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Abstract

Recent tests of stochastic dominance of several orders proposed by
Linton, Maasoumi and Whang (2003) are applied to reexamine the
equity premium puzzle. An advantage of this nonparametric frame-
work is that it provides a means to assess whether the existence of a
premium is due to particular cardinal choices of either the utility func-
tion or the underlying returns distribution, or both. The approach is
applied to a number of data sets including the original Mehra-Prescott
data and more recent data that includes daily yields on Treaury bonds
and commercial paper, and daily returns on the S&P500 and the NAS-
DAQ indexes. The empirical results show little evidence of stochastic
dominance amongst the assets investigated. This suggests that there
is no puzzle and that the observed equity premium indeed represents
the price for bearing higher risk, taking into account higher order mo-
ments such as skewness and kurtosis.
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1 Introduction

If a risky asset or portfolio does not "dominate" a "risk free" alternative,

a premium will be demanded for holding it. The "right" premium would

depend on the agent’s risk assessment which, in turn, depends on both the

agent’s utility function and the returns distribution. An on-going challenge

in finance is to devise theoretical asset pricing models that are consistent

with the observed premium between real returns on investments in equity

and the real yields from investing in bonds. Mehra and Prescott (1985) are

the first to estimate the equity premium at about 6% p.a., using annual data

for the U.S. over the period 1889 to 1978. They argue that the size of the

premium implies unacceptably high levels of risk aversion when based on

standard financial models. Subsequently, they label this phenomenon the

equity premium puzzle.1 What makes the puzzle so important is that it is

empirically robust as it arises in different sample periods, occurs for a broad

selection of assets and is characteristic of many international financial mar-

kets (Mehra (2003)). The empirical observation of the premia is, therefore,

a robust fact!

The equity premium puzzle can be viewed as the manifestation of mis-

specification error on the estimates of the risk aversion parameter arising

from incorrectly specifying either the form of the utility function, or the

probability distribution of returns, or both. The explosion of the literature

since the Mehra and Prescott (1985) paper can be interpreted as a specifi-

cation search over a range of models with the sole aim to derive empirically

sensible estimates of the risk aversion parameter. This specification search

of theoretical models can be categorized into three broad groups. The first

class of models focuses on preferences. This class of models looks at extending

1An associated puzzle is the risk free rate puzzle (Weil (1989)) whereby the implied risk
free rate predicted by theoretical models is too high relative to the observed rate. Whilst
the focus of the current paper is on the equity premium puzzle, the alternative models
proposed in the literature in general, attempt to explain both puzzles.
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existing parametric utility functions by allowing for generalized expected util-

ity (Epstein and Zin (1989, 1991)); habit formation (Constantinides (1990));

relative consumption (Abel (1990)); and subsistence consumption (Campbell

and Cochrane (1999)). The second class of models focuses on the specifica-

tion of the probability distributions underlying the processes. The majority

of the proposed models assume lognormality. Some exceptions are Rietz

(1988) who specifies an augmented probability distribution that allows for

extreme events, and Hansen and Singleton (1983) who do not specify any

probability distribution. In general, there is strong empirical evidence to

reject the lognormality assumption as it is well documented that empirical

returns distribution are highly non-normal being characterized by higher or-

der moments including both skewness and kurtosis. The third class of models

relaxes the assumptions concerning complete and frictionless asset markets.

Some of the main suggestions consist of allowing for incomplete markets

(Weil (1992)); the inclusion of trading costs through borrowing constraints

(Heaton and Lucas (1995)); transaction costs (Aiyagari and Gertler (1991));

liquidity premium (Bansal and Coleman (1996)); and taxes (McGrattan and

Prescott (2001)).

An important characteristic of the proposed theoretical models to explain

the equity premium puzzle is that they adopt parametric specifications of ei-

ther the preference functions or the probability distribution, or both. The

fact that the search still continues suggests that no parametric specification

has been uncovered that yields a priori "satisfactory" estimates of risk aver-

sion. The strategy adopted in this paper is to circumvent these problems

and adopt a nonparametric framework which imposes a minimal set of con-

ditions on preferences and the underlying probability distribution. These

conditions consist of non-satiation, risk aversion, a preference for skewness

and an aversion to kurtosis.2 The approach consists of couching the equity

2Harvey and Siddique (2000) provide a recent discussion of the importance of skewness
in asset pricing, while Lim, Martin and Martin (2004) highlight the importance of skewness
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premium puzzle in terms of testing for various levels of stochastic dominance

between the returns on equities and bonds. The non-existence of any sto-

chastic dominance ranking, especially of first and second order, means that

for agents with Von Neumann-Morgenstern concave utility functions, invest-

ment in equity, for example, is not sufficiently attractive to invest in without

a substantial premium. The expected utility paradigm suggests that. To

quantify what is a reasonable premium requires specific utility functions and

special values for their coefficients, as well as a knowledge of the probability

laws governing these returns. This suggests that any evidence of a “pre-

mium puzzle” is necessarily an artifact of the specific functionals chosen if

there is no stochastic dominance. Non-dominance, or "maximality", implies

that there is no uniform (weak) ranking over the risk free asset, and there

are indeed some functionals, utility functions and probability distributions,

that would result in any "strong" ranking one may desire! In fact, accord-

ing to some functionals, the 6 % differential initially observed by Mehra and

Prescott (1985) may be too little, and almost surely so for some risk averse

individuals. It is believed that Stochastic Dominance testing provides an

alternative approach which overcomes the twin and intertwined obstacles of

cardinal utility identification and heterogeneity in asset returns.

The rest of the paper proceeds as follows. Empirical evidence of the equity

premium and the risk aversion parameter are reported in Section 2. The

nonparametric testing framework based on stochastic dominance is presented

in Section 3. This framework is applied in Section 4 to re-examine the Mehra-

Prescott original data set, as well as to a more recent data set that uses daily

equity returns and bond yields. The main empirical results point to a lack

of stochastic dominance amongst the financial returns series investigated.

Section 5 provides some concluding comments and suggestions for future

research.

and kurtosis in the pricing of options.
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2 Empirical Evidence of the Equity Premium

The equity premium puzzle is commonly demonstrated in one of two ways.

The first is based on descriptive statistics that compare the average returns

of different financial assets. The second involves estimating the risk aversion

parameter for a chosen theoretical model. To highlight both of these ap-

proaches, the Mehra and Prescott (1985) original data set is adopted. This

data consists of annual US data on real asset prices and aggregate real con-

sumption expenditure beginning in 1889 and ending in 1979, a total of 91

observations. A description of the definitions of the variables and the sources

is given in Appendix A.

2.1 Descriptive Statistics of the Premium

Some descriptive statistics on real equity returns (Rs,t) , real bond yields

(Rb,t) and real consumption growth rate (Rc,t) , are given in Table 1. The

size of the equity premium between equities and bonds is

PREMIUM = 6.980− 1.036 = 5.944%,

approximately 6% p.a. The higher mean return on equity is associated with

higher "risk", traditionally indicated by the higher value of the standard

deviation for equity compared to bonds, 16.541 compared to 5.730. This

is supported by the statistics on the Sharpe ratio (mean divided by the

standard deviation) which show that the mean return per unit of risk of

equities is 42.196%, which is greater than 18.076%, the corresponding Sharp

ratio for bonds. Further evidence of the higher risk from investing in equities

is highlighted by observing that the extreme returns in equities are more than

twice the extreme returns experienced by real bonds. The relatively higher

volatility of real equity returns over real bond yields is also demonstrated in

Figure 1 which plots the two series over the sample period, 1889 to 1978.

