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Abstract

We consider LM-type tests for a unit root allowing for a break in trend at an
unknown date. In addition to the minimum LM test statistic, we propose new LM-
type tests based on the least squares estimator of the break date under the null. We
examine asymptotic behavior under the null hypothesis with and without a break.
For all the endogenous break tests considered, the limiting distribution when there
is a break in slope is not the same as when there is no break. Other authors have
obtained similar results in the context of DF-type tests. Since this discrepancy is
smaller for the LM-type based on the least squares estimator, smaller size distortions
are to be expected when using this test statistic. Simulation experiments confirm
the superiority in terms of size, power and break date estimation of the proposed

method.
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1 INTRODUCTION

Common procedures to test for the presence of a unit root are based on extensions of
the statistical techniques proposed by Dickey and Fuller (1979). Following Perron (1989),
an increased attention has been given to the possibility of the existence of a one-time
change in the deterministic component of a time series. He shows that Dickey-Fuller
(DF) type tests will have a tendency for not rejecting the null hypothesis of a unit root
for series that are stationary around a breaking trend. To solve this problem, several
authors have proposed tests for a unit root that allow for the presence of a break in the
trend function at an unknown date. These tests are generally based on fitting DF-type
regressions which include additional dummy variables capturing the change in the break
function. Zivot and Andrews (1992) propose choosing the break date which minimizes
the DF t-statistic across all possible regressions. Perron (1997) and Vogelsang and Perron
(1998) also consider choosing the break date according to the significance of the trend-
break dummy parameters. These authors further consider methods that allow for sudden
breaks, or of the ‘additive outlier’ (AO) type, and breaks that evolve more slowly over
time, or of the ‘innovational outlier’ (I0) type.

Vogelsang and Perron (1998) show that the distribution of DF-type unit root test
statistics that allow for the presence of a break are asymptotically invariant to a break
in the intercept under the null. However, Nunes, Newbold and Kuan (1997), Lee and
Strazicich (2001) and Harvey, Leybourne and Newbold (2001) show that in finite samples
this result may be illusory. When the break date is selected according to the least favorable
DF t-statistic, a large break in the intercept under the null leads to strong spurious
rejections of the unit root hypothesis. The same is true for the 10, but not AO, tests
when the break date is based on the significance of the dummy variables.!

When there is a break in the slope under the null, Vogelsang and Perron (1998) show
that the size of the minimum DF-type tests that allow for a change in slope will approach
one asymptotically. In fact, they show that these size distortions can be explained by the

wrong break date being selected.? For the tests based on the dummy variables significance,

Lee and Strazicich (2001) and Harvey, Leybourne and Newbold (2001) show that this is due to
incorrect choice of the break date. As a solution, Harvey, Leybourne and Newbold (2001) suggest moving

the chosen break date one period ahead.
2Vogelsang and Perron (1998) show that in the IO case that allows for a break in slope only, even by

choosing the true break date would not yield a valid test.



the same is true in the IO case, but not in the AO. In this last case, the estimated location
of the break will approach the true one, so that the limiting distribution of these tests are
equivalent to the case where the break date is known as in Perron (1989). However, this
distribution differs from the case where no break is present under the null. If one chooses
the suggestion in Vogelsang and Perron (1998) to use the critical values corresponding to
the no break case then tests will be undersized if there is in fact a break.

Another approach to unit root testing based on the LM principle was proposed by
Schmidt and Phillips (1992). As shown in Amsler and Lee (1995), the asymptotic distri-
bution of the LM test for a unit root is invariant to a change in the intercept under the
null.®> These authors also propose a modification to the LM test that allows for a break
in the intercept at some known date. They show that the limiting distribution of the
test statistic under the null hypothesis of a unit root is the same as for the Schmidt and
Phillips (1992) LM test where no break is considered. This equivalence holds irrespective
of whether such break is present or not under the null.

In this paper we consider LM-type tests that allow for the presence of breaks in the
intercept and slope at unknown dates. Lee and Strazicich (1999, 2002) propose estimating
these dates by minimizing the LM test statistic over a range of possible break dates. Their
tests are asymptotically invariant to a change in the intercept under the null. In fact, we
further show that the null limiting distribution for the minimum LM test allowing for a
break in the intercept is the same as for the Schmidt and Phillips (1992) LM test with
no break. This is not true for a break in the slope. We show that in such a case, and
unlike the minimum DF-type tests, the slope break date estimated by the minimum LM
test converges to the true break date. Therefore, when a break in slope is present under
the null, the asymptotic distribution of the endogenous break minimum LM test statistic
is the same as the distribution of the corresponding exogenous break LM test. When no
break in slope is present under the null, the distribution is different, which leads to the
same dilemma regarding the choice of the appropriate critical value as in the DF-type
tests.

We also propose additional LM-type tests for a unit root where the break date is
chosen according to the regression that best fits the data under the null. This criteria
coincides with choosing the break date that maximizes the dummy variables significance.

We also consider the case where a one directional t-statistic is used when the direction of

3In fact, these authors also show that the same invariance result holds for the DF test.



the break is known a priori. We show that for these proposed alternatives, the estimated
break date approaches the true one when the unit root null hypothesis holds with a break.
It follows that the null limiting distributions of these tests also differ according to whether
a break in the slope has occurred or not. However, such discrepancy is found to be smaller
than in the minimum LM test case. Therefore, size distortions when using the proposed
alternative tests will also be smaller if critical values corresponding to the no break case
are used but there is in fact a break. Simulation results show that these additional tests
perform better in terms of estimating the true break date than the minimum LM test,
both under the null and the alternative, leading to better size and power properties.
The structure of the paper is as follows. The next section presents the models and
statistics. In Section 3, limiting distributions of the statistics under the null are derived
when there is a break as well as when there is no break. Finite sample critical values
as well as several finite sample size and power simulations are presented in Section 4.

Concluding remarks are given in Section 5. All proofs are relegated to the Appendix.

2 LM-TYPE TESTS FOR A UNIT ROOT

We consider the following data generating process (DGP):

Yy = 6+ 2B+, (1)
(1—06[1)3715 = €. (2)

As in Schmidt and Phillips (1992), we assume the same regularity conditions in Phillips
and Perron (1988) that allow for some degree of heterogeneity and autocorrelation in the

e sequence. We also define the following nuisance parameters

T
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and assume o2, 0% > 0. We also define the ratio w? = 02 /02
This specification allows for the presence of different deterministic mean components

by different choices of the exogenous variables in ZP. The case of a deterministic trend



with no structural change considered in Schmidt and Phillips (1992) corresponds to
7} =t.

As in Perron (1989) we consider models where a break has occurred in the trend
function at some unknown date denoted by T3, with 1 < T3 < T, where T is the sample
size. The superscript 0 is used to denote the true break date. We consider three different

models. Model 1 allows for a change in the intercept and corresponds to
z) = (DU}, t) ()

where DU = 1(t > Tp) and 1(-) is the indicator function. In Model 2 there is a change

in both intercept and slope specified as
20 = (DUY,t, DTY) (6)

where DT = 1(t > Tp)(t — Tp). Finally, Model 3 allows for a change in slope such that

the two segments of the trend function are joined:
z) = (t,DT})). (7)

Allowing for more than one break could be easily accommodated in this model specifi-
cation by appropriate choices of Z?. In this paper only the additive outlier (AO) versions
of Perron’s models are considered.

