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Abstract

Recently econometricians have shifted their attention from point and interval forecasts to density
forecasts because at the heart of market risk measurement is the forecast of the probability
density functions (PDF) of various market variables. One of the main problems in this area
has been evaluation of the density forecasts. In this paper, we propose a formal test for density
forecast evaluation using Neyman (1937) smooth test procedure. Apart from giving indication
of acceptance or rejection of the tested model, this approach provides specific sources (such as
the mean, variance, skewness and kurtosis or the location, scale and shape of the distribution)
of rejection, thereby helping in deciding possible modifications of the assumed model. Our
applications to value weighted S&P 500 returns indicated that introduction of a conditional
heteroscedasticity model significantly improved the model over a model with constant conditional

variance.



1 Intoduction

In the estimation literature in statistics there was a natural progression of point estimation to
interval estimation, and then to the full (non-parametric) density estimation. In the context of
time series forecasting, we also observe similar pattern of advancement from point forecast to
interval forecast (Christoffersen, 1998), and then finally to density forecast, though construction
of density forecast in empirical work is only a recent phenomenon. Therefore, it is not surprising
that evaluating density forecast techniques is very much in its infancy. The only two published
papers, we are aware of, that directly address the question of evaluation of density forecasts are
Diebold, Gunther and Tay (1998) and Berkowitz (2001). The importance of density forecast
evaluation cannot be overemphasized. Recent developments in risk evaluation clearly indicate
that we can no longer rely on a few moments or certain regions of the distribution; very often
we will need to forecast the entire distribution. Also, as demonstrated by Diebold et al. (1998)
and Granger and Pesaran (2000), only when a forecast density coincides with the true data
generating process, then that forecast density will be preferred by all forecast users regardless of
their attitude to risk (loss function). The importance of density forecast evaluation in economics
has been aptly depicted by Crnkovic and Drachman (1997, p. 47) as follows: “At the heart
of market risk measurement is the forecast of the probability density functions (PDFs) of the
relevant market variables ... a forecast of a PDF is the central input into any decision model for
asset allocation and/or hedging ... therefore, the quality of risk management will be considered
synonymous with the quality of PDF forecasts.”

From a pure statistical perspective, density forecast evaluation is essentially a goodness-of-fit
test problem. In a seminal paper, though never used directly in econometrics, Neyman (1937)
demonstrated how “all” goodness-of-fit testing problems can be converted into testing only one
kind of hypothesis. Specifically Neyman considered the probability integral transform (PIT) of the
density f (z) under the null hypothesis and showed that PIT is distributed as U (0, 1) irrespective
of the specification of f (z). As an alternative to the U (0, 1) density, Neyman specified a smooth
density using normalized Legendre polynomials. A major benefit of Neyman’s formulation is
that in addition to a formal test procedure we can identify the specific sources of rejection when
the data is not compatible with the tested density function. Therefore, Neyman’s smooth test
provides natural guidance to specific directions to revise a model. The purpose of the paper is to
use Neyman'’s idea to devise a formal test for density forecast evaluation. The plan of the paper
is as follows. In the next section we review Neyman (1937) approach, though a fuller account
is given in Bera and Ghosh (2001). Section 3 uses the framework of Diebold et al. (1998)

and considers a density forecast evaluation. An application to S. & P. 500 return data is given



in Section 4. Section 5 gives some limited Monte Carlo results on simulated data to see size

properties of the proposed test. Section 6 concludes.

2 Neyman Smooth Test

We want to test the null hypothesis (Hy) that our assumed density f (x) is the true density
function for the random variable X. The specification of f () will be different depending on the
problem at hand. Neyman (1937, pp. 160-161) first transformed any hypothesis testing problem
of this type to testing only one kind of hypothesis using the probability integral transform (PIT).!
Neyman suggested this test to rectify some of the drawbacks of Pearson (1900) goodness-of-fit
statistic [see Bera and Ghosh (2001) for more on this issue and for a historical perspective],
and called it a smooth test since the alternative density is close to the null density and has few
intersections with the null density.

We construct a new random variable Y by defining V; = F (X;), i = 1,2, ...,n, that is, the
probability integral transform (PIT)

yi = / f (ulHy) du = F (z;). (1)

Suppose under the alternative hypothesis, the density and the distribution functions of X is
given by ¢ (.) and G (.) respectively. Then, in general, the distribution function of Y is given by

=G (Qv), (2)

where @ (y) = F~! (y) is the quantile function of Y. Therefore, the density of Y can be written

Tn the context of testing several different hypotheses, Neyman (1937 [27], p. 160) argued this quite eloquently
as follows :

“If we treat all these hypotheses separately, we should define the set of alternatives for each of
them and this would in practice lead to a dissection of a unique problem of a test for goodness of
fit into a series of more or less disconnected problems.

