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Yield-Factor Volatility Models

The term structure of interest rates is often summarized using a handful of yield factors

that capture shifts in the shape of the yield curve. In this paper, we develop a comprehensive

model for volatility dynamics in the level, slope, and curvature factors that simultaneously

includes level and GARCH effects along with regime shifts. We show that the level of the

short-rate is useful in modeling the volatility of the three yield factors and that there is

significant GARCH effects present even after including a level effect. We also study the

effect of interest rate volatility on the level of the yield factors and report evidence that is

consistent with a ”flight-to-cash”. Furthermore, we show that allowing for regime shifts in

the factor volatilities dramatically improves the model’s fit and strengthens the level effect.

Finally, we discuss how the dynamics of yield factors we identify could potentially be used

to discriminate between alternative term structure models.
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I Introduction

The term structure of interest rates is often summarized using a handful of yield factors that

capture shifts in the shape of the yield curve, i.e., changes in the overall level, slope, and cur-

vature of the yield curve (see Litterman and Scheinkman, 1991). This factor decomposition

provides a parsimonious representation of the term structure and is extensively used in risk

management (Pérignon and Villa, 2004), fixed-income derivative pricing (Driessen, Klaassen

and Melenberg, 2003), and to model the linkages between interest rates and macroeconomic

variables (see Ang and Piazzesi, 2003). Despite this wide application in financial economics,

very little is known about the volatility of these factors. In this paper, we study the dynamics

of yield-factor conditional volatility.

Yield factors are related to the latent factors implied by affine term structure models

(See Duffie and Kan, 1996, and Dai and Singleton, 2000). Typically, the estimated loadings

on the latent factors are very similar to the loadings on the yield factors and therefore

estimated latent factors behave like yield factors (see De Jong, 2000, Bams and Schotman,

2003, and Dai and Singleton, 2003). More generally, any accurate dynamic term structure

model, within or outside the affine class, must be consistent with movements in the yield

curve. For instance, Andersen, Benzoni and Lund (2003) show that the observed shifts in

bond yields can be adequately explained by a three-factor model of the short-term interest

rate where the factors are the stochastic volatility, the mean drift, and jumps.

There are different ways to extract the yield factors. One approach uses fixed prespecified

weights on yields of various maturities to capture economically meaningful characteristics of

the yield curve, such as its overall level, slope, and curvature (see among others Ang, Piazzesi

and Wei, 2003 and Brandt and Chapman, 2003). A second approach that is statistically mo-

tivated estimates the weights by decomposing the covariance matrix of bond yields through

principal component analysis (see Litterman and Scheinkman, 1991) or factor analysis (see

Knez, Litterman and Scheinkman, 1994).1 The economic and statistic approaches produce

factors which are very highly correlated.

Many studies have investigated the dynamics of short-term interest rates. The main

1Similar techniques can be applied to the implied covariance matrix which best fits a set of observed
interest rate derivatives (see Longstaff, Santa-Clara and Schwartz, 2001).
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conclusion from this literature is that a level effect, in which the volatility is a positive

function of the level of interest rates, GARCH effects, and regime shifts are required to

adequately model the short-rate volatility. The dependence of the interest rate volatility

on the level of the short-rate was first systematically studied by Chan, Karolyi, Longstaff

and Sanders (1992, hereafter CKLS). They found a very high elasticity parameter of around

1.5. This estimate was reconsidered, among others, by Bliss and Smith (1998) accounting

for the possibility of a structural break in the data, by Smith (2002) allowing for regime

shifts, and by Ronchetti, Dell’Aquila and Trojani (2003) using a robust version of GMM.

The first model that combines both level and GARCH effects for the short-rate volatility

was proposed by Longstaff and Schwartz (1992). Furthermore, Brenner, Harjes and Kroner

(1996) show that models including both level and GARCH effects better predict volatility

than models including only one of the effects (see also Bali, 2000). Gray (1996) extends the

GARCH-level model to allow for multiple regimes in the short-rate volatility and finds that

one needs all three effects to adequately model interest rate volatility.

Less research has been devoted to understanding the joint-dynamics of the yield factors.

The role of conditional heteroscedasticity in the dynamics of the volatility of the yield factors

has been highlighted by Christiansen (2004) for the short-rate and the slope of the U.S. term

structure, and by Christiansen and Lund (2002) for the level, slope, and curvature factors.

Unfortunately, these two papers do not include a level effect in the yield-factor volatility even

though it has been shown to be extremely important in univariate models. The estimation

of the latter effect turns to be particularly challenging in a multi-factor framework. Indeed,

Boudoukh, Richardson, Stanton and Whitelaw (1998) find that the volatility of interest rates

is increasing in the level of interest rates only for sharply, upward sloping term structures.

On the other hand, using an empirical version of the Schaefer and Schwartz’s (1984) model,

Christiansen (2003) identifies a strong level effect for the volatility of the long rate but no

level effect for the volatility of the slope of the yield curve. However, her specification of

the level effect for the slope factor uses the slope of the yield curve itself. A difficulty with

using the slope directly is that the standard-deviation becomes negative when the slope is

negative.

Another strand of research examines the role of regime shifts in the dynamics of yield-

factor volatilities. Using international data, Kugler (1996) and Ang and Bekaert (2002a,b)

estimate a two-state regime-switching VAR for the level and the slope factors with a constant
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covariance matrix in each regime (i.e., without any level nor GARCH effects). Recently,

Christiansen (2004) extended this latter approach by fitting a two-state regime-switching

ARCH model to the level and the slope factors. A broad conclusion of this research is that

regime shifts are a central feature of yield-factor volatilities.

