1L− φ2L

2
)
zt = εt, φ1 = 2miai = 2mi cosωi, φ2 = −m2

i ,

an autoregressive process of order two with parameter restrictions.
A remaining issue is the treatment of the initial values. We can either take them

as given and use the likelihood for yp+d+1, . . . , yT conditional on y1, . . . , yp+d or use the
full likelihood for y1, . . . , yT . The former has the advantage of simplicity but can lead to
a substantial loss of information if p = 2c + r is large relative to T. Instead, we prefer
the latter approach and marginalize out the unobserved initial values y1−p−d, . . . , y0, by
treating them as latent variables to be simulated together with the parameters in the
Markov chain.
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3 The Prior Structure

The overall prior structure follows from a few reasonable independence assumption. We
take the seasonal and cyclical behavior to be a priori independent of the trend properties.
In addition, the innovation variance, σ2

ε , plays a different role in autoregressive models
than in standard regression models. In particular it does not influence how informative the
data is about the parameters in the autoregressive polynomial and the usual conditioning
on σ2

ε does not simplify the prior specification. Decomposing the prior on the trend
parameters β, d and g as π (βd,g|σ2

ε , d, g)π (d, g) we obtain the prior as

π
(
θ, βd,g, d, g, σ

2
ε

)
= π (θ)π

(
βd,g|σ2

ε , d, g
)
π (d, g)π

(
σ2

ε

)
(6)

where the characteristic roots of Ψ (L) are collected in

θ = (ρ1, . . . , ρr,m1, a1, . . . ,mc, ac) .

3.1 Stochastic and deterministic trends

In most cases only a few possible values for d and g are considered, i.e. at most two
unit roots or at most a quadratic trend. This leads to a limited number of combinations
(d, g) ∈

(
0, . . . , d

)
× (−1, . . . , g) where g = −1 corresponds to a model with no constant

term or trends. In addition, some of these might be ruled out a priori as unreasonable.
Assigning prior probabilities is thus fairly straightforward and if nothing else a uniform
prior on the possible combinations can be used.

3.2 Lag polynomial prior

Turning to the characteristic roots of Ψ (L) we note that the polynomial is invariant to
permutations of the roots. Consequently we treat the roots symmetrically and specify
identical and independent priors for the the real and complex roots respectively. We
write the prior on θ as

π (θ) =
r∏

j=1

π (ρj)
c∏

k=1

π (mk, ak) (7)

where π (ρj) is the prior on an arbitrary real root and π (mk, ak) the prior on an arbitrary
complex root. This prior structure is close to the one used by Huerta and West (1999a,
1999b) with obvious modifications to cater for the differences in model set up.

3.2.1 Real roots

For real roots we distinguish between three states, null roots, stationary roots and negative
unit roots. Corresponding to this the prior is a mixture over the three states,

π (ρ) ∼ wr
0Iρ=0 + wr

sf|ρ|<1 (ρ) + wr
−1Iρ=−1, (8)

where the weights {wr
i } sum to one, Iρ=k is the usual indicator function, and f|ρ|<1 (ρj) is

a continuous distribution with support on the stationarity region.
When interpreting the prior the primary distinction is between null roots and non-null

roots which contribute to the effective lag length. The non-null roots can in turn be either
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stationary or a unit root. This hierarchical structure is useful when thinking about the
weights. We suggest choosing the weights as

wr
0 = p0, w

r
s = (1− p0) ps, w

r
−1 = (1− p0) (1− ps)

where p0 is the a priori expected proportion of null roots and ps is the a priori expected
proportion of stationary roots given that the root is active. A natural uninformative prior
specification given this structure is p0 = 1/2, ps = 1/2. Note that this differs from the
uninformative prior, wr

1 = wr
2 = wr

3 = 1/3, obtained by considering (8) directly. The
latter is essentially the prior used by Huerta and West (1999b). Given r, the number of
real roots, the choice of weights induces a multinomial prior on the number of roots of
the different types. In particular, the induced prior on the contribution of the real roots
to the overall lag length is binomial, Bin (r, 1− wr

1) , and it is important to keep this in
mind when choosing r.

To complete the specification of the prior we need to specify f|ρ|<1 (ρ), the prior on
stationary roots. Convenient choices are a uniform prior on (−1, 1) and a truncated
normal distribution. Both these priors are problematic in the sense that the posterior for
the constant term in the deterministic trend will be dominated by the prior as ρ→ 1. In
the context of a model with only a constant term Schotman and van Dijk (1991) propose
dealing with this problem by making the prior for the constant more concentrated around
the initial condition, see Schotman (1994) for a detailed discussion of these issues. The
prior of Schotman and van Dijk has the disadvantage that it is data dependent and it is
unclear how this should be generalized to trend models of higher order. Instead we take
the simple route of specifying a uniform prior on the restricted range (−1, 1− δ) for a
small value of δ. In connection with this it is important to note that this does note rule
unit roots as these are modeled together with the deterministic trend. Instead we view
this as driving a wedge between trend stationary and unit root dynamics and forcing the
model to clearly distinguish between them.