However, this difficulty can be easily avoided by substituting for any particular form of the
hypothesis Hy, that may be presented for test, another hypothesis, say hg, which is equivalent to
Hj and which has always the same analytical form. The word equivalent, as used here, means that
whenever Hj is true, ho must be true also and inversely, if Hy is not correct then hy must be false.”



as [see Neyman (1937, p. 161), Pearson (1938, p. 138) and Bera and Ghosh (2001, p. 185)]
=——= 0<y<l (3)

Although this is the ratio of two densities, h (y) is a proper density function in that sense that
h(y) >0,y € (0,1) and fol h(y)dy = 1, if we assume that F' and G are also strictly increasing
functions. We will call it the ratio density function (RDF) since it is both a ratio of two densities
and a proper density function itself. When f (.) is the true density we have ¥ ~ U (0,1). And,
under the alternative hypothesis h (y) will differ from 1 and that provides a basis for the Neyman
smooth test.

Neyman (1937, p. 164) considered the following smooth alternative to the uniform density:

h(y) = c () exp [Z 0,7 (y)] , (4)

where ¢ (f) is the constant of integration depending only on (61, ...,0x), 7; (y)s are orthonormal

polynomials of order j satisfying

1
/ v (y)7rj (y) dyzéij, where 5ij: 1 Zf Z:] (5)
° 0 if i#].
Under Hy : 0; =0y = ... = 0, = 0, since ¢ (0) = 1, h(y) in (4) reduces to the uniform density.
Under the alternative, we take h (y) as given in (4) and test #; = 0, = ... = §;, = 0. Therefore,

the test utilizes (3) which looks more like a “likelihood ratio”. To see the exact form of h (y), let
us consider some particular cases. When the two distributions differ only in location; for example,
f()=N(0,1) and g(.) = N(u,1), In(h(y)) = py — 54> which is linear in y. Similarly, if the
distributions differ in scale parameter, such as, f(.) = A (0,1) and g(.) = N (0,0?), 0® # 1,
In(h(y)) = y; [1— %] —3Ino?, a quadratic function of y. Looking at some commonly used non-
normal densities as alternatives we can observe that f(.) = A (0,1) against g (.) =Central x?
yields In (h (z)) = 32— 1z+Inz+In (@) .If we have f (.) =N (0,1) and g (.) =Central ¢4, the

RDF is given from In (h (z)) = % +2In [1 + %] +1In (@) . The above examples suggests that
departures from the null hypothesis could be tested using an appropriate function (or functions)
estimating the RDF. From looking at the plots of the different ordered normalized Legendre
polynomials, we believe that the test will not only be powerful but also will be informative on

identifying particular source(s) of departure(s) from Hy (see Ghosh, 2001)



Using the multiparameter version of the generalized Neyman-Pearson (N-P) lemma, Neyman
(1937) derived the locally most powerful unbiased (LMPU) symmetric test for Hy : 0; = 0 =
.. = 6, = 0 against the alternative H; : at least one #; # 0 ,for small values of #/s. The test is

symmetric in the sense that the asymptotic power of the test depends only on the distance,
1
A= (67 +...+67)2, (6)

between Hy and H;. The test statistic is

-3, [Z 2 (y»] , M)

which under Hy asymptotically follows a central x% and under H; follows a non-central x% with
non-centrality parameter \2.

We now show that the test statistic U% can simply be obtained using Rao (1948) score (RS)
test principle. Taking (4) as the PDF under the alternative hypothesis, the log-likelihood function

[ (6) can be written as
k n
LO) =nlnc(®)+> 0;> (). (8)
j=1 =1

The RS test for testing the null Hy : § = 6 is given by

RS = 5(00)' T (6y) " 5 (6) (9)
where s (6) is the score vector 9l (f) /00 and Z () is the information matrix £ [— gzgz,)] . In our
case g = 0. It is easy to see that

ol ()

s(0;) =
! 00,
1
:nw+\/ﬁuj, j=1,2, .. k. (10)
00;

Using (4), fol h (z) dz = 1. Differentiating this identity with respect to 6;

80—/ exp [ZQ 7 (y
0

)| dy+c (8 /0 exp [ZQT] ] (y) dy = 0. (11)



dlnc(h)

2, = (0 and under the null

0=0

Evaluating this under # = 0, we have

To get the information matrix, let us first note from (10) that

°1(0) 7182 Inc(6)
00,00,  00;00, °

(13)

which is a constant. Therefore, under Hy the (j,1)™ element of the information matrix Z (6) is
simply —nd*c () /00,0, evaluated at 8 = 0. Differentiating (11) with respect to 6, and evaluating

it at @ = 0, after some simplification we have

0%c (0)
20,00,

+/0 ™ (y) ™ (y) dy = 0. (14)