An important contribution of our paper is the development of a comprehensive model

for yield-factor volatilities that simultaneously includes level and GARCH effects along with

regime shifts. Our approach is motivated by the observation that the volatility of all three

yield factors tends to be higher when short-term interest rates are higher. We therefore

include a level effect in which the volatility of the level, slope and curvature factors is

positively related to the level of interest rates. Our model allows us to study the influence

of the level of volatility on the conditional means of the factors. We employ a flexible

specification that allows the mean of each factor to be a linear function of the conditional

volatility of each factor and/or of the conditional volatility of the level factor. Our model

explicitly includes regime shifts, a feature which has been demonstrated to be important in

fitting short-term interest rates (see Gray, 1996). Each model we consider is nested within

this encompassing model, so we are able to directly measure the marginal contribution of

each component of the model.

We also contribute to the debate about the link between the level and the volatility

of interest rates (see Chapman and Pearson, 2001). Using monthly bond yields over the

1970-2002 period, we show that all three yield factors display a significant level effect. In

particular, we find that the level effect for the slope factor is better captured by the overall

level of interest rates rather than by the level of the slope factor. A similar conclusion is

reached for the curvature factor. Furthermore, both factors exhibit strong GARCH effects.

Our empirical results identify some interesting characteristics of the dynamic behavior of the

slope and curvature factors. Although there has been little attention devoted to analyzing

these factors in the academic literature, they are important for the valuation of interest rate

derivatives such as caps and swaptions (see Han, 2003), and they constitute an important

component of bond portfolio risk and should be accounted for appropriately.

In addition to identifying the role of the level and GARCH effects in the dynamics of the

yield-factor volatility, we examine the effect of volatility on the dynamics of the yield-factors.

We find that the GARCH-based volatility of the overall level of interest rates is negatively
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related to the level and curvature and positively related to the slope of the yield curve,

which is consistent with a ”flight-to-cash”. However, this volatility-in-mean effect becomes

insignificant when a level effect is introduced. We also examine regime-switching models

that recognize different regimes in the volatility of the yield factors. We find that allowing

for regime shifts dramatically improves the model’s fit and strengthens the level effect. The

Bayesian information criterion suggests that the favored model is a regime-switching model

with level but no GARCH effects.

Furthermore, a methodological contribution is to provide a novel specification for the

conditional volatility of the factor residuals allowing simultaneously for GARCH and level

effects. The main difference between our approach and current models (e.g. Brenner, Harjes

and Kroner, 1996, and Gray, 1996) is conceptual. We endeavor to combine GARCH and level

effects, while maintaining the traditional interpretation that a GARCH(1,1) model implies

an ARMA(1,1) representation for the squared residual. The GARCH component of current

interest-rate volatility models does not have this feature.

Finally, we discuss how the dynamics of yield factors we identify could potentially be used

to discriminate between alternative term structure models. We propose a set of economic

moments based on the empirical regularities identified in this paper. Following Brandt and

Chapman (2003), we suggest how the simulated method of moments may be used in future

research to contrast affine and quadratic term structure models. The actual implementation

of the proposed test is beyond the scope of our paper though.

The remainder of the paper proceeds as follows. Section II details the model, section

III describes the data with the central features of U.S. Treasury yields, and section IV

presents the empirical results. Sections V and VI propose two extensions of our model

accounting for GARCH-in-Mean effects and volatility regime shifts respectively. Section VII

discusses how the key stylized facts of yield factors could potentially be used to compare

term structure models. Section VIII offers some concluding comments and suggests some

possible extensions.
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II Model Development

We are interested in modeling the dynamics of the following three yield factors, the level of

interest rates (L), the slope of the yield curve (S), and the curvature of the yield curve (C).

Denote by Yit the level of the ith yield factor, with i = L, S, C, whose dynamics is modeled

as:

dYit = (ai + bi · Yit)dt + σitY
γi
jt dWit (1)

where Wit is a standard Brownian motion (WLt, WSt, and WCt may be correlated). This

model is inspired by early models of the short-rate which include both mean reversion and

allow the conditional volatility to be a function of the level of the short-rate (see among

others Cox, Ingersoll and Ross, 1985). When allowing for a level effect in a multi-factor

framework, one can either model the residual volatility of a given factor as a function of the

value of this very factor (j = i) or, as we argue, of the level factor (j = L).2 Given that the

level effect is so important in modeling volatility of short-term interest rates, we test if the

volatility of the slope and curvature are also functions of the level of interest rates. As will

be seen below, this conjecture is born out by the data.

In our empirical work, we discretize the process in Equ. (1) as:

∆Yit = α0i + α1i · Yit−1 + eit (2)

for i = L, S, C and t = 1, ..., T . We approximate dWit, which is normally distributed

with variance dt, by a normally distributed innovation eit. We decompose the conditional

volatility of eit into the product of two terms, E(e2
it|ψt−1) = δ2

it = σ2
itY

2γi
jt−1 with ψt−1 denoting

the information set at time t−1. This specification allows heteroscedasticity to enter through

a time-varying coefficient σ2
it, which depends on past shocks on the residuals factors, and

through the level effect.

Alternatively, the residual in Equ. (2) can be written as eit = Y
γi
jt−1σitzit where zit is i.i.d.