3.2.2 Complex roots

The prior for the complex conjugate pairs can be constructed in a similar manner. A root
is null with probability p0 or otherwise non-null. If it is non-null, it may be stationary
with probability ps or on the unit circle. In addition, non-null roots may have a frequency
of special interest with probability pω∗

i
or have an arbitrary frequency with probability

1−
∑
pω∗

i
. In the case of a single frequency of special interest, ω∗, we would have

π (m, a = cosω) ∼ wc
0Im=0 + wc

s,ω∗fm,ω=ω∗

+ wc
s,ωfm,ω + wc

1,ω∗Im=1,ω=ω∗ + wc
1,ωfm=1,ω (9)

with

wc
0 = p0, w

c
s,ω∗ = (1− p0) pspω∗ , wc

s,ω = (1− p0) ps (1− pω∗)

wc
1,ω∗ = (1− p0) (1− ps) pω∗ , wc

1,ω = (1− p0) (1− ps) (1− pω∗)

where p0 is the a priori expected proportion of null roots, ps the proportion of stationary
roots given that the root is non-null and pω∗ the proportion of non-null roots with the
special frequency ω∗.

Apart from the structure imposed on the prior weights, this is a straightforward exten-
sion of the prior used by Huerta and West (1999b). It should be clear that the structure
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plays a larger role with the complex roots than with the real roots. It greatly reduces the
number of prior parameters to specify and implies a more reasonable default, uninforma-
tive, prior with p0 = 1/2, ps = 1/2 and pω∗ = 1

n∗+1
where n∗ is the number of special

frequencies. Recall that the implied prior for the number of non-null complex roots is
Bin (c, 1− wc

0) . It is clear that the choice wc
0 = 1

2(n∗+1)+1
inspired by considering (9) di-

rectly can lead to an implausible large number of complex roots if, as prudence might
dictate, a large value of c is used.

To complete the specification we need to specify the continuous components. Following
Huerta and West (1999b) a joint uniform prior on the implied autoregressive parameters
in (5) is used. For the component corresponding to a stationary cycle at an arbitrary
frequency, fm,ω, this results in

m ∼ Beta (3, 1) , a ≡ cosω ∼ U (−1, ā) .

where ā = cosω. The upper bound depends on the minimum observable frequency ω
which in turn depends on the length of the time series in a trivial way. This leads
to a truncated bivariate normal posterior and potential simplifications in the posterior
simulation for the implied parameters in the time domain. For the other continuous
components added by the presence of special frequencies, a similar argument leads to the
prior fm,ω=ω∗ ∼ Beta (2, 1) for the modulus with ω fixed at a special frequency. Finally,
for unit roots with arbitrary frequency, the same uniform prior a ≡ cosω ∼ U (−1, ā) is
used for the frequency.

3.3 Polynomial trend prior

By isolating the positive unit roots and rewriting the model as (2) a singularity in the
conditional likelihood (3) for βd,g is avoided at the cost of making the interpretation of
βd,g depend on the differencing order, d. Specifying a general prior for βd,g is thus difficult
unless we make it uninformative or vague. A uniform, improper, prior is in fact possible
after the removal of the singularity but this choice is problematic if we view the choice
of d and g as a model selection exercise. Instead we use a g-prior with the scaling factor
selected to make the prior vague. That is,

βd,g| d, g ∼ Ng+1

(
0, σ2

εM
−1
)

where M = gX ′X and X the trend matrix with rows τ ′
t = (t0, t1, . . . , tg) .

3.4 The innovation variance

For the innovation variance, σ2
ε , we use the standard inverse gamma prior,

σ2
ε ∼ IG (a0, b0) ,

with a0 and b0 selected to make the prior proper but vague. This leads to an inverse
gamma full conditional posteriors and simplifies the MCMC computations.