0=0

Using orthogonality conditions in (5)

8°C (6)
= —4; 1
90,00, |,_, " (15)
and
Z (6o) = niy, (16)

where Iy is a k x k identity matrix. Combining (9), (13) and (16) the RS test statistic has the

simple form
k
RS =) ul. (17)
7j=1

Neyman’s approach requires the computation of the probability integral transform (1) in
terms of Y. It is, however, easy to recast the testing problem in terms of the original observations
on X and pdf, say, f (z;7). Writing (1) as y = F (x;7) and defining 7; (y) = m(F (z;7)) =

¢; (z;7y) , we can express the orthogonality condition (5) as

[ @ s F aF ) = [0 @ @ =as. (19



Then, from (4) the alternative density in terms of X takes the form

dy

g (x;7,0) = h(F (x;7)) 0

= c(0;7) exp [Z 04 (w;v)] f ;7). (19)

J=1

Under this formulation the test statistic \IJ% reduces to

k n 2
vp = ;% Lz:l: 4j (xi§7)] : (20)
which has the same asymptotic distribution as before. In order to implement this we need
to replace the nuisance parameter 7 by an efficient estimate %4, and that will not change the
asymptotic distribution of the the test statistic [Thomas and Pierce (1979)], although there
could be some possible change in the variance of the test statistic [see, for example, Boulerice
and Ducharme (1995)].

3 Smooth Test for Density Forecast Evaluation

Suppose that we have time series data (say, the daily returns to the S. & P. 500 Index) given
by {x:}}",. One of the most important questions that we would like to answer is, what is the
sequence of the true density functions {g; (;)};,, that generated this particular realization of
the data? Since this is time series data, at time ¢ we know all the past values of x; up to time
t or the information set at time t, namely, €, = {z; 1,2 o, ...} . Let us denote the one-step-
ahead forecast of the sequence of densities as {f; (x;)} conditional on ;. Our objective is to
determine how much the forecast density {f;} depicts the true density {g;} . The main problem
in performing such a test is that both the actual density g, (.) and the one-step-ahead predicted
density f; (.) could depend on the time ¢ and, thus, on the information set €2;. This problem is
unique, since, on one hand, it is a classical goodness-of-fit problem but, on the other, it is also a
combination of several different, possibly dependent, goodness-of-fit tests.

One approach to handling this particular problem would be to reduce it to a more tractable

one in which we have the same, or similar, hypotheses to test, rather than a host of different



hypotheses. Following Neyman (1937) this is achieved using the probability integral transform

Tt
Y = / fi (u) du. (21)
—0o0
Using equations (21), the density function of the transformed variable y; is given by
h’t (yt) = ]-7 0< Yt < ]-7 (22)

under the null hypothesis that our forecasted density is the true density for all ¢, i.e., Hy : g; (.) =
fe ()

If we are only interested in performing a goodness-of-fit test that the variable y; follows a
uniform distribution, we can use a parametric test like Pearson’s x? on grouped data or non-
parametric tests like the KS or the CvM or a test using the Kuiper statistics (see Crnkovic and
Drachman 1997, p. 48). Any of those suggested tests would work as a good omnibus test of
goodness-of-fit. If we fail to reject the null hypothesis we can conclude that there is not enough
evidence that the data is not generated from the forecasted density f; (.); however, a rejection
would not throw any light on the possible form of the true density function.

The fundamental basis of Neyman’s smooth test is the result that when zq,x»,..., 2, are
independent and identically distributed (IID) with a common density f (.), then the probability
integral transforms yi, ya, ..., y, defined in equation (21) are IID, U (0,1) random variables. In
econometrics, however, we very often have cases in which x, s, ..., z, are not IID. In that case

we can use Rosenblatt’s (1952) generalization of the above result.

Theorem 1 (Rosenblatt) Let (X, Xs,..., X)) be a random vector with absolutely continuous

density function f (x1,2,...,x,) . Then, the n random variables defined by

Vi=P(Xy<2),Yo=P(Xy < 2| Xy =1y),
7Yn =P (Xn < xn|X1 = xlaXZ = T2, "'7Xn71 = $n,1)

are IID U (0,1) .



The above result can immediately be seen using the Change of Variable theorem that gives

Y1 Y2 Yn
P(Y; <y,i=1, / / [ (zy) doy f (z2]@1) dog.. f (x|@1, o0y Tpy) oy
/ / / dtydty...dt, (23)
= Y1Y2-.

Hence, Y7,Y5, ..., Y, are IID U (0,1) random variables.