N(0, 1). In this modeling, σ2
it is the volatility of the scaled residual vit = eit/Y

γi
jt−1 = σitzit

and is modeled as a GARCH process:

σ2
it = β0i + β1i · v2

it−1 + β2i · σ2
it−1. (3)

2While both specifications will be considered in the present study for exhaustivity, the own-level approach
appears rather inconsistent since the residual standard-deviation becomes negative when the value of the
factor (slope or curvature) is negative.
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Our specification for σ2
it differs from previous processes proposed in the literature. For

instance, in a univariate setting, Brenner, Harjes and Kroner (1996) use a standard GARCH

model for the residual volatility of the short-rate:

σ2
t = β0 + β1 · e2

t−1 + β2 · σ2
t−1. (4)

Alternatively, Longstaff and Schwartz (1992), Brenner, Harjes and Kroner (1996), Gray

(1996), and Hamilton and Kim (2002) add the level term directly to the GARCH model:

σ2
t = β0 + β1 · e2

t−1 + β2 · σ2
t−1 + β3 · Y 2γ

t−1 (5)

where γ is either fixed or estimated. It is well known that “if ut is described by a GARCH(r,m)

process, then u2
t follows an ARMA(p, r) process, where p is the larger of r and m” (Hamilton,

1994, p. 666). We maintain this interpretation of the GARCH model when including a level

effect. Indeed, we assume that v2
it evolves as an ARMA(1,1) process yielding a GARCH

model for the scaled residual vit. This model can be compared with the stochastic volatility

literature (see Andersen and Lund, 1997, Ball and Torous, 1999, and Smith, 2002) where

the conditional volatility of the short-rate is modeled as σ2
t Y

2γ
t−1 and the conditional volatil-

ity of the scaled residual σ2
t follows an autoregressive process. Here, we also model the

conditional volatility of the scaled residual but using a GARCH model. Although there is

nothing wrong with Equ. (4) and (5) as empirical models, they are somewhat ad hoc ex-

tensions of the GARCH model and are inconsistent with this traditional interpretation of

the GARCH model. Model (4) is particularly difficult to motivate theoretically. It has the

flavor of modeling the scaled residual using a GARCH model as in the stochastic volatility

interest rate literature, but in this case the scaled residual clearly does not admit an ARMA

representation since E(e2
t−1) = δ2

t 6= σ2
t .

We assume that ∆Yt is a tri-dimensional vector of the changes in yield factors with con-

ditional mean vector µt = E(∆Yt|ψt−1) and conditional covariance matrix Σt = H
1/2
t ρH

1/2
t ,

where ρ is a (3 × 3) conditional correlation matrix and Ht is a (3 × 3) diagonal matrix

with conditional volatility of the ith factor on the ith element of the principal diagonal (see

Bollerslev, 1990). We estimate the parameter vector using quasi-maximum likelihood, where

lnL=
∑T

t=1ln f(et|ψt−1) is the quasi-loglikelihood function, and f(et|ψt−1) is the probabil-

ity density function of the multivariate normal density with mean 0 and covariance matrix

Σt|t−1. The initial observation is assumed to be drawn from the unconditional distribution

of ∆Yt.
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Many classical models for interest rates are nested in the model derived above. Firstly,

a multivariate homoscedastic-AR(1) model, labeled as the NO GARCH-NO LEVEL model,

can be derived by assuming that the residual volatility of each factor is constant through

time (βki = 0, i = L, S, C and k = 1, 2, and γi = 0, i = L, S, C). Secondly, a multivariate

version of the CKLS model, which is called the LEVEL model, is obtained by assuming

that σ2
it is constant. In the latter model, the volatility remains time-varying but depends

solely on the level of the factor (βki = 0, i = L, S, C and k = 1, 2). Thirdly, a multi-factor

model, labeled as the GARCH model, allows σ2
it to follow a GARCH process but does not

permit volatility to be a function of the level of the factors (γi = 0, i = L, S, C). Finally,

the unrestricted version of the model, which is referred to as the GARCH-LEVEL model,

permits both the coefficient σ2
it to vary through time as new information arrives and the

residual volatility to depend on the level of the factors.

III Data

We use the Fama-Bliss (1987) monthly data on Treasury zero-coupon bond yields over the

1970:01 - 2002:12 period. We denote by y
(τ)
t the bond yield with a τ -month maturity observed

at time t. Following a prevalent practice, we build the three yield-factor series from a short-

term, medium-term, and long-term yields. Specifically, we associate the level factor with

the 3-month yield (Lt = y
(3)
t ), the slope factor with the difference between the 120-month

yield and the 3-month yield (St = y
(120)
t − y

(3)
t ), and the curvature factor with a linear

transformation of the short, medium, and long-term yields (Ct = y
(3)
t − 2y

(24)
t + y

(120)
t ).3

Table 1 presents some descriptive statistics for the yield factors and the yield-factor

residuals extracted from a first-order autoregressive model. For each series, we provide the

first four central moments, the Bera-Jarque normality test, the correlation with other factors

(or factor residuals), the first-order (cross-)autocorrelation, and the Box-Pierce statistics

to test for the kth-order autocorrelation of the series.4 We observe that the factor series

3We use the 3-month yield to proxy the level factor because the evolution of the 1-month yield is known
to be idiosyncratic (Duffee, 1996). The 2-year maturity is an important intermediate maturity since the
term structure of volatility peaks at this maturity (see Dai and Singleton, 2003). We proxy the long-term
rate by the 10-year maturity since this yield is less subject to liquidity problems than longer-maturity yields.
The transformation used to derive the curvature factor is a numerical measure of the second derivative of
the yield curve, which captures its curvature.

4The Box-Pierce statistics are distributed as a chi-squared random variable with k degrees of freedom.
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are strongly autocorrelated and depart from normality. The level factor turns out to be

negatively correlated with the other two factors, while the slope and curvature factors exhibit

a positive correlation. The factor residuals are negatively correlated among each other and

far from being normal since their distributions are clearly leptokurtic. The Box-Pierce test

suggests that the factor residuals are much less persistent than the factor levels.