The strength of the contemporaneous linear relationships amongst the
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three series is highlighted Table 2, which gives the covariances in the lower

triangle and the correlations in the upper triangle. Consumption and equi-

ties have a positive association (correlation of 0.375), as does equities and

bonds (correlation of 0.113) , whilst consumption and bonds have a negative

association (correlation of − 0.107).

2.2 Estimates of Relative Risk Aversion

The second form of the equity premium puzzle that is commonly presented

is in terms of estimates of the relative risk aversion parameter, γ. Formally,

this parameter is identified by specifying the stochastic discount factor which

forms the basis of pricing financial assets. Let Rt be a vector of N asset

returns. The pricing equation is (see Campbell, Lo and MacKinlay (1997))

1 = Et [(1 +Rt+1)Mt+1] , (1)

where Mt is the stochastic discount factor and Et [·] is the conditional ex-
pectation operator. This model is used to price all financial assets with

i = 1, 2, · · · , N, representing the number of assets. In the case of the con-

sumption based capital asset pricing model (CCAPM), Mt+1 is the ratio of

the (discounted) future and present marginal utilities, with utility expressed

as a function of consumption. The pricing equation becomes

1 =

Z
· · ·
Z
(1 +Rt+1)Mt+1 (Ct+1, Ct; δ, γ,Ψ) f (Ct+1, Rt+1|Ωt) dCt+1Rt+1,

(2)

where δ is the parameter used to discount future utility, γ is the relative

risk aversion parameter, Ψ represents an additional set of parameters that

characterize the risk aversion of agents, and f (Ct+1, Rt+1|Ωt) is the mul-

tivariate conditional distribution that assigns probabilities to the states of

nature based on the information set Ωt. This expression contains the basis

of the models commonly proposed to explain the equity premium puzzle.

As noted in the introduction, most of the effort has been devoted to mod-

elling preferences. This is represented by adopting different functional forms
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for the stochastic discount factor Mt+1 (Ct+1, Ct; δ, γ,Ψ) . The second line

of research has focussed on the specification of the conditional distribution

f (Ct+1, Rt+1|Ωt) . For many of the models this distribution is commonly

chosen to be multivariate lognormal.

By specifying a power utility function, the stochastic discount factor in

(2) is simply parameterized in terms of the discount parameter (δ) and the

relative risk aversion parameter (γ) , withΨ = 0.3 This model leads to a range

of alternative expressions which have been used to estimate γ. Estimates of

γ from some of these approaches are given in Table 3 using the Mehra-

Prescott data. See Appendix B for the details of these calculations. The

first observation to make is that the estimates of this parameter are not

robust, ranging from as high as 46.926 to a low of 1.799! Psychologists

and experimentalists have found similarly disconcerting wide ranges for this

parameter. Second, the equity premium puzzle is predicated on an important

decision in Mehra and Prescott (1985); namely, that estimates of γ in excess

of 10 constitute excessive risk aversion which are inconsistent with empirical

studies documented at that time.

3 Stochastic Dominance Testing

This section outlines the framework for conducting stochastic dominance

tests in the context of the equity premium puzzle. The approach is based

on the work of Linton, Maasoumi and Whang (2003) who propose nonpara-

metric tests of stochastic dominance using Kolmogorov-Smirnov type tests

and the McFadden (1989) maximality test. Inference is performed by using

subsampling to construct p-values as well as bootstrapping methods. A re-

3The power utility function is

u (Ct) =
C1−γt − 1
1− γ

.
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Table 1:

Descriptive statistics on real equity returns (Rs,t) , real bond yields (Rb,t) ,
and real consumption growth rate (Rc,t) : expressed as percentage per

annum for the period 1889 to 1978 (Mehra-Prescott data).

Statistic Equity Bonds Consump.
(100×Rs,t) (100×Rb,t) (100×Rc,t)

Mean 6.980 1.036 1.826
Median 5.664 0.412 2.156
Maximum 50.983 20.062 11.111
Minimum -37.038 -18.510 -9.091
Std. Dev. 16.541 5.730 3.587
Skewness 0.101 0.001 -0.338
Kurtosis 2.980 4.707 3.721
BJ (p.v.) 0.925 0.004 0.160

Sharpe ratio(a) 42.196 18.076 50.922

(a) Computed as the sample mean divided by the standard deviation and ex-
pressed in percentage terms.
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Table 2:

Covariances (lower triangle) and correlations (upper triangle) of real equity
returns (Rs,t) , real bond yields (Rb,t) , and real consumption growth rate
(Rc,t) : percentage per annum: 1889 to 1978, Mehra-Prescott data.

Equity Bonds Consump.

Rs
t Rb

t Rc
t

Rs
t 270.576 0.113 0.375

Rb
t 10.577 32.468 -0.107

Rc
t 22.011 -2.166 12.722

Table 3:

Alternative estimates of the relative risk aversion
parameter, γ: 1889 to 1978, Mehra-Prescott data.(a)

Model Method and source γ

1 Mehra (2003, equation 15) 26.085
2 Mehra (2003, equation 16) 46.926
3 CLM (1997, equation 8.2.9): no instruments(b) 1.799
4 CLM (1997, equation 8.2.10): no instruments 11.062
5 CLM (1997, equation 8.2.9): with instruments 1.823
6 CLM (1997, equation 8.2.10): with instruments 3.351
7 Hansen and Singleton (1983): GMM 15.397
8 Grossman, Melino and Shiller (1987) 24.755

(a) See Appendix B for details of the calculations.

(b) CLM is an abbreviation for Campbell, Lo and MacKinlay.
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Figure 1: Bond yields and equity returns: real, percentage per annum, 1889
to 1978.

lated approach is by Barrett and Donald (2003) who propose a set of tests

with the sampling distribution of the test statistic constructed via simulation

methods. An important difference between the two approaches is that unlike

the resampling schemes of Linton, Maasoumi and Whang , the Barrett and

Donald method for constructing critical values assumes that (i) returns are

independently and identically distributed (iid) , and (ii) different assets are

independent. As these assumptions are unlikely to be satisfied in the case of

financial returns which exhibit conditional volatility (Bollerslev, Chou and

Kroner (1992)) and possibly higher order moment dependence structures

(Harvey and Siddique (2000)), attention is restricted to the Linton, Maa-

soumi and Whang testing framework.4

4Abhyankar and Ho (2003) provide a recent application to financial data comparing
the Linton, Massoumi and Whang (2003) and Barrett and Donald (2003) approaches.
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3.1 Definitions

Consider two stationary time series of returns, Ri,t and Rj,t, t = 1, 2, · · · , T,
with respective cumulative distribution functions, Fi (r) and Fj (r) , over the

support r. The returns are not expected to be iid, but can exhibit some de-

pendency structures in the moments of the distribution.5 The null hypothe-

ses that Ri,t stochastically dominates Rj,t, for various orders are defined as

follows:

H0 : (First order) Fi (r) ≤ Fj (r)

H0 : (Second order)
R r
0
Fi (t) dt ≤

R r
0
Fj (t) dt

H0 : (Third order)
R r
0

R t
0
Fi (s) dsdt ≤

R r
0

R t
0
Fj (s) dsdt

H0 : (Fourth order)
R r
0

R t
0

R s
0
Fi (u) dudsdt ≤

R r
0

R t
0

R s
0
Fj (u) dudsdt.