We consider testing the unit root null hypothesis
Hy:a=1 (8)

using LM-type test statistics based on the tests proposed by Schmidt and Phillips (1992).
Assuming normality of the errors, the restricted maximum likelihood estimator of (3,

denoted by 3, is obtained by estimating the following regression by OLS:
Ay = AZS + uy, (9)

where AZ; denotes the first difference of the regressors Z; based on an assumed break
date denoted by Tg. If the assumed break date, T, differs from the true one, T, then

Z; may also differ from Z?. Define the ‘residuals’

gt =Yt — Sik - Zt@ (1())



where

LM-type tests for a unit root are then obtained by OLS estimation of the following test

regression:
Agt = AZtﬁ + ¢St—1 ‘I— Ct. (12)

To allow for autocorrelated errors, an augmented regression could be estimated as in
Amsler and Lee (1995) or Lee and Strazicich (1999, 2002):

k
ASy=AZB+ ¢S 1+ Y cASj+e, (13)
j=1
where the choice of k could be based on a number of alternative procedures as in the case of
the augmented DF-type tests (see for example Vogelsang and Perron, 1998). Alternatively,
as in Schmidt and Phillips (1992), a simple correction of the test statistics could be used.

The LM-type test statistic for a unit root in these models is given by the t-statistic for
testing ¢ = 0 and is denoted by t,(j,T5), where j denotes the model (j = 1,2,3) and T
indicates the break date used. The Schmidt and Phillips (1992) t-statistic corresponding
to the no break case, Z; = t, will be denoted as 4.

To implement the tests allowing for a break, some choice of T must be made. Fol-
lowing Zivot and Andrews (1992), Perron (1997) and Vogelsang and Perron (1998), Lee
and Strazicich (1999, 2002) propose the minimal t-statistic obtained over some range of
break dates, i.e. t4(j, T5(ts)) = infreaty (4, [AT]), where t4(j, [AT]) denotes the t-statistic
with a break at Tp = [AT], [AT] is the integer part of AT, and A is some compact subset
of [0, 1].

In this paper, we propose selecting the break date corresponding to the least squares
estimator of Tz, that is, the date that minimizes the sum of squared residuals in the first
step regression (9). We denote by T the value of T chosen in this way. This choice
of the break date coincides with the one obtained by maximizing the F-statistic on the
significance of the two dummy variables ADU; and ADT; in regression (9) for Model 2,
and maximizing the absolute value of the t-statistic for ADU; in Model 1 and for ADT;
in Model 3.

We also consider choosing the break date that maximizes (minimizes) the t-statistic
for ADU, in Model 1 and for ADT; in Models 2 and 3, both in the first step regression

6



(9), when the direction of the change is known to be positive (negative) a priori. We
denote these choices by Ts(taz). These procedures are similar to the ones discussed by
Perron (1997) and Vogelsang and Perron (1998) in the context of DF-type tests.

3 ASYMPTOTIC DISTRIBUTIONS UNDER THE
NULL

The results for the asymptotic distributions under the null hypothesis of a unit root are
presented for two cases. First, we consider the case of no break in the DGP. Results
for Model 1 assuming a fixed break date are given in Amsler and Lee (1995). Lee and
Strazicich (1999) also consider Model 1 when the break date is given by T's(ts). We
further show that in this case, the limiting distribution is the same as in the no break
case of Schmidt and Phillips (1992). Lee and Strazicich (2002) also give results for Models
1 and 2 allowing for two breaks with the break dates fixed or estimated as T(ts). We
consider the case of just one break. We further consider using Tp(taz) and TB for all
three models.

In the second case there is a break under the null. Results for Model 1 assuming a
fixed break date are given in Amsler and Lee (1995). We provide results for Models 1, 2
and 3 when the break date is chosen according to any of the criteria considered above.

Critical values for the limiting distributions were obtained using 7" = 1,000 and 10,000
replications. The RNDN normal pseudo-random number generator in GAUSS 3.5 was
used in the simulations. We followed the same procedure described in Zivot and Andrews

(1992) and set A equal to the largest possible window.

3.1 The case of no break

In this subsection we consider the case where no break has occurred under the null hy-

pothesis of a unit root. The following DGP is assumed:

yr = 01 +nt+

Ty = i1+ €.

For Model 1, Amsler and Lee (1995) show that when a fixed break date, T = [AT], is

assumed, the asymptotic distribution of ¢4(1,Tp) is the same as the one obtained for ¢,
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which doesn’t allow for a break, as given by equation (22) in Schmidt and Phillips (1992).
As mentioned in Amsler and Lee (1995), this is explained by the fact that the inclusion
of ADU, which equals 1 for only one observation, has no effect asymptotically. It follows
that t,(1, Ts(ts)), te(1,Ts) and ts(1, Ts(taz)) also have this same limiting distribution.
The last rows in Tables 2, 5 and 8 give the asymptotic critical values using the case
T = 2,000 in Schmidt and Phillips (1992). Of course, in finite samples this invariance
result no longer holds. Finite sample critical values are presented in Section 4.

Consider now Models 2 and 3. The limiting distribution of ¢4(j,75) (j = 2, 3) in the
case of a fixed break date Ts = [AT] is given by:

te(s, Te) = R(A) (1=2,3) (14)

where

—-1/2

R()) = —%w (/Olz(r, )\)2dr) , (15)

V(r, A) denotes the residuals from the projection of the process V'(r, A) onto the subspace
generated by the functions {1, du(r, \)} with du(r,\) = 1(r > \),

Vi) = [W(r) - §W(/\)] 1(r < \)

r—A
1—A

+ [W(r) —W(A) — (W(1) — W(A))} 1(r>A) (16)

corresponds to a double standard Brownian bridge such that V(0, A\) = V(A A) = V(1, ) =
0, and W(r) is a standard Wiener process. The symbol ‘=’ in (14) denotes weak con-
vergence of the associated probability measures. This result was obtained in Lee and
Strazicich (2002) for Model 2 in the context of two structural breaks. Notice that the
limiting distribution is the same for Models 2 and 3 because, as in Model 1, the regressor
ADU;, is asymptotically negligible. Critical values for (14) when w = 1 are presented in
Table 1 for several values of A\. They are also asymptotically valid for dependent and het-
erogeneous errors if ¢4(j, Ts) is multiplied by a consistent estimator of 1/w as in Schmidt
and Phillips (1992).

When the break date is chosen to minimize the t-statistic, Lee and Strazicich (2002)

using arguments similar to those in Zivot and Andrews (1992) prove that:

o Tolte) = nf RO (7 =2,3).



Critical values for this limiting distribution when w = 1 appear in the last row of Tables
3 and 4.4

We also obtain the limiting distributions of t4(j, Ts(taz)) and t4(j, T) (j = 2,3)
where the break date T is chosen based on the maximal dummy variable t-statistic or

the least squares estimator of the break date. It is shown in the Appendix that:

ts(J, Te(taz)) = R(N) (J=2,3) (17)
and
ts(j, Ts) = R(\) (1=2,3) (18)

where \ = arg maxyes Q(A) and ) = arg maxyea Q(\)?, with

)=We)_ W),

Q) = VAT (=] L

Critical values for (17) appear in the last row of Tables 6 and 7, while critical values for

(18) appear in the last row of Tables 9 and 10.

3.2 The case of a break

In this subsection we derive the limiting distributions of the LM-type test statistics when
a break is present under the null hypothesis of a unit root. We consider first the case of

a break in the intercept occurring at date T3 = [AoT]. The DGP is given by
Y = 51 + 5DUtO + 71'[; + ;.