Diebold, Gunther and Tay (1998) used Theorem 1, and tested Hy : g; (.) = fi (.) by checking
whether the probability integral transform y; in (21) follows IID U (0,1). They employed a
graphical (visual) approach to decide on the structure of the alternative density function by a
two-step procedure. First, they visually inspected the histogram of y; to see if it comes from
U (0,1) distribution. Then, they looked at the individual correlograms of each of the first four
powers of the variable z; = y, — 0.5 in order to check for any residual effects of bias, variance or
higher-order moments. In the absence of a more analytical test of goodness-of-fit, this graphical
method has also been used in Diebold, Tay and Wallis (1999) and Diebold, Hahn and Tay (1999).
For reviews on density forecasting and forecast evaluation methods, see Tay and Wallis (2000)
and Diebold and Lopez (1996). The procedure suggested is very attractive due to its simplicity
of execution and intuitive justification; however, the resulting size and power of this informal
procedure is unknown.

Neyman’s smooth test (1937) provides an analytic tool to determine the structure of the
density under the alternative hypothesis using orthonormal polynomials (normalized Legendre
polynomials) ; (y) defined in (5).? While, on one hand, the smooth test provides a basis for a
classical goodness-of-fit test (based on the generalized N-P lemma), on the other hand, it can

also be used to determine the sensitivity of the power of the test to departures from the null

>Neyman (1937) used 7; (y)' s as the orthogonal polynomials which can be obtained by using the following
conditions,

j (y) =ajo + a1y + ... + ajjyj,ajj #0,

given the restrictions of orthogonality given in (5). Solving these the first five 7; (y) are (Neyman 1937, pp.
163-164)

mo (y) = 1,

m ) =vIZ(y-13),

) =V5(6(y-13)"-1),
ﬂg(y)zﬁ(%(y—%)3—3(y—%) )
may)=210(y— 1) —45(y—L4)°+2



hypothesis in different directions, for example, deviations in scale (variance) and the shape of the
distribution (skewness and kurtosis). We can see that the WU statistic for Neyman’s smooth test
defined in equation (7) is comprised of k components of the form % ok (yz))2 ,jg=1,...k,
which are nothing but the squares of the efficient score functions. Using Rao and Poti (1946),
Ra0(1948) and Neyman (1959) one can risk the “educated speculation” that an optimal test
should be based on the score function [for more on this, see Bera and Billias (2001a, 2001b)].
From that point of view we achieve optimality using the smooth test.

There is one more issue that is central to any test applied to real data where we cannot assume
that the true data generating process is known under the null hypothesis (Hy : g; (.) = fi (.))-
Hence, we have to estimate the PDF generating the data using an estimation sample. Then, we
use those estimated CDFs to evaluate the PIT for constructing the test statistic for the smooth
test. Let us first assume that we know a general functional form of the distribution function
F (.; B) generating the data but have to estimate the parameter 5 based on the estimation sample
of size m. As we mentioned before our test is done on a sample of size n. The true test statistic

for the smooth test under true model is given in (7) where
y; = F(x;;8) = / f (u; B) du, where i =1,2,...,n. (24)
0

However, since we do not know the true value of 3, we estimate it using B to get
k ko[ 2
T2 ) ~
#=3 =30 () )
j=1 j=1 i=1

where y; = F (xZ,B) = Oxi f (u; B) du, 1 = 1,2,...,n, are the estimated PITs and B is any
v/n—consistent estimator of 5 and @} = % S 7 (9;) . We have the following theorem which
shows that for certain values of m and n we can ignore the effect of parameter estimation on our

results.

Theorem 2 If the sample size for the estimation sample is m and that for the testing sample is

n in a split sample, B 15 a /m—consistent estimator of the parameter 3 and given

B [W] <o (26)



using equations (7) and (25) under the null hypothesis Hy
‘i’i — Ui =0,(1)

ifnzO(m%).

Proof. See Appendix A. m

4 Application to asset returns on S&P 500

Diebold, Gunther and Tay (1998) used the daily data on value-weighted S&P 500 returns with
dividends, from 02/03/62 through 12/29/95 in order to demonstrate the effectiveness of a graph-
ical procedure based on the probability integral transform. The sample is split into in-sample
and out-of-sample periods for model estimation and density forecast evaluation. There are 4133
in-sample observations (07/03/62-12/29/78) and 4298 out-of-sample observations (01/02/79-
12/29/95). However, in order to obtain a test with desirable size using the the smooth test
principle, we have to modify the sample size of the evaluation sample, keeping the sample size
of the estimation sample the same. Our density evaluation sample is of size 1000, while the esti-
mation sample size is 4133. The following figure (Fig I) compares the density estimates between