(3)

The alternative hypothesis is that there is no stochastic dominance. From the

definitions of first, second, third and fourth order stochastic dominance, ifRi,t

first order stochastically dominates Rj,t, then it stochastically dominates Rj,t

at all orders, and so on. In the case of first order dominance, the distribution

function of Ri,t lies everywhere to the right of the distribution function ofRj,t,

except for a finite number of points where there is strict equality. This implies

that for first order stochastic dominance the probability that returns of the

ith asset are in excess of r say, is higher than the corresponding probability

associated with the jth asset

Pr (Ri,t > r) ≥ Pr (Rj,t > r) . (4)

An important feature of the definitions of stochastic dominance is that

they impose minimalist conditions on the preferences of agents within the

class of von Neumann-Morgenstern utility functions that form the basis of

5Formally, the returns processes are assumed to be strictly stationary and α−mixing
with α (j) = O

¡
j−δ

¢
, for some δ > 1.
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expected utility theory. The different orders of dominance correspond to

increasing restrictions on the shape of the utility function and the attitude

towards risk of agents to higher order moments. These restrictions are non-

parametric and do not require specific parametric functional forms.

Let u (·) represent a utility function. For First Order Stochastic Domi-
nance (FSD) of Ri,t over Rj,t, expected utility from holding asset i is gener-

ally greater than the expected utility from holding asset j, within the class

of utility functions with positive first derivatives

E [u (Ri,t)] ≥ E [u (Rj,t)] ,where u0 ≥ 0. (5)

That is, agents prefer higher returns on average than lower returns when

preferences exhibit non-satiation. In the case of CCAPM with power utility

and lognormality, the relationship between the returns on equity (Rs,t) and

bond yields (Rb,t) is given by (Campbell, Lo and MacKinlay (1997))

lnEt

·
(1 +Rs,t+1)

(1 +Rb,t+1)

¸
= γσs,c, (6)

where γ is the relative risk aversion parameter and σs,c is the covariance

between ln(Ct/Ct−1) and ln(1 +Rs,t+1) . The size of the risk premium is γσs,c,

which constitutes a rightward shift in the empirical distribution of Rs,t+1 for

γσs,c > 0.

For Second Order Stochastic Dominance (SSD), expected utility from

holding asset i is generally greater than the expected utility from holding

asset j, within the class of utility functions with positive first derivatives and

negative second derivatives

E [u (Ri,t)] ≥ E [u (Rj,t)] ,where u0 ≥ 0, u00 ≤ 0. (7)

This class of agents is characterized by risk aversion whereby a risk premium

is needed to compensate investors from holding assets where the returns

exhibit relatively higher "volatility".
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The condition for Third Order Stochastic Dominance implies that the

expected utility from holding asset i is generally greater than the expected

utility from holding asset j, within the class of utility functions with positive

first and third derivatives and negative second derivatives

E [u (Ri,t)] ≥ E [u (Rj,t)] ,where u0 ≥ 0, u00 ≤ 0, u000 ≥ 0. (8)

This class of agents increasingly prefers positively skewed returns as they

are prepared to trade-off lower average returns for the chance of an extreme

positive return.

Fourth order stochastic dominance relates to the fourth moment of the

returns distribution. For fourth order stochastic dominance of asset i over

asset j, the expected utility from holding asset i is generally greater than the

expected utility from holding asset j, within the class of utility functions with

positive first and third derivatives and negative second and fourth derivatives

E [u (Ri,t)] ≥ E [u (Rj,t)] ,where u0 ≥ 0, u00 ≤ 0, u000 ≥ 0, u0000 ≤ 0. (9)

This class of agents is adverse to assets that exhibit extreme negative as well

as positive returns. As agents prefer thinner-tailed distributions to fat-tailed

distributions, to hold assets that exhibit the latter property they need to

be compensated with higher average returns. Even where two assets exhibit

the same volatility, the asset returns distributions may nevertheless exhibit

differing kurtosis resulting in a risk premium between the two assets.

Figures 2 to 7 highlight the stochastic dominance features of a number of

hypothetical asset return distributions. In Figure 2 the returns distributions

are both normal with common volatility, σ1 = σ2 = 6, but with different

means µ1 = 1 and µ2 = 6. Here F2 first order stochastically dominates F1 as

asset 2 yields a higher mean return than asset 1 (µ2 > µ1) for the same level

of risk (σ2 = σ1) . This dominance continues for higher orders. The equity

premium of µ2 − µ1 = 5, in this case represents a puzzle as the relatively

higher return earnt from investing in asset 2 comes without any additional

13



risk. Within the class of utility functions that exhibit nonsatiation, asset 2

stochastically dominates asset 1.

In Figure 3, the returns distribution are both normal with common mean,

but with differing volatilities. Unlike in Figure 2, there is no evidence of first

order stochastic dominance. In contrast, however, F1 second order stochas-

tically dominates F2, as asset 1 has lower risk than asset 2 (σ2 < σ1) whilst

the mean returns are the same (µ2 = µ1). Within the class of concave utility

functions, asset 2 stochastically dominates asset 1. The expected return on

asset 2 is too low relative to the higher risk associated with this asset. This is

demonstrated in Figure 4 where now asset 2 exhibits a higher average return

to compensate for the higher risk (compare the distribution of asset 2 in Fig-

ures 3 and 4). As Figure 4 shows no evidence of stochastic dominance of any

order between the two assets, this suggests that the higher expected return

in this case is indeed appropriate compensation for bearing the higher risk.

The equity premium of µ2−µ1 = 5, in this case does not represent a puzzle.

A similar result occurs in Figure 5 where asset 2 exhibits relatively fatter

tails (Student t with v = 2.5 degrees of freedom), but is compensated by a

relatively higher mean return than asset 1. In this and the previous example,

the two assets are unrankable (maximal) as rational agents are indifferent

between the two assets.

The effects of skewness as well as kurtosis in the returns distribution are

highlighted in Figures 6 and 7, where the distribution of asset 2 is based on

the generalized Student t distribution of Lye and Martin (1993), whilst the

distribution of asset 1 is still normal.6 In Figure 6 F1 fourth order stochasti-

cally dominates F2, whereas in Figure 7 there is no stochastic dominance of

any order.