The time series of each factor is plotted in Figure 1. While the level factor is always

positive, both the slope and curvature factors take negative and positive values. There are

several episodes when the yield curve is downward-sloping: the 1973 OPEC oil crisis, during

a significant portion of the 1979-1982 monetary experiment, 1989, and towards the end of

2000. Note also that the monetary experiment had a great impact on the curvature of the

term structure. Figure 2 displays the absolute value of the factor residuals and shows that

all three series exhibit volatility clustering. This suggests that an appropriate model for the

yield-factor volatility should include ARCH effects. Moreover, factor volatilities appear to

depend on the level of interest rates as attested by the superimposed level series. Indeed,

the volatility of both slope and curvature factors tends to be high when interest rates are

high. This suggests that a diffusion model, in which volatility is a positive function of the

level of interest rates, may be able to account for this effect.

< Insert Table 1 >

< Insert Figures 1 and 2 >

To initially assess the relative importance of the level and ARCH effects in yield-factor

volatilities, we implement the robust, regression-based specification tests of Wooldridge

(1990). The null hypothesis for these specification tests is homoscedasticity. If the data

are homoscedastic, then e2
t − σ̂2 will be uncorrelated with any function of lagged infor-

mation variables λ(Ft−1). Wooldridge’s test is a conditional moment test that determines

whether E[(e2
t − σ̂2)λ(Ft−1)] = 0K×1 for some K-dimensional vector λ(Ft−1). The alter-

native hypothesis is that the expectation is non-zero, which implies that at least one of

the variables in λ(Ft−1) is useful in explaining conditional volatility. The size of each test

statistic provides a crude metric of the relative ability of each component of λ(Ft−1) in ex-

plaining the time-varying volatility. Unlike Engle’s (1982) test for ARCH, which proceeds
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by regressing e2
t on a number of lagged squared residuals, Wooldridge’s test is robust to

non-normality. A major advantage of this test is that it can be constructed using nothing

more sophisticated than OLS. In this framework, a robust test for pth order ARCH effects

is obtained using λ(Ft−1)
ᵀ = (e2

t−1 e2
t−2 ... e2

t−p) and a robust test for level effects is derived

with λ(Ft−1) = |Yj,t−1|γ for some suitably defined γ, such as 0.5 or 1.

We report the Wooldridge’s test statistics with the associated p-values in Table 2. Since

the largest p-value is 0.0228, there is some clear indication that factor changes are condi-

tionally heteroscedastic. Further, the conditional volatility is strongly related to the overall

level of interest rates, but not to the level of the slope or curvature factors. Indeed, when

modeling the volatility of the slope (respectively curvature) as a function of the value of the

slope (curvature) factor, no level effect can be detected. This result is consistent with the

evidence reported by Christiansen (2003) for the slope factor using weekly data. It appears

in Table 2 that setting the elasticity parameter γ equal to one is optimal for the three yield

factors, though the significance remains even when γ = 0.5 as implied by the square root

process of Cox, Ingersoll and Ross (1985). This preliminary analysis highlights the following

features that a correctly specified volatility model should possess. First, the residuals ex-

hibit volatility clustering, which suggests using a GARCH process to model the conditional

residual volatility. Second, the volatility of the slope and curvature factors depends strongly

on the level of interest rates, but much less on the levels of the slope and curvature factors.

As a result, in the following empirical analysis, we primarily model the level effect using the

overall level of interest rates.

< Insert Table 2 >

IV Empirical Results

In this section, we report the results of fitting the competing models, i.e., the NO LEVEL-

NO GARCH, LEVEL, GARCH, and GARCH-LEVEL models, to the U.S. term structure of

interest rates over the 1970-2002 period.

We begin by estimating the univariate version of the four models. Table 3 reports for

each yield factor the parameter estimates and Bollerslev-Wooldridge (1992) robust standard-
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errors. The first column of Table 3 reports the estimates of the homoscedastic model. There

appears to be mean reversion in all three yield factors (α̂1i < 0, i = L, S, C), though not

statistically significant for the level. When a level effect is introduced, the loglikelihood

function increases dramatically (∆ lnLL = 136.70, ∆ lnLS = 53.68, and ∆ lnLC = 11.40).

The elasticity parameter γ̂i is significant for all three yield factors. Interestingly, if the level

effect is modeled using the level of each factor, instead of the overall level of interest rates,

the fit of the LEVEL model is significantly reduced (lnLS = −297.58 and lnLC = −234.91,

not reported in the tables). Results of the GARCH model suggest that explicitly modeling

the serial correlation in volatility leads to a superior fit. Further, the variance processes

exhibit high persistence, though the persistence is lower for the slope and curvature factors

(β̂1 + β̂2 = 0.9897 for L, 0.9316 for S, and 0.9070 for C). Finally, the GARCH-LEVEL

model gives rise to lower estimates of the elasticity parameters than in the LEVEL model.

The marginal contribution of the GARCH effect turns out to be stronger than the marginal

contribution of the LEVEL effect for the three yield factors.

< Insert Table 3 >

Table 4 reports the parameter estimated and robust standard-errors for the multivari-

ate models. The main difference between the specifications presented in Table 3 and the

present specifications is that the residual factors can now be correlated. The point estimates

for the correlation coefficients (ρL,S, ρL,C , and ρS,C) are negative in all models, while their

magnitude varies across models. As pointed by Dai and Singleton (2000), negative correla-

tion among risk factors is an important feature of the U.S. term structure of interest rates.

