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1 Introduction

This paper studies firms’ exploitation of renewable natural resources in a
dynamic setting. We present a differential game to examine oligopolistic
firms’ harvesting behavior in a continuous time infinite horizon model. Al-
though differential games have been widely used in the economics literature,
it is well known that finding feedback equilibrium is extremely difficult except
linear-quadratic games. Nevertheless, for models of exploitation of renewable
natural resources, we need to analyze games that are not linear-quadratic
since reasonable growth functions regarding the stock of natural resources
are not linear. In this paper, we present a differential game model that is
not linear-quadratic and derive Markov feedback equilibrium for the game.
One prominent feature of the model is that demand for harvest of a natural
resource is assumed to depend upon the stock of the natural resource.
In our model, we consider two settings regarding firms’ harvesting deci-

sions. One setting is the case where the firms make their decision noncoop-
eratively and the other is the one where the firms can cooperate. For the
noncooperative case, the firms are assumed to undertake Cournot competi-
tion in the product market.
In the context of fishery economics, Levhari and Mirman (1980) examine

competition of harvesting in a dynamic setting. They study utility maxi-
mization, but do not consider profit maximizing firms. In this paper, we
will analyze a dynamic oligopolistic model of a renewable natural resource
that is not linear-quadratic. We will examine feedback strategies and under
certain conditions, derive Markov perfect equilibrium. We will also discuss
the existence and the multiplicity of open-loop Nash equilibrium. In general,
there can be multiple open-loop Nash equilibria.
The paper is organized as follows. In Section 2, we will describe the ba-

sic model. In Section 3, we examine Markov feedback strategies and derive
Markov perfect equilibrium. In Section 4, we will examine open-loop Nash
equilibrium for games both under the case of noncooperation and under the
case of cooperation. In Section 5, we discuss the effects of taxation on equi-
librium exploitation of the renewable natural resource. Section 6 concludes.

1



2 The Model

There are n firms in the industry, indexed by i ∈ I = {1, · · · , n}. The firms
harvest a renewable natural resource and sell them in the product market.
We assume that the firms engage in Cournot competition in the product
market.
Let g(X) be the growth function of the natural resource. We assume

g(0) = 0, g( eX) = 0 for some X̃ > 0, g
0
(0) > 0, and g

00
(X) < 0.

Then the change in the stock at time t, Ẋ, is given by

Ẋ =
dX

dt
= g(X)−

nX
i=1

xi. (1)

The initial stock of the natural resource is denoted

X(0) = X0.

For each firm, the constant unit cost of harvesting is given by C(X). We
assume

∂C

∂X
< 0 and

∂2C

∂X2
> 0.

Let the inverse demand function be given by

p = f(
nX
i=1

xi,X),

where p is the price of the product, xi the harvest as well as the product of
firm i, and X the stock of the renewable natural resource.
Note that demand for the product depends on the stock of the natural

resource. In other words, we assume that consumers are concerned with the
environment, that is, the stock of the natural resource when deciding their
demand.
We also assume

f
00
xi + 2f

0
< 0.

where f 0 ≡ ∂f
∂xi
.
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The objective of each firm is to maximize the discounted sum of its profits
over an infinite time horizon. Let r be a common discount rate. Then the
objective of firm i is given by

Ji =

Z ∞

0

[pxi − C(X)xi] e−rtdt. (2)

3 Markov Perfect Equilibrium

In this section, we consider feedback strategies. In particular, we examine
Markov feedback strategies. Feedback strategies and Markov perfect equilib-
rium are defined as follows.

Definition 1 The feedback strategy space for firm i is the set

SFi = {xi(X, t) is continuous in (X, t), xi(X, t) ≥ 0, and X ≥ 0}.
Definition 2 A Markov perfect equilibrium is a pair of feedback strategies
(x∗i , x

∗
−i) such that for each i ∈ I,

Ji(x
∗
i , x

∗
−i) ≥ Ji(xi, x∗−i) for every xi ∈ SFi .

In order to derive a closed form solution, we assume that the inverse
demand function is given by

p = f(
nX
i=1

xi, X) =
a

X
− b

Pn
i=1 xi
X2

, a > 0, b > 0. (3)

We also assume that the cost function takes the following form:

C(X) =
c̄− γ lnX

X
, c̄ > 0, γ > 0. (4)

Note that C 0(X) > 0 and C 00(X) < 0.
Furthermore we assume that the growth function of the stock level of the

natural resource takes the following form:

g(X) = X(α− β lnX), α > 0, β > 0. (5)

In what follows, we consider the case of two firms, i.e., we assume n = 2.
Then we have the following theorem.
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Theorem 3 There exists a Markov perfect equilibrium given by

x∗i =
a− c̄− F + (γ −G) lnX

3b
•X,

where G and F are given in (16) and (17), and 3bβ − 2γ + 2G < 0.