Amsler and Lee (1995) show that the LM-type t-statistic for Model 1, ¢4(1, T), assuming
a break at Ty = [AT], has the same limiting distribution as the no break Schmidt and
Phillips (1992) LM t-statistic, ¢4, independently of the break date being correctly placed
(A = Xg) or not (A # X\o).® In fact, Amsler and Lee (1995) also show that other unit
root tests that do not allow for a break, such as the Schmidt and Phillips (1992) LM test
and the DF test, are also asymptotically invariant to a break in the intercept under the

null. This asymptotic invariance property also holds for the LM-type tests for Models 2

4Lee and Strazicich (2002) only provide critical values for the case of two breaks with A = [0.1,0.9]

and 7" = 100.
°If the break date is correctly placed then invariance to the value of § also holds in finite samples.



and 3. In summary, if there is a break in the intercept then the limiting distributions
of t4(4,T(ts)), ts(j, Ts) and ty(j, Ta(taz)) (j = 1,2,3) coincide with the corresponding
ones described in the previous subsection for the no break case.

We consider now the consequences of the presence of a break in the slope under the

null. For a break occurring at date Ty = [A\¢T], the DGP is given by:
Y = 01+t + DT + xy.
In the Appendix we show that:
T2, = 0,(1) (19)

so that the Schmidt and Phillips (1992) LM t-statistic ¢, converges to zero as T — oo.
It follows that the probability of rejecting the null hypothesis of a unit root approaches
zero when there is a break in slope under the null. The same result is obtained for any of
the LM-type tests allowing for a change in the intercept (namely t4(1,T5), ts(1, Ts(ts)),
ts(1,Tp) and t4(1, Tp(taz))) since the inclusion of ADU; does not matter asymptotically.

For Models 2 and 3, if the break in slope is correctly placed (Ts = T§) then t4(j, Ts)
(j = 2,3) will be exactly invariant to the value of v under the null hypothesis. It follows
that, under the null hypothesis of a unit root, the limiting distribution of the exogenous
break LM-type t-statistic for these two models when a break occurs will be the same as

that obtained in (14) when no break has occurred:

to (5, [AT]) = R(Ao) (4 =23). (20)

Invariance no longer holds when the break date is misplaced. In the Appendix we show
that if A #£ \g then

TVt,(, M) = 0,(1)  (j =2.3), (21)

so that t4(j, [A\T]) converges to zero asymptotically. It follows that when the break date
is incorrectly chosen, the probability of rejecting the null hypothesis, when it holds with

a break in the slope, approaches zero as T" — oo.

6There is exact invariance in the case of Model 2 when the break date is correctly placed. This point
is also discussed in Lee and Strazicich (2002). Similar invariance results are obtained by Vogelsang and

Perron (1998) in the context of DF-type tests that allow for a break in the trend.
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Consider now the asymptotic behavior of the minimal LM-type tests t4(j, T5(ts))
(7 =2,3). Since t4(j, [A\T]) has a limiting distribution given by (20) that has support over
the negative real line when A = Ay, but converges to zero when A\ # )\, it follows that
if Ao € A then arginfyea t4(j, [AT]) (j = 2,3) converges to Ag. Therefore, we obtain the

following asymptotic result:
to(s, Tp(ts)) = R(Xo) (1 =2,3). (22)

It is interesting to note that the corresponding DF-type tests have quite different prop-
erties. As shown in Vogelsang and Perron (1998), minimal DF-type tests allowing for a
break in slope diverge asymptotically because the estimated break date does not converge
to the true one.

Finally, we consider the limiting distribution of t4(j, Ts(taz)) and t4(j, Ts) (j = 2,3).
As shown in the Appendix, both T(taz) and T converge to the true break date asymp-
totically so that

t5(J, Tp(taz)) = R(Mo) (J=12,3) (23)
and
t¢>(j7 TB) = R()‘O> (.7 = 27 3) (24)

As in the minimal LM-type test, the limiting distribution equals that obtained in the case
where the break date is known. It follows that some size distortions will arise if critical
values for the no break case are used but the unit root null hypothesis holds with a break
in slope. A similar result was obtained by Vogelsang and Perron (1998) in the case of
the DF-type tests allowing for a break in the trend. However, since the critical values
for t4(j, Ts(taz)) and t4(j, T) are considerably closer to the fixed break critical values,
size distortions will be larger when using t,(j, T(t,)). For example, for a 5% significance
level, the fixed break critical values in Table 1 vary between -3.29 for A = 0.9 and -3.66 for
A = 0.5, while from Table 3 the critical value for ¢4(2, T5(ts)) equals -4.27. Closer to the
fixed break case is the critical value for t4(2,T5(taz)) from Table 7 which equals -3.47,
or for t4(2, TB) from Table 9 which equals -3.50. For instance, if there is in fact a break
at A = 0.5 and the asymptotic 5% critical values for the endogenous break tests are used,
asymptotically the true size of t4(2, T5(t4)) will be below 1% while for t,(2, T(taz)) and
ts(2, TB) the true size will be between 5% and 10%. This results in a loss in the power of

to(2,Tp(1s))-
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4 FINITE SAMPLE SIMULATIONS

In this section, finite sample critical values as well as size and power simulations are
presented for the statistics t,(j, Ta(ts)), to(j, T(taz)) and t4(4,Ts) ( = 1,2,3). We
obtain these by simulating from the following DGP:

y, = O6DUY +~DT) + x4, (25)
T, = arq+ pAT_y + e + Yy, (26)

where e; are i.i.d. N(0,1) random deviates. Each simulation was based on 10,000 repli-

cations. We set A equal to the largest window possible for each sample size considered.

4.1 Critical values with no break

In this subsection we present finite sample critical values for the statistics t,(j, T5(ts)),
ts(j, Te(taz)) and t4(j,Tp) (j = 1,2,3) assuming no break, § = v = 0, under the null
a = 1. We only present results for the case of no autocorrelation in the first difference of
the errors: p = 1) = 0. Size distortions caused by the presence of a break, d,v # 0, or by
autocorrelation in the errors, p,1¢ # 0, are considered in the next subsection. We have
set zp = 0, 0 = 0 and v; = 0 without loss of generality since in this case the statistics
are exactly invariant to these parameters.

For selecting the truncation lag parameter k in regression (13) we have considered
two procedures. In the first case we set k& = 0 which corresponds to regression (12). As
an alternative, we also consider a data-dependent method as in Perron (1989, 1997) and
Vogelsang and Perron (1998) denoted as k(t — sig). For any given value of Tz, k is chosen
so that the coefficient on the last included lagged first difference is significant at the 10%
level, but insignificant in higher-order autoregressions up to some fixed maximum lag
length denoted by kmaxz. We set kmax = 5 so that our results are comparable with those
presented in Vogelsang and Perron (1998) for the augmented DF-type tests allowing for
a break.

We present the results for T = 50, 100 and 150 in Tables 2-10.7 In general, the
asymptotic critical values provide reasonably good approximations to the finite sample

critical values when £ = 0. Ounly in the case of t4(1,T5(t,)) does convergence to the

"Critical values for t4(1,Tg(ts)) when T = 100 and k = 0 differ slightly from the ones presented in
Lee and Strazicich (2002) because of a different choice of A.
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limiting critical values seem to be somewhat slower. When k(t — sig) is used with kmax =
5, the critical values are much smaller than the asymptotic and £ = 0 critical values.
Similar results were found by Vogelsang and Perron (1998) for the augmented DF-type
tests. These discrepancies seem to be larger for the tests based on Tz(t4). The simulations

also suggest that in all cases these differences vanish asymptotically.