6The generalised Student t distribution GST (µ, σ, ν, θ) is given by

f (r) = exp
£
θ tan−1

¡
z/
√
ν
¢− 0.5 (1 + ν) ln

¡
z2 + v

¢− 0.5z2 − η
¤
,

with z = (r − µ) /σ, and η is the normalising constant to ensure that the distribution
integrates to unity.
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Figure 2: Hypothetical asset returns distributions, first to fourth order sto-
chastic dominance as defined in (3): F1 = N (1, 62), F2 = N (7, 62) .
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Figure 3: Hypothetical asset returns distributions, first to fourth order sto-
chastic dominance as defined in (3): F1 = N (1, 62), F2 = N (1, 122) .
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Figure 4: Hypothetical asset returns distributions, first to fourth order sto-
chastic dominance as defined in (3): F1 = N (1, 62), F2 = N (6, 122) .
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Figure 5: Hypothetical asset returns distributions, first to fourth order sto-
chastic dominance as defined in (3): F1 = N (1, 62), F2 = St (3, 62, 2.5) .
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Figure 6: Hypothetical asset returns distributions, first to fourth order sto-
chastic dominance as defined in (3): F1 = N (1, 62), F2 = GST (1, 202, 5, 1) .
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Figure 7: Hypothetical asset returns distributions, first to fourth or-
der stochastic dominance as defined in (3): F1 = N (1, 62), F2 =
GST (1, 202, 2.55, 1)
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3.2 Testing

3.2.1 First Order

Consider testing the null hypotheses that Ri,t first order stochastically domi-

nates Rj,t, using the approach of Linton, Maasoumi and Whang (2003). The

test statistic is

SD1,i,j =
√
T sup

r

³ bFi (r)− bFj (r)
´
, (10)

where T is the sample size, and bFi (r) and bFj (r) are the respective empirical

cumulative distribution functions of Ri,t and Rj,t

bFi (r) =
1

T

TX
t=1

I (Ri,t ≤ r) (11)

bFj (r) =
1

T

TX
t=1

I (Rj,t ≤ r) ,

and

I (Ri,t ≤ r) =

½
1 : Ri,t ≤ r
0 : Ri,t > r

, (12)

is the indicator function. The test statistic is based on the Kolmogorov-

Smirnov test which equals the maximum distance between the two empirical

cumulative distributions, bFi (r) and bFj (r) .

Suppose that the null is true so the distribution function of Ri,t lies to

the right of the distribution function of Rj,t, apart from at the tails where it

is zero, as is the case in Figure 2. Now Fi (r) < Fj (r) , yielding a negative

value for the support of the distribution under the null, whilst at the tails

the difference is zero. Taking the sup in (10) results in a value of the test

statistic of SD1,i,j = 0. If the null is false then either there is no stochastic

dominance, in which case the two cumulative distribution functions cross, or

Ri,t is first order stochastically dominated by Rj,t. In either case the test sta-

tistic is positive, SD1,i,j > 0. To test that Rj,t indeed first order stochastically

dominates Ri,t, (10) is reversed resulting in the statistic

SD1,j,i =
√
T sup

r

³ bFj (r)− bFi (r)
´
. (13)
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The test statistics (10) and (13), can be combined to provide an over-

all maximality test of first order stochastic dominance following McFadden

(1989)

MF1 = min
i6=j

(SD1,i,j, SD1,j,i) . (14)

Under the null, one of the assets is stochastically dominant, whereby the value

of the test statistic is MF1 ≤ 0. Under the alternative hypothesis there is
no stochastic dominance. As the empirical cumulative distribution functions

must cross under the alternative, the test statistic produces a positive value,

MF1 > 0. In this case the assets are maximal, that is, they are unrankable.

In the context of the equity premium puzzle both assets are appropriately

priced by the market and any premium simply reflects the price of bearing

higher risk.

The maximality test statistic in (14) can be extended to testing for maxi-

mality amongst more than two assets to provide an initial test of maximality.7

If the null is rejected, no stochastic dominance exists amongst the assets. If

the null is not rejected, then there is evidence of stochastic dominance. To

identify the nature of the stochastic dominance it is necessary to perform the

individual stochastic dominance tests in (10) and (13).

In the case of iid data, the sampling distributions of (10) and (13) un-

der the null was originally derived by Kolmogorov (1933), whilst McFadden

(1989) derived the sampling distribution of (14). For the case where the

data exhibit some dependence the form of the (asymptotic) sampling dis-

tribution is generally unknown and depends on the unknown, underlying

distributions8. To circumvent this problem the sampling distribution of the

test statistics are approximated using a resampling scheme based on subsam-

pling; see Politis, Romano and Wolf (1999) for a review of this approach. An

7Care needs to be made in implementing this testing strategy as the support of the
cumulative distribution functions needs to be chosen to cover the full range of the full data
set.

8Note that "pivotal" statistics are therefore not available.
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important advantage of resampling is that it can accommodate dependence

in asset returns over both time and contemporaneously, as demonstarted in

Table 2. The approach consists of dividing the data into T −B + 1 overlap-

ping blocks of size B, to be determined below. The first (paired) block for

the asset returns R1,t and R2,t, is given by·
R1,1, R1,2, · · · R1,B
R2,1, R2,2, · · · R2,B

¸
.

The second block is ·
R1,2, R1,3, · · · R1,B+1
R2,2, R2,3, · · · R2,B+1

¸
,

while the last block is·
R1,T−B+1, R1,T−B+2, · · · R1,T
R2,T−B+1, R2,T−B+2, · · · R2,T

¸
.

For each block, the test statistics SD1,i,j, SD1,j,i and MF1, are computed.

Let the corresponding test statistics based on the kth subsample value be

respectively denoted as

SD1,i,j,k =
√
B sup

r

³ bFi,k (r)− bFj,k (r)
´

SD1,j,i,k =
√
B sup

r

³ bFj,k (r)− bFi,k (r)
´

(15)

MF1,k = min
i6=j

(SD1,i,j,k, SD1,j,i,k) ,

where bFi,k (r) and bFj,k (r) are the empirical distribution functions based on

the kth block of asset returns Ri,t and Rj,t respectively. The pertinent p-

values for the three tests of first order stochastic dominance are computed

as

pv1,i,j =
1

T −B + 1

T−B+1X
k=1

I (SD1,i,j (k) ≤ SD1,i,j) (16)

pv1,j,i =
1

T −B + 1

T−B+1X
k=1

I (SD1,j,i (k) ≤ SD1,j,i) (17)

pv1,mp =
1

T −B + 1

T−B+1X
k=1

I (MF1 (k) ≤MF1) . (18)
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A p-value less than a nominal size of α leads to rejection of the null hypoth-

esis. In performing the subsampling procedure to compute the p-values, the

time dependence structure in returns is captured by extracting time series

runs of the data, whilst the contemporaneous dependence is modelled by

matching the same time period for each return series across the simulation

runs.

An important input into the subsampling approach is the size of the

blocks, B. Politis, Romano and Wolf (1999) discuss various methods for

determining the block size. Linton, Maasoumi and Whang (2003) approach

the problem by performing a sensitivity analysis on the block size to establish

the robustness properties of the subsampling procedure. In determining B

it is important that it grows at a slower rate than the sample size T . Given

this property the approach adopted here is to choose B using the formula

B = α
h√

T
i
, (19)

where
h√

T
i
denotes the largest integer that is less than or equal to

√
T , and

α is a constant.