Proof: First let Y ≡ lnX and yi ≡ xi
X
.

Then the objective function of firm i may be rewritten asZ ∞

0

[a− (yi + yj)− (c̄− γY )]yie
−rtdt. (6)

Also the growth function may be rewritten as

Ẋ

X
= α− β lnX −

Pn
i=1 xi.

X
.

That is

Ẏ = α− βY − (yi + yj), i, j = 1, 2, i 6= j. (7)

Let V i(X) be the value function for firm i. Then the system of Hamilton-
Jacobi-Bellman equation becomes

rV i(Y ) = max
yi

½
[a− b(yi + yj)− (c̄− γY )]yi +

dV i(Y )

dY
[α− βY − (yi + yj)]

¾
(8)

Solving the maximization problem of the right hand side of (8) yields

y∗i =
a− c(Y )− dV i(Y )

dY

3b
,

where c(Y ) ≡ c̄− γY.
Now we assume that the value function is symmetric. Suppose that the

value function takes the following form:

V (Y ) = E + FY +
1

2
GY 2. (9)

Then
dV (Y )

dY
= F +GY. (10)
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Thus we get

y∗ =
a− c(Y )− {F +GY }

3b
. (11)

Substituting (9), (10) and (11) into (8), we get

r

·
E + FY +

1

2
GY 2

¸
(12)

=

·
a− 2

½
a− c(Y )− F −GY

3b

¾
− c(Y )

¸ ½
a− c(Y )− F −GY

3b

¾
+(F +GY )

·
g(Y )− 2

½
a− c(Y )− F −GY

3b

¾¸
.

Let
L ≡ a− c̄− F and M ≡ γ −G.

The equation (12) must hold for any Y , and hence we have

1

2
rG+ 2bM2 − γM − βG+ 2GM = 0, (13)

rF − (a− c̄)M + 4bLM − γL− βF − αG+ 2GL+ 2FM = 0, (14)

and

rE − (a− c̄)L+ 2bL2 − αF + 2FL = 0. (15)

It follows from (13), (14) and (15) that we obtain

G =
(9br − 18bβ + 10γ)±p

(9br − 18bβ + 10γ)2 − 64γ2
16

, (16)

F =
(a− c̄)(2γ − 5G) + 9bαG
9b(r − β) + 5r − 8G , (17)

and

E =
1

r

£
(a− c̄)L− 2bL2 + αF − 2FL¤

. (18)

Also
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M =
3bβ + γ − 3

2
br ±

q
(3bβ + γ − 3

2
br)2 + 8bγ(r − 2β)

8b
. (19)

Next substituting (11) into (7) yields

Ẏ − {β − 2γ
3b
− 2G
3b
}Y + 2

3b
{a− c̄− F}− α = 0. (20)

A particular solution to the differential equation (20) is

Y =
2(a− c̄− F )− 3bα
3bβ − 2γ + 2G .

Then the solution of (20) is

Y (t) = Y + (Y0 − Y )e{
3bβ−2γ+2G

3b }t. (21)

We must have 3bβ − 2γ + 2G < 0 in order that this state trajectory is
asymptotically stable.
We note that when β > 0, we must have M > 0. Therefore G < γ.

4 Open-loop Nash Equilibrium

In this section, we consider open-loop strategies. Open-loop strategies and
open-loop Nash equilibrium are defined as follows.

Definition 4 The open-loop strategy space for firm i is the set

Si = {xi(t) : xi(t) is piecewise continuous and xi(t) ≥ 0 for every t} .

Definition 5 An open-loop Nash equilibrium is an open-loop strategy selec-
tion x∗ = (x∗i , x

∗
−i) such that for each i ∈ I,

Ji(x
∗
i , x

∗
−i) ≥ Ji(xi, x∗−i), for ∀xi ∈ Si.

First, we consider the case where the firms choose harvesting strategies
noncooperatively.
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For firm i, the sum of its discounted profits is given by

Ji =

Z ∞

0

[pxi − C(X)xi] e−rtdt (22)

=

Z ∞

0

[p− C(X)]xie−rtdt.