4.2 Finite sample size and power

We now present the results of several finite sample size and power simulations using
T = 100. We considered several values of § and ~, both under the null, « = 1, and under
the alternative o = 0.8. For the cases where a break occurs, 9, v # 0, the true break date
was set to T = 50 (A9 = 0.5).

In the first set of simulations we considered i.i.d. errors, p = ¢ = 0, and set k = 0
in order to isolate the effects of the breaks from the effects of autocorrelation. We used
the 5% critical values described in the previous subsection for the case of no break and
presented in Tables 2-10 for T" = 100 and kmax = 0. Results appear in Table 11.

We first discuss the results obtained for the Schmidt and Phillips (1992) LM test .
A break in the intercept has a minor impact on size. However, it may lead to a severe
decrease in power. These results are in line with the findings in Amsler and Lee (1995).
For a break in slope, size is practically zero, confirming the asymptotic result in subsection
3.2. A break in slope also drives power to zero.

Consider now the results for the test statistics using Model 1 which allows for a break
in intercept. When the unit root null hypothesis, & = 1, holds with a break in the
intercept only, 6 # 0 and v = 0, t4(1,T5(t;)) becomes slightly undersized. Size equals
4.7% for § = 5 and 3.6% for § = 10. For t4(1,Ts(taz)) and t,(1,Tp), the exact size
nearly matches nominal size. This better performance is explained by the fact that the
correct break date is almost always correctly identified using these two procedures. On the
other hand, whenever a change in slope occurs, v # 0, all test statistics become severely
undersized. This result confirms the asymptotic findings in subsection 3.2. When the
alternative holds without a break, o = 0.8, we see that t,(1,Ts(ts)) performs better
than t4(1, Ts(taz)) and t4(1,T;). However, in the presence of a break in the intercept,
the reverse occurs. When the alternative holds with a break in the slope, all tests have
power close to zero. In all the cases, we see that the correct break date is more frequently
selected when using t4(1, Tp(taz)) and t4(1, Tp).

13



Next, we discuss the results obtained for the tests based on Model 2. Consider first
the results under the null. As the break in the intercept gets larger, t,(2, T5(ts)) and
ts(2, Tp(taz)) become more undersized. On the other hand, the size for t4(2,7p) is
always close to 6%. For a change in slope, t4(2, T5(t4)) is undersized while t4(2, T5(taz))
is oversized. The size for t¢(2,TB) is again only slightly above nominal size. When
both a break in intercept and slope occur, t4(2, TB) performs better than the other test
statistics. Under the alternative, when there is no break, the three tests considered have
similar powers. When a break occurs we see that t4(2,T5(ts)) always performs much
worse than t4(2,Tp). As expected, t4(2, Ts(taz)) performs better when there is a break
in slope only. As in Model 1, the correct break date is always more frequently selected
when using t,4(2, Tg) relative to t4(2, Ts(t,)).

Finally, we address the results for the tests based on Model 3. This model is designed
to cope with a change in slope only. When a break in the intercept occurs under the
null, all test statistics become undersized. For a break in the slope, t4(3, T5(t,)) is also
undersized, while the size of ¢,4(3, TB) is closer to the nominal size. Under the alternative
hypothesis, when there is no break, t4(3,Ts(ts)) and t4(3, Ts(taz)) perform better than
t4(3,Tp). It is interesting to note that in this case the power of t,(2, T) is larger than the
power of t,(3, TB). When there is a break in the intercept under the alternative, all test
statistics have low power. For a break in the slope, as expected t4(3,Ts(taz)) performs
better, followed closely by t4(3, 7). Power for t4(3, Tg(ts)) is lower mainly because the
correct break date is selected less often. Finally, when both a break in the intercept and
in the slope occur under the alternative, t,(3,T5(ts)) performs better, but still distant
from the power achieved using the Model 2 test statistics t4(2, Ts(taz)) and t4(2, Tg).

Overall, the results suggest that the minimum LM tests suffer from size distortions in
the presence of a break under the null. In contrast, for the t¢(2,TB) test statistic, true
size is always close to nominal size. This test also revealed good power properties for
the different types of breaks considered making it particularly attractive when it is not
possible to restrict the break to occur only in the intercept or only in the slope. When
it is known that only a break in intercept may have occurred, the corresponding test for
Model 1, t¢(1,TB), has more power. However, all tests based on Model 1 are severely
undersized when a break in slope occurs. If it is known that there is a break in slope only,
and its direction is known a priori, some gain in power may also be obtained by using

ts(3,Ts(taz)). Then again, if there is a break in intercept, all tests based on Model 3 are
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severely affected in terms of power. The only case where a minimum LM test statistic is
superior to other tests in terms of size and power is when using Model 1 and when no
break has occurred. However, when one is sure that there is no break, then the Schmidt
and Phillips (1992) LM test, t,, would be preferred. Finally, we note that when a break
occurs under the null or under the alternative, tests based on Tg(taz) or TB seem to
select the correct break date more often than tests based on Tp(t4).

In a second set of simulations we allow for autocorrelated errors and set kmazr = 5.
In this case, we use the 5% finite sample critical values for 7' = 100 and kmaz = 5. Also,
as in Vogelsang and Perron (1998), we consider the following five error specifications: (1)
p=0,v=0,(2) p=06,v=0,(3) p=-06,9=0,(4) p=0,v=0.5and (5) p=0,
1 = —0.5. Results for the LM-type test statistics based on Model 2 appear in Table 12.

The first thing to notice is that although true size depends on the correlation structure
considered, in general size distortions caused by the autocorrelation in the errors are not
too large. The only exception where tests are largely oversized is in experiment (5)
where the errors have a negative MA(1) component. Similar findings were obtained in
the context of the AO DF-type tests in Vogelsang in Perron (1998). On the other hand,
regardless of the correlation structure of the errors, the consequences of a break on true
size are similar to those obtained above for the case of no autocorrelation and kmaz = 0.
A break in the intercept or the slope usually leads to a decrease in the size of t4(2, T5(t4))
and to an increase in the size of t4(2,Tp). The size of t4(2, Tp(taz)) tends to decrease
with a break in the intercept and to increase with a break in the slope.

We consider now the results in terms of power. In the case of a negative AR(1)
component in the errors, all tests have low power. Vogelsang in Perron (1998) found the
same behavior for AO DF-type tests. Regardless of the autocorrelation pattern considered,
t5(2, Ts(ts)) tends to be superior to t4(2, Tg) when there is no break. However, the power
of t4(2,Tg(ts)) is reduced in the presence of a break in the intercept or in the slope.
Again, Vogelsang and Perron (1998) report a similar result for the AO DF-type tests. In
contrast, the power of t¢(2,TB) tends to be larger in the presence of a break. This is
explained by the fact that T selects the true break date more often than Tp(ty), and
when the wrong break date is selected the tests have a tendency to undereject the null.
Finally, as expected, t4(2, Ts(taz)) is preferred to t4(2, Tz) when the break occurs only

in the slope.
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5 CONCLUSION

This paper considers LM-type tests for a unit root allowing for the presence of a break in
the trend function at an unknown date. Three possible cases are considered: a change in
intercept, a change in slope, and both. In addition to the minimum LM test statistic, we
propose tests where the break date is estimated using the significance of the trend break
parameter or the least squares estimator of the break date under the null.