4 The Posterior Simulation

4.1 Implementation

Exploration of the model space requires occasional changes in the dimension or content
of the parameter vector. The dimension changing moves are handled using the reversible
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jump MCMC algorithm of Green (1995). This entails the construction of moves between
the possible states together with their balancing counterparts. Some additional notation
is needed when discussing the moves. Let the subscripts c and p denote current and
proposed quantities. Collecting all current parameters in ξc = [θc, βc, dc, gc, σ

2
c ] , the prior

of the current state is summarized by πc = π (ξc). When appropriate, let jcp be the
probability of selecting a move that attempts a transition from the current state to the
proposed state

The reversible jump algorithm solves the problem with changing dimensions by com-
pleting the parameter spaces. Let uc and up be parameter vectors satisfying the dimension
matching requirement dim (ξp) + dim (uc) = dim (ξc) + dim (up) and (uc, ξp) = g (ξc, up)
a bijection. A proposal parameter vector, ξp, for the proposed state is then obtained by
drawing up from a suitable distribution qp and applying the transformation. As this is
a Metropolis-Hastings step the corresponding, imaginary, operations are conducted for
the balancing move from the proposed to the current state when forming the acceptance
probability,

α = min

{
1,
L (y|ξp)
L (y|ξc)

πp

πc

jpcqc (uc)

jcpqp (up)

∣∣∣∣∂g (ξc, up)

∂ (ξ, u)

∣∣∣∣} ,
where jcp and jpc are the probabilities of proposing a move that attempts a transition
from the current to the proposed state and vice versa.

When dim (ξc) > dim (ξp) it is common to take up to be empty and dim (uc) =
dim (ξc)−dim (ξp) . The proposal would not involve any sampling although the balancing
move is still conducted as if uc was a random quantity. In contrast with this we will find it
convenient to complete both parameter vectors in some cases. In practice, the proposals
involve only a subset of the parameters and the acceptance probabilities simplify consid-
erably by using the appropriate conditional likelihood and exploiting the structure of the
prior.

For the particular problem of interest, the structure of the model suggests two major
subsets, one containing the trend parameters (d, g) and another containing the collection
of all roots. We use four types of moves to explore the (d, g) space. The first (T1) is a local
move that holds (d, g) constant and only updates the coefficients of the trend polynomial.
The second move (T2) changes the degree of the trend polynomial, gp = gc ± 1, while
holding the differencing order constant. The third move (T3) is the corresponding move
for the differencing order. The final move (T4) change both quantities in such a way as
to keep the total order of the trend constant, dp + gp = dc + gc. With the exception of
T1, all moves require the execution of a reversible jump.

When exploring the dynamic properties, real and complex roots are treated separately.
For real roots, as discussed in Section 3.2.1, a uniform prior over the stationary region
for the continuous component leads to updates with a Gibbs step. For the complex roots
the updates are more complicated and four different moves are used. Corresponding
to the major states of the roots, M1 moves between null and stationary roots and M2
moves between stationary roots and roots on the unit circle. Complementing this, M3
explores the modulus and frequency of stationary roots and M4 explores the frequency
of the complex unit roots. Both major moves are reversible jumps. While M3 in theory
could be updated with a Gibbs step, the resulting complicated truncated bivariate normal
prompts the use of a Metropolis-Hastings step. Contrasting, in M4 it is possible to update
the frequency of a pair at the boundary using a procedure similar to that for real roots.

The Markov chain proceeds by cycling through the steps in Algorithm 1. In what
follows let Y be the vector of original time series measurements, including the appropriate
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Algorithm 1 Structure of the Markov chain

1. Update the trend properties. Select a new state (dp, gp) and attempt a transition to
the state using the relevant move in Section 4.2

2. Update the lag polynomial (Section 4.3). Establish a cycle of length l = r + c. In
each iteration sample a root index at random

(a) If the selected index is associated with a real root, update it using the full
conditional posterior in Section 4.3.1.

(b) If the selected index is associated with a complex pair, query the current status
and attempt to update it using one of four moves detailed in Section 4.3.2.

3. Update the variance σ2
ε using the full conditional posterior in Section 4.4.

4. Sample new initial values using the procedure detailed in Section 4.5.

number of latent initial values, and X the matrix of appropriately defined trend variables.

4.2 Updating the trend properties

Propose a new state (dp, gp) with equal probability from {(d, g) : (dc, gc) , (dc ± 1, gc) ,
(dc, gc ± 1) , (dc ± 1, gc − d+ dc) , 0 ≤ d ≤ d, −1 ≤ g ≤ g} . Due to the endpoint restric-
tions the available states vary and the proposal probabilities are j = 1/3 for (dc, gc) =
(0,−1) or

(
d, g
)
, j = 1/4 for (dc, gc) = (0, g) or

(
d, 0
)
, j = 1/5 for dc ∈

{
0, d
}

and

−1 < gc < g or gc ∈ {−1, g} and 0 < dc < d and j = 1/7 otherwise. Given the proposed
state a transition is attempted using one of the moves T1 - T4. Throughout this section
we condition on the current lag polynomial and innovation variance and for simplicity of
notation we omit θc and σ2

c from the conditioning variables.
Although we consider four different moves they all fit in a common generic template.