Allowing the residuals to be correlated improves the fit of each model. For instance, the

sum of the loglikelihoods for the three univariate GARCH models is equal to -602.24 and the

loglikelihood for the trivariate GARCH model is as high as -477.18. However, correlation

matters not only for fitting purposes but it also strongly impacts the point estimate for the

elasticity parameters. Indeed, for the LEVEL and GARCH-LEVEL models, the point esti-

mate of γi drops considerably for the level and slope factors after accounting for correlation.

On the other hand, the point estimate of γi increases for the curvature factor. While the

level of persistence is comparable to the univariate case, the response of volatility to lagged

information shocks (β̂1) drops significantly for the level and slope factors.
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Comparing the various multivariate volatility models yields some interesting conclusions.

Consistent with the univariate results, the GARCH effect seems to dominate the level effect:

When only a GARCH effect is introduced, the value of the loglikelihood function increases

by 193, which exceeds the rise (126) observed when a level effect is introduced. However, the

level effect only requires three extra parameters while the GARCH model requires six extra

parameters. Another interesting observation is that the value of the elasticity parameter is

weakened when a GARCH effect is introduced, though it remains significant for the level

and slope factors. In conclusion, it seems that one needs both level and GARCH effects to

adequately model yield-factor volatilities.

< Insert Table 4 >

V GARCH-in-Mean Effect

We extend the model presented in Section II by introducing a GARCH-in-Mean effect along

the lines of Engle, Lilien and Robins (1987). This alternative specification allows us to

analyze the impact of conditional volatility on the shape of the yield curve. This extension

is motivated by several previous empirical findings. First, Engle, Ng and Rothschild (1990)

find that excess returns on Treasury bills are strongly affected by the conditional volatility

on an equally-weighted bill portfolio, which is taken as a unique common factor. Second, in a

complementary study based on the Engle, Ng and Rothschild’s model, Engle and Ng (1993)

show that when volatility is high, the yield curve is likely to be upward sloped (see also Fong

and Vasicek, 1991, and Longstaff and Schwartz, 1993). Third, Litterman, Scheinkman and

Weiss (1991) find that the curvature of the yield curve and the implied volatility extracted

from bond options are strongly related.

We model the dynamics of the conditional mean of each factor as:

∆Yit = α0i + α1i · Yit−1 + α2i · σLt + eit. (6)

Alternatively, we use the conditional volatility of the slope factor σSt (in addition to or

instead of σLt) in the mean equation of the slope factor and the conditional volatility of the

curvature factor σCt (in addition to or instead of σLt) in the mean equation of the curvature
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factor. Given the empirical results presented above, we model the level effect using the

level of the short-term interest rate alone. Therefore, the residual volatility of each factor is

given by E(e2
it|ψt−1) = δ2

it = σ2
itY

2γi
Lt−1, where the scaled residual vit is modeled as a GARCH

process.

Table 5 reports the results for the GARCH model with volatility effects in the mean

equation. We find that the conditional volatility of short-term interest rate is negatively

related to the level of the short-term interest rate (α̂2L < 0), positively related to the slope

of the yield curve (α̂2S > 0), and negatively related to the curvature of the yield curve

(α̂2C < 0), though the coefficient is not statistically significant for the curvature. These

point estimates imply that when short-rate volatility is high, we expect short-term yields to

decrease, intermediate yields to increase marginally and long-term yields to increase more

strongly. We term this the ”flight to cash” which has a neat economic interpretation because

long-term bonds generally have higher exposure to interest-rate risk than short-term bonds.5

An increase in the volatility of the level factor, i.e., the short-rate, will thus result in a larger

increase in the risk of long-term bonds than short-term bonds. We would therefore expect

investors to move funds out of these riskier long-term bonds and into safer short-term bonds.

This, in turn, would cause the prices of intermediate and long-horizon bonds to decrease (and

intermediate and long-horizon yields to correspondingly increase) in response to this selling

pressure while the buying pressure on short-term bonds will increase their prices (and thus

decrease their yields).

We find a similar pattern when the GARCH-M effect is modeled through the conditional

volatility of each factor. When both conditional volatilities (σLt and σSt or σCt) are included

in the mean equation, the conditional volatility of the level seems to capture much of the

volatility effect in the mean equation. Moreover, for the three alternative specifications, the

point estimates for the correlation parameters are not substantially affected by the GARCH-

M variables. Whatever the chosen specification for the mean equation, the increase in the

loglikelihood value is very limited, though three and five new parameters are estimated

respectively. We see in Table 6 that the volatility-in-mean effect is weaker when a level effect

is introduced and that, consequently, it appears to be difficult to simultaneously estimate the

GARCH-M and γi parameters. There appears to be little benefit to include a GARCH-M

5In particular, Campbell, Lo and MacKinlay (1997) show formally that both homoscedastic and het-
eroscedastic single-factor AR(1) lognormal affine models imply that the sensitivity of bond returns to the
short-rate increases with maturity (see pages 431 and 437).
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effect in the GARCH-LEVEL model presented in the previous section (see Table 4).

< Insert Tables 5 and 6 >

VI Regime-Switching Models

In this section, we extend our basic model to allow for different regimes in the volatility

of the yield factors. This is motivated by the extensive empirical literature suggesting that

regime-switching models describe historical interest rates better than single-regime models

(see Hamilton, 1988, Gray, 1996, Bansal and Zhou, 2002, and Smith, 2002). Further, Ang

and Bekaert (2002a,b) and Dai, Singleton and Yang (2003) show that regime shifts are

also important in capturing the dynamics of interest rates using multi-factor term structure

models.