The current value Hamiltonian for firm i is then given by

Hi = [p− C(X)]xi + λi
³
g(X)−

X
xi

´
, (23)

where λi is a costate variable.
Let fX ≡ ∂f

∂X
. The necessary conditions for an open-loop Nash equilibrium

are

∂Hi
∂xi

= f
0
xi + f − C(X)− λi = 0, (24)

λ̇i = rλi − ∂Hi
∂X

(25)

= rλi −
³
fX · xi − C 0

(X)xi + λig
0
(X)

´
=

³
r − g0(X)

´
λi + (C

0
(X)− fX)xi,

and

lim
t→∞

e−rtλi = 0. (26)

Summing equation (24) over i, we get

f
0 X

xi + n (f − C(X))−
X

λi = 0. (27)

Let Q =
P
xi. Then equation (27) may be rewritten as

f
0
Q+ n (f − C(X))−

X
λi = 0. (28)

Differentiate (28) with respect to time, we have

f
00
(Q̇+ Ẋ)Q+ f

0
Q̇+ n

³
f
0
(Q̇+ Ẋ)− C 0

Ẋ
´
−

X
λ̇i = 0. (29)
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Recall that

Ẋ = g(X)−
X

xi

= g(X)−Q
and

λ̇i =
³
r − g0(X)

´
λi + (C

0
(X)− fX)xi.

Then we have

X
λ̇i =

³
r − g0(X)

´ X
λi + (C

0
(X)− fX)

X
xi (30)

=
³
r − g0(X)

´ X
λi + (C

0
(X)− fX)Q.

Thus (29) may be rewritten as

f
00
(Q̇+ g(X)−Q)Q+ f 0Q̇ (31)

+n
³
f
0
(Q̇+ g(X)−Q)− C 0

(g(X)−Q)
´

−
³
r − g0(X)

´ X
λi

−(C 0
(X)− fX)Q = 0.

Hence we have

Q̇ (f 00Q+ (n+ 1)f 0)− f 00Q2 (32)

−{−fX + (n− 1)C 0 + f 00g − nf 0 + (r − g0)f 0}Q
−(r − g0)n (f − C)

+n(f 0g − C 0g) = 0

It follows from (32) that

Q̇ (33)

=
f 00Q2 − fXQ+ {(n− 1)C 0 + f 00g − nf 0 + (r − g0)f 0}Q

f 00Q+ (n+ 1)f 0

+
(r − g0)n (f − C)− n(f 0g − C 0g)

f 00Q+ (n+ 1)f 0
.
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Recall that the inverse demand function is

p = f(Q, X) =
a

X
− bQ
X2
, a > 0, b > 0.

Then for the locus of Q̇ = 0, we have

{(n−1)C 0−fX−nf 0+(r−g0)f 0}Q+(r−g0)n (f − C)−n(f 0g−C 0g) = 0. (34)
Let the left hand side of (34) be Ψ(X,Q).
First note that there exists X̌ > 0 such that Ψ(X̌, 0) = 0. Note also that,

by the implicit function theorem, we have

dQ

dX
= −

∂Ψ
∂X
∂Ψ
∂Q

T 0.

In what follows, we assume that dQ
dX
> 0 and that Q = Φ(X) solves (34).

Then, at the steady state, i.e., Q̇ = 0 and Ẋ = 0, we see that there exists
an open-loop Nash equilibrium harvest Q∗ and the stock level X∗ such that
Φ(X∗) = g(X∗).
Note that g0(X∗) T 0. It may be possible that there exist more than one

equilibrium.
We have so far analyzed the case where the firms choose their strategies

noncooperatively. Now we consider the case where the firms cooperate when
they harvest the natural resources.
The objective function in this case is given byX

i

Z h
f(

X
xi, X)− C(X)

i
xie

−rtdt. (35)

The current value Hamiltonian is then given by

Ki =
X
i

h
f(

X
xi, X)− C(X)

i
xi + ξ

³
g(X)−

X
xi

´
, (36)

where ξ is a costate variable.
The necessary conditions for an open-loop Nash equilibrium are

∂Ki

∂xi
=

X
f
0
xi + f − C(X)− ξ = 0, (37)
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ξ̇ = rξ − ∂Ki

∂X
(38)

= rξ −
³
fX − C 0

(X)
X

xi + ξg
0
(X)

´
=

³
r − g0(X)

´
ξ + (C

0
(X)− fX)

X
xi,

and

lim
t→∞

e−rtξ = 0. (39)

Differentiate (37) with respect to time, we obtain

f 00(
X

ẋi)(
X

xi) + f
0(

X
ẋi)− C 0Ẋ − ξ̇ = 0. (40)

Substituting (37) and (38) into (40), we have

f
00{Q̇+(g−Q)}Q+f 0Q̇−C 0 (g −Q)−

³
r − g0

´
{f 0Q+f−C}+(fX−C 0)Q = 0.