the in-sample and the out-of-sample dadg,oothed Density Estimates

Estimation Sample

60

40
1

Density Estimate

20
1

T T T T
-0.10 -0.05 0.0 0.05

Variable x

Figure 1. Kernel density estimators for estimation and testing samples
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Following Diebold et al. (1998), we used progressively richer models to find the best model to
fit the estimation sample and then freeze it to do forecasting of the evaluation data. In the
following figure (Figure 2), we used a non-parametrically smoothed EDF to generate the PIT
of the evaluation data. From a visual analysis of the plot it is clear that the PITs do not seem
to follow an U (0, 1) distribution, the conclusion is more apparent if we compare the PDF of
U (0,1) distribution with the ratio density function (RDF) of the PIT [see Bera, Ghosh and Xiao
(2003)]. In order to better fit the model for forecasting future observations, we use a MA(1),
MA(1)- normal GARCH(1,1) and finally, a MA(1)-t-GARCH(1,1) model to the estimation sample
obtained through AIC and BIC criteria. The histograms of the PITs and the autocorrelation
functions (correlograms) thus generated are given in the following figures. From visual analysis
of these plots we can infer that introducing a time varying conditional heteroscedasticity term
clearly improves the forecast as reflected in the ACF plots and it also causes the histogram of the
PITs to be closer to a U (0,1) PDF. Introducing a non-Gaussian error term marginally improves

the histogram of the PIT by reducing the “butterfly” pattern to some extent.
Probability Integral Transforms
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Figure 2. PIT histogram with density ratio using EDF
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Data Estimation  Testing
Observations 4133 1000
Mean 0.00016  4.02x10°*
Standard Deviation 0.00756 0.0094
Skewness Coefficient 0.2828 0.2192
Excess Kurtosis 3.171 1.658
Minimum -0.0367 -0.04
1t Quartile -0.0038 -0.0052
Median 3x107*  2.73x10°*
3r? Quartile 0.0042 0.0058
Maximum 0.0502 0.0476

Table 3. Return distribution for estimation and test sample

Test Critical Values
Statistic Upper .1%

D+ 1.92466955 1.859

D~ 2.72979457 1.859
KS 2.72979457 1.95

Kuiper | 4.6601984 2.303

CvM 2.090640 1.167
A-D 17.18036 6.0

W 2.059542 0.385

Table 4. Goodness-of-Fit Statistics based on EDF with m = 4133 and n = 1000.

As attractive as it may seem, the above procedure is a subjective method of identifying the
problems of a forecasted PDF after comparing with the true distribution (See Figure 1). This
also implies that we cannot evaluate the performance of such an informal test of hypothesis
with other existing tests of goodness-of-fit like the Kolmogorov-Smirnov, Cramér- von Mises or
Anderson-Darling reported in Table 4 in terms of size and power characteristics. Although, to do
full justice to the precursor of the current paper we should also mention that Berkowitz (2001,
p. 466) commented on the Diebold et al.(1998) procedure: “Because their interest centers on

developing tools for diagnosing how models fail, they do not pursue formal testing.”
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Our aim is to use a formal test using Neyman’s smooth test principle. We use order k£ = 4
which we believe is sufficient to capture all the global characteristics of distribution of value-
weighted S&P 500 returns. In Table 5, we report the results of the smooth test.

Hypothesis % u? u3 u3 u?

EDF 110.342*** 0.3715 95.847*** 4.6007** 9.5229***

(6.1525E-23) (0.5422) (L.2412E-22) (0.032)  (0.002)
MA(1) 373.0118**  1.18103  213.7938*** .0196 158.0175***
with Normal error || (1.8816E-79) (0.2771) (2.0427E-48) (0.8888) (3.0678E-36)

MA(1)- 53.2501*** 1.2664 29.9906*** .0582 21.935%**
Normal GARCH (1,1) || (7.5541E-11) (0.2604) (4.3415E-08) (0.8094) (2.8205E-06)

MA(1)- 3.2386 1.1003 1.6677 2916 179
t- GARCH (1,1) (0.5187)  (0.2942)  (0.1966)  (0.5892)  (0.6723)

Table 5.Neyman’s smooth statistics and components (p-values are in parenthesis).

“* significant at 1%, ™" signi ficant at 5%, * significant at 10%.