We denote by St the random state of the world at time t which can take two values,

st = {1, 2}, where 1 denotes the “high-volatility regime” and 2 the “low-volatility regime”.

We assume that these regimes are common to the level, slope, and curvature of the yield

curve. This assumption is primarily to keep the state space parsimonious6, but it also seems

more reasonable to assume that the state of the economy would affect all characteristics of the

yield curve jointly rather than only affecting short-term interest rates without an effect on the

slope and curvature. Furthermore, most term structure models assume that the entire yield

curve be priced with the same underlying state variables, which would demand a common

regime. Finally, a simple perusal of Figure 2 indicates that the interesting high-volatility

episodes of one series appear also in the other two series. To also keep the model simple we

allow only the unconditional mean and volatility of each series to be state-dependent. The

conditional mean is given by:

∆Yit = α0ist + α1i · Yit−1 + eit (7)

and the conditional volatility of the scaled residual is:

σ̂2
it|st,st−1

= β0ist
+ β1i · v̂2

it−1 + β2i · σ̂2
it−1|st−1

. (8)

6Without this assumption, the state space would enlarge to 23 = 8 regimes. A similar assumption is
made by Kugler (1996), Ang and Bekaert (2002a,b), and Christiansen (2004).
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This specification of the GARCH model follows Dueker (1997) by defining σ̂2
it|st,st−1

=

E(v2
t |St = st, St−1 = st−1, ψt−1) and:

v̂it−1 =
2∑

st−1,st−2=1

P (St−1 = st−1, St−2 = st−2|ψt−1)vit|st−1 . (9)

Note that for any time point t, the conditional volatility depends only on the regimes in the

current period and in the previous period. The dependence of lagged volatility on states in

previous periods is integrated out by substituting the entire path dependent σ2
it−1|st−1,st−2,...

with σ̂2
it−1|st−1

= E(v2
t−1|St−1 = st−1, ψt−1):

σ̂2
it|st

=
2∑

st−1=1

P (St−1 = st−1|St = st, ψt−1)σ
2
it|st,st−1

(10)

P (St−1 = st−1|St = st, ψt−1) =
P (St = st, St−1 = st−1|ψt−1)∑2

st−1=1 P (St = st, St−1 = st−1|ψt−1)
. (11)

The transition between the two latent states is modeled as a first-order Markov process with

constant transition probabilities.7 We define ξt|t−1 as:

ξt|τ =




P (St = 1, St−1 = 1|ψτ )
P (St = 1, St−1 = 2|ψτ )
P (St = 2, St−1 = 1|ψτ )
P (St = 2, St−1 = 2|ψτ )


 (12)

with ψτ denoting three possible information sets. For τ = t − 1, we get the forecast prob-

abilities, which are used to construct the loglikelihood function; for τ = t, we get the

filtered probabilities, which are a product of the updating algorithm; for τ = T , we get the

full-sample smoothed probabilities, which use all information and are helpful when making

inference regarding states. The transition matrix from one point to another is given by:

ξt|t−1 = Pξt−1|t−1. (13)

Imbedded in this formula is that the previous regime is integrated out at each point in time.

The transition matrix P is given by:

P =




p p 0 0
0 0 1− q 1− q
1− p 1− p 0 0
0 0 q q


 (14)

7Alternatively, the transition probabilities may depend on the level of interest rates (see Gray, 1996).
However, as acknowledged by Ang and Bekaert (2002a, p. 172), multi-factor models with time-varying
transition probabilities are likely to be overparameterized, which leads to many insignificant coefficients in
the probability terms.
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where p is P (St = 1, St−1 = 1) and q is P (St = 2, St−1 = 2). We follow Hamilton

(1994) and set the initial probability vector ξ1|0 to the ergodic steady state probabilities.

The conditional density f(∆Yt|St = st, St−1 = st−1, ψt−1) is a multivariate normal den-

sity with conditional mean µt|st,st−1,t−1 =
{

∆Ŷit

}
i=L,S,C

and conditional covariance matrix

Σ̂t|st,st−1,t−1 = Ĥ
1/2
t|st,st−1

ρĤ
1/2
t|st,st−1

.

Although the states are latent, the forecast probabilities can be used to calculate the

joint density of ∆Yt and the states as:

f(∆Yt, St = st, St−1 = st−1|ψt−1) =

f(∆Yt|St = st, St−1 = st−1, ψt−1)× P (St = st, St−1 = st−1|ψt−1). (15)

The marginal density of ∆Yt is found by integrating the joint density of ∆Yt over all possible

states and is given by:

f(∆Yt|ψt−1) =
2∑

st,st−1=1

f(∆Yt, St = st, St−1 = st−1|ψt−1). (16)

The loglikelihood function is calculated as lnL=
∑T

t=1 log f(∆Yt|ψt−1) and is maximized

to estimate the parameters. Finally the updated filter probabilities of the latent states

(the appropriate elements of ξt|t) can be obtained using the definition of the conditional

probability:

P (St = st, St−1 = st−1|ψt) =
f(∆Yt, St = st, St−1 = st−1|ψt−1)

f(∆Yt|ψt−1)
. (17)

The various models fitted in this section recognize diverse sources of conditional heteroscedas-

ticity:

• In the RS-NO GARCH-NO LEVEL model, conditional heteroscedasticity can only be

driven by switches between regimes.

• In the RS-LEVEL model, conditional heteroscedasticity comes from either time-variation

in the level of interest rates or from switches between regimes.

• In the RS-GARCH model, conditional heteroscedasticity is driven by serial correlation

in volatility or by switches between regimes.
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• In the RS-GARCH-LEVEL model, conditional heteroscedasticity comes from the three

different sources of time-variation.