An alternative approach to subsampling for deriving the sampling distri-

bution of the test statistics is to use a recentered bootstrap with overlapping

blocks. The procedure consists of randomly drawing with replacement from

the set of paired blocks used in the subsampling scheme. These blocks are

then stacked to form the sample used in the resampling scheme. The number

of blocks chosen is based on constructing a bootstrap sample size comparable

to the sample size of the data, T. In performing the bootstrapping procedure

the test statistics at each bootstrap sample are recentered using the empirical

distribution function corresponding to each order of dominance being tested

following the approach of Linton, Maasoumi and Whang (2003). Formally,
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the test statistics in (15) are reexpressed as

SDc
1,i,j,k =

√
T sup

r

³ bFi,k (r)− bFj,k (r)− bFi (r) + bFj (r)
´

SDc
1,j,i,k =

√
T sup

r

³ bFj,k (r)− bFi,k (r)− bFj (r) + bFi (r)
´

(20)

MF c
1,k = min

i6=j
(SD1,i,j,k, SD1,j,i,k) ,

where the superscript c represents the recentered bootstraped test statistics

to distinguish these test statistics from tests in (15) which are based on the

subsampling scheme.9

3.2.2 Higher Order

The discussion so far has focussed on first order stochastic dominance testing.

To test for higher orders of stochastic dominance, the cumulative distribution

functions are replaced by the pertinent integrated cumulative distribution

functions. To perform this calculation in practice, the approach adopted is

to compute the mth order empirical cumulative distribution function of asset

return Ri,t, by10

bFm,i (r) =
1

T (m− 1)!
TX
t=1

I (Ri,t ≤ r) (r −Ri,t)
m . (21)

Alternatively, the higher order cumulative distribution functions can be com-

puted by cumulative sums of the lower order cumulative distribution func-

tions. The corresponding test statistics of higher order stochastic dominance

9As the blocks are overlapping, it is necessary to weight the data before computing
the empirical distribution functions bFi (r) and bFj (r) in (20), to reflect the frequency each
data point is used in the bootstrap samples. The weighting function is

wt =

 t/B : t < B
1 : B ≤ t ≤ T −B + 1

(T − t+ 1) /B : T −B + 2 ≤ t ≤ T
.

10Expression (21) is motivated by integrating
R r
0
Fi (t) dt in (3) by parts and replacing it

by its empirical analogue. Repeating the integrations for the higher order integrals yields
equation (21).
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are denoted as SDm,i,j, SDm,j,i and MFm, in the case of subsampling, and

with a superscript c in the case of bootstrapping.

4 Applications

4.1 Mehra-Prescott Annual Data

In this section tests of stochastic dominance between real Treasury bond

yields (Rb,t) and real equity returns (Rs,t) over the period 1889-1978, T = 90,

for the Mehra and Prescott data, are presented. Figure 8 gives the empirical

distribution functions and various cumulative empirical distribution functions

for the two series.11 Inspection of the graphs suggests no evidence of any

stochastic dominance as the two empirical distribution functions cross for

all orders of stochastic dominance. The following tests provide degrees of

statistical significance one may attach to inferences.

First, second, third and fourth order stochastic dominance tests based

on McFadden’s maximality test (MFm) as well as the individual stochastic

dominance tests (SDm,i,j, SDm,j,i), are reported in Table 4. The first column

gives the order of stochastic dominance being tested, with the null hypothesis

given in the second column. The calculated, sample value of the test statistic

is reported in the third column. The last three columns provide information

on the sampling distribution of the test statistic with the p-values reported in

the last column. The bootstraps are based on recentered paired bootstraps

with overlapping blocks. The block sizes are set at B = 9 using the rule in

(19) with α = 1. This represents a string of 10 years of data in each block.

For a sample of size T = 90, this yields 82 overlapping blocks. For each

bootstrap, 9 blocks are randomly drawn and stacked producing a bootstrap

sample equal to T observations. The total number of replications is set at

11The support of the cumulative distribution function is based on the range of the data
with the number of intermediate points set equal to T.
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10000.12

The reported value of McFadden’s maximality test for first order sto-

chastic dominance in Table 4 is 1.160, with a p-value of 0.030. Following the

traditional usage of p-values, we note that only choosing a nominal size of

1% results in a non-rejection of the null hypothesis. This implies that the

two assets are first order unrankable at the nominal size of 5% or higher. In-

spection of the individual first order stochastic dominance tests reveals that

the null in the case of Rb,t dominating Rs,t is rejected even at the 1% level

(pv = 0.002), but not the reverse (pv = 0.222). This may suggest that there

may be a somewhat larger set of utility functionals that favor equities over

bonds, than the other way round. A careful inspection of the test distrib-

utions makes clear, however, that the probability of negative values for the

statistics are zero or close to zero. This means that there are practically no

subsamples in which the CDFs do not cross. While a critical value of "zero"

may correspond to a conventionally high test size, it would appear to be the

appropriate conservative value to choose in this setting. Economists would

find it lacking in credibility to conclude dominance when the sample CDFs

cross and would choose to maximize test power.

The McFadden maximality test for second order stochastic dominance in

Table 4 yields a p-value of 0.000. This implies that agents with preferences

characterized by monotonically increasing and concave utility functions are

indifferent between bonds and equities, as the higher premium on equities

provides sufficient compensation for bearing a higher risk from investing in

equities.

The results of the third and fourth order stochastic dominance tests also

show that neither bond yields nor equity returns dominate each other, with

the McFadden maximality test in both cases yielding p-values less than even

1%. This suggests that bonds and equities are unrankable in terms of skew-

12Sensitivity of the results to different block sizes are reported in Appendix C.
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ness and kurtosis and that agents who have a preference for positive skewness

and an aversion for kurtosis, are indifferent between holding the two assets.

Overall the results show that there is no clear stochastic dominance be-

tween bond yields and equity returns for the Mehra-Prescott data. This is

especially true for risk preferences characterized by second, third and fourth

order moments. Within the context of the equity premium puzzle, this re-

sult implies that the equity premium between equities and bonds reported

in Table 1 simply reflects the risk preferences of agents. There is just one

case where there is evidence of an equity premium puzzle. This occurs where

utility functions are simply characterized by preferences that do not exhibit

non-satiation and the size of the test is chosen to be 1%. However, adopting

a 5% level for the test reveals no first order stochastic dominance and hence

no puzzle.