The key to the simplicity of the updates is that we draw the proposal for β directly
from the full conditional posterior and treat the current value as a draw from the full
conditional posterior. That is qp (βp) = p (β|Y, dp, gp) and qc (βc) = p (β|Y, dc, gc) and
g (·, ·) is the identity function with unit Jacobian.

To illustrate, for the current model, let

Ec = Ψc (L) Ỹc, Ỹc = (1− L)dc Y,

be the filtered appropriately differenced series, and filter the relevant section of the trend
matrix X to obtain

Dc = Ψc (L)Xc.

With the conditional normal structure, the normal prior leads to the standard full condi-
tional posterior

βc ∼ Ngc+1

(
βc,Ωc

)
where

βc = Ωc

[
σ−2

ε D′
cEc

]
, Ωc = σ2

ε [D′
cDc +Mc]

−1
.
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Collecting all factors in the acceptance probability that are associated with the current
value, an expression for the current contribution simplifies to

jpcqc (βc)

L (y|ξc)πc

= jpcκc

√
1

|σ2
εMc| |Ωc|

exp

{
1

2

[
σ−2

ε E ′
cEc − β

′
cΩ

−1
c βc

]}
,

where κc is used to collect the scale factors from the normal likelihood, prior and proposal.
From a similar exercise for the proposed state we get the analogous proposal quantities
Ep, Dp, βp, and Ωp. Some matrix algebra yields a simplified generic expression for the
acceptance probability as

αT = min

1,
jpc

jcp

√
|Ωp| |σ2

εMp|
|Ωc| |σ2

εMc|

exp
{
−1

2

[
σ−2

ε E ′
pEp − β

′
pΩ

−1
p βp

]}
exp

{
−1

2

[
σ−2

ε E ′
cEc − β

′
cΩ

−1
c βc

]}
 . (10)

Depending on the selected move, this expression may simplify further.

Move T1 (Updating the polynomial trend parameters)

When the differencing order and the trend degree are the same, the current and proposal
quantities in (10) are all equal. The acceptance probability simplifies to αT1 = 1 and this
is equivalent to a Gibbs step. Note the special case gc = gp = −1 where no computations
at all are necessary.

Move T2 (Updating the trend polynomial degree)

With (dp, gp) = (dc, gc ± 1) the current and proposal models share the same centered
differenced series and the acceptance probability simplifies to

αT2 = min

1,
jpc

jcp

√
|Ωp| |σ2

εMp|
|Ωc| |σ2

εMc|

exp
{

1
2
β

′
pΩ

−1
p βp

}
exp

{
1
2
β

′
cΩ

−1
c βc

}
 .

The expression simplifies further if either the current or proposed model implies a trend
free model. For instance, assuming gc = −1 we get

αT2 = min

{
1,
jpc

jcp

√
|Ωp| |σ2

εMp| exp

{
1

2
β

′
pΩ

−1
p βp

}}
.

Move T3 (Updating the differencing order)

With (dp, gp) = (dc ± 1, gc) the filtered trend matrix, D, and the prior precision are
unaffected with Ωc = Ωp and the acceptance probability simplifies to

αT3 = min

1,
jpc

jcp

exp
{
−1

2

[
σ−2

ε E ′
pEp − β

′
pΩ

−1
p βp

]}
exp

{
−1

2

[
σ−2

ε E ′
cEc − β

′
cΩ

−1
c βc

]}
 .

Note how the major simplification is the cancelling of the ratio of scale factors. If there
is currently no active trend model, that is gc = gp = −1, the expression simplifies to

αT3 = min

{
1,
jpc

jcp
exp

{
−1

2

[
σ−2

ε

(
E ′

pEp − E ′
cEc

)]}}
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Move T4 (Updating the trend degree and the differencing order)

Setting (dp, gp) = (dc ± 1, gc − dp + dc) no further simplifications are achieved and the
generic expression in (10) is used so that αT4 = αT .

Note that the acceptance probabilities do not depend on the current or proposed value
of β. This suggests the following strategy to improve the mixing properties of the chain.
Unless Move T1 is actually selected, sample the next trend state using the appropriate
acceptance probability. Then, regardless of the result, sample a new coefficient vector
from the relevant full conditional posterior necessary for updating the lag polynomial.
Essentially, the updating sequence in Step 1 of Algorithm 1 then always ends with the
execution of Move T1.

4.3 Updating the lag polynomial

Conditional on all else, and in particular the trend properties d, g and βd,g, the data can
be filtered as outlined in Section 2.3 to isolate the contribution of a single root. It is then
straightforward to obtain the full conditional posterior for the root up to a scaling factor.
To improve the mixing properties of the chain we update the roots in random order. Draw
l = r + c integers with replacement from 1, . . . , r + c and update the roots in this order.