Parameter estimates and robust-standard errors for the regime-switching models are

reported in Table 7. The regime-switching models outperform the models estimated in

section IV (see Table 4), which is not overly surprising given that these models have been

estimated under the assumption that there is only one regime. Allowing for multiple regimes

dramatically improves the fit of all four models. Interestingly, when the volatility is allowed

to switch from low to high-volatility regimes, the level effect is strengthened and the volatility

persistence drops significantly. Furthermore, the performance of the RS-LEVEL model is

higher than the performance of the RS-GARCH model, whereas the single-regime GARCH

model outperformed the single-regime LEVEL model. Because of its lack of parsimony

(it requires the estimation of 26 parameters) and its loglikelihood value, the RS-GARCH

level is dominated by the RS-LEVEL model according to the Bayesian information criterion

(BICRS−LEV EL = 972.48 vs. BICRS−GARCH = 1046.59). In the same way, the RS-LEVEL

model is also preferred to the general RS-GARCH-LEVEL model (BICRS−GARCH−LEV EL =

991.07).

The four panels of Figure 3 contain plots of the smoothed probabilities of high-volatility

state for the four considered regime-switching models. The probabilities have been computed

using the smoothing algorithm of Kim (1994). Because of their multi-factor nature, our mod-

els exploit complementary information on the slope and curvature of the term structure. Our

models identify all the major well-known episodes of extreme volatility: the 1973 OPEC oil

crisis and its aftermath, the 1979-1982 monetary experiment, the October 1987 stock market

crash, and the Russian Ruble devaluation in August 1998. Furthermore, we also identify a

period in 1985, which is also identified in Gray (1996), with no clear economic interpreta-

tion. Interestingly, the two models that include level effects identify a high-volatility episode

following September 11, 2001. This illustrates the importance of the level effect. Indeed,

during this period the volatility of all three yield factors was only trivially elevated above

previous levels, yet the short-rate was at historically low levels. This coincidence of low

interest rates and lightly elevated volatility is explained as a high-volatility episode. This

demonstrates that we need to be cautious when interpreting these regimes. A more precise

interpretation is that the scaled residuals eit/Y
γL
Lt−1 have high volatility.
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< Insert Table 7 >

< Insert Figure 3 >

VII Potential Application: Comparing Term Struc-

ture Models

In this section, we describe how the key stylized facts of yield factors identified in this

paper could potentially be used to evaluate and compare existing term structure models.

In the spirit of Brandt and Chapman (2003), we propose a set of economic moments based

on the empirical regularities exhibited by yield factors. These moments can be used to

contrast multi-factor term structure models using a simulated moments estimator of the

type described in Duffie and Singleton (1993). The underpinning idea behind this approach

is that the best model is the one that is doing the best job in capturing the central features of

U.S. Treasury yields. An exhaustive empirical application is beyond the scope of our paper

and we leave it for future research.

The term structure models to be compared may consist of the following classes of models:

(1) multi-factor affine term structure models of Duffie and Kan (1996) and Dai and Singleton

(2000); (2) regime-switching Gaussian multi-factor term structure models of Dai, Singleton

and Yang (2003); (3) and multi-factor quadratic term structure models of Ahn, Dittmar

and Gallant (2002) and Leippold and Wu (2002). To find the term structure model that is

the most consistent with yield-factor dynamics, the simulated methods of moments can be

used. The idea in this approach is to simulate yields from a candidate term structure model

and see how closely the moments from these artificial yields compare with the important

economic moments we observe in the real data. As Brandt and Chapman (2003) point out,

the key advantages of the simulated-moment approach are that it can be used to contrast

models that are not nested and does not require that the likelihood function be known in

closed-form. Furthermore, it can explicitly identify those moments which each term structure

model has difficulty matching. The approach can therefore suggest directions in which term

structure models may be extended.

We suggest using the following set of moments which capture the stylized facts identified

in the empirical term structure literature and the key features of the yield-factor volatility
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that we identify. In particular, we recommend including for each of the three yield factors:

the unconditional mean, residual standard deviation, and (residual) autocorrelation coef-

ficient, along with the contemporaneous correlations and (residual) cross-autocorrelations.

The next moments are the slope coefficients from a regression of yield changes on the slope

of the yield curve, which is termed the LPY regression. In disagreement with the expecta-

tions hypothesis, Dai and Singleton (2003), among others, find that this slope coefficient is

positive and increases for longer maturities. If regressions are based on two and ten year

maturities we obtain two extra moments. Moments related to conditional volatility can also

be used. Brandt and Chapman (2003) suggest using the slope coefficients from a regression

of the squared holding period return on the three yield factors, which is termed the LPV

regression. If the regression is run using two bond maturities then six moments are iden-

tified. However, in light of the empirical results reported above, we suggest the LPV slope

coefficients be replaced with some combination of the following moments:

• the GARCH parameters β1i and β2i of the three yield factors,

• the elasticity parameters γi of the three yield factors,

• the correlation parameters ρij between the yield-factor residuals,

• and the unconditional probability of being in the high-volatility regime.