Initially, we used the empirical distribution function of the estimation sample to calculate the
PIT of each observation of the test sample and computed the smooth test statistic. We should
mention that this is a non-parametric procedure since we do not assume any structure of the
underlying PDF generating the model. However, this does not take account of the dependent
structure of the data. Using an order k = 4, we get a score test statistic of 110.342 which is highly
significant. We also can identify that the main sources of this deviation in the overall \ilﬁ statistic
are the second (u3) and fourth (u?) components, although the third (u2) component is also
slightly significant. From analyzing this we can infer that, there must be some unaccounted for
variability, mainly, in the second and the fourth order polynomials, which in turn would indicate
the sources of departure are most likely in the second and fourth moments. Therefore, through
pure non-parametric estimation of the EDF with no assumption of time varying conditional
heteroscedasticity, we can conclude that there are deviations in the directions of the second and
fourth order polynomials which can be related to second and fourth moments.

In our next stage, we estimate a parametric MA(1) model with Gaussian error terms, we
end up getting an overall \ilﬁ statistic at 373.01 which is even more significant than the case
when we used EDF’s. This might be partly because of the imposition of the “Gaussianity”.
The discrepancy from the null hypothesis is in the direction of the second (u3 =213.79) and

fourth (u? =158.02) order normalized Legendre polynomials, however in this case the discrepancy
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seem to be more pronounced than the pure non-parametric case. However, we find that the
third order term does not seem to have any significance in that direction whatsoever. Keeping
this result in mind, we proceed to incorporate a more involved time varying volatility model
through a GARCH(1,1) model for conditional heteroscedasticity (Bollerslev, 1986) keeping the
MA(1) component for the mean equation and normal errors. This more general framework nests
the previously used naive MA(1) model with normal errors. The U2 statistic is now reduced
substantially (373.01 to 53.25), although it is still highly significant at 1% level. Once again a
cursory inspection of the components revealed that the second and fourth components are still
significant although by a much lesser degree (u3 = 29.99 and u? = 21.93). Finally, we introduce a
non-Gaussian error term in the form of Students’ t distribution along with the MA(1)-GARCH(1)
formulation. With this general model, we find that \Tlﬁ = 3.24 which is in the acceptance region,
and so are all its 4 components. This implies that a time varying conditional heteroscedasticity
component together with the MA(1) mean model with ¢ error, we arrive at an acceptable model.

We also tried higher orders beyond k& = 4 but the marginal impact was negligible in the final
model. For example, we had U2 = 3.35192 (p-value=0.76356)with u2 = 0.03874, u2 = 0.07461.
Therefore, we had no reason to believe that any higher order will have a significant impact.
We chose t distribution with 7 degrees of freedom, since that was the closest to maximize the
likelihood functions over degrees of freedom 3 through 25. We should mention that, although
we have chosen to divide our sample by 4133 and 1000, this is not necessarily an optimal split.
In fact, we have seen that the actual size of the test goes up on an average as we increase the
size of the test sample keeping the estimation sample the same. Diebold et al. (1998) used 4133
and 4298 split, and we suspect that this sample splitting will have very large implied size. We
kept the estimation sample 4133 so as to compare the results obtained by Diebold et al. and our
formal testing procedure. The other factor which also motivated the selection to some extent was
the presence of the 1987 crash data being in the testing sample in Diebold et al. This also could
have caused a regime change or significant other changes in model estimation and the calculation
of PIT at that point (Weigend and Shi, 2000). Since for constructing the smooth test statistic
we have to calculate powers of the probability integral transform for the normalized Legendre
polynomials, the test results could be influenced by outlying observations (although PITs always
take values between 0 and 1). However, the latter problem was of secondary importance for the
choice of the split, from our point of view we wanted to take a test sample size that was big
enough.

From Table 5. we can conclude that there is no evidence to suggest that the forecasted model
MA(1) - t-GARCH(1,1) fails to predict the density of the future realizations of S&P 500 returns.
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We can also see from the results based on the EDF that there is more of unaccounted volatility
than other departures. Looking at the u2 and u? components we can say that, introduction of
conditional heterscedasticity improved the model by reducing the “butterfly” pattern in the PIT
histogram (or the ratio density function). This was further reduced and practically eliminated
when we introduced a non-Gaussian error term. So although, the smooth test did not directly
address whether there was dependence in the data, it did however pick up the effect of this
unaccounted for dependence in the data through incorporation of conditional heteroscedasticity.

One possible interpretation of the apparent failure of the normal GARCH(1,1) could be the
possibility of a hidden Markov type model that Weigend and Shi (2000) discussed in evaluating
the density of daily returns of S&P 500 index. They assumed, one of several “states” or “experts”
generates the true observation in certain financial time series data, like S&P 500, returns where
the signal to noise ratio is pretty small and where discrete number of states jump from one to
the other with a time-varying or time invariant transition probability matrix. They reported
that their model performed slightly better than normal GARCH (1,1) model. In fact, they
worked under a more restrictive Gaussian framework although a more general exponential family
distribution would have been more appropriate. Furthermore, their PDF version of the informal
test of forecasting accuracy following Diebold et al. (1998) is similar to the approach of the
smooth test. The only difference is that the smooth test is based on the probability integral
transform rather than the raw data. Therefore, the smooth test is more widely applicable.
Their main purpose was to find a suitable measure of predicting accuracy using out-of-sample
performances over different conditional and unconditional models of mixture distributions.