We examine the asymptotic behavior of the LM-type tests when the null hypothesis
of a unit root holds with a break as well as when there is no break. The test statistics
are asymptotically invariant to the magnitude of the intercept change. However, they are
not invariant to the magnitude of the slope change. For all the endogenous break tests
considered, the null limiting distribution when there is a break in slope is not the same
as when there is no break. Since the discrepancy is larger for the minimum LM-type unit
root test, smaller size distortions are to be expected when using the other proposed test
statistics.

A Monte Carlo study compares the finite sample performance of the alternative en-
dogenous break LM-type tests. Results suggest the superiority in terms of size, power
and break date estimation of our proposed methods relative to the minimum LM-type

unit root tests when there is a break.
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APPENDIX

In this appendix, we prove the asymptotic results presented in the text by employing the
functional central limit theorem (FCLT) used in Phillips and Perron (1988). Limiting
results for the minimal and maximal test statistics are obtained by first establishing
weak convergence for a fixed A and then applying the continuous mapping theorem as
in Zivot and Andrews (1992). Throughout the appendix = denotes weak convergence in
distribution and % convergence in probability.

When the null hypothesis of a unit root holds with a possible break in the slope at
date T = [A\T] we have that

yr = 01 + it + yDT + x4 (A1)
and
Ay; =71 + DU + ¢. (A.2)

We can write (A.2) in matrix notation as AY = AZY8 + ¢ where AY = (Ays, ..., Ayr),
AZY = (AZY, ... ,AZYY, AZ) = (1, DUY), € = (&3, ... ,er)', and B = (71,7)".

The first step regression (9) can also be written in matrix notation as
AY = AZB+U (A.3)

where AZ = (AZ),... ,AZL) and U = (ug, ... ,ur). The least squares estimator of /3
is given by 3 = (AZ'AZ)"'AZ'AY .

Define the following (T'—1x1) vectors S_y =(S1, ... , Sp_1)" and AS = (AS,, ..., ASy).
Using (10) and (11) we get that AS = AY — AZJ3, so that AS is the vector of residuals
from regression (A.3). Define the orthogonal projection matrix M = I-AZ(AZ'AZ)AZ'.
We have that AS = MAY and

MAS = AS. (A.4)
It also follows that
S' MAS = S ,AS
T ~ ~
= Y 5,AS
t=2
1

= —§AS'A§ (A.5)
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where the last equality follows as in Lemma 1 in Schmidt and Phillips (1992).

The estimator of ¢ in the second step regression (12) can be written as
¢ = (8 MS_)'S  MAS
1 - _ L
= —5(5’_1MS_1)_1AS’AS (A.6)

with the second equality following from (A.5). The t-statistic for testing ¢ = 0 can also

be written as

t(p=0) = (s28  MS_1)"V28 MAS

1 .. N o
= —5(325L1Ms_1)*1/2A5'A5, (A7)
where s? is the estimated variance of the errors given by
1 N P
§% = 7 (AS = S19) M(AS = 5.19). (A.8)

Proof of (19) in the text. We show that when there is a break in the slope under
the null hypothesis of a unit root, so that (A.1)—(A.2) hold with v # 0, then we have the
result in (19). To obtain t,, the first step regression (9) must be estimated assuming no
break, which corresponds to Z; =t, AZ, = 1, and can be written as

Ay = 71 + uy.

The least squares estimator of v is given by

T
N 1
=77 ; Ay (A.9)

For a break in slope at date Ty = [A\T], it follows from (A.2) and (A.9) that 7, =

"+ VTT__Tf% + ﬁ thg ¢;. By the FCLT we obtain

T2 (31 —77) = oW (1) (A.10)

where yi=71 + (1 = Ao).
From (10) and (11) we have that S; = y, — y; — 31(t — 1) and AS; = Ay, — ;. Using
(A.1) and (A.2) we get

Sp = (@ —21) = (1 =)t = 1) +1DT}
= (ze—2) = (-t -1 = (7 =)t - 1) +yDT}, (A.11)
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and

The first term in (A.11) is O,(T"?) by the FCLT. By (A.10) the second term is also
O,(T*/?). The last two terms are O(T). It follows that

T Spry = v (r) (A.13)
where
fr)y=—=(1=Xo)r + 1(r > Xo)(r — Ao).

From (A.13) we get

1 (S 1 &5
-3 O - t—1 _ t—1
TS MS = ZT( T T—1Z T)
=2 =2
, 1 1 2
= (yf(r)—/ 7f(s)ds> dr. (A.14)
0 0

Computing the integrals in (A.14) we arrive at

2 A1 — /\0)2.

T35 MS_, 5~ - (A.15)
From (A.12) and after rearranging terms we have that
AS’AS = Z (Gt — (’3/1 — ’}/1) —+ ’}/DUtO>
t=2
d 2
= Z (66 — (1 —n)(1 = DUY) = (h = — 7)DUY)".
t=2
Since by (A.10) we have that 4, 2 4% =, + (1 — o) it follows that
TIASAS L 02 4 42(1 — Mo)?Xo + ¥2A2(1 = Xo) = 02 + ¥?Xo(1 = No). (A.16)
Using (A.15) and (A.16) in (A.6) we obtain:
o LGN - 202\
T?¢ 5 -3 (f%) (a2 +7*Ao(1 = Ao)) - (A17)
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Using (A.15), (A.16) and (A.17) in (A.8) we also get that
s* L o 42N (1 — No). (A.18)
Finally, using (A.15), (A.16) and (A.18) in (A.7), we get
TV, = —%(sZT‘3§’_1M§_1)‘1/2T‘1A§’A§

1/ JA2(1—)\)2\ V2
LR -3 (7270( 5 0) ) (062+’72)\0(1—)\0))1/2

proving the result. [J

In what follows, we present proofs of the results for Model 3 only. All the corresponding
proofs for Model 2 would follow along similar lines since it differs from Model 3 only by

the inclusion of an asymptotically negligible one-time dummy variable.

The first step regression (9) for Model 3 assuming a break occurring at Tp = [AT]
corresponds to Z; = (t, DT;), AZ; = (1, DU,), and can be written as

Ay = v1 +vDU; + wy. (A.19)

The least squares estimators of 7, and v can be written as

1 &
5y = A A2
= ; Y, (A.20)
1 T 1 T
5 = Ay, — Ay A21
v T T, Z Yt Te—1 Z Yt ( )
t=Tp+1 t=2

We also have from (10) and (11) that
St =y —y1 =t —1) = 3DT;
and
AS, = Ay, — 4 — 4DU,.
Using (A.1) and (A.2) we obtain

Sy = (v, — 1) — (51 — 1) (t — 1) = DT, + vDT? (A.22)
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and

AS, = ¢ — (%1 — 1) — DU, + yDUY. (A.23)

Lemma 1. If v =0, or if v # 0 and A\ = A\, then the following holds:

T2 (55— ) = o) (A24)
TV2(5 —~) = o W(li — ?/(A) — W@ : (A.25)
77128, = oV (r,\), (A.26)

where V(r, A) is defined in (16).