4.2 Daily Financial Data

Tests of stochastic dominance are now applied to daily data on four finan-

cial assets consisting of two risk free assets (3 month Treasury bonds and 6

month Commercial paper yields), and two risky assets (S&P500 and NAS-

DAQ prices).13 The data begin on July 4th, 1989, and end on July 14th, 2003,

a total of 3661 observations. Computing daily continuously compounded eq-

uity returns results in a sample of size T = 3660. The equity returns are scaled

by 252 to annualize the daily returns and by 100 to express the returns as

a percentage. See Appendix A for sources and definitions. Some descriptive

statistics of the four series are given in Table 5. The sample means show that

the equity premium between the two risk free assets and the two equity assets

13The fact that the stochastic dominance tests are based on just asset returns and not
consumption data is an important advantage of the approach. This is especially true when
testing on daily data as consumption data is measured at a lower frequency. This result is
akin to the approach of Campbell (1993) who evaluates the CCAPM having substituted
out consumption. Also note that the asset returns used in this example are in nominal
terms in contrast to the asset returns defined in the previous example using the Mehra-
Prescott data, which are in real terms.
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Figure 8: First to fourth order empirical cumulative distribution functions
for real bond yields and real equity returns: percentage per annum, 1889 to
1978.
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Table 4:

Stochastic dominance tests of real bond yields (Rb,t) and equity returns
(Rs,t): Mehra-Prescott data, 1889 to 1978. Bootstraps based on recentered
paired bootstraps with overlapping blocks. The block size is B = 9, the

sample size of the bootstraps is 90 and the number of replications is 10000.

Stochastic Null Hypothesis Statistic Bottom Top pv
Dominance 5% 5%

First: Non-maximal 1.160 0.105 1.054 0.030
Rb,t SD Rs,t 3.479 0.316 2.214 0.002
Rs,t SD Rb,t 1.160 0.211 1.687 0.222

Second: Non-maximal 18.974 0.000 7.695 0.000
Rb,t SD Rs,t 56.710 0.000 35.101 0.002
Rs,t SD Rb,t 18.974 0.000 24.244 0.103

Third: Non-maximal 316.439 0.000 104.355 0.000
Rb,t SD Rs,t 1600.640 0.000 1531.280 0.042
Rs,t SD Rb,t 316.439 0.000 1134.520 0.300

Fourth: Non-maximal 7345.971 0.000 1380.440 0.000
Rb,t SD Rs,t 16774.407 0.000 39940.516 0.265
Rs,t SD Rb,t 7345.971 0.000 37645.651 0.357
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is between 4 and 8, which is similar to the premium reported in Table 1 for

the Mehra-Prescott data. Inspection of the standard deviations show that

the higher mean returns are associated with higher volatility. However, as

the Sharp ratios reveal that the mean return per unit of risk is much higher

for the two risk free assets than the two risky assets, this suggests that the

equity premia are in fact too low!

Table 5 also reveals a sizeable premium of just over 4% between the two

risky assets, S&P500 and the NASDAQ. This is presumably compensation

for the relatively higher risk associated from investing in the NASDAQ, where

the sample standard deviation is nearly twice as large as the sample standard

deviation of the S&P500. A further component of this premium could be the

result of the marginally higher kurtosis estimate of the NASDAQ over the

S&P500 leading investors to demand an even higher premium for investing

in the NASDAQ. Interestingly, the skewness estimate of the S&P500 is neg-

ative compared to the positive estimate of the NASDAQ. If agents prefer

positive skewness to negative skewness, this would suggest that the observed

premium between the two equities could be even higher if the two returns

exhibited similar skewness characteristics. In general, all of the daily yields

and returns all exhibit significant nonnormalities, as revealed by the Bera-

Jarque normality test. This result raises the possibility that higher order

moments are important in identifying the stochastic dominance properties of

the assets. This is in contrast to the annual data which showed very little

evidence of non-normalities in the data; see Table 1.

Tables 6 to 8 provide stochastic dominance tests for three pairs of assets:

(rtb,t, rsp,t) , (rtb,t, rcp,t) and (rsp,t, rnd,t). The p-values are based on subsam-

pling with the size of the blocks given by α = 4 in (19). This yields blocks

of size B = 240 resulting in 3421 replications to construct the sampling

distributions of the test statistics.14

14The support of the cumulative distribution functions is based on the range of the data
in each block with the number of intermediate points set equal to B, the size of the blocks.
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Table 6 shows that there is no first or second order stochastic dominance

between Treasury bonds (Rtb,t) and S&P500 (Rsp,t). This implies that there

is no puzzle as the observed premium between the two assets of just under

4% reported in Table 5 represents an appropriate amount of compensation

for agents bearing higher risk who have concave utility functions. Interest-

ingly, there is some evidence of third order stochastic dominance of Treasury

bonds over S&P500 for a nominal size less than 5%. This would suggest

that there is a puzzle, but in reverse! This dominance possibly reflects the

negative skewness in S&P500 (Table 5) whereby agents are not receiving suf-

ficient compensation for bearing negative skewness when they prefer positive

skewness.

McFadden’s maximality test reported in Table 7 for first order stochastic

dominance reveals some evidence of dominance amongst the risk free as-

sets, Treasury bonds (Rtb,t) and Commercial paper (Rcp,t), as the null is not

rejected even at the 10% level. Inspection of the individual stochastic dom-

inance tests shows that neither null is rejected with p-values of 0.156 and

0.136. Closer inspection of the sampling distributions reveals that at least

5% of the tail of the distribution of the test statistic that Rcp,t first order sto-

chastically dominates Rtb,t, is equal to zero, thereby providing weak evidence

that dominance is from Commercial paper to Treasury bonds. The evidence

is stronger for the second order stochastic dominance tests where Commercial

paper stochastically dominates Treasury bonds at the 5% level. This domi-

nance continues for higher orders which is consistent with the properties of

stochastic dominance.

The results in Table 8 reveal evidence at the 1% level that S&P500 (Rsp,t)

stochastically dominates NASDAQ (Rnd,t) at the third order. This last result

suggests that agents with a preference for positive skewness prefer S&P500 to

NASDAQ. However, as noted already, Table 5 shows that S&P500 exhibits

negative skewness whilst NASDAQ exhibits positive skewness. This would

suggest that the premium of just over 4% between the two assets would be
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even larger if the two assets exhibited similar skewness characteristics.

Overall the stochastic dominance tests reveal no strong evidence of dom-

inance at the first order in any of the cases investigated. There is some

evidence of second order stochastic dominance of Commercial paper over

Treasury bonds. There is also some evidence of third order stochastic domi-

nance of Treasury bills over S&P500, and S&P500 over NASDAQ. This last

result reveals the importance of higher order moments, particularly skew-

ness, in determining the risk preferences of agents and the subsequent risk

premium observed in the mean.

5 Conclusions

This paper has provided a flexible procedure to test for equity premia without

the need to specify the underlying utility function or the probability distri-

bution governing returns. The approach is nonparametric, being based on

testing for stochastic dominance. The tests for various orders of stochastic

dominance helped to reveal how higher order moments are priced and, in

turn, whether the observed premium in equities was sufficient compensation

for bearing risk.