4.3.1 Sampling real roots

Assuming a real root ρi is selected for updating, define

U = Ỹ −Xcβc, Ỹ = (1− L)dc Y,

the demeaned appropriately differenced series. Using (4), filter U to obtain the dependent
variable Z and explanatory variable Z−1 for the AR(1). With a uniform prior for the
continuous component in (8) , the full conditional posterior is

ρi|Y, ξc�ρi ∝

(
wr

0Iρ=0 + wr
s

1

2
+ wr

−1Iρ=−1

)
exp

{
− 1

2s2
(r̂ − ρi)

2

}
,

where
r̂ =

(
Z ′

−1Z−1

)−1
Z ′

−1Z s2 = σ2
ε

(
Z ′

−1Z−1

)−1
,

are the usual least squares quantities. Computing the scale factor, the full conditional
posterior state probabilities for a null, stationary, and real negative unit root are given by

pi =
ti∑3
k=1tk

,

where
ρi = 0 : t1 = wr

0 exp
{
− 1

2s2 (r̂ − 0)2} ,
|ρi| < 1 : t2 = wr

s

2

∫
ρ
exp

{
− 1

2s2 (r̂ − ρ)2} =
wr

2 ·κ
2

(2πs2)
1/2

ρi = −1 : t3 = wr
−1 exp

{
− 1

2s2 (r̂ − (−1))2} .
In the expression for t2,

κ = Φ

(
1− r̂

s

)
− Φ

(
−1− r̂

s

)
is a scale factor due to the restriction ρi ∈ (−1, 1). Sampling a new state, if the next state
corresponds to a stationary root the actual value is sampled from

ρ ∼ T N
(
ρ|r̂ =

(
Z ′

−1Z−1

)−1
Z ′

−1Z s2 = σ2
ε

(
Z ′

−1Z−1

)−1
,−1, 1

)
,

a normal distribution truncated to the stationary region.
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4.3.2 Sampling complex pairs

Assuming a complex pair mc exp (±iωc) is selected for updating, define

U = Ỹ −Xcβc, Ỹ = (1− L)dc Y,

the demeaned appropriately differenced series. Using (5), filter U to obtain the filtered
sequence Z which is an AR(2) with non-linear parameter restrictions. While possible,
a Gibbs step would be complicated and time consuming to execute. Instead, we use
Metropolis-Hastings steps to move between the possible states for the complex roots.

Applying the reversible jump, move probabilities must be selected. As the suggested
moves are tailored for transitions between particular root states, the jump probabilities
will the very least depend on the current state. In particular, if the root selected for
updating is at the origin, with probability jns attempt to introduce a stationary root
using Move M1 and otherwise do not update the root. If the root selected for updating is
instead stationary we may attempt Moves M1, M2, or M3, with probability jsn, jsu, and
jss = 1− jsn− jsu respectively. In turn, this amounts to attempting to deactivate the root
by placing it at the origin, moving it to the boundary and introducing a persistent cycle
or seasonal component, or simply updating it. Finally, if the root selected is currently
placed at the unit circle, an attempt to move it into the stationary region using Move M2
is performed with probability jus. Otherwise, an attempt to update the frequency using
Move M4 is made with probability juu = 1− jus.

Throughout we will, without loss of generality, assume that there is a single special
frequency, a∗ = cosω∗.

Move M1 (Transitions between null and stationary roots)

Assume the complex pair is currently at the origin. To sample a proposal, from the filtered
sequence obtain the dependent variable Z and the explanatory variables Z−1 and Z−2 for
the AR(2). Calculate ordinary least squares quantities

W = [Z−1, Z−2] , φ̂ = (W ′W )
−1
WZ, Ω = σ2

ε (W ′W )
−1
.

Begin by sampling a proposal for the modulus by sampling φ2 from

φ2 ∼ T N
(
φ2|φ̂2, ω22,−1, 0

)
, (11)

a normal distribution truncated with lower bound−1 and upper bound 0. Set the proposed
modulus to mp =

√
−φ2. Proposing a frequency, we want to propose either a special

or arbitrary frequency. This is achieved by introducing a discrete distribution over all
possible frequency states; in this case just two. While the probabilities may be fixed
at any values, the mixing of the chain is improved if a more elaborate strategy is used.
Calculate a proposal probability for the special frequency as

ps =
wc

s,ω∗ exp
{
−1

2
σ−2

1

(
µ1 − 2

√
−φ2a

∗)2}
wc

s,ω∗ exp
{
−1

2
σ−2

1

(
µ1 − 2

√
−φ2a∗

)2}
+ wc

s,ω
κ

ā+1
(2πσ2

1)
1/2
, (12)

where

µ1 = φ̂1 + ω12ω
−1
22

(
φ2 − φ̂2

)
,

σ2
1 = ω11 − ω12ω

−1
22 ω21, σ

2
2 = ω22

κ = Φ

(
2
√
−φ2ā− µ1

σ1

)
− Φ

(
2
√
−φ2 − µ1

σ1

)
.
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Then, with probability ps set ap = as and with probability 1− ps sample φ1 from