Proof of Lemma 1. If v =0, or if v # 0 and A = ), then we have from (A.2) and
(A.20) that 41 = 91 + ﬁ ZtTfQ €. From (A.21) we also get ¥ = v + ﬁ ZthTBH € —
TBlfl ST €. By the FCLT we arrive at (A.24) and (A.25). From (A.22) and using (A.24)
and (A.25) we obtain:

T’l/QS[TT] =0 |[W(r)— r@ —1(r> AN (r—2A) (

After rearranging terms we finally obtain (A.26). O

Lemma 2. Suppose that v # 0 and A # A\g. If A < g then

T2 — ) = o) 11205 ) 5 {W(l) — W) WW] (A.27)
A 1—A A
where 7/ :’yl__>:\(’. If A > A\ then
T2 o) > oL TG = o) o |[FHZT
where 7| =, + 7% and 7”:7%. Finally we have that
TS, B v f(r,\) (A.29)
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where

f(m)z{ LN s A= A) 1> A=) i A< o,

—2ap Qg > ) (r— A) 10> A)(r = Ag) if A > Ao

(A.30)

Proof of Lemma 2. Consider first the case A < A\g. From (A.2) and (A.20) we
T-T

have that 41 = v + ﬁ Ztsz ¢;. Similarly, using (A.2) and (A.21) we get 7 = y7— % +
ﬁ ZtT:TBH € — ﬁ ZtTfQ ¢;. By the FCLT we obtain (A.27). Rearranging the terms
in (A.22) we obtain S; = (z; — z1) — (;1 — 1)t — 1) — (y — v')DT; — /DT, + yDT}.
The first term is O,(7%/?) by the FCLT. By (A.27) the second and third terms are also
O,(T'?). The last two terms are O(T). Therefore we arrive at (A.29)—(A.30) for the case
A< Ao

For A > A¢ we have that 4, = v + vTﬁB_ﬂg + TBlfl ZtTfQ € and 4 = V%j +
ﬁ ZthTBH € — ﬁ Ztsz ¢. By the FCLT we obtain (A.28). Rearranging (A.22)
we have S; = (2, —21) — (1 =) (t = 1) = (§ —7") DTy — (v; =) (t = 1) =" DT, ++DT}.
The first term is O,(T"/?) by the FCLT. The second and third terms are also O,(T"/?)
by (A.28). The last three terms are O(T"). Therefore we arrive at (A.29)—(A.30) for the

case A > A\g. U

Lemma 3. If v =0, or if v # 0 and A = o, then T725_1MS ;| = o2 fol V(r,\)2dr
where V (7, A) denotes the residuals from the projection of the process V(r, A) onto the
subspace generated by the functions {1, du(r, \)} with du(r, \) = 1(r > \).

Proof of Lemma 3. The result follows directly by (A.26) in Lemma 1. [

Lemma 4. If v # 0 and A # Ao then T735_;MS_; & 42h(), \o) where

(Ao=N)2(1=A0)?
M) = ey, B (A31)
L T

Proof of Lemma 4. S_;MS_; represents the sum of the squared residuals from the
regression of gt_l on 1 and DU;. This is equivalent to a regression of gt_l on 1 — DU,

and DU;. Therefore, by (A.29) in Lemma 2 it follows that:

T35_,M5_, & /0)\ {”yf(r, A) — % /0)\ ’yf(s,A)ds] dr
1 1 1 2
v [ e = 125 [t s a
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By computing the integrals we arrive at the desired result. [J
Lemma 5. If v # 0 then TPAS'AS 5 62 4 ~2g(\, Ag) where

(1-20)(Xo—N) it A<\

1-A
g\ o) = 0 if A=\,
A\ > .

If v = 0 then T-'AS'AS 5 o2,

Proof of Lemma 5. From (A.23) we have:

T
TIASAS =Ty (e — (51 — m) — 7DU, +DUY). (A.32)
t=2
Consider first the case v # 0. When A = )¢ we have that DU, = DU} and, from
Lemma 1, 41 2 v and 4 % . Tt then follows that T-'AS’AS & o?. When \ < )y we
rewrite (A.32) as

T
TASAS =T (e — (1 — ) — 7(DU, — DUY) — (3 —4)DUY)" . (A.33)

t=2

The result follows easily from (A.33) since by Lemma 2 we have that 5, — 7, 2,0 and

y—nL —7’\10__/\)‘. Finally, when A\ > \g, we rewrite (A.32) as

T
TASAS = T (&= (51 —m)(1 — DUY) (A.34)

t=2

~ - - 2
—(%1 —m —7)(DUL = DU,) — (h — 11 + 7 — 7)DU;)”.

The result follows again easily from (A.34) since by Lemma 2 we have that 5, —, — ’y%

and 5—737’\0/\_)‘.

For v = 0 we have from (A.23) that

T
TASAS =T ) (e — (1 —m) — 7DUL).

t=2

Since by Lemma 1 we have that 71 —v; - 0 and 7 2 0, it follows that T-*AS’'AS % o?
proving the result. [J
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Lemma 6. If v = 0, or if v # 0 and A = Ao, then ¢ = O,(T~1). If 4 # 0 and X # A
then ¢ = O,(T2).

Proof of Lemma 6. Using (A.6) the result follows from Lemmas 3, 4 and 5. O
Lemma 7. We have that s> 2 o2 +42g(\, \o).

Proof of Lemma 7. Using (A.4) and (A.5) in (A.8), we can write s? as

1 - - . e e~ -
§* = ﬁ(AS’MAS — 208" | MAS + ¢*S" | MS_,)

1 R - - ~~ o~ ~
= 7 (1 +9)ASAS + ¢*S" MS ).

The result then follows easily from Lemmas 3, 4, 5 and 6. [J

Lemma 8. If v = 0, or if 7 # 0 and A = Ao, then ,(3,[\T]) = R(\) with R(X) as
defined in (15).

Proof of Lemma 8. Using (A.7), the result follows from Lemmas 3, 5 and 7. [

Proof of (17) in the text. We show that in the absence of a break, v = 0,
then (17) holds. The t-statistic for testing that the coefficient of DU, in the first step
regression (A.19) is equal to zero when Tp = [AT] is given by taz(\) = 7/v/02mas
where mgy denotes the row 2, column 2 element of (AZ’AZ)~! and 62 = AS'AS/(T —

1) is the estimated variance of the errors in (A.19). Tt is easy to see that Tmgy -

—,\(11_/\). By Lemma 5 we have that &2 N o2,

taz(A) = 2V/A1 - N) (W(li:?/(k) - W/@) . Since Tg(taz) is the break date that max-

imizes taz(A), by using Lemma 8 and the CMT as in Zivot and Andrews (1992), we

have that t4(3, Ts(taz)) = R(\) where A = argmaxyea v/A(1 — ) <W(1E:KV(A) - W/@),

By applying Lemma 1 we have that

proving the result. [J

Proof of (21) in the text. We show that if there is a break, v # 0, whose date is
misplaced, A # Ag, then (21) holds. By using Lemmas 4, 5 and 7 in (A.7) it follows that

TV2,(3, NT]) 2 —= (42h(\ A)) ™72 (02 +429(A M) 2,

N | —

proving the result. [
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Proof of (23) in the text. We show that in the presence of a break, v # 0, (23)
holds. We first derive the limiting behavior of taz(A) = 7/v/0%mgy when v # 0. By
Lemmas 1 and 2 we have that 7 2 yk(\, \g) where