The approach was applied to two data sets. The first was based on the

original Mehra-Prescott data which is annual data for the U.S.. The second

data consisted of daily observations on two risk-free and two risky assets for

the U.S.. The empirical results found little evidence of stochastic dominance

in both data sets. There was some evidence of stochastic dominance of eq-

uities over bonds in the Mehra and Prescott annual data, but just for utility

functions characterized by non-satiation with the nominal size of the test cho-

sen as 1%, but not at 5%. Expanding this class of utility functions to concave

functions revealed no evidence of stochastic dominance. The empirical re-

sults using daily data revealed no first or second order stochastic dominance

between Treasury bills and S&P500. There was some evidence of third order
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Table 5:

Descriptive statistics on 3 month Treasury bond yields (Rtb,t) , 6 month
Commercial paper yields (Rcp,t) , returns on S&P500 (Rsp,t) and returns on
the NASDAQ (Rnd,t): expressed as percentage per annum, beginning July

4th, 1989 and ending July 14th 2003.(a)

Statistic Treas. Bills Comm. Paper S&P500 NASDAQ
(Rtb,t) (Rcp,t) (Rsp,t) (Rnd,t)

Mean 4.666 4.963 8.446 12.636
Median 5.070 5.410 1.235 20.483
Maximum 8.390 9.050 1433.898 4335.149
Minimum 0.790 0.900 -1894.149 -2615.187
Std. Dev. 1.762 1.854 276.316 500.497
Skewness -0.159 -0.243 -0.144 0.117
Kurtosis 2.739 2.700 7.013 7.515
BJ (p.v.) 0.000 0.000 0.000 0.000

Sharp(b) 264.791 267.749 3.057 2.525

(a) S&P500 and NASDAQ returns computed as the daily difference of the natural

logarithms of daily prices, multiplied by 252 to convert daily returns into annualized

values, and by 100 to express the returns as a percentage.

(b) Computed as the sample mean divided by the standard deviation and expressed as
a percentage by multiplying by 100.
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Table 6:

Stochastic dominance tests of Treasury yields (Rtb,t) and S&P500 equity
returns (Rsp,t): July 4th, 1989 and ends July 14th 2003. Bootstraps based

on subsampling with B = 240 block sizes and 3421 replications.

Stochastic Null Hypothesis Statistic Bottom Top pv
Dominance 5% 5%

First: Non-maximal 29.373 6.520 7.552 0.000
Rtb,t SD Rsp,t 29.373 6.713 8.391 0.000
Rsp,t SD Rtb,t 30.117 6.520 8.456 0.000

Second: Non-maximal 249.298 0.000 70.166 0.000
Rtb,t SD Rsp,t 249.298 0.000 70.166 0.000
Rsp,t SD Rtb,t 6267.950 116.448 260.006 0.000

Third: Non-maximal 0.000 0.000 0.000 0.050
Rtb,t SD Rsp,t 0.000 0.000 0.000 0.050
Rsp,t SD Rtb,t 2553508.478 3162.678 16869.941 0.000

Fourth: Non-maximal 0.000 0.000 0.000 0.000
Rtb,t SD Rsp,t 0.000 0.000 0.000 0.000
Rsp,t SD Rtb,t 4111155096.118 312977.269 1937374.132 0.000
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Table 7:

Stochastic dominance tests of 3 month Treasury yields (Rtb,t) and 6 month
Commercial paper yields (Rcp,t): July 4th, 1989 and ends July 14th 2003.
Bootstraps based on subsampling with B = 240 block sizes and 3421

replications.

Stochastic Null Hypothesis Statistic Bottom Top pv
Dominance 5% 5%

First: Non-maximal 0.017 0.000 0.129 0.136
Rtb,t SD Rcp,t 13.257 2.969 15.234 0.156
Rcp,t SD Rtb,t 0.017 0.000 0.129 0.136

Second: Non-maximal 0.000 0.000 0.129 0.051
Rtb,t SD Rcp,t 6596.672 113.220 730.445 0.000
Rcp,t SD Rtb,t 0.000 0.000 0.129 0.051

Third: Non-maximal 0.000 0.000 0.323 0.051
Rtb,t SD Rcp,t 11182432.522 13281.364 79427.594 0.000
Rcp,t SD Rtb,t 0.000 0.000 0.323 0.051

Fourth: Non-maximal 0.000 0.000 0.775 0.051
Rtb,t SD Rcp,t 10458963600.875 825222.565 5877529.146 0.000
Rcp,t SD Rtb,t 0.000 0.000 0.775 0.051
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Table 8:

Stochastic dominance tests of S&P500 equity returns (Rsp,t) and NASDAQ
equity returns (Rnd,t): July 4th, 1989 and ends July 14th 2003. Bootstraps
based on subsampling with B = 240 block sizes and 3421 replications.

Stochastic Null Hypothesis Statistic Bottom Top pv
Dominance 5% 5%

First: Non-maximal 6.496 0.968 3.098 0.000
Rsp,t SD Rnd,t 7.124 1.226 3.357 0.000
Rnd,t SD Rsp,t 6.496 0.968 3.938 0.000

Second: Non-maximal 133.343 0.000 43.442 0.000
Rsp,t SD Rnd,t 133.343 0.000 45.185 0.000
Rnd,t SD Rsp,t 2425.769 38.407 136.781 0.000

Third: Non-maximal 0.000 0.000 0.000 0.046
Rsp,t SD Rnd,t 0.000 0.000 0.000 0.048
Rnd,t SD Rsp,t 1317716.588 2310.493 11953.189 0.000

Fourth: Non-maximal 0.000 0.000 0.000 0.011
Rsp,t SD Rnd,t 0.000 0.000 0.000 0.022
Rnd,t SD Rsp,t 2950998064.688 228159.063 1455097.530 0.000
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stochastic dominance of Treasury bills over S&P500, suggesting that agents

ranked the risk free asset over the risky asset when pricing skewness. This

result also suggested that the observed equity premium might in fact be too

small to compensate agents adequately for bearing higher risk associated

with S&P500. Amongst the risk free assets, Treasury bonds and Commer-

cial paper, there was some evidence that the latter stochastically dominated

the former at all orders investigated, especially for 2nd and higher orders.

Finally, there was no evidence of either first or second order stochastic dom-

inance between the risky assets, S&P500 and NASDAQ. However, there was

some evidence that S&P500 third and fourth order stochastically dominated

NASDAQ. Given that S&P500 exhibited negative skewness and NASDAQ

positive skewness, this suggested that the observed premium between the

two assets would be even higher if they exhibited the same skewness charac-

teristics.

One implication of the lack of stochastic dominance is that it confirms

that existing models have indeed misspecified either the utility function, or

the returns distribution, or both. It also suggests that there exists a utility

function when combined with an appropriate probability distribution that

will generate “acceptable” risk aversion parameter estimates. That is, the

search could be fruitful! The results also point to the need to search over

probability distributions that capture higher order moments in preferences,

such as skewness and kurtosis. This result is interesting given that most

of the specifications have focussed on respecifying the preference function.

Furthermore, the lack of stochastic dominance results suggest that research

that has been devoted to formulating models that depart from the assump-

tions of complete and frictionless markets may be useful in so far as they are

informative about the nature of preferences and about higher order moments

in the probability distributions of the assets; see also the work of Grant and

Quiggin (2001a,b).