φ1 ∼ T N
(
φ1|m1, σ

2
1,−2

√
−φ2, 2

√
−φ2ā

)
, (13)

to propose either (mp, ap) =
(√

−φ2, as

)
or
(√

−φ2, φ1/2
√
−φ2

)
.

To calculate the relevant acceptance probability, and sample the next state, define the
current and proposed root contribution to the lag polynomial and filter Z to get respective
residuals,

Ec =
(
1− 2mcacL+m2

cL
2
)
Z

Ep =
(
1− 2mpapL+m2

pL
2
)
Z

Then, if a stationary pair with arbitrary frequency is proposed, the acceptance probability
is calculated with

αM1 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − Z ′Z
)]
κ

}
,

κ =
wc

s,ω

wc
0

3

4 (ā+ 1)

jsn
jns (1− ps) f1 (φ1) f2 (φ2)

.

where f1 and f2 the truncated normal distributions in (11) and (13) respectively. If instead
a special frequency is proposed the acceptance probability is

αM1 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − Z ′Z
)]
κ

}
,

κ =
wc

s,ω∗

wc
0

jsn
jnspsf2 (φ2)

.

For the reciprocal move attempting to delete a stationary root, the proposal does not
involve any sampling. Instead, the balancing move treats φ1 = −m2

c as if it had been
sampled from (11) , and depending on the current type of frequency φ2 = 2mcac from the
appropriate part of (12)-(13) . The correct acceptance probabilities are then simply the
inverse of the relevant expression for αM1 after the obvious substitutions.

Move M2 (Transitions between the stationary roots and unit roots)

Assume the root is currently stationary. In an attempt to move the pair to the boundary
of the stationary region the proposal is simply (1, ac) and leaves the frequency unchanged.
It does not involve any sampling and is trivial to extend to an arbitrary number of special
frequencies. When balancing, the current modulus is treated as if it had been sampled
from the truncated normal in (11). Computing the appropriate residuals Ec and Ep, if
the current root is stationary with an arbitrary frequency, the acceptance probability is

αM2 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − E
′

cEc

)]
κ

}
,

κ =
wc

1,ω

wc
s,ω

2

3mc

jusf2 (−m2
c)

jsu
.
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If the root currently has a special frequency, the transition to a unit root at the special
frequency is instead accepted with probability

αM2 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − E
′

cEc

)]
κ

}
,

κ =
wc

1,ω∗

wc
s,ω∗

jusf2 (−m2
c)

jsu
.

If instead the root is currently at the unit circle, a modulus is sampled from the
truncated normal in (11). The balancing move involves no sampling. Depending on the
status of the current frequency the acceptance probability is the inverse of the appropriate
version of αM2 after substituting the current value of the modulus mc = 1 with the
proposed value mp =

√
−φ2.

Move M3 (Updating stationary roots)

The first local move explores the stationary region and is only available to roots that are
currently stationary. A proposal is generated using the same procedure as in Move M1
and the balancing move treats the current value as if it had been sampled with the same
procedure. The acceptance probability depends on the status of the current and proposed
frequency. If both the current and proposed pairs are stationary with arbitrary frequency
the acceptance probability is

αM3 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − E
′

cEc

)]
κ

}
,

κ =
(1− pc

s) f1c (2mcac) f2 (−m2
c)

(1− pp
s) f1p (φ1) f2 (φ2)

.

where pc
s and pp

s are the probability of a special frequency (12) for the current and proposed
root respectively. If the current root has an arbitrary frequency and a special frequency
is proposed, the acceptance probability is

αM3 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − E
′

cEc

)]
κ

}
,

κ =
wc

s,ω∗4 (1− pc
s) f1c (2mcac) f2 (−m2

c)

wc
s,ω3 (ā+ 1) pp

sf2 (φ2)
.

If both the current and proposed pairs are stationary with special frequency the acceptance
probability is just

αM3 = min

{
1, exp

[
−1

2
σ−2

ε

(
E ′

pEp − E
′

cEc

)]
κ

}
,

κ =
wc

s,ω∗

wc
s,ω∗

pc
sf2 (−m2

c)

pp
sf (φ2)

.