Ldo f )\ < )\,

1-A
KA A) =4 1 if A=\,
AP A A

1
PYCESVE

By Lemma 5 we have that 62 % 02 + 42g(\, Ag). We also have that Tmg, -

Combining these results we get

T2 (0) L k(A M) VAT = A) (02 +729(A Ao)) 72

It follows that the limiting behavior of taz(A) depends on \,. For any given )\, it is
easy to see that this limiting function of A attains a maximum at Ay when v > 0 (and a
minimum at \g when vy < 0). It follows that )\ is chosen asymptotically which, together

with Lemma 8, proves the result. [

Proof of (18) and (24) in the text. Let RSS(Tp) denote the residual sum of
squares for the first step regression (A.19) when the break date used equals Tz. Since Tp =
arg maxr, RSS(Tg) = argmaxr, t4 pr(Ts), (18) and (24) follow by the same arguments
used to prove (17) and (23) respectively. [J
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Table 1. Asymptotic Critical Values for t4(j, T5) (j=2,3) for Fixed Tp = [AT]

A 1% 25% 5% 10%  25%  50% 5%  90%  95% 97.5% 99%
1 -384 -3.56 -3.30 -3.02 -2,55 -2.11 -1.71 -142 -128 -1.18 -1.06
2 -406 -3.74 -351 -321 -27 -230 -189 -1.59 -143 -1.30 -1.19
3 -413 -3.84 -3.59 -332 -289 -245 -206 -1.76 -1.59 -1.47 -1.35
4 -415 -386 -3.63 -3.37 -297 -255 -2.18 -190 -1.75 -1.63 -1.51
S -4.15 -3.87 -3.66 -3.40 -299 -258 -222 -194 -180 -1.68 -1.57
6 -4.12 -388 -3.63 -3.38 -298 -255 -2.17 -188 -1.73 -1.61 -1.48
7 -4.12 -382 -3.58 -331 -289 -246 -2.05 -1.74 -1.59 -1.47 -1.33
8§ -4.03 -3.73 -348 -3.21 -2.76 -2.30 -1.89 -1.58 -142 -1.31 -1.20
9 -388 -354 -329 -3.01 -256 -211 -1.72 -143 -1.28 -1.17 -1.06
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Table 2. Critical Values for t4(1, Tx(t4))
T kmaxr 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -446 -4.09 -380 -341 -287 -2.31 -1.83 -1.47 -1.31 -1.19 -1.08
5 =517 -4.76 -443 -399 -3.36 -2.72 -220 -1.86 -1.68 -1.56 -1.44
100 0 -432 -391 -3.62 -3.26 -2.74 -221 -1.77 -145 -1.30 -1.18 -1.04
o 471 -433 -396 -3.58 -298 -242 -194 -1.62 -146 -1.36 -1.22
150 0 -4.18 -3.77 -3.47 -3.15 -2.65 -2.15 -1.73 -142 -1.27 -1.15 -1.04
5 -4.37 -4.02 -3.70 -3.35 -2.82 -229 -185 -1.52 -137 -1.25 -1.15
00 -3.06 -3.27 -3.02 -2.75 -234 -190 -1.54 -1.29 -1.16 -1.07 -0.97
Table 3. Critical Values for t4(2, Tx(t4))
T kmazx 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -546 -5.04 -4.71 -4.39 -3.87 -3.36 -2.87 -249 -230 -2.15 -2.00
5 -6.34 -590 -5.59 -5.25 -4.70 -4.14 -3.63 -3.22 -3.00 -2.84 -2.66
100 0 -512 -479 -452 -421 -3.74 -3.25 -2.81 -245 -225 -210 -1.93
5 -5.65 -530 -5.03 -4.71 -420 -3.656 -3.18 -2.80 -2.60 -2.45 -2.27
150 0 -5.02 -4.70 -444 -412 -3.66 -3.20 -2.77 -242 -2.22 -2.07 -1.90
5 -b41 -5.07 -4.79 -449 -399 -347 -3.02 -2.65 -246 -2.30 -2.13
00 -4.74 -451 -4.27 -401 -3.57 -3.12 -2770 -2.36 -2.18 -2.02 -1.87
Table 4. Critical Values for t,(3, Ts(ts))
T kmaz 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -5.32 -494 -4.61 -430 -3.78 -3.27 -2.80 -242 -224 -209 -1.94
5 -6.20 -5.79 -548 -5.12 -457 -4.02 -3.49 -3.07 -2.84 -2.68 -247
100 0 -5.08 -4.74 -446 -4.16 -3.68 -3.20 -2.76 -2.40 -2.21 -2.07 -1.90
5 -5.60 -5.23 -496 -4.64 -4.12 -3.57 -3.09 -2.69 -2.50 -2.34 -2.17
150 0 -496 -4.64 -437 -4.07 -3.62 -3.16 -2.73 -2.38 -2.19 -2.03 -1.88
5 -5.34 -5.02 -474 -443 -392 -341 -294 -2.57 -238 -221 -2.04
0 ATA -A51 -427 -4.01 -3.57 -3.12 -270 -2.36 -2.18 -2.02 -1.87
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Table 5. Critical Values for t,(1, T(taz))

T kmazx 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -3.77 -345 -3.16 -2.85 -240 -1.95 -1.57 -1.30 -1.18 -1.09 -1.00
5 -429 -392 -3.60 -3.21 -263 -2.11 -1.69 -1.38 -1.23 -1.09 -0.89
100 0 -3.7%5 -3.37 -3.13 -2.84 -237 -192 -1.57 -1.32 -1.19 -1.09 -0.98
5 -4.01 -3.63 -3.31 -299 -248 -2.00 -1.61 -1.35 -1.21 -1.11 -1.00
150 0 -3.60 -3.28 -3.04 -2.76 -2.34 -191 -1.55 -1.30 -1.17 -1.07 -0.99
5 -3.78 -347 -3.17 -2.87 -242 -1.96 -1.58 -1.31 -1.19 -1.09 -0.98
00 -3.06 -3.27 -3.02 -2.75 -234 -190 -154 -1.29 -1.16 -1.07 -0.97
Table 6. Critical Values for t,(2, Tp(taz))
T kmazx 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -453 -4.17 -3.87 -349 -294 -238 -191 -1.57 -140 -1.27 -1.14
5 =511 -4.67 -432 -392 -329 -2.63 -2.07 -1.70 -1.50 -1.35 -1.15
100 0 -431 -3.99 -3.70 -3.36 -2.86 -2.35 -1.89 -1.56 -1.39 -1.25 -1.11
5 <464 -426 -393 -356 -3.02 -245 -1.96 -1.60 -142 -1.29 -1.15
150 0 -421 -390 -3.63 -3.29 -2.80 -231 -1.86 -1.53 -1.37 -1.24 -1.12
5 -453 -410 -3.76 -3.42 -291 -237 -190 -1.55 -1.39 -1.26 -1.13
00 -4.00 -3.72 -347 -3.18 -2.72 -223 -181 -1.50 -1.33 -1.21 -1.09
Table 7. Critical Values for t,(3, Tp(taz))
T kmaz 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -447 -411 -381 -3.46 -291 -237 -191 -156 -140 -1.26 -1.14
5 -5.01 -458 -421 -3.83 -3.22 -259 -206 -1.69 -149 -1.32 -1.11
100 0 -4.27 -396 -3.67 -3.34 -2.85 -235 -1.90 -156 -1.39 -1.26 -1.11
5 -4.58 -4.18 -388 -3.53 -299 -243 -195 -1.60 -1.41 -1.29 -1.14
150 0 -421 -3.87 -3.59 -3.27 -2.80 -2.30 -1.87 -1.54 -1.37 -1.24 -1.12
5 -446 -4.07 -3.74 -339 -288 -2.36 -1.89 -1.55 -1.38 -1.26 -1.13
50 400 -3.72 -347 -318 -272 -223 -1.81 -1.50 -1.33 -1.21 -1.09
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Table 8. Critical Values for t4(1, ;)