(41)
It follows from (41) that we have

Q̇ =
f
00
Q2 − fXQ+ {

¡
r − g0¢ f 0 − f 00g}Q+ ¡

r − g0¢ (f − C) + C 0g
f 00Q+ f 0

. (42)

Recall that the inverse demand function is given by the following form,

f(Q, X) =
a

X
− bQ
X2
.

Then for the locus of Q̇ = 0,

fXQ−
³
r − g0

´
f
0
Q−

³
r − g0

´
(f − C)− C 0g = 0. (43)

Let the left hand side of (43) be ψ(X,Q).
Note also that

dQ

dX
= −

∂ψ
∂X
∂ψ
∂Q

T 0.
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In what follows, we assume that dQ
dX
> 0 and that Q = φ(X) solves (43).

Then, at the steady state, i.e., Q̇ = 0 and Ẋ = 0, we see that there exists
an open-loop Nash equilibrium harvest Q∗ and the stock level X∗ such that
φ(X∗) = g(X∗).
Note that g0(X∗) T 0. It may be possible that there exist more than one

equilibrium.

5 Taxation

In this section, we will examine effects of taxation on equilibrium harvest.
We consider a specific tax whose rate depends upon the stock of the natural
resource. Let θ

X
be a tax rate, and θ ≥ 0. Thus, given θ, the smaller the

stock of the natural resource, the higher the tax rate. The objective function
of each firm is given byZ ∞

0

·
p− C(X)− θ

X

¸
xie

−rtdt. (44)

For Markov perfect equilibrium, we have

y∗ =
a− c(Y )− θ − {F +GY }

3b
.

Thus we get
∂y∗

∂θ
< 0.

Therefore if the tax rate increases, then the equilibrium harvest rate will
decrease.
For examining an open-loop Nash equilibrium, the current value Hamil-

tonian becomes

Ti =

Z ∞

0

·
p− C(X)− θ

X

¸
xie

−rtdt+ µi[g(X)−
nX
i=1

xi], (45)

where µi is a costate variable.
Then the necessary conditions for an open-loop Nash equilibrium are

f 0xi + f − C − θ

X
− µi = 0, (46)
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µ̇i = rµi −
∂Ti
∂X

(47)

= rµi −
µ
(fX +

θ
X2 − C 0

(X))xi + µig
0
(X)

¶
=

³
r − g0(X)

´
µi − (fX +

θ
X2 − C 0

(X))xi,

and

lim
t→∞

e−rtµi = 0. (48)

Then for the locus of Q̇ = 0, we have

{(n− 1)C 0 + θ
X2 − fX − nf 0 + (r − g0)f 0}Q (49)

+(r − g0)n
µ
f − C − θ

X

¶
− n(f 0 − C 0)(g − θ

X2 ) = 0.

Let the left hand side of be Ω(X,Q).

dQ

dX
= −

∂Ω
∂X
∂Ω
∂Q

(50)

= −
∂Ψ
∂X
− 2θQ

X2 + g
00n( θ

X
)

∂Ψ
∂X
+ θ

X2

−(r − g
0 + f − C 00) nθ

X2 − 2n(f 0 − C 0) θ
X3

∂Ψ
∂X
+ θ

X2

.

6 Conclusion

In this paper, we have studied firms’ exploitation of renewable natural re-
sources in a dynamic setting. We have constructed a differential game to
examine oligopolistic firms’ harvesting in a continuous time infinite horizon
model. For models of exploitation of renewable natural resources, we have
analyzed a game that is not linear-quadratic and derived Markov perfect
equilibrium for the game.
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In the model, we have considered two settings regarding firms’ harvesting
decisions. One setting is the case where the firms make their decision nonco-
operatively and the other is the one where they can cooperate. We have also
analyzed open-loop Nash equilibrium for the games both under the case of
noncooperation and under that of cooperation. We have also examined the
effects of taxation on equilibrium exploitation of the natural resource.
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