Move M4 (Updating the frequency of unit roots)

The second local move explores the frequencies of unit roots. Keeping the modulus
constant, a new frequency can be sampled with a Gibbs step, similar to that used for
updating real roots. This move is executed using (12) and (13) with φ2 = −1 and setting
ap = φ1/2.
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4.4 Updating the innovation variance

With the selected model structure, the treatment of the innovation variance may be
performed in a standard fashion. Having completed a full cycle of model selection, and
updating of trend and lag polynomials compute the observed residuals,

E = Ψc (L)
(
Ỹ −Xcβc

)
, Ỹ = (1− L)dc Y.

Assuming normally distributed errors, the conditional likelihood of σ2
ε has an inverse

gamma kernel. With the conjugated inverse gamma prior on the precision this leads to

σ−2
ε

∣∣Y, ξc�σ2
ε ∼ Gamma

(
σ2

ε |α0 + T/2, β0 + E ′E/2
)
,

where T the number of observations.

4.5 Sampling latent initial values

The suggested approach circumvents the initial value problem by simply modelling the
initial values as latent variables. As we may for the purpose of updating them condition
on all else, the initial values are generated in three simple steps.

First, conditional on the differencing order, the trend and the lag polynomial, define

υt = (1− L)dc yt − τ
′

tβc,

for t = dc + 1, . . . , T . Using Ψc (L) υs = εs and reversing the time arrow, back-cast the
required number of initial values υ0

s for s = dc, dc − 1, . . . ,−r− 2c− d+ dc + 1 iteratively
while sampling an innovation, conditional on the variance. Note how this is possible
even when the polynomial includes unit roots, see Huerta and West (1999a) for a proof.
Finally, extract initial values on the original scale using

(1− F )dc ys = (−1)dc
(
τ ′
s+dc

βc + υ0
s+dc

)
for s = 0, . . . ,−r − 2c− d+ 1.

5 The Swedish GDP

Figure 1 shows the log of Swedish real GDP, in levels as well as after taking a first
difference. The quarterly data span the period from the first quarter in 1970 to the third
quarter in 2000. The data is dominated by two features, a strong seasonal pattern which
appears to be stable from the beginning of the eighties and a fall in GDP in the early
nineties.

We specify the prior parameters as follows. For the trend component we set the
maximum differencing order to d = 2 and the maximum degree of the trend polynomial
to g = 3, i.e. a quadratic trend, with a uniform prior over all possible combinations. The
scale factor in the g-prior for the parameters in the deterministic trend is set to g = 1/T,
i.e. the prior information corresponds to the average information in one observation. We
allow for a maximum of r = 8 real roots and use the proposed default choice for the
weights in the mixture prior, that is wr

0 = 1/2 and wr
s = wr

−1 = 1/4. The expected
number of active real roots is four with two stationary roots and and two negative unit
roots. The uniform prior for stationary roots is truncated above at 0.99, that is δ = 0.01.
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Figure 1 The log of Swedish real GDP, quarterly from 1970:1 to 2000:3; levels (left) and
differenced (right).
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(b): GDP growth rates.

For the complex roots we set c = 4 so the real and complex roots can contribute in
equal amounts to the effective lag length. The weights in the mixture prior are set to
wc

0 = 1/2 wc
s,ω∗ = wc

s,ω = wc
1,ω∗ = wc

1,ω = 1/8. That is, we expect two complex roots with
equal probability of these stationary or on the unit circle and have a seasonal or arbitrary
frequency. The precision hyperparameters are calibrated using results based on available
data from 1950 to 1970.

We obtain the posterior distribution from one run of the Markov chain with 250 000
replicates after having discarded 5000 replicates as burn in. The chain was monitored for
convergence by studying the sample path of the model indexes, running means and the
Geweke (1992) z -statistic for the constant term and error variance. To reduce autocor-
relation and simplify postprocessing the chain was thinned by only retaining every fifth
replicate.

Simple univariate measures of the posterior probabilities of different model configura-
tions are shown in Table 1. It is evident that the dominant model is one with a constant
term, one positive and one negative unit root and one seasonal unit root. The seasonal
difference (1− L4) that might be expected from viewing the data is thus completed. With
probability 0.24 a second complex root, a stationary root with arbitrary or seasonal fre-
quency or possibly a unit root with arbitrary frequency, is present in the model. The
posterior distribution of these roots are displayed in Figure 2. It is clear that they all,
to some extent mimic a seasonal unit root. This is, in particular the case for the unit
root at arbitrary frequency and the stationary seasonal root. The arbitrary unit root
only appears when the seasonal unit root is absent and all the probability mass above a
modulus of 0.9 for the stationary seasonal root correspond to replicates when the seasonal
unit root is absent. The frequency for the arbitrary stationary root has a mode close to
π/4 and this root appear to be aliasing for the seasonal frequency π/2. The posterior
probability of a third complex root is only 0.033 and there is no evidence of a business
cycle in the data.