The level-based moment (γi) extends the CKLS testing procedure to the multivariate

framework of yield factors. An empirically successful term structure models should im-

ply persistence in the yield-factor volatility, level effect, correlations, and switches between

volatility regimes that are comparable to the ones observed in historical data.
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VIII Conclusion

In this paper, we develop a comprehensive model for volatility dynamics in the level, slope,

and curvature factors that simultaneously includes level and GARCH effects along with

regime shifts. The analysis in this paper leads to the following conclusions. First, we show

that the level of the short-rate is useful in modeling the volatility of the level, slope, and

curvature factors. Second, there is significant GARCH effects present even after including a

level effect. Third, we find that the GARCH-based volatility of the overall level of interest

rates is negatively related to the level and curvature and positively related to the slope of

the yield curve, which is consistent with a ”flight-to-cash”. Fourth, when the volatility is

allowed to switch from low to high-volatility regimes, the model’s fit improves dramatically,

the level effect is strengthened, and the volatility persistence drops significantly. Finally, we

discuss how the central features of U.S. Treasury yields identified in this paper can be used

to compare existing term structure models.

The encouraging results obtained with our regime-switching models strengthen the need

for including regime-shifts in theoretical term structure models, from both the affine and

quadratic classes. From this respect, the recent contribution of Dai, Singleton and Yang

(2003), which develops a regime-switching, Gaussian dynamic term structure model, is a

promising endeavor on this challenging avenue of research.

The present econometric model can be expanded to include additional features, such as

non-linear drifts, asymmetric effects both in the drift and in the diffusion, or jumps in the

yield-factor dynamics. Perhaps more importantly, the present version of the model offers

enough flexibility to allow some state variables, such as macroeconomic variables, to enter

into the dynamics of the yield factors. These extensions are left for future research.
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IX Tables and Figures

Table 1: Descriptive Statistics

L S C eL eS eC

Mean 6.4947 1.3590 -0.0428 - - -
Variance 7.7562 2.0399 0.5712 0.3681 0.2633 0.1938
Skewness 1.0471 -0.5966 0.0435 -1.1751 0.7211 -0.6965
Kurtosis 4.4361 3.1934 4.0297 14.6185 9.3072 7.8707
BJ 106.39 24.11 17.62 2318.47 690.70 423.45
Corr(L,i) - -0.6180 -0.4070 - -0.8134 -0.0533
Corr(S,C) - - 0.1404 - - -0.1448
CACorr(Lt−1,i) 0.9711 -0.5928 -0.4043 0.1219 -0.0336 -0.2118
CACorr(St−1,i) -0.5721 0.9299 0.1794 -0.1074 0.0463 0.1779
CACorr(Ct−1,i) -0.3930 0.1339 0.8044 -0.0385 -0.0624 -0.0920
BP1 376.24 345.01 258.20 5.93 0.86 3.38
BP12 3325.19 2063.31 1051.63 42.29 22.12 35.48

Note: This table presents the mean, variance, skewness, and kurtosis of the three yield factors
(level L, slope S, curvature C) and yield-factor residuals (eL, eS , eC). BJ stands for the Bera-
Jarque normality test, Corr for correlation, CACorr for first-order cross-autocorrelation, and BP1

and BP12 for the Box-Pierce test with one and twelve lags respectively. The latter two statistics are
distributed as chi-squared with 1 and 12 degrees of freedom and then the 5 percent critical values
are 3.84 and 21.03 respectively.
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Table 2: Robust Tests for Level Effect and Heteroscedasticity

λ(F t−1) L S C
e2

t−1 e2
t−2 ... e2

t−6 14.6891
[0.0228]

15.9148
[0.0142]

21.8449
[0.0013]

YL,t−1
0.5 7.2969

[0.0069]
6.8220
[0.0090]

6.5559
[0.0105]

Y L,t−1 7.8533
[0.0051]

8.8714
[0.0029]

7.1608
[0.0075]

|Y j,t−1|0.5 - 0.6067
[0.4360]

2.8213
[0.0930]

|Y j,t−1| - 0.2095
[0.6472]

3.2472
[0.0715]

Note: This table reports the Wooldridge (1990) robust specification tests for level and ARCH effects
in yield-factor volatilities. This conditional moment test determines whether E[(e2

t − σ̂2)λ(Ft−1)] =
0K×1 for some K-dimensional vector λ(Ft−1). The robust test for pth order ARCH effects is
obtained using λ(Ft−1)ᵀ = (e2

t−1 e2
t−2 ... e2

t−p) and the robust test for level effects is derived with
λ(Ft−1) = |Yj,t−1|γ with γ = 0.5, 1. We report the Wooldridge’s statistic with the associated
p-values into brackets.
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Figure 1: Value of the Level, Slope, and Curvature Factors
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Notes: This figure displays the series for the three yield factors. The level factor is associated
with the 3-month yield, the slope factor with the difference between the 120-month yield
and the 3-month yield, and the curvature factor with a linear transformation of the short
(1-month), medium (24-month), and long-term (120-month) yields.
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Figure 2: Factor Volatilities and the Level Factor
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Notes: This figure displays the absolute value of the factor residuals (left Y-axis, solid line)
with the level factor (right Y-axis, dashed line). |eL,t| denotes the absolute level residual,
|eS,t| the absolute slope residual, and |eC,t| the absolute curvature residual.
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Figure 3: Smoothed Probability of High-Volatility State P (St|ψT )

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
0

0.5

1

N
o 

G
ar

ch
, N

o 
Le

ve
l

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
0

0.5

1

G
ar

ch
, N

o 
Le

ve
l

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
0

0.5

1

Le
ve

l, 
N

o 
G

ar
ch

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
0

0.5

1

G
A

R
C

H
 a

nd
 L

ev
el

Notes: The four panels contain the time series of the smoothed probabilities that the level
factor is in the high-volatility regime at time t according to the Regime Switching (RS)
NO GARCH - NO LEVEL model, the RS LEVEL model, the RS GARCH model, and the
RS GARCH - LEVEL model. The smoothed probability is based on the entire sample:
P (St = 1|ψT ).
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