T kmaz 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -383 -347 -3.19 -288 -241 -1.95 -1.58 -1.31 -1.18 -1.09 -0.99
5 -435 -396 -3.62 -324 -264 -2.12 -169 -1.39 -1.23 -1.10 -0.95
100 o -3.7% -337 -3.11 -282 -237 -193 -1.57 -1.31 -1.19 -1.09 -0.98
5 -399 -3.61 -3.30 -297 -249 -2.00 -1.61 -1.34 -1.21 -1.10 -0.99
150 0 -3.61 -3.32 -3.06 -2.77 -233 -191 -1.55 -1.29 -1.17 -1.07 -0.98
5 -3.83 -349 -3.18 -2.88 -241 -1.96 -1.58 -1.31 -1.19 -1.08 -0.98
00 -3.06 -3.27 -3.02 -2.75 -234 -190 -154 -1.29 -1.16 -1.07 -0.97
Table 9. Critical Values for t4(2, T;)
T kmaz 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -452 -417 -3.88 -3.54 -3.03 -2.51 -2.06 -1.72 -1.54 -1.42 -1.28
5 =515 -4.71 -441 -4.05 -345 -2.83 -2.28 -1.88 -1.67 -1.50 -1.29
100 0 -437 -4.02 -3.73 -343 -295 -248 -2.05 -1.72 -1.55 -140 -1.24
5 471 -434 -403 -3.68 -3.14 -2.62 -2.15 -1.78 -1.59 -1.44 -1.28
150 0 -4.26 -3.93 -3.67 -3.37 -292 -246 -2.04 -1.69 -1.52 -1.39 -1.25
5 447 -415 -3.85 -3.55 -3.06 -2.54 -2.09 -1.72 -1.55 -1.41 -1.26
00 -4.07 -3.75 -3.50 -3.22 -2./8 -232 -190 -1.60 -1.44 -1.32 -1.22
Table 10. Critical Values for t4(3, Ts)
T kmaz 1% 25% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%
50 0 -459 -422 -393 -3.57 -3.04 -252 -2.06 -1.72 -1.54 -143 -1.28
5 -5.04 -464 -431 -395 -336 -2.74 -220 -1.82 -1.62 -1.45 -1.27
100 0 -435 -404 -3.78 -3.46 -296 -247 -2.03 -1.69 -1.53 -140 -1.26
o -4.62 -427 -398 -3.64 -3.10 -2.55 -2.09 -1.74 -1.55 -1.41 -1.27
150 0 -429 -397 -3.68 -3.37 -290 -243 -1.99 -1.67 -1.50 -1.38 -1.25
5 -445 -414 -383 -3.51 -299 -247 -202 -1.68 -1.51 -1.37 -1.25
00 -4.07 -3.75 -3.50 -3.22 -2/8 -232 -190 -1.60 -1.44 -1.32 -1.22
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Table 11. Frequency of null rejections (Rej.) and correct break date selection (T3) for LM-type tests: t4(j,-) (j = 1,2, 3)
DGP: y; = §DUY + DT + x4, 1 = awy_1 + €4, ¢ i.i.d. N(0,1)
T = 100; T = 50; 5% nominal size; kmaz = 0

to  ts(1,Tr(ty)) ts(1,Tn(taz)) to(1,Te) ts(2,Th(ts)) te(2, Tp(taz)) ts(2,1)  ts(3,Tn(ts)) ts(3,Tn(taz)) te(3,T5)
« v Rej. Rej. TY Rej. T9 Rej. TY Rej. T9 Rej. TY Rej. T9 Rej. T9 Rej. T9 Rej. TY
1 0 .049 047  .358 .051 987 052 979 .044 152 .043 .000 .061 .973 041 129 .043 .038 042 .024
1 10 0 .034 036 477 .050 1.00 .052 1.00 026 .282 022  .007 .061 1.00 021 184 021 .084 .018 .056
1 1 .000 .000 .000 .000 .019 .000 .011 .019 .085 071 .210 .059 131 021 101 072  .264 .057 .264
1 2 .000 .000 .001 .000 .021 .000 .011 017 142 067 424 .060 .345 019 .204 068 .631 052 .631
1 5 1 .000 .000 .001 .000 .992 .000 .986 .036 .072 071 576 .061  .996 .039 .097 .068 .542 .053 .542
1 10 2 .000 .000 .000 .000 1.00 .000 1.00 078 .044 .066 1.00 .061 1.00 084 .019 .045 .27 033 .827
8 0 0 .762 .750 — 598 — 573 — 461 — 475 — 421 — 447 — 438 — 310 —
8 5 0 .356 b5 671 730 976 739  .964 282 408 162  .000 518  .958 203 .216 161 .025 111 .008
8 10 0 .027 452 915 743 1.00 756 1.00 167 721 .012 .000 536 1.00 .030 .257 012  .075 .006 .038
8 1 .000 .000 .000 .000 .020 .000 .011 267 125 537 .257 454 131 291 157 541 .306 476 306
8 2 .000 .000 .000 .000 .021 .000 .011 249 213 546 430 510 .331 268 .309 .Bb5  .629 490  .629
88 b .000 .000 .000 .000 .985 .000 .975 333 178 493 521 535 .993 341 .066 371 554 312  .554
8 10 2 .000 .000 .000 .000 1.00 .000 1.00 380 .195 Bb58  1.00 536 1.00 376 .003 124 817 095 817
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Table 12. Frequency of null rejections for LM-type tests for Model 2: t,4(2, )

DGP: y; = 6DU? + yDTP + x4, 2y = axs_1 + pAxi_y + e; + Yer_q, e iid. N(0,1)
T = 100; T§ = 50; 5% nominal size; kmaz =5

Size (a = 1) Power (o =0.8)

3,7 6(y=0) (6 =0) 3, (v =0) V(6 =0)

p P Tp 0.0 5.0 10.0 1.0 2.0 0.0 5.0 10.0 1.0 20
0.0 0.0 Tg(ty) .050 043 .024 .028 .026 332 073  .168 167 .156
Tg(taz) .050 .045  .022 076 .079 .348 102 .008 398 414

TB .050 .063 .064 058 .065 291 364 377 321 358

0.6 0.0 Tg(ty) .055 .049 .036 .049 .042 .881 750 .599 751 708
Tp(taz) .048 .043 .034 .081 .083 697 476 .162 726 .768

Ty .066 072 .072 072 .068 701 733780 680 .748

-0.6 0.0 Tg(ty) .072 .050 .017 034 .032 224 076 .025 .089 .077
Ts(taz) .053 .031 .013 078 .078 .156 .030 .005 186 .193

TB .054 .058 .064 .050 .056 143 131 164 103 .141

0.0 0.5 Tp(ty) .073 .067 .046 048 .042 .359 263 .140 221 .204
Tp(taz) .061 .062 .040 .095 .100 283 187 .053 333 .361

TB 077 .086 .087 .082 .086 284 326 .336 297 327

0.0 -0.5 Tg(ty) 430 297 118 255 236 .859 .65 .358 635  .594
Tp(taz) 158 .089 .022 244 .250 .5061 .083 .017 D76 .595

T 176 220 .229 196 .223 496 b26 .5T7 433 .537