Turning to the real roots, the posterior distribution of the largest negative root, the
smallest root and the largest positive root are displayed in Figure 3. For the negative
root we, again, see a tendency for this root to proxy for the negative unit root when this
is absent from the model. The posterior for the positive real root is well behaved does
not show any adverse affects of the truncation at 0.99 enforced by the prior distribution.
The posterior for the smallest root is a mixture over models with varying number of real
roots and the posterior mode close to zero correspond to models with a large number of
real roots.

Figure 3 also shows the posterior distribution of the constant term in models with
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Table 1 Univariate posterior probabilities for model configurations

Number of roots 0 1 2 3 4 5 6

Real roots 0.000 0.001 0.032 0.526 0.307 0.111 0.021
Stationary real 0.001 0.032 0.520 0.310 0.113 0.022 0.002
Neg. unit root 0.010 0.990

Complex roots 0.000 0.723 0.242 0.033 0.002
Arbitrary stationary 0.788 0.194 0.018 0.000
Seasonal stationary 0.883 0.111 0.006 0.000
Unit arbitrary 0.986 0.014 0.000 0.000
Unit seasonal 0.054 0.946 0.000 0.000

Stochastic and deterministic trends
Unit roots 0.000 1.000
Degree of trend 0.183 0.766 0.046 0.004 0.001
polynomial
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Figure 2 Posterior distribtion of complex roots.

(a): Modulus of arbitrary sta-
tionary root.

(b): Frequency of arbitrary sta-
tionary root.

(c): Modulus of seasonal station-
ary root.

(d): Frequency of arbitrary unit
root.

only a constant. The posterior mean is 0.005 corresponding to a quarterly growth rate
of 0.5%. The posterior for the constant is more dispersed in models with a linear trend
and has a slightly lower mean of 0.0039. The posterior mean for the trend coefficient is
0.00006 with a posterior variance of 6.8 × 10−9, effectively removing the trend from the
model.

The Markov chain explores a large range of lag length configurations as is evident from
the posterior distribution for the number of real and complex roots in Table 1. Still the
posterior distribution of the lag lengths is fairly concentrated with 90% of the posterior
mass concentrated on lags 5 to 8 with posterior probabilities 0.408, 0.231, 0.178 and
0.097. In addition to this the unit root in the trend component is always present leading
to effective lag lengths of 6 to 9.

Finally, Table 2 show the posterior mean of the coefficients in the stationary polynomial
Ψ (L) for the combinations of number of real and complex roots with the highest posterior
probabilities. The posterior means for the first five lags are relatively insensitive to the
root configuration. It might thus be difficult to infer the root configuration from the
AR-coefficients if these are estimated directly. The coefficients for the higher lags are
quite small, this – together with the small posterior probabilities for higher lag orders –
is reflected in the posterior mean for the model averaged polynomial.

6 Final remarks

Extending the work of Huerta and West this paper demonstrates how the fundamental
features of autoregressive processes, the roots of the characteristic polynomial, can be
modelled directly. By focusing on the roots we are able to extract information about the
dynamics of the data which is otherwise not readily available.

The modelling framework is highly flexible and automatically robustifies against mis-
specification by implicitly averaging over different lag lengths, number of unit roots and
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Figure 3 Posterior distribution of real roots and constant term.

(a): Largest negative, smallest
and largest postive root.

(b): Constant term.

Table 2 Posterior distribution of coefficients in Ψ (L).

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 p
r = 3, c = 1 −0.549 −0.277 −0.278 0.721 0.272 0.408
r = 4, c = 1 −0.556 −0.272 −0.286 0.713 0.270 −0.014 0.217
r = 3, c = 2 −0.559 −0.295 −0.205 0.736 0.296 0.033 0.105
Model average −0.553 −0.278 −0.261 0.718 0.272 −0.002

specifications for the deterministic trend. This is accomplished at the same time as in-
ference on these issues is straightforward, the posterior probability of any given model
specification can be estimated directly from the output of the Markov chain.

The flexibility comes at a cost, mainly in terms of the specification of the prior dis-
tribution. The choice of weights for the mixture prior is not always straightforward. The
default choices discussed in Section 3.2 are useful starting points but can lead to counter
intuitive results and should not be adopted automatically. The restriction of the prior on
stationary real roots to a subset of the stationary region might also be unpalatable in some
contexts. We plan to address both the specification of the prior on the components of the
polynomial and alternative ways of resolving the near non-identification of the constant
term in future research.
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