Our results from the modified smooth test indicate that part of the reason for the strong
significance of the fourth order orthogonal polynomial, a term highly similar to the kurtosis of
the distribution of the PIT, is a deviation in the second and fourth moments. This also indicates
the leptokurtic nature of the original data. We should, however, note that since both the second
and the fourth order terms are present in the normalized Legendre polynomial 74, it is not
possible to exactly separate out these two effects. Having said that, we believe that if we include
an explicit dependent structure in the model and the presence of the second Legendre polynomial

o, we can identify specific departures.

5 Monte Carlo Evidence

The following Figure 9 shows the distribution of the \il?l statistic under the null hypothesis of
correct specification of the model, t-GARCH(1,1), with the x% distributions for samples of size
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1000. We also look at the plots of the components to see that the individual u? follow X3

asymptotically for sufficiently large test sample of size n gFigure 10).
Histogram and densities under the null and the alternative
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However, since we are using estimated parameters in place of the true parameters of the dis-
tribution, we must estimate the distribution with sufficient accuracy in order to do evaluate

the performance of forecasts. We generated a sample of size 2500 from a t; — GARCH(1,1)

distribution (Bollerslev, 1986)
_ [ohe,
Ye = e

hy = 0.2+ 0.15y;, + 0.65h; ;. (27)

After estimating the parameters of the sample with the first 2000 observations (m = 2000) we
freeze it and generate the density forecast for the last 500 observations (n = 500). Hence we
obtain the probability integral transform of the latter 500 observations using the estimated PDF.
We performed the modified smooth test on the forecasted sample and replicated it to get the
size properties of this test. The results are reported in Figures 11 and 12. These illustrate

that even for the estimated parameters the W2 statistic seem to follow a central y? distribution

2
)

with 4 degrees of freedom. Not only that, the individual component u? also seem to follow x?
distributions to a large extent under the correct specification of the model.

One of the very important questions that left to be answered is the fact that what should
be the sample split used in order to estimate the parameters to a fair degree of accuracy so
that the modified smooth test would be consistent and have a level of significance close to the
nominal size. We kept the initial estimation sample size m = 2000 the same and looked at several
different sample sizes for the testing sample (n) and obtained the actual size of these tests with 25
different sample sizes with 200 replications to obtain the size of the test (Figure 11). We observe
that although the actual size does not reach the nominal 5% level of the test, it is very close at
approximately n = 400 to 500, so for our smooth test on S&P 500 returns with m = 4133, we

chose the maximum which is a 4:1 split of the sample size.
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Sample size and test size

test size

Sample Size

Figure 11. Plot of sample size with the test size (m = 2000)

We must mention that the where the exact split should occur is still not obtained analytically
and is a one of the main objectives of our ongoing research. The split that we have chosen was

in part to compare our results with those of Diebold et al. (1998).

6 Conclusion

Neyman’s smooth-type test can also be used in other areas of macroeconomics such as evaluating
the density forecasts of realized inflation rates. Diebold, Tay and Wallis (1999) used a graphical
technique as did Diebold et al. (1998) on the density forecasts of inflation from the Survey
of Professional Forecasters. Neyman’s smooth test in its original form was intended mainly to
provide an asymptotic test of significance for testing goodness-of-fit for “smooth” alternatives.
So, one can argue that although we have large enough data in the daily returns of the S&P 500
Index, we would be hard pressed to find similar size data for macroeconomic series such as GNP,
inflation. This might make the test susceptible to significant small-sample fluctuations, and the
results of the test might not be strictly valid. In order to correct for size or power problems due
to small sample size, we can do a size correction [similar to other score tests, see Harris (1985),
Harris (1987), Cordeiro and Ferrari (1991), Cribari-Neto and Ferrari (1995) and Bera and Ullah
(1991) for applications in econometrics]. This promises to be an interesting direction for future

research.
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We can easily extend Neyman’s smooth test to a multivariate setup of dimension N for m time
periods, by taking a combination of Nm sequences of univariate densities as discussed by Diebold,
Hahn and Tay (1999). This could be particularly useful in fields like financial risk management
to evaluate densities for high-frequency financial data like stock or derivative (options) prices and
foreign exchange rates. For example, if we have a sequence of the joint density forecasts of more
than one, say 3, daily foreign exchange rates over a period of 1,000 days, we can evaluate its
accuracy using the smooth test for 3, 000 univariate densities. One thing that must be mentioned
here, there could be both temporal and contemporaneous dependencies in these observations, we
are assuming that taking conditional distribution both with respect to time and across-variables
is feasible (see, for example, Diebold, Hahn and Tay 1999, p. 662).