The empirical results presented can be extended in a number of ways.
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First, the returns can be conditioned on a set of factors representing the

state of the economy, different phases of the business cycle etc. The approach

would be to run an auxiliary regression of each of the returns series on a set of

factors, including a constant term, and use the residuals from this regression

in the stochastic dominance tests. Second, the assumption of expected utility

theory can be partially relaxed by performing Prospect Dominance tests

following the approach of Linton, Maasoumi and Whang (2003). Third, the

daily data results can be extended to computing the McFadden maximality

test over the full set of assets investigated so as to provide an overall ranking,

if required, of the assets. Fourth, a number of robustness checks on the

empirical results could be carried out, including sensitivity to the design of

the resampling procedures. Finally, the framework presented here can also

be applied to testing the validity of other puzzles such as the risk free puzzle

and the home equity bias puzzle (Lewis (1999)).
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A Appendix: Data Definitions and Sources

A.1 Mehra-Prescott Data

The data consists of annual observations for the period 1889-1978. The

variables are:

1. Series Rs,t : the annual real returns on equity computed as

Rs,t =

µ
St+1 +Dt − St

St

¶
,

where St is the real annual average Standard & Poor’s Composite Stock

Price Index and Dt is the real dividends. The price index is the

consumption price deflator.

2. Series Rb,t : the annual real return on bonds computed as15

Rb,t =

µ
1 +Rn,t

1 +Πt
− 1
¶

=

µ
(1 +Rn,t)

µ
Pt

Pt+1

¶
− 1
¶
,

where Rn,t is the nominal yield on relatively riskless short-term secu-

rities, and Πt = (Pt+1 − Pt) /Pt is the inflation rate where Pt is the

consumption price deflator.

3. Series Rc,t : the annual growth rate of real consumption computed as

Rc,t =

µ
Ct+1 − Ct

Ct

¶
,

where Ct is real per capita consumption on durables.

Because the formulae use future values, the effective sample of real returns

is 1889 to 1978.
15This formula is based on Kocherlakota (1996) which differs from the formula used by

Mehra and Prescott (1985) who use a discrete time approximation to compute the real
return on bonds. The formula presented in Kocherlakota is for the gross return and not
the net return, as is reported here.
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A.2 Daily Data

Based on daily US data for the period July 4th 1989 to July 14th 2003, a

total of 3661 observations. the variables are

1. Series Rtb,t : US Treasury Bond yield, 3mth, percentage p.a.

2. Series Rcp,t : Commercial paper yield 6mth, percentage p.a.

3. Series Psp,t : S&P100 equity index

4. Series Pnd,t : NASDAQ100 equity index

The equity returns are computed as

Rsp,t = 25200(lnPsp,t − lnPsp,t−1)

Rnd,t = 25200(lnPnd,t − lnPnd,t−1),

where the factor 25200, converts daily equity returns into annualized per-

centages. The total number of effective observations is then T = 3660.
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B Appendix: AlternativeModels of Risk Aver-
sion

This appendix provides the details for estimating the relative risk aversion

parameter γ, for the various models reported in Table 3. The series are: Rs,t

(real annual return on equity), Rb,t (real annual yield on bonds), Rc,t (real

annual consumption growth). The models are based on power utility and

lognormal returns.

Model 1 (Mehra, 2003, equation 15), is given by

bγ1 = bµs − bµb + 0.5bσ2sbσs,c , (22)

where bµs and bµb are the respective sample means of ln (1 +Rs,t) and ln (1 +Rb,t) ,bσ2s is the sample variance of ln (1 +Rs,t) and bσs,c is the covariance of ln (1 +Rs,t)

and ln (1 +Rc,t) .

Model 2 (Mehra, 2003, equation 16), is the same as Model 1 with bσs,c
replaced by bσ2c , the sample variance of ln (1 +Rc,t)

bγ2 = bµs − bµb + 0.5bσ2sbσ2c . (23)

Model 3 (Campbell, Lo and MacKinlay, 1997, equation 8.2.9) is based on

the regression equation

ln (1 +Rs,t) = α+ γ ln (1 +Rc,t) + ut, (24)

where ut is a disturbance term and α is an intercept parameter. Estimating

this equation by OLS gives bγ3 = bσs,cbσ2c . (25)

Model 4 (Campbell, Lo and MacKinlay, 1997, equation 8.2.10), is based

on the reverse regression equation

ln (1 +Rc,t) = φ+ γ−1 ln (1 +Rs,t) + vt, (26)
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where vt is a disturbance term and φ is an intercept parameter. Estimating

this equation by OLS gives bγ4 = bσ2sbσs,c . (27)

Model 5 (Campbell, Lo and MacKinlay, 1997, equation 8.2.9) is based on

(24) but uses an instrumental variable estimator to correct for dependence be-

tweenRc,t and ut.The set of instruments used are {const, Rs,t−1, Rb,t−1, Rc,t−1} .
Model 6 (Campbell, Lo and MacKinlay, 1997, equation 8.2.10) is based

on (26) but uses an instrumental variable estimator to correct for dependence

between Rs,t and vt. The same set of instruments used as in Model 5.

Model 7 (Hansen and Singleton, 1983) is based on estimating γ by GMM

using the following Euler equations

E
£
δ (1 +Rc,t)

−γ (1 +Rb,t)− 1
¤

E
£
δ (1 +Rc,t)

−γ (1 +Rs,t)− 1
¤
,

where δ is the discount factor. The set of instruments used is as in Models 5

and 6; namely, {const, Rc,t−1, Rb,t−1, Rs,t−1} .
Model 8 (Grossman, Melino and Shiller, 1987) is computed as

bγ8 = (eµs − eµb) (1 + eµc)eσs,c − eσb,c ,

where eµs, eµb and eµc are respectively the sample means of Rs,t, Rb,t and Rc,t;eσs,c is the sample covariance of Rs,t and Rc,t, and eσb,c is the sample covariance
of Rb,t and Rc,t. Here ˜ represents a sample estimate based on the return,

which is distinguished from ˆ which is used to compute sample estimates of

log returns.
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C Appendix: Sensitivity Analysis

Additional sensitivity results of the maximality test conducted in Table 4.

Stochastic Maximality Block Bottom Top pv
Dominance Statistics size 5% 5%

6 0.105 0.949 0.015
7 0.114 1.020 0.019
8 0.150 1.061 0.030

First 1.160 9 0.105 1.054 0.030
10 0.105 1.160 0.044
11 0.161 1.136 0.049
12 0.170 1.164 0.050

6 0.000 6.219 0.000
7 0.000 6.800 0.000
8 0.000 7.491 0.000

Second 18.974 9 0.000 7.695 0.000
10 0.000 8.011 0.000
11 0.000 8.513 0.000
12 0.000 8.947 0.001

6 0.000 89.598 0.000
7 0.000 93.153 0.000
8 0.000 101.810 0.000

Third 316.439 9 0.000 104.355 0.000
10 0.000 111.628 0.001
11 0.000 122.032 0.001
12 0.000 129.551 0.001

6 0.000 1149.172 0.000
7 0.000 1261.683 0.000
8 0.000 1334.019 0.000

Fourth 7345.971 9 0.000 1380.440 0.000
10 0.000 1483.635 0.000
11 0.000 1610.020 0.000
12 0.000 1747.024 0.000
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