While our smooth test using estimated parameters provides specific directions for the alter-
native models based on the data on S&P 500 returns, it should be bourne in mind that originally
the smooth test was not designed for dependent data. We have indicated some ways to capture
dependence and we need to pursue it further. Also, since the Smooth test is really a score test it
enjoys the optimal properties of tests based on the score function and we don’t need to estimate
the parameters under the alternative hypothesis. The latter benefit makes it conducive to mod-
els with a large number of parameters, particularly when we want to incorporate complicated

dependent structures.

7 Appendix A (Theorem 2)

Proof. From equations (7), (24) and (25)

W W} = Z% (im (F @;B)))z - (im (F(xi;m))Z

j=1 i=1 i=1
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Now applying the Mean Value Theorem we get
n 2
7= B (r ()
n 2 1 n 2
-~ [Z 5 (F (a5 ) S (F (s 5))]
i=1 i=1

1/
+—(B—B)
n
f=p~
where 3* is such that ‘B—B‘ > |8 — B,

= dr; x;; B
[Z (F d(ﬁ ))]
=2 (=) [vin (5-5)] [%ij (F (:ci;ﬁ*))] (29)

1 drj (F (x5 8%))
o

=1

d
s

Furthermore, we know that under Hy, y; = F (x;; ) is distributed as U (0,1) for i = 1,2, ..., n.
Hence, using orthogonality of «; (.) under H, for j =1,2,...,k,

E (m; (4s)) = / 7 () du = 0. (30)

Applying the WLLN (Khinchine’s theorem, Rao(1973) p. 112) we have as n — oo
1 »
=~ i (F (2 8) 5 B (m; () = 0. (31)
i=1

For arbitrary but fixed m, * is fixed. For i = 1,2,....,n, F (z;; 3*) is a ( an absolutely)
continuous function of z;. Hence, if X, Xs,..., X,, are IID random variables having a CDF
F (z; ) then, yf = F (x;;6%), @ = 1,2,...,n are also IID with a density function (called the
Ratio Density Function or RDF)

flB) _ fE(y;8);8)

hy) = f@ B F(F(y;5:6%) (32)

which is a valid density function if F is absolutely continuous. Hence, v, ys, .., ¥, are IID random

variables with a density function h (y) and has a finite first moment as y is defined on a compact
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support [0, 1] by dominated convergence theorem

/f /f Mi?) -

Hence, using the WLLN (Khinchine’s theorem) for j = 1,2, ..., k,

—Z% (z:3 %)) & E[r; (F (i3 8))]. (33)

Now, we have 8 5 3 as 3 is a \/m—consistent estimator of 3. Since, > |g* — B, for any

e>0

0<P{5 =8>y < P{|3-5|><].

hence, §* is also converges to 3 in probability. If m; (F (x;)) is a continuous function of 3 at
£ = [* we have
Erj (F (23 8))] % Em; (F (2:8))], 5 = 1,2, ... k. (34)

Hence, as m and n goes to infinity, using results in (30), (31), (33) and (34) we have
; Zm (215 6%)) 5 B [mj (F (35 8)] 5 B (F («; 8))] = 0 (35)

ZWJ (zi;8%)) = a1 =0, (1).

Please note, that it is essential for this result that H, is true, otherwise we will only have that
L3 (F (233 6%)) =0, (1) (bounded in probability). Furthermore, applying the WLLN yet

again we get that for sufficiently large m,

_Z dm; (F xz; ") 2 g [dﬂj (F (xi;ﬁ*))]

dp
P dm; (F (24 5*))
— F { T ] < o0
N %Z dr; (F *’“"“ D ay =0, (1). (36)

By assumption F [%F;ﬁ))] < 00, hence £ 377" | dm; (F(@iif") ﬁ ) — 0, (1) . Since, § is a \/m—consistent
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estimator using sample of size m

v (3-8) SN (0,2,") (37)
where Zg is the Fisher information of B Hence, if Z3 < oo,

m(ﬁ_ﬁ):agzopu). (38)

Hence from equation (29) using the results in (35), (36) and (38) we immediately get

i -t =2 (=) [vin (5~ 9)] [%Zw (F (xi;ﬁ*»]

= Z—F—=Q10Q903
vm
n
From (28) using (39) we get for fixed &
2 -2 = g (1) (40)
k k \/EOP

which proves Theorem 2. m
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